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 The determination of length of survival, or prognosis, is often viewed through statistical 
hazard models or with respect to a future reference time point in a classification approach 
(e.g., survival after 2 or 5 years). In this research, regression was used to determine a 
patient’s prognosis. Also, multiple behavioral representations of clinical data, including 
difference trends and splines, are considered for predictor variables, which is different from 
demographic and tumor characteristics often used. With this approach the amount of 
clinical samples considered from the available patient data in the model in conjunction with 
the behavioral representation was explored. The models with the best prognostic 
performance had data representations that included limited clinical samples and some 
behavioral interpretations.   
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1. Introduction   

This paper is an extension of work originally presented in 2016 
at the IEEE International Conference on Electro Information 
Technology (EIT) [1].  This extends the prior work by focusing on 
the prediction of the length of survival through regression rather 
than with classification techniques. The link between the 
representation of the patient clinical data and the regression 
methods for prognosis will be explored. The results show that the 
data representation with the best prognostic performance may 
include limited clinical samples and also beharioal interpretations 
of the data. 

The American Cancer Society estimates for the year 2016 there 
will be 1,685,210 new cases of cancer diagnosed. With 1,630 
individuals expected to lose their lives each day to cancer [2]. For 
those affected by cancer, the accurate length of survival prognosis 
is an important problem which needs to be addressed in order to 
provide patients and their families information about the 
effectiveness of treatments, end of life treatment, and/or palliative 
care. 

There are many factors which may go into cancer prognosis 
prediction including: the type of cancer (some types of cancer are 
cure-able or go into long-term remission, and others have a low, 
five-year survival rate), severity of the cancer (stages), patient 
specific history and condition (comorbidities, state of health, etc.), 
and treatments.  For any given representation, different methods 
may be used to predict patient prognosis. Many of the techniques 
consider binary survival, providing information on only if a patient 
will live to a certain point in time or not. Alternative prognosis 
methods include classification and regression, providing more 
information on the length of survival.  

For this work, the representation of clinical data with an 
outpatient oncology data set is considered for prognosis. The 
clinical data for the patients, consisting of multi-modal non-
uniform time-limited data, will be represented through samples 
taken at discrete time points and with two behavioral 
representations, difference trends and splines.  The prognosis was 
predicted as length of survival (LOS) using linear and quadratic 
regression, Gaussian Process with constant basis, and Support 
Vector Regression (SVR) using radial bias function and linear 
kernels. The LOS predicted was compared with the actual LOS for 
each patient to evaluate the prediction models (presented in terms 
of absolute and relative error).  
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Related work concerning approaches for oncology 
representation and prognosis is presented in Section 2. The 
methods for representing the clinical data and experimental design 
are then presented in Sections 3 and 4. Finally, the results of the 
regression analysis are presented in Section 5. 

2. Background 

Machine learning has played a role in many different aspects 
of oncology including diagnosis, recurance, prognosis, image 
analysis, malignancy, and staging of tumors [3]. In these methods, 
the data used can include gene expressions, radiographic images, 
tissue biopsy sample data, predictors like sex, age, cancer stage, 
thickness and cancer  stage traits such as positive nodes [4]. Cancer 
tumor staging is a common tool in the data as it considers the size 
of the tumor, the involvement of lymph nodes and if the cancer has 
spread [5]. 

For the clinical data observations, it is possible to treat them as 
as a time series. In this form there are several methods for 
representing or transforming the data available, e.g., Fourier 
analysis (DFT), wavelet analysis (DWT), piecewise aggregate 
approximation (PAA), etc [6]. Temporal abstraction approaches, 
which describe a behavior over a period of time (e.g. weight 
increasing while hemoglobin decreasing), have also been used to 
represent clinical data [7-8]. It is also possible to take the multiple 
variables to address the multiple sampling frequencies and types 
of observations that occur to reduce the values for each observation 
type to a single value for each period [9]. 

For the prediction of survival it is often considered from a 
statistical standpoint with life tables [10], or approaches like 
Kaplan-Meier or the Cox proportional hazard model [11]. These 
have the limitation of not providing information about the 
probability of death, rather only insight based on the population 
survival over time [12]. Other approaches have been extended to 
look at survival chances with respect to a point of time, however 
they are limited to a single point. That is, whether a patient will 
survive up to time X, where the time points generally considered 
are for 0.5, 1, 2, 3, and 5 years [13]. 

