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 In this work, our contribution will intervene to reduce the impact of noises on the ECG 
signals. Various ECG denoising approaches were tested to see how efficient they were in 
removing dominant noises that add to pure ECG signals. Due to different causes such as 
interference, muscular noise, body movement related to breathing, and so on, the original 
signal acquired by the electrodes produces noises. In this article, the electrode signals are 
monitored using an Internet of Things system that combines an Arduino board and an 
AD8232 module to generate a one-dimensional signal. These ECG signals are displayed 
on a computer using the Matlab interface. Following that, an efficient deep learning model 
was developed to facilitate cardiologists in their diagnosis of ECG signals. These 
experimental results obtained demonstrate the effectiveness of our proposed model 
compared to other existing methods in the literature. Finally, the filtered and classified 
ECG signals are given to the doctor for correct treatment of the patient's condition. 
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1. Introduction  

An ECG is a signal that shows how the heart's electrical system 
is working. The relaxation (repolarization) and contraction 
(depolarization) of the heart's ventricular and atrial muscles 
produce an ECG signal [1]. A P wave (due to atrial depolarization), 
a QRS complex wave (due to atrial repolarization and ventricular 
depolarization), and a T wave (due to ventricular depolarization) 
make up the ECG signal. Transducers (electrodes) are placed in 
certain locations on the human body to mark the ECG signal. 
Noises (artifacts) are undesired signals that mix with the ECG 
signal and may prevent doctors from making a correct diagnosis. 
As a result, proper signal processing procedures must be used to 
eliminate them from ECG signals [2]. Powerline interference, 
baseline wander, EMG noise, and electrode motion artifacts are the 

four main forms of artifacts seen in ECG signals. They are 
discussed briefly below.  

The electrical activity of the heart is represented by an 
electrocardiogram signal. ECG is an essential component for 
monitoring cardiovascular disease patients [1]. The theoretical and 
practical bases for recording cardiac electrical activity were laid 
out by Einthoven in 1901 and, although the postulates proposed 
are highly debatable, are still used in electrocardiography [2]. In 
the following paragraphs, we briefly describe the inactivity of the 
heart, the modes of recording this electrical activity, and the main 
frequency characteristics presented by the ECG. 

The electrocardiogram (ECG) facilitates the diagnosis of many 
heart (or extra cardiac) diseases in association with clinical, 
laboratory or echocardiographic data. The analysis of an ECG 
must be methodical and rigorous. The criteria for a normal ECG 
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and the variants of normal should be well known. Abnormalities 
in rhythm, conduction, chronic or acute pathologies that can also 
be detected [3]. 

You must first inquire about the clinical situation / symptoms 
motivating the performance of the ECG, age, sex and sometimes 
ethnicity, examination conditions (half-seated, lying down, etc.), 
the morphology of the rib cage, pathologies or taking 
medication(s) with possible repercussions on the heart and the 
existence of a pacemaker. All of this information is useful but can 
sometimes bias the interpretation (” expectation bias”). 

One of the main steps in the data acquisition operation is 
filtering. The latter is a relative operation, that is to say to apply it, 
we must determine what is filtered (determine useful signals and 
parasitic or disturbing signals). For example, if our system is radar 
tracking an airplane, the useful signal will be the position of this 
airplane and any other signal will be considered as an interruption; 
in our case, the useful signal is the electrocardiogram signal, and 
the parasitic signals will be all other signals circulating in the 
human body (EMG, EEG, and others.). Therefore, we can say that 
the main function of a filter is to minimize the effect of 
disturbances and provide a smoother useful signal. 

Demand for accurate and portable ECG monitoring has 
increased. Only a few hospitals in semi-developed countries own 
instruments that measure electrocardiographic (ECG) or 
cardiovascular activity. Despite the compact size of these portable 
devices, precision filtering, high-performance processing power, 
and integrated high-resolution graphics control distinct from the 
main microcontroller core are still required [4]. The necessity for 
physical capacity has become important as medical observation of 
patients becomes more remote. The Microchip Connected Body 
and Body ECG Demonstration Board may be used to create 
advanced fitness monitoring devices, as well as remote patient 
monitoring and diagnostic systems. 

