

www.astesj.com 89

HistoChain: Improving Consortium Blockchain Scalability using Historical Blockchains

Marcos Felipe, Haiping Xu*

Computer and Information Science Department, University of Massachusetts Dartmouth, Dartmouth, 02747, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 21 February, 2023
Accepted: 10 May, 2023
Online: 21 May, 2023

 Blockchain technology has been successfully applied in many fields for immutable and
secure data storage. However, for applications with on-chain big data, blockchain
scalability remains to be a main concern. In this paper, we propose a novel scalable storage
scheme, called HistoChain, for a consortium blockchain network to manage blockchain
data. We use a current blockchain and historical blockchains to store on-chain big data,
where the current blockchain and the historical blockchains store data from recent years
and earlier years, respectively. Both the current blockchain and the historical blockchains
are maintained by super peers in the network; while regular peers manage only the current
blockchain and can retrieve historical data by making queries to the super peers. We present
procedures for generating historical blockchains, dynamically balancing the data retrieval
workload of super peers, and concurrently retrieving historical blockchain data in response
to queries. We further provide a case study of healthcare data storage using a consortium
blockchain, and the simulation results show that our scalable HistoChain storage scheme
supports efficient access and sharing of big data on the blockchain.

Keywords:
Consortium blockchain
Historical blockchain
On-chain big data
Scalable storage
Dynamic load balancing
Healthcare data

1. Introduction

In recent years, the use of blockchain technology in many
fields has gained increasing interest and popularity [1]. As a
distributed and decentralized ledger, blockchain technology
allows for the protection of transactions and data while
maintaining the data sharing and reliability of a peer-to-peer
network [2]. Peers maintain “chains” of blocks consisting of
various types of data stored as transactions. Each block contains
the hash value of the previous block in the chain, so any attempt
to modify one block has a ripple effect on all subsequent blocks
in the blockchain. These altered hash values can be easily
identified because peers in the network maintain copies of the
chain and can independently verify transactions and blocks.
Permissioned blockchains allow peers in the network with the
required permissions to access recorded transactions, while the
key benefits of security, immutability, integrity, and transparency
are preserved for transaction records [3]. The reliability and ease
of securing and accessing data may explain the growing
prevalence of blockchain technology worldwide. Bitcoin, a digital
currency that utilizes public blockchain technology, had over 100
million users in 2022. The Bitcoin blockchain grew by more than
400 gigabytes from January 2012 to July 2022, and has even
doubled since February 2019. In the face of this incredible growth,

the cost of becoming a full-fledged node in a blockchain network
is daunting and could become completely impractical. Similar to
public networks like Bitcoin and Ethereum, consortium networks
also run into storage problems [4]. In general, applications that
require big data storage pose such problems, even if these
networks do not consist of many peers or transactions. A wide
range of domains, such as healthcare, real estate, insurance, and
the Internet of Things (IoT), have adopted blockchain technology,
resulting in a variety of data types and applications. While these
applications typically use consortium blockchain networks, data-
rich applications inevitably face storage issues, which raise
significant concern about blockchain scalability.

The concern for blockchain scalability is the main reason for
many studies on consortium blockchain storage management [5],
[6]. However, most of the proposed solutions employ various off-
chain storage strategies such as InterPlanetary File System (IPFS)
and cloud storage, where IPFS is a decentralized, secure,
verifiable, distributed storage system that can be integrated with
blockchain networks [7]. Although off-chain approaches can
alleviate the scalability issues of blockchain storage, the benefits
of using blockchain technology are lost as the data is moved off
the chain and new issues regarding the security and
maintainability of off-chain data can be introduced. In this paper,
we propose an on-chain approach, called HistoChain, to reduce
the storage burden on most peers in a blockchain network by

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Haiping Xu, University of Massachusetts Dartmouth,
Dartmouth, MA 02747, Email: hxu@umassd.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com

Special Issue on Computing, Engineering and Multidisciplinary Sciences

https://dx.doi.org/10.25046/aj080311

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj080311

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 90

splitting the current blockchain (CB) and transferring the old data
to a historical blockchain (HB), thereby reducing the size of the
CB by half. In the HistoChain approach, HBs are immutable
blockchains containing historical data separate from the CB, while
the CB contains only the most recent years of blockchain data.
After a set period of time, the CB will have grown further, and it
will then be split again, generating another HB. In our approach,
the nodes in the network are set up as either super peers or regular
peers, with a smaller but substantial number of nodes forming a
group of super peers, each of which maintains a copy of the CB
and all HBs. Regular peers, which comprise most of the nodes in
the network, need only retain the CB. This greatly reduces the
storage burden on regular peers, which can then access data from
the historical blockchains by making queries to the super peer
group. In our approach, we use a time-based partitioning method
to split the CB when it reaches a certain age. For example, if this
age is 10 years, an HB will be created containing the first 5 years
of data, leaving only the most recent 5 years of data in the CB.
This splitting process can continue over time, resulting in the
creation of multiple HBs.

Since regular peers are not required to store HBs, making query
requests to the super peer group is their means of accessing
historical data from the blockchain. When a super peer receives a
request to search for historical data, it retrieves the requested data
from the historical blockchains, and sends a summary report
containing all retrieved information back to the requesting regular
peer. In our approach, we introduce a meta-block, a mutable block
attached to the beginning of the CB or each of the HBs, which
contains index information for all transactions stored in the
corresponding blockchain. This index information can facilitate
fast and efficient data retrieval from a large blockchain that
contains many years of data; therefore, the search time for
historical data can be significantly reduced.

This work significantly extends the scalable storage scheme we
previously proposed for on-chain big data using historical
blockchains, originally presented at the IEEE International
Workshop on Blockchain and Smart Contracts in 2022 (IEEE BSC
2022). In our previous work [8], we defined a primary super peer,
called PSP, as an elected super peer who plays a role in efficiently
facilitating access to data in HBs by regular peers. However, this
approach introduces centralization and requires the necessary trust
in a particular super peer (i.e., the PSP), which shall be best
avoided in a blockchain architecture. In this paper, we allow a
query to be sent to any super peer, which is responsible for
collecting retrieved historical data and returning a summary report.
To ensure temporal efficiency in query execution, query delegation
will be performed within the super peer group. We design a
dynamic load balancing algorithm to support fulfilling a request in
a timely and concurrent manner. Each request for historical data
sent to the super peer group is divided into subqueries with a search
time of no more than 5 years, which are assigned to super peers
based on their current workload. For this purpose, each super peer
maintains a Shared Assignment Table (SAT) that keeps a record of
assignments for all super peers and their completion times. Once
an assignment is accepted by a super peer, an update to the SAT is
broadcast within the super peer group to ensure that the super peers
are aware of the latest status of the blockchain network.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the HistoChain
framework for scalable storage using historical blockchains and
describes the procedure for generating historical blockchains.
Section 4 describes in detail the dynamic load balancing algorithm
and the retrieval process of historical blockchain data. Section 5
presents the case studies and their analysis results. Section 6
concludes the paper and mentions future work.