Diverse machine learning techniques have been used for 
predicting survival time including support vector machines [14], 
Bayesian Networks [15],  k-nearest neighbor, and random forest 
[16]. In one study , the prediction is survivability of 5 years for 
patients with breast cancer with an accuracy of 89-94% reported 
using neural networks, decision trees, and logistic regression [17]. 
Multi-class classification provides more insight into survival time, 
than a binary classifier, with narrower windows of prognosis. 
Examples of multi-class approaches include using an ensemble 
method with 400 support vector machines of binary classifiers [13] 
or neural networks with four classes [18]. 

With the complexity of clinical data, classification can also be 
done based on training incorporating multiple experts. In the case 
of classification through this approach, temporal abstraction is 
used to simplify the data and different algorithms, including 
majority rule and SVM, are used to create consensus classification 
models  [19]. 

3. Methods 

The data used in this study was provided by a private outpatient 
oncology practice and made available to the researchers by EMOL 
Health of Clawson, MI. 

3.1. Data Collection and LOS Reference Points 

For each patient, routine clinical and laboratory tests (weight, 
WT, albumin, ALB, and hemoglobin, HGB) and treatment 
administration dates (chemotherapy, blood transfusions, and two 
erythropoietins) were collected for two years. The amount and 
duration of data collection varies between patients depending on 
the number of visits and survival time. The determination of age at 
time of death was confirmed with the Social Security Death Index.  

 Table 1 Data Set Characteristics 

 

Outpatient clinical data is problematic due to the non-uniform 
sampling, e.g., time between clinic visits or laboratory tests is not 
uniform. Additionally, the type of clinical information collected 
may vary between visits and between patients, e.g., different blood 
tests may be ordered during each visit or not at all for a given 
patient. The non-uniformity can be observed in Figure 1 as each set 
of observations is for a different patient and presents a unique 
distributions of observations. 

 A prognosis is formed with respect to a reference time point.  
For example, predicting if a patient has a LOS of two years 
requires establishing a reference point from which to count the two 
years.  We establish the three reference points, t, t*

1, and t*
2 as the 

basis of the LOS prediction.  For each patient, the reference time 
point t is set when the first type of observation ceases being 
measured (see Figure 1C). This point was selected to minimize 
extrapolation errors and dealing with missing data. To avoid bias 
(t coincides with an observation), t*

1 and t*
2 are selected at random 

from a range about t, with t*1 ∈ [t-15, t+5 ] selected from the range 
of 15 days further from death to 5 days closer to death and t*

2 ∈[t-
28, t+14].  

The reference points t* are used in forming the data repre-
sentation. The evaluation of the LOS prediction is based on the 
reference points, t*

1 and t*
2 

3.2. Data Representation 

Three representations of the patient clinical observations are 
considered: clinical data sample values, difference trends, and 
splines. A fourth type of data representation that of numeric 
occurances is  used  for  the  counts  of  medical   treatments  which

Properties Data Set 

Patients,  num.  1311   

Weight – lbs. (WT) obs.,  num. 10,653   

Albumin – g/dL (ALB) obs., num.  5,547   

Hemoglobin – g/dL (HGB) obs., num.  17,481 

Treatments, num.    3,411   

Age at death (yrs), mean  71.61   

Age (yrs),  min/mean/max     22 / 71 / 98    

Obs./patient, min/mean/max  1 / 28 / 178 

LOS from final obs. (days),  mean   139 
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C. Two difference trends and samples. B. One difference trend and treatments. 

Figure 1 Sample patient data is illustrated with the clinical observations of ALB, HGB and weight (top, middle, and bottom axes).  The vertical lines 
show administered treatments: solid (cyan) - erythropoietin, dashed (black) - blood transfusion, and dot-dash (red) - chemotherapy [1]. 

the patient experiences. In the data set, these counts include blood 
transfusion, two different erythropoietins, and chemotherapy. The 
numeric occurrences (number of treatments) are based in native 
units prior to standardization. 

A patient's clinical values are estimated at uniform intervals for 
ALB, HGB, and WT at t* then back at an interval of 7 or 14 days. 
An example is shown in Figure 1C, where vertical lines represent 
where the clinical data samples are to be estimated at time t*, t* - 
7, and t* - 14 (a sample spacing of 7 days). Cubic splines were 
utilized to obtain values at the sample times between clinical 
observations for input to predict LOS by evaluated the splines at 
the times that the samples were desired.  These values are 
standardized as inputs to the model.  

