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Designing efficient control strategies for opinion dynamics is a challenging task. Understanding
how individuals change their opinions in social networks is essential to countering malicious
actors and fake news and mitigating their effect on the network. In many applications such
as marketing design, product launches, etc., corporations often post curated news or feeds on
social media to steer the users’ opinions in a desired way. We call such scenarios opinion
shaping or opinion control whereby a few selected users, called control users, post opinionated
messages to drive the others’ opinions to reach a given state. In this paper, we are interested in
the control of opinion dynamics in social media using a combination of multi-agent systems
and Q-learning. The social media environment is modeled with flexible multi-agent opinion
dynamics that can capture the interaction between individuals in social media networks using
a two-state updating mechanism. The environment is formulated as a partially observable
multi-agent Markov decision process. We propose using intelligent reinforcement learning (RL)
agents to control and shape the social network’s opinions. We present the social media network
as an environment with different kinds of individuals and connections and the influencing agent
as an RL agent to influence the network.

1 Introduction

Social media has received widespread attention due to its rise as
one of the most essential tools for societal interaction and commu-
nication. Social media platforms have significantly contributed to
the rapid dispersion of news and information and the facilitation of
communication between different groups worldwide. Nevertheless,
in the past few years, there has been a notable surge in the spread of
misinformation, a trend propelled and magnified by the influence of
social media platforms such as Facebook and Twitter. Due to this,
it has become increasingly vital to understand opinion dynamics
in social networks to minimize the detrimental effects of malicious
agents, fake news, and other polarizing factors. This work builds
on the work presented in [1], where we discussed how updating
dynamics on social media and competition for influence affect the
overall opinion and how intelligent agents decrease polarization and
disagreement in social media networks.

Extensive research has been conducted to examine and under-
stand this issue of misinformation in social media networks [2]–[4].
The prevailing trends to combat this issue are automated tools for de-
tecting fake news and misleading posts [5]. However, this presents
multiple challenges, such as defining what is fake and true. For
example, simply defining what is true and false can generate a lot of

discussion and controversy. This is compounded by the availability
of artificial intelligence tools that can mimic a human’s voice or
generate fake video recordings. Additionally, misinformation in
social media can result in polarization, economic impacts, time and
resource wastage, and cybersecurity concerns.

Furthermore, understanding the effect of RL on influencing opin-
ions in a social media environment is vital for several avenues such
as public opinion management [6], policy implementation [7], com-
mercial interests [8], platform design [9], and Ethical Considerations
[10].

This paper proposes an RL-based method for influencing and
controlling opinions in a social media environment. Unlike what is
presented in the literature, where the model or algorithm is static
and does not react to changes in the social network, our method
proposes that each control agent can react and take action using
Deep Q-Networks (DQN) to influence and persuade the other agents
in the network to adopt a similar opinion. This paper expands the
work in [1] with the following contributions:

1. The control agents can change their expressed opinions to
influence the social media network.

2. The environment is a two-state expressed and private opinion
dynamics model with asynchronous and synchronous updat-
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ing dynamics that emulate the interactions of individuals in
social media networks.

3. The agents work to influence the opinions of others in the
network to a set goal.

4. Simulation results that demonstrate our approach for multiple
social media networks.

The rest of the paper is organized as follows. Related works and
preliminaries are provided in Section 2. We introduce the Markov
decision process (MDP), partially hidden MDPS, and RL in Sec-
tion 3. In Section 4, we formulate the problem and present the
paper’s main results. The experimental results are given in Section
5. Concluding remarks are given in Section 6.

2 Related Work
Social media networks have become an integral part of our soci-
ety. This resulted in widespread attention to opinion dynamics and
social network analysis. Opinion dynamics studies how opinions,
beliefs, and attitudes form, evolve, and interact within social net-
works and communities. Opinion dynamics encompasses a variety
of disciplines, such as sociology, political science, complex systems
analysis, psychology, and multi-agent systems. One of the essential
assumptions in opinion dynamics is that opinions in social networks
are mainly influenced by others.

Many opinion dynamics have been proposed to study the evo-
lution of opinions in social networks [11]–[13]. One of the most
popular opinion dynamics models is agent-based models [14]. In
agent-based models, individuals are depicted as agents, and their
opinions on a specific topic are captured as evolving real values
over time. The underlying communication network in agent-based
models is represented by a graph, where a node represents an agent,
and an edge represents communication between two individuals.