The essential goal of this article is to collect or get data on the 
electrical activity of the patient's heart and, following a well-
studied optimal filtering, to use telecommunication equipment to 
send this ECG signal to the doctor. We are talking about an act of 
telemedicine called tele-surveillance or remote monitoring. In the 
first section of this work, we describe a generality on ECG signals 
as well as the difficulties of monitoring these signals. The second 
section of this work focuses on our contribution to monitoring 
ECG signals via IoT system as well as the interpretation of real 
measurement results performed on three patients. In the last section 
of the work, we describe the different types of noises that can 
generate ECG signals as well as the different digital techniques to 
remove them before sending them to the doctor for good medical 
treatment. 

The rest of this paper is organized as follows: related works are 
investigated in section 2. Material and methods are presented in 
detail in section 3. In Section 4, we described implementation and 
testbed, followed by the experimental results in sections 5. Finally, 
the paper concludes. 

2. Related Work 

The value chain research and analysis of the ECG monitoring 
system helps to understand the useful contribution of each 
operation in the device, the best practices that each process can 

adopt, and the overall purpose of the system to assure improved 
disease diagnosis. The information collection, feature extraction, 
pretreatment, analysis, processing, and visualization operations are 
all part of the ECG surveillance importance chain. The majority of 
published studies support the above-mentioned primary ECG 
monitoring approach. Some studies have defined additional 
different or overlapping methods such as information cleansing, 
encryption, and compression, depending on the type of control 
application, however they may be included as part of the approach. 

Various signal treatment approaches for removing artifacts 
from ECG data are presented in this section. The classification of 
ECG signal denoising techniques in the literature is shown in 
Figure 1. This part also includes the results of the methodologies 
discussed. 

 
Figure 1: Techniques of ECG signal denoising techniques. 

In [5], an adaptive iterative algorithm that breaks the signal 
down into a series of oscillation segments, called an Intrinsic Mode 
Function (IMF) was studied. This is an EMD (Empirical Mode 
Decomposition). With this iterative decomposition of the signal, 
EMD will be able to divide the whole signal into ordered elements 
whose frequency varies from the highest to the lowest of each IMF 
level. 

In [6], the authors claim that the local time characteristics of 
the signal are the bases for the decomposition of the EMD process, 
so it is suitable for nonlinear and nonstationary processes. 

In [7], an EMD based on a completely information-driven 
instrument was developed, which does not require an outset known 
basis and differs from data analysis techniques such as the Fourier 
transform. 

In [8], the author discuss denoising methods based on auto-
encoders. This type of ECG denoising, the deep learning-based 
model, is built on the basis of the function of the denoising auto-
encoder (DAE). This is the first step in unsupervised learning, 
mapping the input to the intermediate representation. To 
regenerate an input signal as accurately as possible, the automatic 
learning model that can be used is that of the auto-encoder. It is a 
combination between two non-linear sub-parts, namely the 
encoder and the decoder. 
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In [9], a novel set of approaches for removing noise from ECG 
signals is discussed. The signal is extended as a function of 
frequency and time using the wavelet transforms (WT). WT can 
provide good temporal and frequency resolution in HF and LF, 
respectively. As a result, using WT to analyze ECG data is quite 
effective. The signal can be decom-posed into a collection of 
fundamental functions using this method, including ctraction, 
translation of the mother function x (mother wavelet), and 
expansion. The usage of Dyadic WT (DWT) for evaluating ECG 
data is particularly favorable due to its calculation speed and multi-
resolution properties [10]. 