A difference trend (Diffs) describes the observed behavior as 
increasing, decreasing or stable via a difference between values for 
ALB, HGB, and WT. Two versions are considered. First, one 
difference values (1 Diffs) are calculated between values at t*and 
90 days earlier, t*-90 (note, the values may be predicted, as a 
sample may not have been collected at this exact time interval); see 
Figure 1B. Alternatively, two trends (2 Diffs) are found, from t* 
back 45 days, then from this point back an additional 45 days; also, 
shown in Figure 1C). 

Finally, splines are used to describe the behavior of the 
observations.  A two-piece second order spline is used to fit the 
entire observation period for ALB, HGB, and WT observations for 
a patient (unlike the difference trend which has a recent specified 
period of consideration); see Figure 1A. The splines' slope 
coefficient is discretized and used as input to predict LOS. 

In summary, the predictors for prognosis include the number 
of treatments and the following options to consider in the 
evaluation: 0-5 patient clinical sample values; 1, 2, or no difference 
trends; and inclusion or not of spline coefficients.   

3.3. Length of Survival (LOS) Prediction via Regression 

The problem of regression is a supervised learning technique 
that aims to develop a model to map an input 𝒙𝒙 to an output 𝑓𝑓(𝒙𝒙). 
The assigned output is a prediction of a continuous quantity or 
numerical value.  

3.3.1 Linear and Quadratic Regression 

In linear regression, the objective of determining the numerical 
result of 𝑓𝑓(𝒙𝒙) is found through a linear model,  

𝑓𝑓(𝒙𝒙) = 𝒘𝒘𝒙𝒙 + 𝑤𝑤0,            ( 1 ) 

where  𝒙𝒙 is the input and 𝒘𝒘 is the weight that fits the model, that 
for a linear model is the slope. The parameter 𝑤𝑤0 is the offset or 
bias parameter to adjust the fit. The parameters in this case are 
chosen based on the minimization of the error when fitting with 
the training set. 

Similar to the linear regression, quadratic regression 
determines a numerical outcome but from a higher order model, 

𝑓𝑓(𝒙𝒙) = 𝒘𝒘2𝒙𝒙2 + 𝒘𝒘1𝒙𝒙 + 𝑤𝑤0.    ( 2 ) 

3.3.2  Gaussian Process Regression 

With a Gaussian Process (GP), the inputs are treated as a set of 
random variables and incorporated with a covariance function to 
determine a probabilistic outcome of the regression value [20]. The 
model is defined by the mean and the covariance functions. Given 
the K input pairs (𝒙𝒙, 𝑦𝑦), the GP regression model summarizes, 
assuming a zero mean, to [21], 

𝑃𝑃�𝑦𝑦|𝑦𝑦1, … , 𝑦𝑦𝐾𝐾 ,𝐶𝐶�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�, {𝑥𝑥1, … , 𝑥𝑥𝑘𝑘}� = 1
√2𝜋𝜋𝜎𝜎

𝑒𝑒−�
(𝑦𝑦−𝑦𝑦∗)2

2𝜎𝜎2
�,    ( 3 ) 

where, 

𝑦𝑦∗ = 𝑘𝑘(𝒙𝒙)𝑇𝑇𝐶𝐶𝐾𝐾−1(𝑦𝑦1, … ,𝑦𝑦𝐾𝐾) ,  ( 4 ) 

𝑘𝑘(𝒙𝒙) = �𝐶𝐶(𝑥𝑥1,𝒙𝒙),𝐶𝐶(𝑥𝑥2,𝒙𝒙), … ,𝐶𝐶(𝑥𝑥𝐾𝐾 ,𝒙𝒙)� , 𝑎𝑎𝑎𝑎𝑎𝑎    ( 5 ) 

𝜎𝜎 = 𝐶𝐶(𝒙𝒙,𝒙𝒙) − 𝑘𝑘(𝒙𝒙)𝑇𝑇𝐶𝐶𝐾𝐾−1𝑘𝑘(𝒙𝒙),   ( 6 ) 

such that 𝐶𝐶𝐾𝐾 is the covariance matrix evaluated considering the 𝐾𝐾 
training set inputs and the current input 𝒙𝒙. The covariance matrix 
has the ability to incorporate a kernel or function to modify the 
functionality, often smoothing or bring periodicity to the behavior 
[21]. The correct covariance function can increase when it is in 
regions which are further away from previous regions of known 
values, and thus shrinks when near [22]. The constant basis will be 
used for the function in this analysis.   