One of the earliest agent-based models is the French-DeGroot
model, commonly referred to as the DeGroot model [15]. The
model assumes that the opinion of each individual evolves as a
result of integrating the opinions of their connected neighbors with
agents’ own opinions using weighted averaging (modeled using
a differential or a difference equation). The DeGroot model was
experimentally validated in [16, 17]. An extension of the DeGroot
model is the Friedkin-Johnsen model, which simulates strong diver-
sity due to stubborn agents by introducing a variable that measures
the agent’s susceptibility to social influence [18]. This model has
been experimentally verified for small and medium-sized networks
[19]–[21]. A model that encodes the effects of social pressure on
the agents in the network, termed the expressed and private opinion
(EPO) dynamics model, was introduced in [22]. The EPO model is
based on Asch’s conformity experiments and Prentice and Miller’s
field experiments on pluralistic ignorance [23, 24]. An extension
of the EPO model is the asynchronous and synchronous expressed
and private opinion dynamics model (EPOAS) [25]. This model
introduces different updating dynamics for the agent’s expressed
and private opinions, which emulates the interaction of individuals
in social media networks.

These models tend to reach a consensus if all the agents in the
network agree on one opinion on a specific topic. However, it can

be observed that in most social networks, the presence of stubborn
(who insist on their own opinion) or controlling agents has a sig-
nificant impact on the opinions of the other agents in the network
[26]. This trend is evident in social media marketing, economics,
and political campaigns [27]. Moreover, numerous political and
economic entities utilize data mining techniques and social science
principles to strategically engage specific individuals within social
networks, aiming to enhance profit margins [28].

There have been many attempts to study and simulate opinion
control in social networks. The control of the DeGroot model under
the influence of a leader was investigated in [29]–[31]. In [32], the
authors study the optimal placement of control agents in a social
network to influence other individuals to reach a consensus where
the control agents have a fixed common state. Another control
approach using noise to affect the opinions of individuals in the
network was investigated in [33]. A control strategy based on the
degree of connection each agent has shown that it is possible to
drive the overall opinion toward a desired state even if we control
only a suitable fraction of the nodes was presented in [34].

In [35], the control of public opinion using social bots was in-
vestigated. In this approach, an agent’s opinion is modeled as a
static value, based on the approach described by Sohn and Geidner
[36]. The study demonstrates that, depending on the density and
position within the network, a mere 2% − 4% of bots are sufficient
to influence all the opinions in the network.

3 Markov Decision Process

An MDP is a mathematical framework designed to model decision-
making where sequential actions are involved, and the outcomes of
each action are partially random and partially under the control of
the decision-making agent [37]. An MDP was developed to model
decision-making problems where the outputs are probabilistic and
are affected by the agent’s actions. An MDP is modeled by a tuple
(S , A, Pa,Ra) where:

1. States (S ) encapsulate all potential scenarios the agent could
encounter at any given time step.

2. Actions (A) embody all the options or decisions accessible
to the agent in any given state. Agents select an action to
transition from one state to another.

3. Transition probabilities (Pa) specify the likelihood of tran-
sitioning to a new state. These probabilities represent the
dynamics of the environment and determine how the agent’s
actions influence the next state.

4. Rewards (Ra) quantify the desirability of taking a specific
action in the current state. The agent’s goal is to maximize
the rewards it receives to reach its desired goal efficiently.

The goal of an MDP is to have the agent learn a good policy
for decision-making. A policy π(S ) can be defined as a strategy
that maps states to actions, indicating the action the agent should
choose in each state to maximize the agent’s reward and help the
agent reach their goal.
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3.1 Partially Observable MDP

Partially Observable Markov Decision Processes (POMDPs), Figure
1, provide a robust framework for effectively modeling and resolv-
ing decision-making challenges in contexts marked by uncertainty
and partial observability. A POMDP represents a decision-making
scenario for an agent. In this scenario, it is assumed that the sys-
tem’s behavior is governed by a MDP. However, the agent is unable
to perceive the inherent state of the system directly.

Decision-making in real-world environments often involves in-
herent uncertainty and partial observability, where agents lack com-
plete information about the underlying states and face uncertain out-
comes from their actions. The framework of POMDPs is sufficiently
versatile to represent a wide array of sequential decision-making
scenarios encountered in the real world.

In POMDPs, an agent makes decisions based on a belief state (a
probability distribution over all possible states) rather than the ac-
tual state. The agent’s belief state is updated based on the actions it
takes and the observations it receives. The agent’s goal is to choose
actions over time to maximize its expected cumulative reward.

