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 Blockchain technology has been successfully applied in many fields for immutable and 
secure data storage. However, for applications with on-chain big data, blockchain 
scalability remains to be a main concern. In this paper, we propose a novel scalable storage 
scheme, called HistoChain, for a consortium blockchain network to manage blockchain 
data. We use a current blockchain and historical blockchains to store on-chain big data, 
where the current blockchain and the historical blockchains store data from recent years 
and earlier years, respectively. Both the current blockchain and the historical blockchains 
are maintained by super peers in the network; while regular peers manage only the current 
blockchain and can retrieve historical data by making queries to the super peers. We present 
procedures for generating historical blockchains, dynamically balancing the data retrieval 
workload of super peers, and concurrently retrieving historical blockchain data in response 
to queries. We further provide a case study of healthcare data storage using a consortium 
blockchain, and the simulation results show that our scalable HistoChain storage scheme 
supports efficient access and sharing of big data on the blockchain.  
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1. Introduction 

In recent years, the use of blockchain technology in many 
fields has gained increasing interest and popularity [1]. As a 
distributed and decentralized ledger, blockchain technology 
allows for the protection of transactions and data while 
maintaining the data sharing and reliability of a peer-to-peer 
network [2]. Peers maintain “chains” of blocks consisting of 
various types of data stored as transactions. Each block contains 
the hash value of the previous block in the chain, so any attempt 
to modify one block has a ripple effect on all subsequent blocks 
in the blockchain. These altered hash values can be easily 
identified because peers in the network maintain copies of the 
chain and can independently verify transactions and blocks. 
Permissioned blockchains allow peers in the network with the 
required permissions to access recorded transactions, while the 
key benefits of security, immutability, integrity, and transparency 
are preserved for transaction records [3]. The reliability and ease 
of securing and accessing data may explain the growing 
prevalence of blockchain technology worldwide. Bitcoin, a digital 
currency that utilizes public blockchain technology, had over 100 
million users in 2022. The Bitcoin blockchain grew by more than 
400 gigabytes from January 2012 to July 2022, and has even 
doubled since February 2019. In the face of this incredible growth, 

the cost of becoming a full-fledged node in a blockchain network 
is daunting and could become completely impractical. Similar to 
public networks like Bitcoin and Ethereum, consortium networks 
also run into storage problems [4]. In general, applications that 
require big data storage pose such problems, even if these 
networks do not consist of many peers or transactions. A wide 
range of domains, such as healthcare, real estate, insurance, and 
the Internet of Things (IoT), have adopted blockchain technology, 
resulting in a variety of data types and applications. While these 
applications typically use consortium blockchain networks, data-
rich applications inevitably face storage issues, which raise 
significant concern about blockchain scalability.  

The concern for blockchain scalability is the main reason for 
many studies on consortium blockchain storage management [5], 
[6]. However, most of the proposed solutions employ various off-
chain storage strategies such as InterPlanetary File System (IPFS) 
and cloud storage, where IPFS is a decentralized, secure, 
verifiable, distributed storage system that can be integrated with 
blockchain networks [7]. Although off-chain approaches can 
alleviate the scalability issues of blockchain storage, the benefits 
of using blockchain technology are lost as the data is moved off 
the chain and new issues regarding the security and 
maintainability of off-chain data can be introduced. In this paper, 
we propose an on-chain approach, called HistoChain, to reduce 
the storage burden on most peers in a blockchain network by 
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splitting the current blockchain (CB) and transferring the old data 
to a historical blockchain (HB), thereby reducing the size of the 
CB by half. In the HistoChain approach, HBs are immutable 
blockchains containing historical data separate from the CB, while 
the CB contains only the most recent years of blockchain data. 
After a set period of time, the CB will have grown further, and it 
will then be split again, generating another HB. In our approach, 
the nodes in the network are set up as either super peers or regular 
peers, with a smaller but substantial number of nodes forming a 
group of super peers, each of which maintains a copy of the CB 
and all HBs. Regular peers, which comprise most of the nodes in 
the network, need only retain the CB. This greatly reduces the 
storage burden on regular peers, which can then access data from 
the historical blockchains by making queries to the super peer 
group. In our approach, we use a time-based partitioning method 
to split the CB when it reaches a certain age. For example, if this 
age is 10 years, an HB will be created containing the first 5 years 
of data, leaving only the most recent 5 years of data in the CB. 
This splitting process can continue over time, resulting in the 
creation of multiple HBs. 

Since regular peers are not required to store HBs, making query 
requests to the super peer group is their means of accessing 
historical data from the blockchain. When a super peer receives a 
request to search for historical data, it retrieves the requested data 
from the historical blockchains, and sends a summary report 
containing all retrieved information back to the requesting regular 
peer. In our approach, we introduce a meta-block, a mutable block 
attached to the beginning of the CB or each of the HBs, which 
contains index information for all transactions stored in the 
corresponding blockchain. This index information can facilitate 
fast and efficient data retrieval from a large blockchain that 
contains many years of data; therefore, the search time for 
historical data can be significantly reduced. 

This work significantly extends the scalable storage scheme we 
previously proposed for on-chain big data using historical 
blockchains, originally presented at the IEEE International 
Workshop on Blockchain and Smart Contracts in 2022 (IEEE BSC 
2022). In our previous work [8], we defined a primary super peer, 
called PSP, as an elected super peer who plays a role in efficiently 
facilitating access to data in HBs by regular peers. However, this 
approach introduces centralization and requires the necessary trust 
in a particular super peer (i.e., the PSP), which shall be best 
avoided in a blockchain architecture. In this paper, we allow a 
query to be sent to any super peer, which is responsible for 
collecting retrieved historical data and returning a summary report. 
To ensure temporal efficiency in query execution, query delegation 
will be performed within the super peer group. We design a 
dynamic load balancing algorithm to support fulfilling a request in 
a timely and concurrent manner. Each request for historical data 
sent to the super peer group is divided into subqueries with a search 
time of no more than 5 years, which are assigned to super peers 
based on their current workload. For this purpose, each super peer 
maintains a Shared Assignment Table (SAT) that keeps a record of 
assignments for all super peers and their completion times. Once 
an assignment is accepted by a super peer, an update to the SAT is 
broadcast within the super peer group to ensure that the super peers 
are aware of the latest status of the blockchain network. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 presents the HistoChain 
framework for scalable storage using historical blockchains and 
describes the procedure for generating historical blockchains. 
Section 4 describes in detail the dynamic load balancing algorithm 
and the retrieval process of historical blockchain data. Section 5 
presents the case studies and their analysis results. Section 6 
concludes the paper and mentions future work. 