2. Related Work

Scalability challenges in blockchain technology, especially in
public blockchain systems, remain a persistent issue. In [9], the
authors introduced the Bitcoin Lightning Network (BLN), a
decentralized system where transactions can be sent off-chain for
value transfer through channels. The BLN, through its ability to
make micro-payments, has positively impacted the scalability of
the global Bitcoin blockchain network by reducing the need to
broadcast many transactions. Danksharding is a newer type of
sharding architecture proposed to scale the Ethereum network
[10]. In the Danksharding proposal, nodes can validate larger data
volumes through distributed data sampling across blob; therefore,
nodes can avoid processing all data and larger data volumes can
be handled by the Ethereum network. Scalability challenges also
arise in consortium blockchain networks when large amounts of
data need to be stored. In the context of consortium, off-chain
strategies to improve the scalability of blockchain applications are
the main focus of further research. To reduce the high cost of
computation and storage for blockchain-based applications, in
[11], the authors investigated a series of off-chain computation
and storage approaches. They proposed five off-chain models that
move computation and data off the blockchain without violating
the trustless property. In [12], the authors proposed an off-chain
scalability solution, called ChainSplitter, for Industrial Internet of
Things (IIoT) blockchain applications. The proposed approach
features a hierarchical storage structure where the recent blocks
are stored in an overlay network and the majority of blockchain
data is stored in the cloud. Despite being structured as a
decentralized cloud storage system, the blockchain data in the
cloud is not maintained by peers and thus acts as an off-chain
repository for blockchain data. IPFS also offers a scalable off-
chain solution for blockchains. In [13], the authors presented a
blockchain-based application using IPFS specifically for
healthcare systems. They focused on storage of electronic health
records (EHRs) and used the IPFS service to transfer data off-
chain while retaining hashes of the data on the blockchain. In [14],
the authors attempted to reduce the transaction size and increase
the transaction throughput of an experimental consortium
blockchain network by storing the hash values of encrypted data
on-chain and using IPFS to store the encrypted data itself off-
chain. They integrated Hyperledger Fabric [15], which is a
modular blockchain framework typically using off-chain storage
for big data, with IPFS services and provided a solution for secure
storage and efficient access to a task-scheduling scheme. While
the off-chain approach provides a viable way to mitigate the
scalability problem of blockchains, as noted in [11], the
fundamental properties of blockchains can be compromised to
varying degrees when using the off-chain approach. In contrast,
our HistoChain approach stores big data in historical blockchains
and does not rely on off-chain storage; therefore, all essential

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 91

properties of the blockchain data can be strictly maintained using
our on-chain storage mechanism.

There are very few on-chain based approaches that address the
scalability issues in blockchain networks. In [16], the authors
proposed to use Hyperledger Fabric to implement a consortium
blockchain for patient access and management of personal health
records (PHRs). Although scalability issues remain a major
challenge, they concluded that Hyperledger Fabric for on-chain
data storage could offer a more practical solution to ensure the
privacy of PHRs than the Ethereum public blockchain. In [17], the
author introduced the concept of section-blockchain, an on-chain
approach for reducing the storage cost of blockchain networks with
under-stored devices. In their approach, all nodes store a portion of
the complete blockchain and provide incentives for upgrading their
local storage. Furthermore, they proposed segmented blockchains
to enable nodes to store a blockchain segment [18]. They showed
that their approach can help reduce the storage cost of a blockchain
without compromising the security requirement of the blockchain.
In [19], the authors proposed a framework for cloud-based
blockchains to store medical multimedia files on-chain securely
and reliably. They used a cloud-based blockchain to store all
blockchain data to support data accessibility, redundancy, and
security, while a lite blockchain allows local storage of text-based
information and metadata for multimedia files. Although the above
methods allow for big data storage, data retrieval can be slow
because portions of transactions are stored in different
blockchains. Conversely, our HistoChain approach divides a
complete blockchain into a current blockchain and multiple
historical blockchains, each of which are full-fledged blockchains
containing complete transaction information. Regular peers can
then access their local current blockchain and request historical
blockchain data from super peers concurrently, making the data
retrieval process much more efficient.

One of the main advantages of the HistoChain approach is that
it supports dynamic load balancing, so requests for historical
blockchain data can be retrieved in a timely and concurrent
manner. There is a great deal of research efforts in developing
dynamic load balancing algorithms in the context of cloud
computing and P2P systems. In [20], the authors proposed a load
balancing scheduling algorithm for virtual server clusters applied
to storage systems to ensure uniform load distribution of virtual
server clusters. Their approach is based on the state of the server
clusters and periodically sends collected feedback to the load
balancer to bring the internal load performance of the system to a
more balanced state. In [21], the authors introduced a strategy to
use a dynamic hashing scheme to locate data keys based on a
structured P2P architecture and maintain the load balance among
the peers. They showed that the load balancing of P2P systems can
be significantly improved using their proposed method. In [22], the
authors proposed a dynamic load management algorithm for cloud
computing based on the current state of virtual machines (VM). In
their approach, the allocation table is parsed to find each idle and
available VM, from which the active load of all VMs under
consideration is calculated. Similarly, in our HistoChain approach,
we utilize a shared assignment table to achieve dynamic load
balancing within the super peer group, where the assignment is
determined on the basis of the lowest total workload of the super
peers. In this sense, our approach complements existing dynamic
load balancing mechanisms in cloud computing and P2P systems

and provides a simple yet efficient solution to support concurrent
processing of complex query requests for current and historical
blockchain data.

3. Scalable Storage Using Historical Blockchains

3.1. A Framework for Scalable Blockchain Networks

Data storage technologies such as physical storage and cloud
storage each have their inherent advantages, but this meteoric rise
in blockchain-enabled applications has led to a great deal of
research focused on decentralized storage for managing large
amounts of data while maintaining its viability for nodes and
networks. To demonstrate this storage requirement, we examine
an example of blockchain applications in healthcare. A patient
visiting a hospital may generate a certain amount of data,
especially in the case of multimedia files such as X-rays or CT
scans. If a hospital is to consider adopting blockchain technology
for data storage, it must remain scalable because a large number
of patients will generate large amounts of data over a long period
of time. This issue is further complicated for an entire network of
hospitals that utilize a consortium blockchain as a means of
sharing medical data. While viable techniques do exist to store
off-chain medical data, the benefits offered by using blockchain
storage are compromised in this use. In this paper, we propose the
HistoChain approach that supports the maintenance and sharing
of medical data on the chain, with the burden being borne by a
smaller group of well-equipped super peers representing large and
resourceful hospitals in a local area. Such large hospitals will be
able to dedicate more resources to the network to maintain older
on-chain data stored in historical blockchains. This makes it
feasible for regular peers to participate in the network to maintain
the benefits and convenience offered by blockchain technology
while having a much lower storage burden without moving their
data off-chain. Figure 1 shows the HistoChain framework for a
scalable consortium blockchain network.