A sparse decomposition was used in [11] to reduce noise in the 
ECG signal. The signal is divided down into components, with 
each component being separated into scattered residues and parts. 
As a result, these empty regions are employed to estimate proper 
signals because they hold the useful information in the signals. The 
shares are deconstructed using a nonlinear optimization approach 
to find the sparsest illustration. 

The authors of [12] describe a more advanced version of the 
standard Kalman (KF) filter. To decouple ECG signals, many 
model-based approaches have been developed. Model-based 
techniques are founded on the idea of estimating an essential 
model's hid-den states. The latter is noticed using a series of 
measurements, one of which is the Kal-man filter (KF). Although 
this simple filter uses a linear model of system dynamics and 
surveillance equations, most systems are not linear. EKF, EKS 
(Extended Kalman Smoother), and UKF are three different 
editions of the original KF (Unscented Kalman Filter). 

The researchers combined several denoising techniques to 
diagnose ECG signals in order to improve the performance of 
essential dancing procedures, i.e. they attempted to combine 
procedures from various fields to denoise the ECG signals in order 
to achieve top results in the standard. We will explore successful 
hybrid ways to denoising the ECG signal in this section of the 
study. 

The authors of [13] attempted to combine the EMD process 
with the concept of an adaptive transition thought filter (ASMF). 
In the same method, the advantages of both strategies are 
combined to reduce ECG signal noise. Classical EMD rejects 
attempts to re-duce HF sounds using a window-based approach or 
initial IMFs, but for HF noise reduction, an ASMF operation is 
used to track a wavelet-based soft thresholding strategy. 

In [14] authors proposes and investigates a new ECG denoising 
approach based on a combination of vibrational mode 
decomposition (VMD), NLM (Non-local Means) assessment, and 
discrete WT filtering method (DWT). 

FFT was used in combination with an adaptive R peak 
identification method to de-noise and detect ECG signals in [15]. 

In [16], the EMD algorithm was combined with Savitzky–
Golay (SG) filtering and Riegmann-Liouvelle (RL) fractional 
integral filtering to create a novel ECG denoising approaches. 

ECG denoising was done with a wavelet neural network in 
[17], which approximated the signal with the maximum precision 
achievable. The backpropagation neural network was created with 
two hidden layers and ten neurons using conjugate gradient 

optimization. Parent wavelets from libraries such as Daubachies, 
Symlet, and others are used as hidden layer triggering functions for 
ECG signal estimation. An investigation of DWT-NN for 
denoising ECG data was provided in [18]. The authors of this 
research present a technique with high efficiency for real-time 
hardware and the best accuracy (96%) for ECG denoising only. 

The authors of [19] propose a hybrid technique in which EMD 
enhanced output is delivered to a DWT-based denoiser in addition 
to EMD enhanced output. The most recent versions combine an 
adaptive flexible threshold with a generic threshold that is changed 
based on signal strength. 

For noise suppression, the NLM and EMD models are mixed 
in [20]. A four-step technique has been presented, including 
landmark detection (R peak detection), differential standard 
deviation computation, NLM framework, and EMD framework. 
Table 1 summarizes the many works provided. 

Table 1: Comparative analysis with main recent research studies. 

Ref ECG Dataset  Efficiency for Real-

Time Hardware 

Performance 

[5] MIT-BIH Arrhythmia 

Database 

 Medium 93%-96% Sensitivity and 

Positive Predictivity 

[6] MIT-BIH Arrhythmia 

Database 

 High 94.1% Accuracy 

[7] MIT-BIH Arrhythmia 

Database 

 High 94.7% Accuracy 

[8] MIT-BIH Arrhythmia 

Database 

 High N/A 

Time complexity most efficiency 

[9] MIT-BIH Arrhythmia 

Database 

 High 96.1% Accuracy 

[10] MIT-BIH Arrhythmia 

Database 

 High 92%-94% Sensitivity and 

Positive Predictivity 

[11] MIT-BIH Normal Sinus 

Rhythm Database 

 High 94%-96% Sensitivity and 

Positive Predictivity 

[12] MIT-BIH Normal Sinus 

Rhythm Database 

 High 95.3% Accuracy 

 