2. Related Work 

Scalability challenges in blockchain technology, especially in 
public blockchain systems, remain a persistent issue. In [9], the 
authors introduced the Bitcoin Lightning Network (BLN), a 
decentralized system where transactions can be sent off-chain for 
value transfer through channels. The BLN, through its ability to 
make micro-payments, has positively impacted the scalability of 
the global Bitcoin blockchain network by reducing the need to 
broadcast many transactions. Danksharding is a newer type of 
sharding architecture proposed to scale the Ethereum network 
[10]. In the Danksharding proposal, nodes can validate larger data 
volumes through distributed data sampling across blob; therefore, 
nodes can avoid processing all data and larger data volumes can 
be handled by the Ethereum network. Scalability challenges also 
arise in consortium blockchain networks when large amounts of 
data need to be stored. In the context of consortium, off-chain 
strategies to improve the scalability of blockchain applications are 
the main focus of further research. To reduce the high cost of 
computation and storage for blockchain-based applications, in 
[11], the authors investigated a series of off-chain computation 
and storage approaches. They proposed five off-chain models that 
move computation and data off the blockchain without violating 
the trustless property. In [12], the authors proposed an off-chain 
scalability solution, called ChainSplitter, for Industrial Internet of 
Things (IIoT) blockchain applications. The proposed approach 
features a hierarchical storage structure where the recent blocks 
are stored in an overlay network and the majority of blockchain 
data is stored in the cloud. Despite being structured as a 
decentralized cloud storage system, the blockchain data in the 
cloud is not maintained by peers and thus acts as an off-chain 
repository for blockchain data. IPFS also offers a scalable off-
chain solution for blockchains. In [13], the authors presented a 
blockchain-based application using IPFS specifically for 
healthcare systems. They focused on storage of electronic health 
records (EHRs) and used the IPFS service to transfer data off-
chain while retaining hashes of the data on the blockchain. In [14], 
the authors attempted to reduce the transaction size and increase 
the transaction throughput of an experimental consortium 
blockchain network by storing the hash values of encrypted data 
on-chain and using IPFS to store the encrypted data itself off-
chain. They integrated Hyperledger Fabric [15], which is a 
modular blockchain framework typically using off-chain storage 
for big data, with IPFS services and provided a solution for secure 
storage and efficient access to a task-scheduling scheme. While 
the off-chain approach provides a viable way to mitigate the 
scalability problem of blockchains, as noted in [11], the 
fundamental properties of blockchains can be compromised to 
varying degrees when using the off-chain approach. In contrast, 
our HistoChain approach stores big data in historical blockchains 
and does not rely on off-chain storage; therefore, all essential 
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properties of the blockchain data can be strictly maintained using 
our on-chain storage mechanism.  

There are very few on-chain based approaches that address the 
scalability issues in blockchain networks. In [16], the authors 
proposed to use Hyperledger Fabric to implement a consortium 
blockchain for patient access and management of personal health 
records (PHRs). Although scalability issues remain a major 
challenge, they concluded that Hyperledger Fabric for on-chain 
data storage could offer a more practical solution to ensure the 
privacy of PHRs than the Ethereum public blockchain. In [17], the 
author introduced the concept of section-blockchain, an on-chain 
approach for reducing the storage cost of blockchain networks with 
under-stored devices. In their approach, all nodes store a portion of 
the complete blockchain and provide incentives for upgrading their 
local storage. Furthermore, they proposed segmented blockchains 
to enable nodes to store a blockchain segment [18]. They showed 
that their approach can help reduce the storage cost of a blockchain 
without compromising the security requirement of the blockchain. 
In [19], the authors proposed a framework for cloud-based 
blockchains to store medical multimedia files on-chain securely 
and reliably. They used a cloud-based blockchain to store all 
blockchain data to support data accessibility, redundancy, and 
security, while a lite blockchain allows local storage of text-based 
information and metadata for multimedia files. Although the above 
methods allow for big data storage, data retrieval can be slow 
because portions of transactions are stored in different 
blockchains. Conversely, our HistoChain approach divides a 
complete blockchain into a current blockchain and multiple 
historical blockchains, each of which are full-fledged blockchains 
containing complete transaction information. Regular peers can 
then access their local current blockchain and request historical 
blockchain data from super peers concurrently, making the data 
retrieval process much more efficient.  

One of the main advantages of the HistoChain approach is that 
it supports dynamic load balancing, so requests for historical 
blockchain data can be retrieved in a timely and concurrent 
manner. There is a great deal of research efforts in developing 
dynamic load balancing algorithms in the context of cloud 
computing and P2P systems. In [20], the authors proposed a load 
balancing scheduling algorithm for virtual server clusters applied 
to storage systems to ensure uniform load distribution of virtual 
server clusters. Their approach is based on the state of the server 
clusters and periodically sends collected feedback to the load 
balancer to bring the internal load performance of the system to a 
more balanced state. In [21], the authors introduced a strategy to 
use a dynamic hashing scheme to locate data keys based on a 
structured P2P architecture and maintain the load balance among 
the peers. They showed that the load balancing of P2P systems can 
be significantly improved using their proposed method. In [22], the 
authors proposed a dynamic load management algorithm for cloud 
computing based on the current state of virtual machines (VM). In 
their approach, the allocation table is parsed to find each idle and 
available VM, from which the active load of all VMs under 
consideration is calculated. Similarly, in our HistoChain approach, 
we utilize a shared assignment table to achieve dynamic load 
balancing within the super peer group, where the assignment is 
determined on the basis of the lowest total workload of the super 
peers. In this sense, our approach complements existing dynamic 
load balancing mechanisms in cloud computing and P2P systems 

and provides a simple yet efficient solution to support concurrent 
processing of complex query requests for current and historical 
blockchain data.  