Figure 1: A Framework for a Scalable Consortium Blockchain Network

As shown in Figure 1, a consortium blockchain network
consists of n super peers and r regular peers. The super peers are
tasked with maintaining the current blockchain CB and all
historical blockchains HBs, as well as creating and verifying new
blocks and transactions using a consensus process. Shifting the
burden of historical data storage and freeing regular peers from
participating in the consensus process allows the introduction of
highly lightweight regular peers. Regular peers maintain only the
CB, but can access historical data stored in HBs through queries

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 92

to the super peer group. Upon receiving a query, a super peer splits
it into subqueries and assign them to super peers based on the
shared assignment table SAT as a means of dynamic load
balancing to ensure that access to the data remains timely. More
importantly, as described in Section 3.4, when the current
blockchain reaches a certain age, a super peer can split it into a
chain of historical blocks and a reduced chain of current blocks.

3.2. The Block Structure

A block, as a building block of a blockchain, can be defined
by three parts: the block header, the list of transactions, and the
verification section. Figure 2 shows the structure of a block with
a list of m transactions.

Figure 2: The Structure of a Block with a List of Transactions

As shown in Figure 2, the block header is defined as a 4-tuple
(B, T, S, H), where B is the block ID, T is the timestamp when the
block is created, S is the size of the list of transactions recorded in
the block, and H is the hash value of the previous block. In the
context of healthcare, each transaction in the transaction list is
defined as a 4-tuple (TI, TS, PI, TD), where TI is the transaction
ID, TS is the timestamp when the transaction is created, PI is the
patient ID, and TD is the transaction data, including text-based
messages and images files. The verification section is essential for
the integrity of the blockchain storage, which includes a list of
digital signatures, ds[bID]v, for a block with ID bID, where v is a
super peer that approves it as a new block in the consensus
process. Any pending block must be approved by the majority of
the super peers before it can be added to the blockchain, at which
point the hash of the block is computed by applying a hash
function to the block file containing all the above components
excluding the verification section, and the hash value hash(cur-
Block) is attached to the end of the block file. Note that in order
to limit the block size, each block contains no more than 500
transactions and only contains transactions created during the
same day. Therefore, the last block created at the end of a day may
contain less than 500 transactions.

3.3. The Structure of a Meta-Block

To support efficient data retrieval in a blockchain, we define a
meta-block as a special block that stores metadata for the current

blockchain or each of the historical blockchains. A meta-block is
the only mutable block in a blockchain and is attached at the
beginning of the blockchain. Figure 3 shows the structure of a
meta-block. As shown in the figure, a meta-block consists of two
parts: the block header and a HashMap HM. The block header is
defined as a 4-tuple (SD, ED, SB, EB), where SD is the timestamp
of the first transaction in the first block of the blockchain; ED is
the timestamp of the last transaction in the last block of the
blockchain; SB and EB are the block IDs of the first block and the
last block of the blockchain, respectively. In the second part, the
HashMap HM contains a list of <key, value> pairs, where the key
is a patient ID and the value is a list of locations where the patient
transactions are stored. Each location is defined as a triple (B, A,
O), where B is the block ID, A is the address of the transaction in
the block, and O is the offset of the transaction size.

Figure 3: The Structure of a Meta-Block
The use of meta-blocks in a blockchain network provides an

additional layer of organization and structure. By placing
metadata in a separate block attached to the beginning of a
blockchain, searching for information in the blockchain becomes
much easier. This metadata allows peers to determine the exact
location of transactions in the blockchain that need to be extracted
to complete queries on current and historical blockchain data.
Thus, the search space is much reduced and the time it takes to
execute a query can be minimized. Note that to ensure the
integrity of the blockchain metadata, a meta-block can be
reviewed, validated and refreshed at any point in time by reading
data from the relevant part of the blockchain.
3.4. Generation of a Historical Blockchain

At its inception, the current blockchain is the only blockchain
in the network. When the current blockchain reaches a certain age,
say 10 years, a split occurs. The oldest 5 years of data are
transferred to a new blockchain, called a historical blockchain,
while the most recent 5 years of data remain in the current
blockchain. When a new historical blockchain is generated, a new
meta-block containing its metadata is appended to the beginning
of the historical blockchain, and the current blockchain’s meta-
block is refreshed to reflect the movement of that data. This
process is repeated 5 years later when the current blockchain again

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 93

contains 10 years of data. Figure 4 shows how the current
blockchain CB is split into a historical blockchain and a new
current blockchain. Let the block IDs of the first and last block in
CB be m and n, respectively. Note that m = 1 if the current
blockchain has never been split before. Let block k be the most
recent block in CB that is at least 6 years old. We establish blocks
m through k as a historical blockchain HB and generate a new
meta-block MBHB for it. Blocks k+1 through n persist as the
updated current blockchain, while blocks m through k are
removed. The meta-block MBCB associated with the current
blockchain is refreshed by scanning the data in the new current
blockchain (i.e., blocks k+1 through n). We now have an updated
current blockchain and a historical blockchain, each containing 5
years of data.

Figure 4: A Blockchain Split into a Historical and a Current Blockchain
A super peer is responsible for splitting a current blockchain

with a certain age into a reduced current blockchain and a
historical blockchain. When a super peer completes this task, it
broadcast the updated current blockchain to all peers and the new
historical blockchain to all super peers for updating. Algorithm 1
shows the process of splitting the current blockchain CB with 10
years of data into a historical blockchain HB and an updated
current blockchain CB.