Figure 1: Partially Observable Markov Decision Processes (POMDPs).

3.2 Reinforcement Learning (RL)

One of the most powerful and widely used machine learning tools in
data science is RL. The ability of RL algorithms to learn about the
environment and generate a suitable policy, which can be improved
through trial and error, has made them a popular choice for tasks
such as game playing, autonomous driving, robotics, and resource
management, among others. One of the most essential RL algo-
rithms is the Q-learning algorithm. This can be attributed to the
algorithm’s versatility, simplicity, and robustness.

Q-learning is a model-free RL algorithm, meaning it does not
require knowledge of the environment’s dynamics to generate an
efficient policy for solving the problem. This characteristic makes
the algorithm particularly suitable for problems where a model
of the environment is challenging to obtain or the environment is
non-deterministic.

The essence of Q-learning is learning the action-value function
(Q-function). The Q-function evaluates the value of taking a specific
action in a given state

Q(s, a)← Q(s, a) + α[r + γ maxaQ(s′, a′) − Q(s, a)], (1)

where s represents the agent’s present state, s′ represents the agent’s
next state, and a is the action taken by the agent in the current time

step. The Q-value of the action a for the current state s is denoted
by Q(s, a), which is the state-action value. The reward the agent
receives at each time step is represented by r, and γ is the discount
factor that reduces the value of future rewards over time.

The value Q(s, a), for the current state s, is updated at every
time step based on a blend of the existing value and the equation
that identifies the optimal action in the current state. Initially, the
Q-value table is randomly populated for each state and potential
action. The Q-learning process continues by updating the Q-value
for each state using (1). The policy is then updated using the highest
Q-values for each state-action pair. After the agent performs an
action a in state s, it transitions to the next state s′. This procedure
is repeated multiple times until the overall Q-values reach a point of
convergence [38]. The algorithm for Q-learning is described below.

Algorithm 1: Q-learning for estimating π ≈ π∗

Algorithm parameters: step size lr ∈ (0, 1] ε, γ;
Initialization: Q(s, a) f or all s ∈ S , a ∈ A
for episode← episodes do

initialize s
while not done do

Choose a from s using policy derived from Q (e.g.,
ε − greedy) ;

Take action a and observe the reward r, and next
state s′;

Q(s, a)← Q(s, a)+α[r+γ maxaQ(s′, a′)−Q(s, a)],
s← s′

end
end

The learning rate lr needs to be fine-tuned over time to solidify
the learned policy. Discount factor γ is a numerical value between
0 and 1 that determines the importance of future rewards compared
to immediate ones. If γ is close to 0, then the agent will prioritize
immediate rewards and largely ignore future rewards. However, if γ
is close to 1, then the agent will consider future rewards almost as
important as immediate ones.

4 Problem formulation
Consider a group of n agents interacting in a social media environ-
ment, where agents form and evolve their opinions at each time step
by interacting and exchanging information with other connected
agents.

An independent agent or a group of agents is arbitrarily selected
to control and influence the network to a desired outcome. The
agents can have the same goal and work together to achieve that
goal or they can have different goals and compete for influence in
the network.

4.1 Modeling the Agents

We model n agents as nodes interacting in a multi-agent opinion
dynamics environment. The agents are interconnected via an under-
lying graph G[W], which maps out the relationships between these
agents. The underlying graph G[W] is a directed graph that encodes
the flow of information from one agent to another. Each individual
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i in the network has two states: one state represents the individ-
ual’s expressed opinion ŷi(t), and the second state is the individual’s
private opinion yi(t). Each agent within the network starts with an
initial private opinion, denoted as yi(0), and an initially expressed
opinion, represented as ŷi(0) (for the remainder of this paper, the
terms ’state’ and ’opinion’ will be used interchangeably). The initial
private and expressed opinions of each agent can either coincide
(yi(0) = ŷi(0)) or differ (yi(0) , ŷi(0)). This mirrors real-world
scenarios where individuals may choose to voice their genuine opin-
ions or, due to external influences, conceal their private views by
expressing differing opinions. At every time step t, each individual
i in the network has two choices encoded by the variable α. The
individual can express his/her opinion (αi = 1) or hide the opinion
(αi = 0). If an individual decides to hide his/her opinion, then
the last expressed opinion made by that individual will appear as
his/her current expressed opinion to his/her neighbors. Note that for
control agents α(t) = 1∀t. At every time step, all individuals in the
network, except control agents, update their private opinions using
the following dynamics

yi(t + 1) = λiwiiyi(t) + λi

∑
j,i

wi jŷ j(k) + (1 − λi)yi(0), (2)

where λi ∈ [0, 1] represents the coefficient of susceptibility of agent
i, wi j ≥ 0 represent the weights assigned by agent i to agent j,
wii ≥ 0 represents the weight assigned by agent i to his/her opinion.