3. Scalable Storage Using Historical Blockchains 

3.1. A Framework for Scalable Blockchain Networks 

Data storage technologies such as physical storage and cloud 
storage each have their inherent advantages, but this meteoric rise 
in blockchain-enabled applications has led to a great deal of 
research focused on decentralized storage for managing large 
amounts of data while maintaining its viability for nodes and 
networks. To demonstrate this storage requirement, we examine 
an example of blockchain applications in healthcare. A patient 
visiting a hospital may generate a certain amount of data, 
especially in the case of multimedia files such as X-rays or CT 
scans. If a hospital is to consider adopting blockchain technology 
for data storage, it must remain scalable because a large number 
of patients will generate large amounts of data over a long period 
of time. This issue is further complicated for an entire network of 
hospitals that utilize a consortium blockchain as a means of 
sharing medical data. While viable techniques do exist to store 
off-chain medical data, the benefits offered by using blockchain 
storage are compromised in this use. In this paper, we propose the 
HistoChain approach that supports the maintenance and sharing 
of medical data on the chain, with the burden being borne by a 
smaller group of well-equipped super peers representing large and 
resourceful hospitals in a local area. Such large hospitals will be 
able to dedicate more resources to the network to maintain older 
on-chain data stored in historical blockchains. This makes it 
feasible for regular peers to participate in the network to maintain 
the benefits and convenience offered by blockchain technology 
while having a much lower storage burden without moving their 
data off-chain. Figure 1 shows the HistoChain framework for a 
scalable consortium blockchain network.  

 
Figure 1: A Framework for a Scalable Consortium Blockchain Network 

As shown in Figure 1, a consortium blockchain network 
consists of n super peers and r regular peers. The super peers are 
tasked with maintaining the current blockchain CB and all 
historical blockchains HBs, as well as creating and verifying new 
blocks and transactions using a consensus process. Shifting the 
burden of historical data storage and freeing regular peers from 
participating in the consensus process allows the introduction of 
highly lightweight regular peers. Regular peers maintain only the 
CB, but can access historical data stored in HBs through queries 
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to the super peer group. Upon receiving a query, a super peer splits 
it into subqueries and assign them to super peers based on the 
shared assignment table SAT as a means of dynamic load 
balancing to ensure that access to the data remains timely. More 
importantly, as described in Section 3.4, when the current 
blockchain reaches a certain age, a super peer can split it into a 
chain of historical blocks and a reduced chain of current blocks. 

3.2. The Block Structure 

A block, as a building block of a blockchain, can be defined 
by three parts: the block header, the list of transactions, and the 
verification section. Figure 2 shows the structure of a block with 
a list of m transactions. 

 
Figure 2: The Structure of a Block with a List of Transactions 

As shown in Figure 2, the block header is defined as a 4-tuple 
(B, T, S, H), where B is the block ID, T is the timestamp when the 
block is created, S is the size of the list of transactions recorded in 
the block, and H is the hash value of the previous block. In the 
context of healthcare, each transaction in the transaction list is 
defined as a 4-tuple (TI, TS, PI, TD), where TI is the transaction 
ID, TS is the timestamp when the transaction is created, PI is the 
patient ID, and TD is the transaction data, including text-based 
messages and images files. The verification section is essential for 
the integrity of the blockchain storage, which includes a list of 
digital signatures, ds[bID]v, for a block with ID bID, where v is a 
super peer that approves it as a new block in the consensus 
process. Any pending block must be approved by the majority of 
the super peers before it can be added to the blockchain, at which 
point the hash of the block is computed by applying a hash 
function to the block file containing all the above components 
excluding the verification section, and the hash value hash(cur-
Block) is attached to the end of the block file. Note that in order 
to limit the block size, each block contains no more than 500 
transactions and only contains transactions created during the 
same day. Therefore, the last block created at the end of a day may 
contain less than 500 transactions.  

3.3. The Structure of a Meta-Block 

To support efficient data retrieval in a blockchain, we define a 
meta-block as a special block that stores metadata for the current 

blockchain or each of the historical blockchains. A meta-block is 
the only mutable block in a blockchain and is attached at the 
beginning of the blockchain. Figure 3 shows the structure of a 
meta-block. As shown in the figure, a meta-block consists of two 
parts: the block header and a HashMap HM. The block header is 
defined as a 4-tuple (SD, ED, SB, EB), where SD is the timestamp 
of the first transaction in the first block of the blockchain; ED is 
the timestamp of the last transaction in the last block of the 
blockchain; SB and EB are the block IDs of the first block and the 
last block of the blockchain, respectively. In the second part, the 
HashMap HM contains a list of <key, value> pairs, where the key 
is a patient ID and the value is a list of locations where the patient 
transactions are stored. Each location is defined as a triple (B, A, 
O), where B is the block ID, A is the address of the transaction in 
the block, and O is the offset of the transaction size. 