3.3.3  Support Vector Regression 

Support vector regression (SVR) is a kernel based approach to 
determine the regression output. The regression is a set of linear 
functions, 

𝑓𝑓(𝒙𝒙,𝜶𝜶) = (𝒘𝒘 ∙ 𝒙𝒙) + 𝒃𝒃,   ( 7 ) 

  
 

A. Two-piece splines. 
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that is aimed to have the error minimized through the loss function 
ε, and where α is the Lagrange multiplier. The support vectors are 
represented in the term 𝒙𝒙 and during the fit process variables w and 
b are determined, such that w is the weight and b is the offset or 
bias. To allow for the spread in the values, a slack variable is used, 
ξi. The objective is then to minimize [23],  

Φ(𝒘𝒘, 𝜉𝜉∗, 𝜉𝜉) = 1
2

(𝒘𝒘 ∙ 𝒘𝒘) + 𝐶𝐶�∑ 𝜉𝜉𝑖𝑖∗ + ∑ 𝜉𝜉𝑖𝑖𝑙𝑙
𝑖𝑖=1

𝑙𝑙
𝑖𝑖=1 �,           ( 8 )  

when there are l samples.  To support this boundary, the slack 
variable, 𝜉𝜉𝑖𝑖 , must be greater then or equal to zero [23].  In the 
evaluation the constraint is used to relate the loss and slack 
variables to the function, 

𝑦𝑦𝑖𝑖 − (𝒘𝒘 ∙ 𝑥𝑥𝑖𝑖) − 𝒃𝒃 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑙𝑙.           ( 9 ) 

The SVR approach can be extended to allow for the application 
of kernel which satisfy Mercer’s Condition to be used. In our work, 
linear and radial basis function kernels will be used.  

4. Experimental Design 

There are multiple ways discussed to represent the patient 
observations: clinical data samples, difference trends, and splines. 
For example, the number of clinical data samples considered varies 
from zero to five. The number of difference trends included in the 
evaluation is zero to two. The spline information is either included 
or not.  All input variables which are not discrete are standardized.  

 For the evaluation, multiple regression approaches will be used 
including linear and quadratic regression, GP, and SVR with radial 
bias function and linear kernels.  

 For SVR, the linear kernel will be used with the cost 
parameters from 𝐶𝐶 = {0.1, 1, 10, 50, 100, 500} , in addition the 
radial basis function (RBF) kernel will consider 𝜎𝜎 =
{0.1, 1, 2, 5, 10}. Each regression model is learned using Matlab 
2015b. 

In all evaluations, a 10-fold cross evaluation approach was 
used to train and test. The SVR parameters were selected through 
a nested cross validation approach. The performance was 
compared based on the absolute and relative error in the LOS 
determined for each model evaluated. Statistical p-values from a t-
test were used to verify statistical differences or lack thereof in 
comparing different representation techniques within evaluation 
methods. 

5. Results 

 The first part of the evaluation was conducted to examine the 
impact of different number of clinical sample values in the 
representation (0-5). The data representation also included both 
behavioral interpretations; namely 1 Diffs and splines. Table 2 
shows the best performance was not with more samples but zero 
or one based on the lowest median relative error, for all but SVR 
with a linear kernel (although the difference in median relative 
error between 1, 2, 3, or 5 samples is small). The analysis of the p-
values from the t-test showed that the increase in samples had no 
statistical benefit over less samples for the models. An exception 
is in the quadratic regression which had a p-value of 0.05 in 
comparing performance of 1 versus 3 samples.  The same analysis 
was done using t*

1 as the reference point, which lead to similar 
results and conclusions.  Because the performance of the models 
with more samples are not statistically better, then the next part of 
the evaluation will include only one clinical sample value.     

Table 2 Results on t*2  for data representations with 1 Diffs, splines, and 
different number of clinical sample values with 14d sample spacing.  