The expressed opinion is updated asynchronously, utilizing the
information in the vector α(t) ∈ [0,N]. This vector encodes the
decisions made by each agent at the time step t. If agent i opts to
express their opinion, then the update of their expressed opinion
adheres to the subsequent dynamics

ŷi(k + 1) =

ϕiyi(t) + (1 − ϕi)ŷavg(t) αi = 1
ŷi(t) αi = 0

, (3)

where ϕ represents the resilience of the agent to social pressure and
ŷavg(t) represents social pressure or the prevailing opinion (public
opinion) throughout the network. The average opinion, as observed
by agent i, is given by the following dynamic

ŷi,avg(t) =
∑
j,i

mi jŷ j(t), (4)

where mi j ≥ 0 satisfy
∑n

j=1 mi j = 1. In many instances, wi j and mi j

are not identical. This occurs as an individual’s viewpoint can be
shaped and influenced by a certain group of individuals, all while
concurrently feeling the urge to align with the expectations of the
overall network.

Note that control agents do not follow the same updating dynam-
ics and do not have a private opinion. The expressed opinions of the
control agents are controlled by the Q-learning dynamics based on
the optimal policy learned by the agent.

4.2 Communication Topology

The communication topology for n individuals (agents) can be
represented as a directed graph G = (V,E[W],W), where V =
{v1, . . . , vn} is the set of nodes (which represent agents or indi-
viduals in the network), and E ⊆ V × V is the set of ordered

edges, E = {e1, . . . , en}. Each edge in the network is denoted as
ei j = (vi, v j) ∈ E. With Ni we denote the neighbor set for the agent i
(set of agents connected to the agent i).

The relative influence matrix of the network is modeled by W.
The influence matrix W encodes how much trust or weight each
agent has in the opinions of his/her connected neighbors. It is as-
sumed that the influence matrix is static and connected. However,
the communication network changes at each time step based on the
updating dynamics of the agents in the network.

Each agent can only observe the expressed opinions of other
connected agents. This means that the Q-table depends on the num-
ber of individuals connected to the control agents rather than the size
of the network. The agent can have an idea of the overall opinion
of the network based on the M weight matrix in (4). However, in
this work, we assume that M = W. The observation space depends
on the connections (neighbors) of the control agents. For example,
if the control agent has three connections, the agent will have an
observation space of three expressed opinions, as shown in Figure
2.

Figure 2: Observation of a control agent.

Some key information about the agent can be summed up in the
following table.

Table 1: Agent information.

Action Space Discrete(5)
Observation Shape (number of neighbors,)
Observation High 1.0
Observation Low 0.0

4.3 The Environment Dynamics

The environment is based on the asynchronous and synchronous
expressed and private opinion dynamics model. Consider a con-
nected network of n agents. Let y(t) = [y1, y2, . . . , yn]T ∈ Rn, and
ŷ(t) = [ŷ1, ŷ2, . . . , ŷn]T ∈ Rn be a vector representing the private,
and expressed opinions (states) of all the agents in the network,
respectively. Next, we define Y(t) = [y(t)T , ŷ(t)T ]T , as the vec-
tor of all opinions (states) among the individuals at time step t.
The vector of initial private opinions (prejudices) is defined as
u = [u1, u2, . . . , un]T ∈ Rn. We define M as a matrix that encodes
the weights for calculating social pressure. This matrix can be simi-
lar to the influence matrix M = W (which is followed in this work)
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or it can be different depending on the source of the social pressure
(prevailing opinion in the network).

We use W = [wi j] as the influence matrix of the network which
is a stochastic matrix. We define W̃ = diag(wii) as the diagonal
matrix containing the diagonal values of W which represents the
self-confidence of each agent in the network, and Ŵ as the exact
matrix as W with 0 in its diagonal (ŵi j = wi j for all j , i). The
influence matrix can be rewritten as W = W̃ + Ŵ.