 

Figure 3: The Structure of a Meta-Block 
The use of meta-blocks in a blockchain network provides an 

additional layer of organization and structure. By placing 
metadata in a separate block attached to the beginning of a 
blockchain, searching for information in the blockchain becomes 
much easier. This metadata allows peers to determine the exact 
location of transactions in the blockchain that need to be extracted 
to complete queries on current and historical blockchain data. 
Thus, the search space is much reduced and the time it takes to 
execute a query can be minimized. Note that to ensure the 
integrity of the blockchain metadata, a meta-block can be 
reviewed, validated and refreshed at any point in time by reading 
data from the relevant part of the blockchain. 
3.4. Generation of a Historical Blockchain 

At its inception, the current blockchain is the only blockchain 
in the network. When the current blockchain reaches a certain age, 
say 10 years, a split occurs. The oldest 5 years of data are 
transferred to a new blockchain, called a historical blockchain, 
while the most recent 5 years of data remain in the current 
blockchain. When a new historical blockchain is generated, a new 
meta-block containing its metadata is appended to the beginning 
of the historical blockchain, and the current blockchain’s meta-
block is refreshed to reflect the movement of that data. This 
process is repeated 5 years later when the current blockchain again 
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contains 10 years of data. Figure 4 shows how the current 
blockchain CB is split into a historical blockchain and a new 
current blockchain. Let the block IDs of the first and last block in 
CB be m and n, respectively. Note that m = 1 if the current 
blockchain has never been split before. Let block k be the most 
recent block in CB that is at least 6 years old. We establish blocks 
m through k as a historical blockchain HB and generate a new 
meta-block MBHB for it. Blocks k+1 through n persist as the 
updated current blockchain, while blocks m through k are 
removed. The meta-block MBCB associated with the current 
blockchain is refreshed by scanning the data in the new current 
blockchain (i.e., blocks k+1 through n). We now have an updated 
current blockchain and a historical blockchain, each containing 5 
years of data.  

 
Figure 4: A Blockchain Split into a Historical and a Current Blockchain 
A super peer is responsible for splitting a current blockchain 

with a certain age into a reduced current blockchain and a 
historical blockchain. When a super peer completes this task, it 
broadcast the updated current blockchain to all peers and the new 
historical blockchain to all super peers for updating. Algorithm 1 
shows the process of splitting the current blockchain CB with 10 
years of data into a historical blockchain HB and an updated 
current blockchain CB.  

Algorithm 1: Splitting of a Current Blockchain 

Input: A current blockchain CB containing 10 years of data 
Output: Historical blockchain HB with 5 years of old data and an 
updated CB with the most recent 5 years of data 

1.   Let m and n be the IDs of the first and the last block in CB 
2.   Let k be the most recent block at least 6 years old, where n > k 
3.   Extract blocks m through k from CB and create a new historical  
         blockchain HB with the k-m+1 blocks 
4.   Create an empty meta-block MBHB associated with HB 
5.   Set SD in MBHB as the date of the first transaction in block m 
6.   Set ED in MBHB as the date of the last transaction in block k 
7.   Set SB and EB in MBHB to m and k, respectively 
8.   for each block β in HB 
9.       Scan block β and add each triple (B, A, O) associated with  
           patientID α to a list LSα 
10. Create a HashMap in MBHB and add all pairs of <α, LSα> to it 
11. Attach MBHB to the beginning of HB 
12. Remove blocks m through k from CB 
13. Update CB’s meta-block MBCB accordingly, as with MBHB  
14. return HB and CB  

As shown in Algorithm 1, the meta-block of HB, MBHB, 
contains the date of the first transaction in the first block of HB, 
the date of the last transaction in the last block of HB, and the 

block IDs of the first and last block of HB. To create a HashMap 
that contains all <key, value> pairs, each block in HB is scanned, 
and each triple (B, A, O) associated with the patient ID α is added 
to a list LTα. Once the scanning process is complete, all pairs of 
<α, LTα> are added to the HashMap in MBHB. Now in CB, all 
blocks that have been recorded in HB are deleted, and the meta-
block of the updated CB must be refreshed by removing all triples 
that reference transactions that have been transferred to HB. 
Finally, the new HB and the updated CB are returned for 
broadcasting. 

4. Retrieval of Historical Blockchain Data 

4.1. Load Balancing Data Retrieval Requests 

In the context of blockchain applications in the healthcare 
domain, suppose a regular peer (e.g., a doctor) queries patient 
information from blockchains for multiples of 5 years. When the 
data to be searched is for the most recent 5 years, the regular peer 
can search directly from its local current blockchain. When the 
data to be searched is for the past sLen years, where sLen ∈ {5n | 
n ≥ 2}, the regular peer can search for patient information for the 
most recent c years directly from its local blockchain, where c is 
the age of the current blockchain; while the remaining (sLen - c) 
years of data must be retrieved from the historical blockchains by 
making a query to any of the super peers. The request for such a 
query involves a patient ID (for which data is collected) and the 
number of years of data being search, called the search length. 
Figure 5 shows the querying process for accessing historical 
blockchain data. 

 
Figure 5: Querying Process for Accessing Historical Blockchain Data 

From Figure 5, we can see that when a super peer receives a 
query from a regular peer, it acts as a director, dividing the query 
into subqueries and distributing them evenly based on the weights 
of queries to be completed by the super peers. Each query receives 
a weight based on the search length. For example, for a blockchain 
with a current blockchain of 7 years, a query with a search length 
of 20 years can be split into three subqueries, a 3-year search and 
two 5-year searches with weights of 3/5 and 1, respectively. Data 
retrieved from all subqueries are returned to the assigning super 
peer (if not completed by the assigning super peer) and compiled 
into a single summary report that is returned to the requesting 
regular peer. Note that the search for the most recent 7 years of 
blockchain data must be performed locally by the requesting 
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regular peer, who is responsible for combining its local report 
with the summary report received from the assigning super peer 
into a single summary report. 