Algorithm 1: Splitting of a Current Blockchain

Input: A current blockchain CB containing 10 years of data
Output: Historical blockchain HB with 5 years of old data and an
updated CB with the most recent 5 years of data

1. Let m and n be the IDs of the first and the last block in CB
2. Let k be the most recent block at least 6 years old, where n > k
3. Extract blocks m through k from CB and create a new historical
 blockchain HB with the k-m+1 blocks
4. Create an empty meta-block MBHB associated with HB
5. Set SD in MBHB as the date of the first transaction in block m
6. Set ED in MBHB as the date of the last transaction in block k
7. Set SB and EB in MBHB to m and k, respectively
8. for each block β in HB
9. Scan block β and add each triple (B, A, O) associated with
 patientID α to a list LSα
10. Create a HashMap in MBHB and add all pairs of <α, LSα> to it
11. Attach MBHB to the beginning of HB
12. Remove blocks m through k from CB
13. Update CB’s meta-block MBCB accordingly, as with MBHB
14. return HB and CB

As shown in Algorithm 1, the meta-block of HB, MBHB,
contains the date of the first transaction in the first block of HB,
the date of the last transaction in the last block of HB, and the

block IDs of the first and last block of HB. To create a HashMap
that contains all <key, value> pairs, each block in HB is scanned,
and each triple (B, A, O) associated with the patient ID α is added
to a list LTα. Once the scanning process is complete, all pairs of
<α, LTα> are added to the HashMap in MBHB. Now in CB, all
blocks that have been recorded in HB are deleted, and the meta-
block of the updated CB must be refreshed by removing all triples
that reference transactions that have been transferred to HB.
Finally, the new HB and the updated CB are returned for
broadcasting.

4. Retrieval of Historical Blockchain Data

4.1. Load Balancing Data Retrieval Requests

In the context of blockchain applications in the healthcare
domain, suppose a regular peer (e.g., a doctor) queries patient
information from blockchains for multiples of 5 years. When the
data to be searched is for the most recent 5 years, the regular peer
can search directly from its local current blockchain. When the
data to be searched is for the past sLen years, where sLen ∈ {5n |
n ≥ 2}, the regular peer can search for patient information for the
most recent c years directly from its local blockchain, where c is
the age of the current blockchain; while the remaining (sLen - c)
years of data must be retrieved from the historical blockchains by
making a query to any of the super peers. The request for such a
query involves a patient ID (for which data is collected) and the
number of years of data being search, called the search length.
Figure 5 shows the querying process for accessing historical
blockchain data.

Figure 5: Querying Process for Accessing Historical Blockchain Data

From Figure 5, we can see that when a super peer receives a
query from a regular peer, it acts as a director, dividing the query
into subqueries and distributing them evenly based on the weights
of queries to be completed by the super peers. Each query receives
a weight based on the search length. For example, for a blockchain
with a current blockchain of 7 years, a query with a search length
of 20 years can be split into three subqueries, a 3-year search and
two 5-year searches with weights of 3/5 and 1, respectively. Data
retrieved from all subqueries are returned to the assigning super
peer (if not completed by the assigning super peer) and compiled
into a single summary report that is returned to the requesting
regular peer. Note that the search for the most recent 7 years of
blockchain data must be performed locally by the requesting

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 94

regular peer, who is responsible for combining its local report
with the summary report received from the assigning super peer
into a single summary report.

A new subquery with a 5-year search length is always assigned
first to the super peer with the lowest total weight. Subqueries sent
to super peers are stored in their query queues, and the total weight
of the queries assigned to each super peer must be approximately
equal. A super peer processes subqueries in its query queue on a
first-come, first-served basis. When a super peer retrieves relevant
historical data for a subquery, it compiles the results and returns a
response to the assigning super peer, including a summary report
of the relevant transactions with links to associated files that a
regular peer can download. Note that each super peer maintains
its own copy of the historical blockchains; therefore, searches
assigned to multiple super peers can be performed by them
simultaneously.
4.2. The Structure of Shared Assignment Table

In our proposed HistoChain approach, the lightweight nature
of regular peers allows for a scalable architecture with the super
peers facilitating access to historical data. To this end, queries for
patient data are sent from regular peers to the super peers and the
summary reports are returned upon completion. To ensure
efficient execution of this approach, dynamic load balancing is
employed, where each super peer retains a copy of SAT and
broadcasts an updated SAT with any assignment changes made by
the super peer to the super peer group. These broadcasts contain
the current workload and assignment of each super peer as well as
estimated time when the subquery must be completed. In case no
response is received by the end of the estimated completion time,
the task must be completed at the highest priority by the assigning
super peer to avoid further delay. Figure 6 illustrates the structure
of an SAT shared by a group of n super peers.

Figure 6: The Structure of a Shared Assignment Table (SAT)

When a query is received by an assigning super peer Ψ, it will
be split into multiple subqueries, each of which can be assigned
to a super peer based on the lowest total weight. This ensures the
uniform distribution of weights among the super peers and the
timely completion of the subqueries. Each subquery consists of a
query ID, a patient ID, a requested start date (SD), and an end date
(ED), defined as a 4-tuple (qID, pID, SD, ED). Once the
assignment is recorded into SAT, the updated SAT is broadcast
within the super peer group. To prevent conflicts, a super peer
always uses the latest version of SAT for the assignment by
checking the publishing timestamp. A super peer may reject a

subquery request due to various reasons. When this happens, Ψ
must update SAT and broadcast it again. Algorithm 2 shows the
query assignment process done by Ψ. Let the blockchain be of age
5 or more. Since the age of the current blockchain ranges from 5
to 10 years, the search length of subquery sq1 can be less than 5
years. To avoid adding network time to the data retrieval time of
short subqueries with a search length less than 5 years, the
assigning super peer always completes such a subquery by itself
rather than assigning it to another super peer.

Algorithm 2: Query Assignment by Assigning Super Peer Ψ

Input: Query q with a search length sLen in 5x years, x ∈ [1, 10], current
 blockchain age c, shared assignment table SAT
Output: Updated shared assignment table SAT

1. if sLen ≤ c return SAT // only local search is needed
2. Split q into subqueries sq1…sqm, where m = (sLen – c)/5, search

length |sq1| = 10 – c, and |sqi | = 5, 2 ≤ i ≤ m.
3. if |sq1| < 5
4. Assign sq1 to Ψ //self-assign sq1 for less than 5-year search
5. else // when |sq1| == 5
6. Assign sq1 to the super peer with the lowest total weight in SAT
7. for each subquery ρ in sq2…sqm
8. Assign ρ to the super peer with the lowest total weight in SAT
9. Broadcast updated SAT to all super peers
10. return updated SAT

4.3. Retrieval of Historical Blockchain Data

We now define the procedure for the retrieval of historical data
by a super peer SP. Let subquery ρ, defined as a 4-tuple (qID, pID,
SD, ED), be a subquery assigned to SP by an assigning super peer
Ψ, then the search length of the subquery |ρ| must be no more than
5 years that is covered by one of the historical blockchains. To
identify the historical blockchain to be searched, SP needs to
compare the start date SD and end date ED of the subquery with
those of the historical blockchains by examining their meta-
blocks. Once the historical blockchain is identified, the search is
facilitated by investigating again its meta-block, which contains
indices specifying the exact location of transactions in the
identified historical blockchain. Algorithm 3 shows how
historical data can be retrieved from historical blockchains by
super peer SP.