Samples Median Relative Error 
 SVR- 

Lin 
SVR-
RBF 

Linear Quad GP 

0 0.658 0.778 0.838 1.011 0.860 
1 0.634 0.834 0.800 1.182 0.879 
2 0.631 0.828 0.830 1.257 0.928 
3 0.631 0.880 0.811 1.425 0.933 
4 0.655 0.817 0.834 1.686 0.900 
5 0.630 0.794 0.850 2.303 0.923 

Table 3 presents results examining the performance benefit of 
the inclusion of the behavioral representations namely difference 
trends (Diffs) and splines. With two exceptions, SVR with the RBF 
kernel and the quadratic regression, the best performing models 
contained one behavioral representation. In the various modes of 
behavioral representation considered, the models did not have any 
statistical benefit, with p-values greater than 0.1 in most cases. One 
exception is in quadratic, the model with no splines and no Diffs 
showed a statistically significant improvement to the model with 2 
Diffs and splines with a p-value of 0.014. Similar results were 
observeved for t*

1. 

The different regression methodologies show an ability to work 
with the diversity in the clinical data inputs of the samples to 
various degrees. The best performing methodology consistently is 
the SVR with the linear kernel followed by the linear regression 
approach. The RBF kernel version of the SVR did well with the 
data, just not as well as the linear kernel method, and the GP was 
not as successful with the fit but did not have the high degree of 
variance in the error that was seen with the quadratic regression. 
Table 3 Results on  t*2  with one clinical sample and different data 
representations involving the number of Diffs and inclusion of splines. 

# Diffs Splines Median Relative Error 
  SVR-

Lin 
SVR-
RBF 

Linear Quad GP 

0  0 0.636 0.819 0.881 0.958 0.874 
0 1 0.649 0.844 0.800 1.064 0.870 
1 0 0.619 0.834 0.885 0.98 0.874 
1 1 0.634 0.834 0.803 1.182 0.879 
2  0 0.720 0.868 0.866 0.979 0.878 
2  1 0.665 0.877 0.8177 1.33 0.893 

Table 4 Best performing regression models. Above the triple line is t*1 
and below is t*2.  

Evaluation 
Method 

Data Representation 
Summary 

Median 
Absolute Error 
(Days) 

Median 
Relative 
Error 

SVR- 
Linear 

1 Sample, 7 day, 2 Diffs, 
Splines 

32.48 0.625 

SVR- RBF 0 Samples, 2 Diffs, Splines 31.48 0.640 

Linear 
Regression 

3 Samples, 7 day, 2 Diffs, 
Splines 

51.19 0.765 

Quad 
Regression 

1 Sample 14 day, No Diffs, 
No Splines 

53.05 0.800 

Gaussian 
Proc. 

0 Samples, 2 Diffs, Splines 52.81 0.822 
    

    

SVR- 
Linear 

1 Sample, 1 Diffs, No 
Splines 

31.35 0.619 

SVR- RBF 0 Samples, 1 Diffs, Splines 41.60 0.752 
Linear 
Regression  

1 Sample, 14 day, No 
Diffs, Splines 

50.27  0.800 

Quad 
Regression 

0 Samples, No Diffs, 
Splines 

56.05 0.889 

Gaussian 
Proc. 

1 Sample, 7 Day, No Diffs, 
Splines 

53.37 0.852 
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The best performing models for each regression methodology 
is seen in Table 4. These models overall have the best performance 
with one behavioral representation included with either zero or one 
sample included. There are a couple cases that the performance 
was best with multiple behavioral representation included (both 
Diffs and Splines), and one case with more than one sample being 
beneficial based on the lower median relative errors.  

In Table 4, the median absolute error was also reported. 
However, it may be a deceiving measure since for each patient the 
same amount of absolute error may hold more meaning to some 
cases then other (e.g., an error of 30 days for a patient surviving 40 
days versus 180 days).  Therefore, to help controlf for each 
patient’s LOS, the relative error has been reported and used to 
compare representations and methods. Overall, the best 
performance in the absolute error was also seen with the SVR 
methods using this representation approach. 

6. Conclusion 

The inclusion of more clinical sample values does not provide 
a statistically significant improvement in the prognostic 
performance, measured as a reduction in relative error, using 
regression methodologies. What does help improve the ability to 
determine a prognosis is the inclusion of behavioral repre-
sentations and the selection of appropriate regression methods, like 
the SVR method used here. While regression and classification are 
not directly comparable, the original results of benefits from the 
behavioral representations have held true with prior work. There 
are several future directions for this work with respect to the data 
representation. For example, rather than use sampling with 
interpolation, an alternative would be to consider dimensionality 
reduction techniques to reduce the need for samples and behavioral 
representations. 
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