A new subquery with a 5-year search length is always assigned 
first to the super peer with the lowest total weight. Subqueries sent 
to super peers are stored in their query queues, and the total weight 
of the queries assigned to each super peer must be approximately 
equal. A super peer processes subqueries in its query queue on a 
first-come, first-served basis. When a super peer retrieves relevant 
historical data for a subquery, it compiles the results and returns a 
response to the assigning super peer, including a summary report 
of the relevant transactions with links to associated files that a 
regular peer can download. Note that each super peer maintains 
its own copy of the historical blockchains; therefore, searches 
assigned to multiple super peers can be performed by them 
simultaneously.  
4.2. The Structure of Shared Assignment Table 

In our proposed HistoChain approach, the lightweight nature 
of regular peers allows for a scalable architecture with the super 
peers facilitating access to historical data. To this end, queries for 
patient data are sent from regular peers to the super peers and the 
summary reports are returned upon completion. To ensure 
efficient execution of this approach, dynamic load balancing is 
employed, where each super peer retains a copy of SAT and 
broadcasts an updated SAT with any assignment changes made by 
the super peer to the super peer group. These broadcasts contain 
the current workload and assignment of each super peer as well as 
estimated time when the subquery must be completed. In case no 
response is received by the end of the estimated completion time, 
the task must be completed at the highest priority by the assigning 
super peer to avoid further delay. Figure 6 illustrates the structure 
of an SAT shared by a group of n super peers. 

 
Figure 6: The Structure of a Shared Assignment Table (SAT) 

When a query is received by an assigning super peer Ψ, it will 
be split into multiple subqueries, each of which can be assigned 
to a super peer based on the lowest total weight. This ensures the 
uniform distribution of weights among the super peers and the 
timely completion of the subqueries. Each subquery consists of a 
query ID, a patient ID, a requested start date (SD), and an end date 
(ED), defined as a 4-tuple (qID, pID, SD, ED). Once the 
assignment is recorded into SAT, the updated SAT is broadcast 
within the super peer group. To prevent conflicts, a super peer 
always uses the latest version of SAT for the assignment by 
checking the publishing timestamp. A super peer may reject a 

subquery request due to various reasons. When this happens, Ψ 
must update SAT and broadcast it again. Algorithm 2 shows the 
query assignment process done by Ψ. Let the blockchain be of age 
5 or more. Since the age of the current blockchain ranges from 5 
to 10 years, the search length of subquery sq1 can be less than 5 
years. To avoid adding network time to the data retrieval time of 
short subqueries with a search length less than 5 years, the 
assigning super peer always completes such a subquery by itself 
rather than assigning it to another super peer. 

Algorithm 2:  Query Assignment by Assigning Super Peer Ψ 

Input: Query q with a search length sLen in 5x years, x ∈ [1, 10], current  
      blockchain age c, shared assignment table SAT 
Output: Updated shared assignment table SAT 

1.   if sLen ≤ c return SAT // only local search is needed 
2.   Split q into subqueries sq1…sqm, where m = (sLen – c)/5, search 

length |sq1| = 10 – c, and |sqi | = 5, 2 ≤ i ≤ m. 
3.   if |sq1| < 5 
4.         Assign sq1 to Ψ  //self-assign sq1 for less than 5-year search 
5.   else // when |sq1| == 5 
6.         Assign sq1 to the super peer with the lowest total weight in SAT  
7.   for each subquery ρ in sq2…sqm 
8.         Assign ρ to the super peer with the lowest total weight in SAT  
9.   Broadcast updated SAT to all super peers 
10. return updated SAT 

 
4.3. Retrieval of Historical Blockchain Data 

We now define the procedure for the retrieval of historical data 
by a super peer SP. Let subquery ρ, defined as a 4-tuple (qID, pID, 
SD, ED), be a subquery assigned to SP by an assigning super peer 
Ψ, then the search length of the subquery |ρ| must be no more than 
5 years that is covered by one of the historical blockchains. To 
identify the historical blockchain to be searched, SP needs to 
compare the start date SD and end date ED of the subquery with 
those of the historical blockchains by examining their meta-
blocks. Once the historical blockchain is identified, the search is 
facilitated by investigating again its meta-block, which contains 
indices specifying the exact location of transactions in the 
identified historical blockchain. Algorithm 3 shows how 
historical data can be retrieved from historical blockchains by 
super peer SP.  

Algorithm 3:  Historical Blockchain Data Retrieval (Subquery) 

Input: Subquery ρ as a 4-tuple (qID, pID, SD, ED) 
Output: A summary report with retrieved historical data for ρ 

1.   Create an empty summary report SR_ρ.qID  
2.   for each historical blockchain Π 
3.      Read MBΠ.SD and MBΠ.ED from meta-block MBΠ 
4.      if MBΠ.SD > ρ.ED || MBΠ.ED < ρ.SD 
5.         continue // outside of the search period, search next Π 
6.      Get a list of triples LTX from MBΠ.HM with pID as the key 
7.      for each triple (B, A, O) in LTX 
8.         Read transaction tx from block B at address [A, A + O] 
9.         if tx.TS ≥ ρ.SD && ts.TS ≤ ρ.ED 
10.          Add retrieved tx and links to relevant files to SR_ρ.qID 
11.     break // only one Π needs to be searched for subquery ρ 
12. return summary report SR_ρ.qID 
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As shown in Algorithm 3, the patient ID in the subquery ρ is 
used as the key in the meta-block’s HashMap to access the exact 
locations of relevant transactions in the associated historical 
blockchain. Super peer SP then reads the relevant transactions and 
record them in a summary report SR_ρ.qID. The summary report 
may contain links to multimedia files, which are hosted by SP. 
Finally, the summary report SR_ρ.qID is returned to the assigning 
super peer Ψ. 

Based on Algorithm 2 and Algorithm 3, we now define the 
entire process by which the assigning super peer Ψ completes a 
summary report for a query q with a search length sLen, made by 
a requesting regular peer. This query completion process done by 
Ψ is described in Algorithm 4.  