Algorithm 3: Historical Blockchain Data Retrieval (Subquery)

Input: Subquery ρ as a 4-tuple (qID, pID, SD, ED)
Output: A summary report with retrieved historical data for ρ

1. Create an empty summary report SR_ρ.qID
2. for each historical blockchain Π
3. Read MBΠ.SD and MBΠ.ED from meta-block MBΠ
4. if MBΠ.SD > ρ.ED || MBΠ.ED < ρ.SD
5. continue // outside of the search period, search next Π
6. Get a list of triples LTX from MBΠ.HM with pID as the key
7. for each triple (B, A, O) in LTX
8. Read transaction tx from block B at address [A, A + O]
9. if tx.TS ≥ ρ.SD && ts.TS ≤ ρ.ED
10. Add retrieved tx and links to relevant files to SR_ρ.qID
11. break // only one Π needs to be searched for subquery ρ
12. return summary report SR_ρ.qID

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 95

As shown in Algorithm 3, the patient ID in the subquery ρ is
used as the key in the meta-block’s HashMap to access the exact
locations of relevant transactions in the associated historical
blockchain. Super peer SP then reads the relevant transactions and
record them in a summary report SR_ρ.qID. The summary report
may contain links to multimedia files, which are hosted by SP.
Finally, the summary report SR_ρ.qID is returned to the assigning
super peer Ψ.

Based on Algorithm 2 and Algorithm 3, we now define the
entire process by which the assigning super peer Ψ completes a
summary report for a query q with a search length sLen, made by
a requesting regular peer. This query completion process done by
Ψ is described in Algorithm 4.

Algorithm 4: Query Completion by Assigning Super Peer Ψ

Input: Query q with a search length sLen, shared assignment table SAT
Output: A completed summary report SR_Ψ

1. Invoke Algorithm 2 on q to create and assign subqueries
2. if any assigned subquery sq is rejected by a super peer
3. Assign sq to Ψ itself
4. Broadcast the updated SAT
5. for each super peer SP with an assigned subquery ρ
6. Wait summary report SR_ρ.qID to be received from SP after
 SP invokes Algorithm 3
7. if time estimate of ρ is exceeded and SR_ρ.qID is not received
8. Assign ρ to Ψ itself and invoke Algorithm 3
9. Remove subquery assignment for SP from SAT
10. Broadcast updated SAT
11. Compile each summary report into a complete report SR Ψ
12. return summary report SR_Ψ

As shown in Algorithm 4, upon receiving query q, the
assigning super peer Ψ splits it into subqueries and assigns them
to super peers by invoking Algorithm 2. If any assigned subquery
ρ is rejected by an assigned super peer SP, ρ is reassigned to Ψ
itself and an updated SAT is broadcast. Each super peer SP
receiving an assignment then retrieves the historical data
requested in the assignment by invoking Algorithm 3. The
assigning super peer Ψ then awaits the summary report from each
SP. When a summary report for a subquery ρ is returned, Ψ
removes the corresponding assignment in its SAT and broadcasts
this update. If any subquery is not completed by the time estimate,
Ψ assigns the subquery to itself, broadcasts an updated SAT, and
completes the subquery. When all summary reports for the
subqueries become available, Ψ compiles them into a complete
final summary report (in chronological order of the subquery start
date) and returns it to the requesting regular peer.

Note that a regular peer can perform a local search for a query
whose search length is equal to the age of the current blockchain
in a similar manner. Remote searches of historical blockchain data
by super peers are conducted concurrently with the local search
of the current blockchain by a regular peer. The historical data
returned from a remote search is then merged with the local search
data by the requesting regular peer.

5. Case Study

In this section, we present a series of simulations in the context
of healthcare to demonstrate the feasibility and effectiveness of
the HistoChain approach. In our experiments, we assume that

there are 10 large local hospitals participating in a consortium
blockchain network. There are also 30 small and medium medical
facilities in the network. A consortium blockchain may have a 50-
year lifespan, which is enough time to aggregate a substantial
amount of data to be useful for experiments. We limit the total
number of transactions in each block to 500, where each
transaction may contain medical data in the form of image and
text files. For simulation purposes, the number of visits per day is
between [200, 500] and [50, 200] for large hospitals and
small/medium sized medical facilities, respectively.
5.1. Estimation of Blockchain Size

To estimate the blockchain sizes along years, we use a time-
based partitioning method to generate historical blockchains. A
time-based partitioning occurs in the 10th year of the current
blockchain; the earliest 5 years of data make up an historical
blockchain, while the most recent 5 years of data are retained by
the current blockchain. Using this method, super peers
representing large local hospitals retain all historical blockchains
as well as the current blockchain, while regular peers representing
small/medium sized medical facilities store only the current
blockchain. Table 1 lists the parameters used in our experiments.

Table 1: Parameters Used for Blockchain Size Estimate

Image
occurrence

(%)

Image
size

Image
count

Text
occurrence

(%)

Text
size

File size
growth rate

(%)

Time
to split
(year)

5% 1 ~ 3
MB* 1 ~ 5 100% 0.003 ~

0.007 MB* 0, 1, 3, 5 10

* File sizes are subject to increase by a 5-year file size growth rate.

As shown in Table 1, for a hospital visit, we assume that there
is a 5% probability of including images, such as x-rays, in the
doctor’s notes. The size of the images is typically between [1MB,
3MB] and the number of images attached is limited to 5. The sizes
of text-based medical records are also listed in Table 1. Note that
in our experiments, we consider 5-year file size growth rates of
0%, 1%, 3% and 5%, with the file size bound increasing uniformly
each year over the 5-year period. For example, when the 5-year
growth rate is 3%, the image size increases by 0.6% per year and
the maximum image size can reach 4.89 MB in 50 years, which is
usually large enough for medical image files.

We now simulate the creation of a 50-year blockchain to
estimate the storage burden of regular and super peers in the
network. On each day, a large hospital or a small/medium sized
medical facility in the network generates a random number of
visits within the given range [200, 500] or [50, 200], respectively.
A transaction is generated for each visit and stored in a block that
can hold up to 500 transactions, independent of the transaction
size. Each transaction has a 5% chance of including at least one
image file. If a transaction does include image files, the number
of image files is chosen randomly within the given range [1, 5].
In addition, the size of each image file or text file is also randomly
generated within the certain ranges, as defined in Table 1.