[13] MIT-BIH Normal Sinus 

Rhythm Database 

 Medium N/A 

Time complexity most efficiency  

[14] MIT-BIH Normal Sinus 

Rhythm Database 

 Medium N/A 

Time complexity most efficiency  

[15] MIT-BIH Normal Sinus 

Rhythm Database 

 Medium 94.3% Accuracy 

[16] MIT-BIH Noise Stress Test 

Database 

 

 

High 96.8% Accuracy for ECG 

Denoising only 

[17] MIT-BIH Noise Stress Test 

Database 

 High 95.6% Accuracy for ECG 

Denoising only 

[18] MIT-BIH Noise Stress Test 

Database 

 

 

High 96% Accuracy for ECG 

Denoising only 

[19] MIT-BIH Noise Stress Test 

Database 

 

 

High N/A 

Time complexity most efficiency 

[20] MIT-BIH Noise Stress Test 

Database 

 Medium 97.9% Accuracy for ECG 

Denoising only 
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Generation and monitoring of ECG signals will be studied in 
sections III and IV respectively. 

3. ECG Signal Generation 

The ECG can be analyzed by examining the waveform 
component. These global components indicate the body of the 
active electrical board. The first rising line of the ECG path is the 
P wave. It shows atrial contraction. The activation wave allows the 
repolarization and depolarization of cardiac cells which can be 
received by electrodes located in certain places [21]. These 
methods result in the global waveform called normal ECG, as 
shown in figure 2. 

 
Figure 2: ECG Signal. 

You must read the entire ECG trace like a book, from top to 
bottom then from left to start with the frontal leads then the 
precordial leads and end right, that is to say with the long trace of 
one or more leads (generally 10 seconds provided at the bottom of 
the page by the manufacturers). Each deflection described by 
Einthoven must be analyzed. 

The following are the waveforms that make up the ECG: a P 
wave is a deviation response to the depolarization of the right and 
left atria, whereas a T wave, which is usually less ascending, 
represents the QRS complex, which starts with Q and ventricular 
repolarization, small downward deviation, and then more upward 
deviation, a peak(R), and then a falling S wave. This QRS complex 
show off ventricular and depolarization contraction. The QRS 
complex is the same to a series of decreases because of the 
depolarization of the ventricles. Normal values for declination 
times are Q-wave ≤ 0, 04 s, P-wave ≤ 0, 11 s, QRS complex at 0,1 
s, usually 0. 06 and 0, 08 s and the length of the QT wave varies 
depending on the heart rate. It gets longer as the rate decreases and 
down as it increases. 

4. ECG Signal Monitoring 

Over the past few decades, heart disease has become a big 
problem as many people die from health problems. Thus, heart 
disease cannot be relieved. By initially diagnosing or monitoring 
an ECG, this disease can be prevented. In this study, we are 
interested in a complete system for monitoring patients at home in 
real time. We'll need a sensor to create this system, which will be 
affixed to the patient's body. This sensor is part of a WSN network 
that can be found in a hospital or a house. All patient information 
is recorded and transmitted to the hospital via a WSN network. To 
take all necessary corrective measures in an emergency, the 
hospital transmits the data to the doctor. In the event of a sudden, 
unassisted relapse with patients, a WSN email address was used to 
determine the patient’s whereabouts. The Wireless Sensor 

Network (WSN) is used to monitor the environment or physical 
phenomena, such as noise, pressure, motion, or temperature, and 
to transmit data to the destination.  