Algorithm 4:  Query Completion by Assigning Super Peer Ψ 

Input: Query q with a search length sLen, shared assignment table SAT 
Output: A completed summary report SR_Ψ 

1.   Invoke Algorithm 2 on q to create and assign subqueries 
2.   if any assigned subquery sq is rejected by a super peer 
3.      Assign sq to Ψ itself 
4.      Broadcast the updated SAT 
5.   for each super peer SP with an assigned subquery ρ 
6.      Wait summary report SR_ρ.qID to be received from SP after   
         SP invokes Algorithm 3 
7.      if time estimate of ρ is exceeded and SR_ρ.qID is not received  
8.         Assign ρ to Ψ itself and invoke Algorithm 3 
9.      Remove subquery assignment for SP from SAT 
10.    Broadcast updated SAT 
11. Compile each summary report into a complete report SR Ψ 
12. return summary report SR_Ψ   

As shown in Algorithm 4, upon receiving query q, the 
assigning super peer Ψ splits it into subqueries and assigns them 
to super peers by invoking Algorithm 2. If any assigned subquery 
ρ is rejected by an assigned super peer SP, ρ is reassigned to Ψ 
itself and an updated SAT is broadcast. Each super peer SP 
receiving an assignment then retrieves the historical data 
requested in the assignment by invoking Algorithm 3. The 
assigning super peer Ψ then awaits the summary report from each 
SP. When a summary report for a subquery ρ is returned, Ψ 
removes the corresponding assignment in its SAT and broadcasts 
this update. If any subquery is not completed by the time estimate, 
Ψ assigns the subquery to itself, broadcasts an updated SAT, and 
completes the subquery. When all summary reports for the 
subqueries become available, Ψ compiles them into a complete 
final summary report (in chronological order of the subquery start 
date) and returns it to the requesting regular peer. 

Note that a regular peer can perform a local search for a query 
whose search length is equal to the age of the current blockchain 
in a similar manner. Remote searches of historical blockchain data 
by super peers are conducted concurrently with the local search 
of the current blockchain by a regular peer. The historical data 
returned from a remote search is then merged with the local search 
data by the requesting regular peer. 

5. Case Study 

In this section, we present a series of simulations in the context 
of healthcare to demonstrate the feasibility and effectiveness of 
the HistoChain approach. In our experiments, we assume that 

there are 10 large local hospitals participating in a consortium 
blockchain network. There are also 30 small and medium medical 
facilities in the network. A consortium blockchain may have a 50-
year lifespan, which is enough time to aggregate a substantial 
amount of data to be useful for experiments. We limit the total 
number of transactions in each block to 500, where each 
transaction may contain medical data in the form of image and 
text files. For simulation purposes, the number of visits per day is 
between [200, 500] and [50, 200] for large hospitals and 
small/medium sized medical facilities, respectively.  
5.1. Estimation of Blockchain Size 

To estimate the blockchain sizes along years, we use a time-
based partitioning method to generate historical blockchains. A 
time-based partitioning occurs in the 10th year of the current 
blockchain; the earliest 5 years of data make up an historical 
blockchain, while the most recent 5 years of data are retained by 
the current blockchain. Using this method, super peers 
representing large local hospitals retain all historical blockchains 
as well as the current blockchain, while regular peers representing 
small/medium sized medical facilities store only the current 
blockchain. Table 1 lists the parameters used in our experiments.  

Table 1: Parameters Used for Blockchain Size Estimate 

Image 
occurrence 

(%)  

Image 
size 

Image 
count 

Text 
occurrence 

(%) 

Text  
size 

File size 
growth rate 

(%) 

Time 
to split 
(year) 

5% 1 ~ 3 
MB* 1 ~ 5 100% 0.003 ~ 

0.007 MB* 0, 1, 3, 5 10 

* File sizes are subject to increase by a 5-year file size growth rate.  

As shown in Table 1, for a hospital visit, we assume that there 
is a 5% probability of including images, such as x-rays, in the 
doctor’s notes. The size of the images is typically between [1MB, 
3MB] and the number of images attached is limited to 5. The sizes 
of text-based medical records are also listed in Table 1. Note that 
in our experiments, we consider 5-year file size growth rates of 
0%, 1%, 3% and 5%, with the file size bound increasing uniformly 
each year over the 5-year period. For example, when the 5-year 
growth rate is 3%, the image size increases by 0.6% per year and 
the maximum image size can reach 4.89 MB in 50 years, which is 
usually large enough for medical image files.  

We now simulate the creation of a 50-year blockchain to 
estimate the storage burden of regular and super peers in the 
network. On each day, a large hospital or a small/medium sized 
medical facility in the network generates a random number of 
visits within the given range [200, 500] or [50, 200], respectively. 
A transaction is generated for each visit and stored in a block that 
can hold up to 500 transactions, independent of the transaction 
size. Each transaction has a 5% chance of including at least one 
image file. If a transaction does include image files, the number 
of image files is chosen randomly within the given range [1, 5]. 
In addition, the size of each image file or text file is also randomly 
generated within the certain ranges, as defined in Table 1.  

To address the possible growth of image and text file sizes 
along years, we consider 5-year file size growth rates of 0%, 1%, 
3% and 5% in our experiments. For each growth rate, we collected 
data from a sample of 10 simulations to establish the mean of the 
evaluation. The 0% growth rate is included as a baseline; while 
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not a realistic assumption, this establishes the minimum size of 
the blockchain against which the other growth rates can be 
considered. Figure 7 shows the change of blockchain storage 
along the years for the entire blockchain (including both current 
and all historical blockchains). The experimental results show that 
the effectiveness of using a historical blockchain structure is 
evident. After 50 years, the storage volume of the entire 
blockchain exceeds 33 TB at 0% growth rate, 35 TB at 1%, 38 TB 
at 3%, and 43 TB at 5%. Due to the storage burden, this would not 
be a viable solution for regular peers to store the entire blockchain.  

 
Figure 7: Total Blockchain Size by Year with 5-Year Growth Rates 

Now, with the introduction of the historical blockchain 
structure, the storage load for regular peers can be greatly reduced, 
as regular peers no longer need to store the entire blockchain. 
Figure 8 shows the change of blockchain storage along the years 
for the current blockchain. The experiment records the size of the 
current blockchain in the year before the current blockchain split 
(e.g., year 4, year 9, year 14, etc.) to show the approximate 
maximum size of the current blockchain along the way.  