Additionally, we define λ = [λ1, λ2, . . . , λn] as a vector that
encodes the agent’s susceptibility to social influence, while ϕ =
[ϕ1, ϕ2, . . . , ϕn] is a vector that encodes the agent’s resilience to
social pressure. The matrix Λ = diag(λ) is a susceptibility matrix
that encodes the susceptibility of the agents in its diagonal, and the
matrix Φ = diag(ϕ) is a resilience matrix encoding the resilience of
the agents in its diagonal.

We designate α(t) = [α1(t), α2(t), . . . , αn(t)] as a choice vector
of zeros and ones that encode the actions agents have chosen by the
agents at time t, where a zero value indicates that a particular agent
has chosen not to express their opinion at the time step t, and a value
of one signifies the agent’s choice to share their opinion with their
neighbors. Let E = diag(α(t)) be a zero matrix with the choices of
the agents encoded in its diagonal, and T = In − E be an identity
matrix where the value of the activated agents are set to zero.

To demonstrate the dynamics of the system we define Pα(t) and
C as follows

Pα(t) =

[
P11 P12
P21 P22

]
=

[
ΛW̃ ΛŴ
EΦ T + E(In − Φ)M

]
∈ R2n×2n, (5)

C =
[
(In − Λ)

0nxn

]
∈ R2n×n, (6)

where 0nxn is a square zero matrix, and In is the identity matrix.
The dynamics of the environment are updated using the following
equation [

y(t + 1)
ŷ(t + 1)

]
= Pα(t)

[
y(t)
ŷ(t)

]
+

[
(In − Λ)

0nxn

]
u. (7)

This equation can be rewritten as follows

Y(t + 1) = Pα(t)Y(t) +Cu. (8)

The matrix Pα(t) changes with each time step t based on the changes
that occur in the choice vector α(t). Each control agent in the
environment has the following available actions.

Table 2: Action space

Action Opinion value Meaning
0 0.1 Strong disagreement
1 0.3 Slight disagreement
2 0.5 Neutral
3 0.7 Slight agreement
5 0.9 Strong agreement

The following algorithm is used to update the dynamics of the
system at each time step.

Algorithm 2: Step function in system dynamics
time step = time step +1
Agents Activation = random(size=number of agents)
E = diag(Agents Activation)

for i in range(length(control agents) do
E[control agents[i]] = 1
Agents Current Exp Opinions[control agents[i]] =
action values[actions[i]]

T = In − E
P11 = Λ Wwave

P12 = Λ What

P21 = E Φ
P22 = T + E(In − Φ)M
c = (In − Λ) initial private states)

Ypvt = P11 Agents Current Pvt Opinions + P12
Agents Current Exp Opinions + c

Yexp = P21 Agents Current Pvt Opinions + P22
Agents Current Exp Opinions

Agents Current Pvt Opinions = Ypvt
Agents Current Exp Opinions = Yexp
controlling agent observation = []

for agent in control agents do
a = []
for i in control agent observations[agent] do

a.append(Agents Current Exp Opinions[i])
end

end

controlling agent observation.append(a)
check reward(Agents Current Exp Opinions)
check terminal(Agents Current Exp Opinions)

return controlling agent observation, reward, terminal
end

4.4 Reward Function

Every control agent in the network aims to influence the individuals’
opinions to a specific value (opinion). The opinions of the agents in
the network range from 0, which represents strong disagreement, to
1, which represents strong agreement. Let re fi be the opinion goal
or reference of the control agent i.

We define the disagreement d(i, j) between two individuals i,
j as the squared difference between their opinions at equilibrium:
d(i, j) = wi j(y∗i − y∗j)

2, and the total disagreement is defined as
DG =

∑
(i, j)∈V d(i, j), [39].

The overall goal of the control agents is to influence the network
to a predetermined opinion. To encourage the agents to reach their
goal within the desired number of steps, we define Oi(t) as the vector
containing the expressed opinions of the agents connected to agent
i at time step t. The reward function for each control agent is given
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by

ri(t) = −
∑
j∈Ni

(re fi − Oi j(t))2. (9)

The control agent is given an increasingly negative reward for each
connected agent that does conform to the goal opinion to encourage
it to influence as many individuals as possible.

5 Experimental Results

We tested the effectiveness of the RL agent in influencing and
controlling the opinions of individuals in social media networks.
A graph was randomly generated using the Erdos-Renyi random
graphs model, preferential attachment model, or the stochastic block
model. The weights agents assigned to themselves and their neigh-
bors were generated randomly.