To address the possible growth of image and text file sizes
along years, we consider 5-year file size growth rates of 0%, 1%,
3% and 5% in our experiments. For each growth rate, we collected
data from a sample of 10 simulations to establish the mean of the
evaluation. The 0% growth rate is included as a baseline; while

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 96

not a realistic assumption, this establishes the minimum size of
the blockchain against which the other growth rates can be
considered. Figure 7 shows the change of blockchain storage
along the years for the entire blockchain (including both current
and all historical blockchains). The experimental results show that
the effectiveness of using a historical blockchain structure is
evident. After 50 years, the storage volume of the entire
blockchain exceeds 33 TB at 0% growth rate, 35 TB at 1%, 38 TB
at 3%, and 43 TB at 5%. Due to the storage burden, this would not
be a viable solution for regular peers to store the entire blockchain.

Figure 7: Total Blockchain Size by Year with 5-Year Growth Rates

Now, with the introduction of the historical blockchain
structure, the storage load for regular peers can be greatly reduced,
as regular peers no longer need to store the entire blockchain.
Figure 8 shows the change of blockchain storage along the years
for the current blockchain. The experiment records the size of the
current blockchain in the year before the current blockchain split
(e.g., year 4, year 9, year 14, etc.) to show the approximate
maximum size of the current blockchain along the way.

Figure 8: Current Blockchain Size by Year with 5-Year Growth Rates

From Figure 8, we can see that the size of the current
blockchain is much smaller than the size of the entire blockchain.
At 0% growth rate, the current blockchain size is at most 6.05 TB;
at 1%, 6.62 TB; at 3%, 7.83 TB; and at 5%, 9.26 TB. The results
show that for a growth rate of 0%, the size of the current
blockchain is consistent regardless of the age of the blockchain.
At a growth rate of 5%, the size of the current blockchain

increases with the year but remains manageable for regular peers.
Note that the size of the current blockchain doubled from year 4
to year 9 because the current blockchain did not need to split
during those 9 years.

5.2. Data Retrieval Time for a Single Request

In this experiment, we measure the data retrieval time for a
single query request for blockchain historical data by a regular
peer. The data retrieval request is a search for a patient’s medical
records within a specified number of years. For any search within
the current blockchain age, the data can be readily retrieved from
the current blockchain; however, when the search length is greater
than the current blockchain age, a query needs to be sent to a super
peer to identify the relevant data and retrieve them from the
historical blockchain(s). In this experiment, we let the age of the
entire blockchain be 50 years old; therefore, up to 50 years of data
can be retrieved from the blockchain. Table 2 lists additional
parameters used for data retrieval in the simulations.

Table 2: Parameters for Data Retrieval Used in the Simulations

Search
length
(year)

Annual
patient
visits

File size
growth rate

(%)

Network
latency

time

Data
extraction

time

Data
export
time

Average
meta-block

size

5, 10,
15, …, 50 1 ~ 7 3 0.5 seconds

0.02s
/MB

0.017s
/MB 100MB

Since one of the important factors affecting the search time is
in reading meta-blocks of the historical blockchains that contain
5-years of data, we consider search lengths in 5-year intervals up
to 50 years. A 50-year blockchain also means that the current
blockchain has just been split, so the current blockchain contains
only the most recent 5 years of data. This setting helps to show
the data retrieval time for the maximum amount of historical data.
For a 5-year search, it will only be processed by a regular peer.
For any search length of 10 years or more, the most recent years
of data will be retrieved by a regular peer and the rest of data must
be retrieved by super peers.

We assume a maximum of 7 hospital visits per patient per year
and set a file size growth rate of 3% for 5 years, which allows for
a reasonable increase in the size of medical image files and text
files. Parameters such as image size bounds, image count bounds,
text size bounds, and probability of occurrence of images in
medical records can be found in Table 1. For search length of 10
years or more, measuring data retrieval time requires
consideration of the network latency time for searching data in the
historical blockchain(s), data extraction time for extracting index
information from the relevant meta-blocks and the data from
relevant blocks, and data export time for writing the extracted
historical transaction data to a summary file. While the exact
location of a transaction in a historical blockchain can be
determined in constant time from the index information stored in
a meta-block, opening a meta block file and reading the data from
the file takes nontrivial time. Based on the average size of the
meta-blocks, retrieving the index information from a meta-block
can take up to several seconds. Since in our experiments,
transactions are generated randomly, the extraction time is
dependent upon the size of the transactions. For historical
blockchain data, a super peer needs to write the extracted
transaction data to a summary file. If a request is split by an

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 97

assigning super peer and completed by multiple assigned super
peers in parallel, the summary reports returned must be compiled
by the assigning super peer and returned to the requesting regular
peer. This amount of time is included in the data export time,
where a longer query adds more compilation time as it can be split
into more subtasks and more reports need to be compiled.

We call our approach decentralized, fine-grained because
there is no single trusted peer for load balancing; instead, dynamic
load balancing is utilized by each super peer in the group based
on the SAT. We now compare our decentralized, fine-grained
approach to a centralized, coarse-grained approach [8], where a
search query is processed by a single super peer, regardless of the
search length. Figure 9 shows the results of 30 simulations for the
centralized and decentralized approaches for each given search
length up to 50 years.

Figure 9: Retrieval Time for Individual Request with Varying Search Length

From Figure 9, we can see that for 5-year search, the average
search time for both approaches is about 2 to 3 seconds. This is
because the 5-year search can be processed locally by a regular
peer and does not require remote data retrieval by super peers. The
average 10-year search time with the decentralized approach is
slightly larger, which can be attributed mainly to the increase in
network time; the assigning super peer may need to delegate a
remote 5-year search to another super peer and await its response.
Otherwise, the search time would be the same, since the remote
search for 5-year data is handled by one super peer in both
methods. As the search length increases, the data retrieval time
increases accordingly, with a maximum of about 20 seconds in
the centralized approach for a 50-year search length. We see this
growth is approximately linear, which is expected because the
searches in multiple historical blockchains are performed
sequentially by a single super peer, rather than in parallel by
multiple super peers. In contrast, in the decentralized approach,
there is a slight initial increase in search time for a 10-year search,
but this increase is flat for longer searches. We see that a 50-year
parallel search takes just over 4 seconds on average. The very
small increase in time from a 10-year search to a 50-year search
can be explained by the time it takes to compile summary reports
received from multiple super peers.