 
Figure 8: Current Blockchain Size by Year with 5-Year Growth Rates 

From Figure 8, we can see that the size of the current 
blockchain is much smaller than the size of the entire blockchain. 
At 0% growth rate, the current blockchain size is at most 6.05 TB; 
at 1%, 6.62 TB; at 3%, 7.83 TB; and at 5%, 9.26 TB. The results 
show that for a growth rate of 0%, the size of the current 
blockchain is consistent regardless of the age of the blockchain. 
At a growth rate of 5%, the size of the current blockchain 

increases with the year but remains manageable for regular peers. 
Note that the size of the current blockchain doubled from year 4 
to year 9 because the current blockchain did not need to split 
during those 9 years. 

5.2. Data Retrieval Time for a Single Request 

In this experiment, we measure the data retrieval time for a 
single query request for blockchain historical data by a regular 
peer. The data retrieval request is a search for a patient’s medical 
records within a specified number of years. For any search within 
the current blockchain age, the data can be readily retrieved from 
the current blockchain; however, when the search length is greater 
than the current blockchain age, a query needs to be sent to a super 
peer to identify the relevant data and retrieve them from the 
historical blockchain(s). In this experiment, we let the age of the 
entire blockchain be 50 years old; therefore, up to 50 years of data 
can be retrieved from the blockchain. Table 2 lists additional 
parameters used for data retrieval in the simulations.  

Table 2: Parameters for Data Retrieval Used in the Simulations  

Search 
length 
(year) 

Annual 
patient 
visits 

File size 
growth rate 

(%) 

Network 
latency 

time 

Data 
extraction 

time 

Data 
export 
time 

Average 
meta-block 

size 

5, 10, 
15, …, 50 1 ~ 7 3 0.5 seconds 

0.02s 
/MB 

0.017s 
/MB 100MB 

Since one of the important factors affecting the search time is 
in reading meta-blocks of the historical blockchains that contain 
5-years of data, we consider search lengths in 5-year intervals up 
to 50 years. A 50-year blockchain also means that the current 
blockchain has just been split, so the current blockchain contains 
only the most recent 5 years of data. This setting helps to show 
the data retrieval time for the maximum amount of historical data. 
For a 5-year search, it will only be processed by a regular peer. 
For any search length of 10 years or more, the most recent years 
of data will be retrieved by a regular peer and the rest of data must 
be retrieved by super peers.  

We assume a maximum of 7 hospital visits per patient per year 
and set a file size growth rate of 3% for 5 years, which allows for 
a reasonable increase in the size of medical image files and text 
files. Parameters such as image size bounds, image count bounds, 
text size bounds, and probability of occurrence of images in 
medical records can be found in Table 1. For search length of 10 
years or more, measuring data retrieval time requires 
consideration of the network latency time for searching data in the 
historical blockchain(s), data extraction time for extracting index 
information from the relevant meta-blocks and the data from 
relevant blocks, and data export time for writing the extracted 
historical transaction data to a summary file. While the exact 
location of a transaction in a historical blockchain can be 
determined in constant time from the index information stored in 
a meta-block, opening a meta block file and reading the data from 
the file takes nontrivial time. Based on the average size of the 
meta-blocks, retrieving the index information from a meta-block 
can take up to several seconds. Since in our experiments, 
transactions are generated randomly, the extraction time is 
dependent upon the size of the transactions. For historical 
blockchain data, a super peer needs to write the extracted 
transaction data to a summary file. If a request is split by an 
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assigning super peer and completed by multiple assigned super 
peers in parallel, the summary reports returned must be compiled 
by the assigning super peer and returned to the requesting regular 
peer. This amount of time is included in the data export time, 
where a longer query adds more compilation time as it can be split 
into more subtasks and more reports need to be compiled.  

We call our approach decentralized, fine-grained because 
there is no single trusted peer for load balancing; instead, dynamic 
load balancing is utilized by each super peer in the group based 
on the SAT. We now compare our decentralized, fine-grained 
approach to a centralized, coarse-grained approach [8], where a 
search query is processed by a single super peer, regardless of the 
search length. Figure 9 shows the results of 30 simulations for the 
centralized and decentralized approaches for each given search 
length up to 50 years.  

 
Figure 9: Retrieval Time for Individual Request with Varying Search Length 

From Figure 9, we can see that for 5-year search, the average 
search time for both approaches is about 2 to 3 seconds. This is 
because the 5-year search can be processed locally by a regular 
peer and does not require remote data retrieval by super peers. The 
average 10-year search time with the decentralized approach is 
slightly larger, which can be attributed mainly to the increase in 
network time; the assigning super peer may need to delegate a 
remote 5-year search to another super peer and await its response. 
Otherwise, the search time would be the same, since the remote 
search for 5-year data is handled by one super peer in both 
methods. As the search length increases, the data retrieval time 
increases accordingly, with a maximum of about 20 seconds in 
the centralized approach for a 50-year search length. We see this 
growth is approximately linear, which is expected because the 
searches in multiple historical blockchains are performed 
sequentially by a single super peer, rather than in parallel by 
multiple super peers. In contrast, in the decentralized approach, 
there is a slight initial increase in search time for a 10-year search, 
but this increase is flat for longer searches. We see that a 50-year 
parallel search takes just over 4 seconds on average. The very 
small increase in time from a 10-year search to a 50-year search 
can be explained by the time it takes to compile summary reports 
received from multiple super peers. 