The susceptibility and resilience values were randomly gener-
ated to ensure the agent learned under different conditions. Then
one or more control agents were randomly selected to influence the
rest of the network to one specific opinion. At each time step, the
agent observed the expressed state of their connected neighbors and
took action to influence their opinion. The reward was calculated
at each time step to motivate the agent to complete the task in a
timely manner. Note that the agents start with no knowledge of the
underlying network. In addition, the agents do not have any prior
knowledge about other agents in the network.

The agents started with a very high exploration factor ε that
decayed gradually until the value reached 0.01, which means that
the agents reverted to an almost purely greedy algorithm when
choosing their action. The factor ε is decayed by a factor of 0.0001
every episode. The discount factor for the agents was selected as
0.99, which means that the agents developed long-term planning to
achieve their goal rather than focus on immediate rewards.

The agent was trained for 500, 000 episodes, and the reward was
logged for every 1, 000-th episode. Additionally, for every 1, 000-th
episode, we log the episode’s length to measure how fast the agent
completes the assigned task. Figure 3 shows the evolution of an
agent’s learning process, starting with a randomly defined knowl-
edge base and no experience over 250, 000 iterations. The rewards
(orange line) show the 500 rolling average of the rewards for a more
clear illustration.

Figure 3 shows an agent’s learning in a random network. The
agent starts to receive high rewards after 150, 000 iterations. How-
ever, there are still episodes where the control agents struggle to
efficiently control the network due to the difference in agent person-
ality (susceptibility and resilience) or opinions.

Figure 3: Training reward of a control agent over 250,000 training episodes with
data collected every 1,000 episodes.

Figure 4 shows the reward over 250, 000 training episodes with
the reward logged every 1, 000-th training episode and a 500 rolling
average. The agent starts with a large negative reward when they
are exploring ways to influence the network, then the agent starts
getting consistent rewards close to 0, which is the optimal reward,
after 150, 000 training iterations. The figure shows that the agent is
able to influence the system where the reward of the network reaches
0 meaning that the opinions of the agents in the network converge
to the opinion desired by the control agent. However, increasing the
training time after 250, 000 iterations does not have much effect on
the reward received by the agent.

Figure 4: Training reward of a control agent over 250,000 training episodes (with
500 rolling average).

Figure 5 shows the length of every episode and how long the
agent takes to reach an efficient policy. It can be seen that with
more training, the agent can influence the individual’s opinion in a
much smaller period of time. It can also be observed that for the
first 90 training episodes, the agent cannot influence the network in
less than 30 time steps. However, this improves as the agent learns
more techniques to gather influence and control the network more
efficiently. Any training over 150, 000 episodes did not generate
drastically different results.

Figure 6 shows a random group of 4 connected agents interact-
ing in a social media environment with one control agent (Agent
1). The control agent can observe the expressed opinion of the
other three individuals in the network. However, the agent can only
influence two of these individuals (the size of the nodes indicates
the level of influence each individual has). The network shows that
all other agents have more influence than the control agent. The
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agents in the network randomly expressed their opinions at each
time step.

The evolution of opinions of the agents in Figure 6 is observed
in Figure 7. The control agent aims to have all others in the network
reach an opinion value of 0.9 (strong agreement) on the discussed
topic. The control agent changes their opinion to influence the rest
of the group. At the end of the discussion, the other agents in the
network adopt an opinion similar to the goal of the control agent.
Additionally, we can see that occasionally the control agent changes
their opinion to match those of his/her neighbors in order to increase
their overall reward.

Figure 5: Episode length of a control agent over 250,000 training episodes.

Figure 6: A network of 4 agents with one control agent (red) (size of the agent
indicates their connections).

Figure 7: The evolution of private and expressed opinions of a network of 4 agents
with one control agent (red).

6 Conclusion and Future Work
In this paper, we proposed an approach based on RL to solve the
problem of disagreement between agents in multi-agent systems
as well as social network control. To do so we used the expressed
and private opinion dynamics model with asynchronous and syn-
chronous updating dynamics to create an environment that closely
resembles a social media network. Additionally, we used indepen-
dent RL control agents to influence and control the network to a
desired output. The method was validated using a random social
media environment where agents interact and update their opinions
randomly at every time step.

For future work, we are planning to investigate the interaction of
control agents that are working cooperatively in very large networks.
Additionally, we will explore the performance of controlling agents
on evolving networks, and on networks with stubborn agents.
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