Note that the 10-year search time does not increase
significantly over the 5-year search time in both approaches
because the 10-year search consists of a local search by a regular
peer in the current blockchain and a remote search of the
remaining data by a super peer, both of which are performed

concurrently. The insignificant increase in the average data
retrieval time in the 10-year search in both approaches is due to
the additional network time and export time caused by the remote
search of the historical data.
5.3. Data Retrieval Time for Concurrent Requests

Our approach supports simultaneous processing of multiple
query requests. In this experiment, we compute the distribution of
weights across a group of 10 super peers for 10, 25, and 50
concurrent requests. Since requests are expected to be received at
5-minute intervals and up to 50 concurrent requests can be
processed in this interval (at times of high workload), there is no
overflow. Weights are assigned in proportion to the number of
years involved in the search. We again consider searches
involving up to 50 years of data at 5-year intervals. A 5-year
search is not considered, as it can be retrieved locally from the
current blockchain by a regular peer. We assume the probability
of each search length occurring is equal, forming a uniform
distribution. Figure 10 shows the variance of the weights assigned
to each super peer in this strategy, where a number of simulations
are generated for each number of concurrent query requests.

Figure 10: Distribution of Weights for Varying Numbers of Concurrent Requests

In a group of 10 super peers, queries are randomly sent to
super peers who split the queries and assign subqueries to others
to ensure even load balancing among the super peers. In this way,
simultaneous historical blockchain data retrieval requests can be
processed concurrently by the super peers. To examine the search
time of concurrent data retrieval requests, the requests of regular
peers for 10 to 50 years of data are measured. From Figure 10, we
can see that the distribution of weights among the super peers is
approximately uniform. For 10 concurrent queries, the average
weight of the super peers is 5.37; for 25 queries, it is 12.65; and
for 50 queries, it is 25.32. This demonstrates the effectiveness of
the dynamic load balancing algorithm, which allows for even
workload distribution in the super peer group and leads to efficient
concurrent data retrieval by the super peers.

We further compare the centralized and decentralized
approaches to demonstrate the efficiency of the decentralized,
fine-grained approach. Load balancing can also be incorporated
in the centralized approach, so weights are assigned to each
request according to the length of the request [8]. We assume
search lengths of up to 50 years and simulate 10, 20, 30, 40, and
50 concurrent searches at 5-minute intervals to calculate the total

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 98

data retrieval time. Note that 50 concurrent requests represent a
very high volume of requests in a 5-minute interval, this may
occur at certain times of the year, such as a flu season. We
calculate the average data retrieval time for completion of all
concurrent requests in a 50-year blockchain, which we refer to as
the completion time. Figure 11 shows the average and individual
completion time for the specified numbers of concurrent requests
by running 30 simulations of each approach.

Figure 11: Completion Time for Varying Number of Concurrent Requests

From Figure 11, we can see that employing a decentralized,
fine-grained approach is superior to a centralized, coarse-grained
load balancing mechanism. Since in the decentralized approach,
long queries are split into 5-year subqueries, the dynamic load
balancing would result in more even workload distribution among
super peers than in the centralized approach. On the other hand,
although the average completion time of the centralized approach
is higher than that of the decentralized approach for each number
of concurrent requests, we note that as the number of concurrent
requests increases, the queue completion times of the centralized
and decentralized approaches start to converge and are almost
equal at 50 concurrent requests. This is because when there are
more concurrent requests, the weight distribution of the
centralized approach can become more uniform and may
approach the performance of the decentralized approach. This
finding suggests that the decentralized, fine-grained dynamic
load-balancing algorithm could be more effective in the off-
season or normal season than in the peak season, although it
performs better than the centralized, coarse-grained load-
balancing mechanism in general.

6. Conclusions and Future Work

To address the scalability issues of consortium blockchains,
recent solutions have focused on transferring data off-chain by
using IPFS and cloud-based storage structures. In this paper, we
propose a novel approach, called HistoChain, to improve
consortium blockchain scalability using historical blockchains
and dynamic load balancing. We introduce a time-based
partitioning strategy to generate a historical blockchain, where
older sections of the current blockchain are transferred to the
historical blockchain after a specified time interval (e.g., 5 years).
This approach allows the current blockchain to contain a useful
amount of the up-to-date data, while freeing regular peers with
limited resources or storage from maintaining the entire data-

intensive blockchain. The historical blockchains are maintained
by a group of super peers with greater resources and computing
power. In addition, we introduce a meta-block, attached to a
historical or the current blockchain, which serves as an index file
for facilitating efficient data retrieval. To support concurrent
processing of queries, we split a query into subqueries and employ
a dynamic load balancing algorithm to assign the subqueries to a
group of super peers. This assignment is based on a shared
assignment table that records the current workload of each super
peer. Once the relevant data for the query has been collected, the
assigning super peer sends a summary report of the retrieved data
to the requesting regular peer. Finally, we provide a case study of
healthcare data storage using a consortium blockchain. The
experimental results show that our HistoChain approach can
effectively reduce the storage burden of data-intensive blockchain
applications on regular peers while providing efficient access to
historical data through a group of super peers.

In future work, we will implement HistoChain and conduct
more experiments to illustrate the effectiveness of using historical
blockchains to efficiently retrieve historical blockchain data in
real scenarios. We will further investigate effective methods to
improve the performance of concurrent data retrieval by super
peers. One such method to be developed is to analyze the
efficiency of parallel searches by a super peer across multiple
historical blockchains. This parallelization should allow a super
peer to reduce and optimize the search time if the historical
blockchains are stored on different hard drives. Furthermore, a
hierarchical architecture can be considered to orchestrate multiple
consortium blockchains to support blockchain data sharing across
cities and states. Finally, to ensure strong data privacy, it is
necessary to design access control policies so that users with
different roles can access blockchain data with the required
permissions [23]. This is especially necessary in applications with
multilevel security requirements [24], such as healthcare
blockchain applications.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

We thank the editors and all anonymous referees for the careful
review of this paper and the many suggestions for improvements
they provided. We also thank the University of Massachusetts
Dartmouth for their financial support to the first author in
completing this work.

References

[1] H. Guo and X. Yu, “A survey on blockchain technology and its security,”
Blockchain: Research and Applications, 3(2), February 2022, doi: 10.1016/
j.bcra.2022.100067

[2] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” October 2008.
Retrieved on January 15, 2022 from https://bitcoin.org/bitcoin.pdf.

[3] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Permissioned blockchains:
properties, techniques and applications,” In Proceedings of the 2021
International Conference on Management of Data (SIGMOD’21), 2813-
2820, Virtual Event China, June 2021, doi: 10.1145/3448016.3457539

[4] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, and E. B. Hamida,
“Consortium blockchains: overview, applications and challenges,”
International Journal on Advances in Telecommunications, 11(1&2), 51-64,
2018.

http://www.astesj.com/

M. Felipe et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 3, 89-99 (2023)

www.astesj.com 99

[5] S. Liu and H. Tang, “A consortium medical blockchain data storage and
sharing model based on IPFS,” In Proceedings of the 4th International
Conference on Computers in Management and Business (ICCMB 2021),
147-153, Singapore, January 30 - February 1, 2021, doi: 10.1145/3450588.
3450944

[6] X. Chen, K. Zhang, X. Liang, W. Qiu, Z. Zhang, and D. Tu, “HyperBSA: A
high-performance consortium blockchain storage architecture for massive
data,” IEEE Access, 8, 178402-178413, September 2020, doi: 10.1109/
ACCESS.2020.3027610.