Note that the 10-year search time does not increase 
significantly over the 5-year search time in both approaches 
because the 10-year search consists of a local search by a regular 
peer in the current blockchain and a remote search of the 
remaining data by a super peer, both of which are performed 

concurrently. The insignificant increase in the average data 
retrieval time in the 10-year search in both approaches is due to 
the additional network time and export time caused by the remote 
search of the historical data.  
5.3. Data Retrieval Time for Concurrent Requests 

Our approach supports simultaneous processing of multiple 
query requests. In this experiment, we compute the distribution of 
weights across a group of 10 super peers for 10, 25, and 50 
concurrent requests. Since requests are expected to be received at 
5-minute intervals and up to 50 concurrent requests can be 
processed in this interval (at times of high workload), there is no 
overflow. Weights are assigned in proportion to the number of 
years involved in the search. We again consider searches 
involving up to 50 years of data at 5-year intervals. A 5-year 
search is not considered, as it can be retrieved locally from the 
current blockchain by a regular peer. We assume the probability 
of each search length occurring is equal, forming a uniform 
distribution. Figure 10 shows the variance of the weights assigned 
to each super peer in this strategy, where a number of simulations 
are generated for each number of concurrent query requests.  

 
Figure 10: Distribution of Weights for Varying Numbers of Concurrent Requests 

In a group of 10 super peers, queries are randomly sent to 
super peers who split the queries and assign subqueries to others 
to ensure even load balancing among the super peers. In this way, 
simultaneous historical blockchain data retrieval requests can be 
processed concurrently by the super peers. To examine the search 
time of concurrent data retrieval requests, the requests of regular 
peers for 10 to 50 years of data are measured. From Figure 10, we 
can see that the distribution of weights among the super peers is 
approximately uniform. For 10 concurrent queries, the average 
weight of the super peers is 5.37; for 25 queries, it is 12.65; and 
for 50 queries, it is 25.32. This demonstrates the effectiveness of 
the dynamic load balancing algorithm, which allows for even 
workload distribution in the super peer group and leads to efficient 
concurrent data retrieval by the super peers.  

We further compare the centralized and decentralized 
approaches to demonstrate the efficiency of the decentralized, 
fine-grained approach. Load balancing can also be incorporated 
in the centralized approach, so weights are assigned to each 
request according to the length of the request [8]. We assume 
search lengths of up to 50 years and simulate 10, 20, 30, 40, and 
50 concurrent searches at 5-minute intervals to calculate the total 
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data retrieval time. Note that 50 concurrent requests represent a 
very high volume of requests in a 5-minute interval, this may 
occur at certain times of the year, such as a flu season. We 
calculate the average data retrieval time for completion of all 
concurrent requests in a 50-year blockchain, which we refer to as 
the completion time. Figure 11 shows the average and individual 
completion time for the specified numbers of concurrent requests 
by running 30 simulations of each approach.  

 
Figure 11: Completion Time for Varying Number of Concurrent Requests 

From Figure 11, we can see that employing a decentralized, 
fine-grained approach is superior to a centralized, coarse-grained 
load balancing mechanism. Since in the decentralized approach, 
long queries are split into 5-year subqueries, the dynamic load 
balancing would result in more even workload distribution among 
super peers than in the centralized approach. On the other hand, 
although the average completion time of the centralized approach 
is higher than that of the decentralized approach for each number 
of concurrent requests, we note that as the number of concurrent 
requests increases, the queue completion times of the centralized 
and decentralized approaches start to converge and are almost 
equal at 50 concurrent requests. This is because when there are 
more concurrent requests, the weight distribution of the 
centralized approach can become more uniform and may 
approach the performance of the decentralized approach. This 
finding suggests that the decentralized, fine-grained dynamic 
load-balancing algorithm could be more effective in the off-
season or normal season than in the peak season, although it 
performs better than the centralized, coarse-grained load-
balancing mechanism in general. 

6. Conclusions and Future Work 

To address the scalability issues of consortium blockchains, 
recent solutions have focused on transferring data off-chain by 
using IPFS and cloud-based storage structures. In this paper, we 
propose a novel approach, called HistoChain, to improve 
consortium blockchain scalability using historical blockchains 
and dynamic load balancing. We introduce a time-based 
partitioning strategy to generate a historical blockchain, where 
older sections of the current blockchain are transferred to the 
historical blockchain after a specified time interval (e.g., 5 years). 
This approach allows the current blockchain to contain a useful 
amount of the up-to-date data, while freeing regular peers with 
limited resources or storage from maintaining the entire data-

intensive blockchain. The historical blockchains are maintained 
by a group of super peers with greater resources and computing 
power. In addition, we introduce a meta-block, attached to a 
historical or the current blockchain, which serves as an index file 
for facilitating efficient data retrieval. To support concurrent 
processing of queries, we split a query into subqueries and employ 
a dynamic load balancing algorithm to assign the subqueries to a 
group of super peers. This assignment is based on a shared 
assignment table that records the current workload of each super 
peer. Once the relevant data for the query has been collected, the 
assigning super peer sends a summary report of the retrieved data 
to the requesting regular peer. Finally, we provide a case study of 
healthcare data storage using a consortium blockchain. The 
experimental results show that our HistoChain approach can 
effectively reduce the storage burden of data-intensive blockchain 
applications on regular peers while providing efficient access to 
historical data through a group of super peers.  

In future work, we will implement HistoChain and conduct 
more experiments to illustrate the effectiveness of using historical 
blockchains to efficiently retrieve historical blockchain data in 
real scenarios. We will further investigate effective methods to 
improve the performance of concurrent data retrieval by super 
peers. One such method to be developed is to analyze the 
efficiency of parallel searches by a super peer across multiple 
historical blockchains. This parallelization should allow a super 
peer to reduce and optimize the search time if the historical 
blockchains are stored on different hard drives. Furthermore, a 
hierarchical architecture can be considered to orchestrate multiple 
consortium blockchains to support blockchain data sharing across 
cities and states. Finally, to ensure strong data privacy, it is 
necessary to design access control policies so that users with 
different roles can access blockchain data with the required 
permissions [23]. This is especially necessary in applications with 
multilevel security requirements [24], such as healthcare 
blockchain applications.  
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