[7] D. P. Bauer, “InterPlanetary File System,” In Getting Started with Ethereum:
A Step-by-Step Guide to Becoming a Blockchain Developer, 83-96, Apress,
Berkeley, CA, July 2022, doi: 10.1007/978-1-4842-8045-4_7.

[8] M. Felipe and H. Xu, “A scalable storage scheme for on-chain big data using
historical blockchains,” In 2022 IEEE 22nd International Conference on
Software Quality, Reliability and Security Companion (QRS-C), 54-61,
IEEE BSC 2022, Guangzhou, China, December 5-9, 2022, doi: 10.1109/
QRS-C57518.2022.00017.

[9] J. Poon and T. Dryja, “The Bitcoin lightning network: scalable off-chain
instant payments,” White Paper, 2016. Retrived on September 1, 2022 from
https://lightning.network/lightning-network-paper.pdf

[10] Ethereum Foundation, “DankSharding,” White Paper, 2023. Retrieved on
May 12, 2023 from https://ethereum.org/en/roadmap/danksharding/

[11] J. Eberhardt and S. Tai, “On or off the blockchain? insights on off-chaining
computation and data,” In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds)
Service-Oriented and Cloud Computing, ESOCC 2017, Lecture Notes in
Computer Science (LNCS), 10465, 3-15, Springer, Cham, 2017, doi:
10.1007/978-3-319-67262-5_1.

[12] G. Wang, Z. Shi, M. Nixon, and S. Han, “ChainSplitter: towards blockchain-
based industrial IoT architecture for supporting hierarchical storage,” In
Proceedings of the 2019 IEEE International Conference on Blockchain
(Blockchain), 166-175, Atlanta, GA, USA, July 14-17, 2019, doi: 10.1109/
Blockchain.2019.00030.

[13] J. Jayabalan and N.Jeyanthi, “Scalable blockchain model using off-chain
IPFS storage for healthcare data security and privacy,” Journal of Parallel
and Distributed Computing, 164, 152-167, June 2022, doi: 10.1016/
j.jpdc.2022.03.009.

[14] D. Li, W. E. Wong, M. Zhao, and Q. Hou, “Secure storage and access for
task-scheduling schemes on consortium blockchain and interplanetary file
system,” IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 153-159, IEEE BSC 2020,
Macau, China, December 2020, doi: 10.1109/QRS-C51114.2020.00035.

[15] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C.
Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C.
Stathakopoulou, M. Vukolic, S. Cocco, and J. Yellick, “Hyperledger Fabric:
a distributed operating system for permissioned blockchains,” In
Proceedings of the Thirteenth EuroSys Conference (EuroSys’18), Article No.
30, 1-15, Porto Portugal, April 23-26, 2018, doi: 10.1145/3190508.3190538.

[16] H. Im, K. H. Kim, and J. H. Kim, “Privacy and ledger size analysis for
healthcare blockchain,” In Proceedings of the 2020 International Conference
on Information Networking (ICOIN), 825-829, Barcelona, Spain, 2020, doi:
10.1109/ICOIN48656.2020.9016624.

[17] Y. Xu, “Section-Blockchain: A storage reduced blockchain protocol, the
foundation of an autotrophic decentralized storage architecture,” In
Proceddings of the 23rd International Conference on Engineering of
Complex Computer Systems (ICECCS), 115-125, Melbourne, VIC,
Australia, December 12-14, 2018, doi: 10.1109/ICECCS2018.2018.00020.

[18] Y. Xu and Y. Huang, “Segment blockchain: a size reduced storage
mechanism for blockchain,” IEEE Access, 8, 17434-17441, 2020, doi:
10.1109/ACCESS.2020.2966464.

[19] A. Thamrin and H. Xu, “Cloud-based blockchains for secure and reliable big
data storage service in healthcare systems,” In Proceedings of the 15th IEEE
International Conference on Service-Oriented System Engineering (IEEE
SOSE 2021), 81-89, Oxford Brookes University, UK, August 23-26, 2021,
doi: 10.1109/SOSE52839.2021.00015.

[20] X. Yang, H. Shi, S. Yang and Z. Lin, “Load balancing scheduling algorithm
for storage system based on state acquisition and dynamic feedback,” In
Proceedings of the 2016 IEEE International Conference on Information and
Automation (ICIA), 1737-1742, Ningbo, China, 2016, doi: 10.1109/
ICInfA.2016.7832098.

[21] Y. Chang, H. Chen, S. Li and H. Liu, “A dynamic hashing approach to
supporting load balance in P2P Systems,” The 28th International Conference
on Distributed Computing Systems Workshops, 429-434, Beijing, China,
June 17-20, 2008, doi: 10.1109/ICDCS.Workshops.2008.109.

[22] R. Panwar and B. Mallick, “Load balancing in cloud computing using
dynamic load management algorithm,” 2015 International Conference on
Green Computing and Internet of Things (ICGCIoT), 773-778, Greater
Noida, India, 2015, doi: 10.1109/ICGCIoT.2015.7380567.

[23] H. Guo, W. Li, M. Nejad, and C. Shen, “Access control for electronic health
records with hybrid blockchain-edge architecture,” In Proceedings of the
2019 IEEE International Conference on Blockchain (Blockchain-2019), 44-
51, Atlanta, GA, USA, July 14-17, 2019, doi: 10.1109/Blockchain.
2019.00015.

[24] R. Anderson, Security engineering: a guide to building dependable
distributed systems, 3rd Edition, John Wiley & Sons, Indianapolis, Indiana,
USA, December 2020.

http://www.astesj.com/

	2. Related Work
	3. Scalable Storage Using Historical Blockchains
	3.1. A Framework for Scalable Blockchain Networks
	3.2. The Block Structure
	3.3. The Structure of a Meta-Block
	3.4. Generation of a Historical Blockchain

	4. Retrieval of Historical Blockchain Data
	4.1. Load Balancing Data Retrieval Requests
	4.2. The Structure of Shared Assignment Table
	4.3. Retrieval of Historical Blockchain Data

	5. Case Study
	5.1. Estimation of Blockchain Size
	5.2. Data Retrieval Time for a Single Request
	5.3. Data Retrieval Time for Concurrent Requests

	6. Conclusions and Future Work
	Conflict of Interest
	Acknowledgment

	References