Nowadays, with the explosive growth of IoT technology, more 
and more practical applications can be found in many fields, 
including security, smart metering, agriculture, smart cities, and 
more home intelligence. There are other applications, in particular 
military, home automation, industrial, sanitary, and above all 
medical and sanitary. This article proposes and explores home 
health care [22]. The Arduino can be used to perform a portable 
ECG with the heart condition reading function. The main 
component of this system is the AD8232 sensor which can read the 
heart rate and process the voltage of the electrodes connected to 
the body. By combining the Arduino and HC 05 FC-114 
microprocessor like Bluetooth or Wifi, ZigBee, GSM / GPRS and 
even XBee, the ECG screen is displayed in real time on a 
smartphone. We used an ECG simulator as an artificial corrective 
agent which is used as a tool to justify the performance of a 
portable ECG based on the results obtained from the test. The EGC 
can be sent via the simulator to the smartphone or to the Matlab 
interface via a wireless communication module (ZigBee, 
Bluetooth, Wifi, GSM / GPRS or XBee) [23]. The precise result 
depicts the patient's current state in real time. The ECG results are 
presented in this paper using the Matlab interface [24]. 

Currently, with the development of electronic media, 
especially with the appearance of the Arduino module and thanks 
to the advantages it presents, the realization of any project has 
become an easy task (figure 3). In this work, we will use the 
Arduino module, XBee module and other ways to monitor an ECG 
signal and its remote emission [25]. 

 
Figure 3: Block diagram of an ECG. 

 
Figure 4: Block diagram of our Remote ECG signal monitoring application. 

The first step of our project is to acquire the ECG signal. The 
electrodes implanted on the patient's body to explore and transfer 
the signal to an E-Health 2.0 acquisition card ensure this procedure 
(figure 4). The latter guarantees the format and processing of the 
electrode signal. The e-Health acquisition board is then attached to 
an Arduino board, which converts the ECG signal to analog-to-
digital (ADC) format [26]. As a result, using an Xbee transmission 
module, the resulting digital signal can be sent remotely to another 
station [27]. At the reception point, another XBee reception 
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module on an FTDI card will allow reception of the transmitted 
signal [28]. This XBee reception module is connected to a 
microcomputer to view and process the received signal. 

An ECG is a paper or digital recording of the heart’s electrical 
signals. It is used to determine heart rate and other information 
about heart disease, such as heart attacks, pacemaker function, and 
heart failure. The synthesis (or conclusion) is intended to answer 
the question posed by the clinical situation. For example, we can 
conclude that: 

• Normal or variant ECG: atrial repolarization, early 
repolarization, wandering pacemaker, etc. 

• Nonspecific QRS or repolarization abnormality): 
microvoltage, intraventricular block, fragmented QRS 
complexes, ST depression, Chatterjee effect, secondary 
repolarization disorder ... 

• Specific anomaly: sinus dysfunction, sinus bradycardia, sinus 
tachycardia, atrial fibrillation . . .; atrial or ventricular 
hypertrophy, preexcitation, sequelae of necrosis, amyloidosis. 
. .; bundle branch block, bifascicular block, AV block. . .; 
Brugada repolarization, long QT interval ... 

• ECG in favor of an acute pathology: infarction, coronary 
ischemia, acute pericarditis, pericardial effusion, pulmonary 
embolism, hyperkalaemia, hypothermia, intoxication. 

In the first phase of this work, we performed a generation of 
ECG signals with their spectral concentration in MATLAB. A 
study of ECG signals is performed for three patients whose 
characteristics are listed in Table 2. 

Table 2: Patient Diagnosis. 

 
 

 

 

Figure 5 shows a complete portable ECG on the patient's body 
during a monitoring test as well as data collection and transfer via 
a Bluetooth module. 

 
Figure 5: ECG monitoring test and data collection with Bluetooth module. 

4.1. Test for acquiring data 

The Bluetooth-enabled wearable ECG was then tested on a real 
human body with heart problems. The results are provided, 
followed by an explanation based on medical logic and a 
conclusion. These signals have a 10 second period and a 1000 Hz 
sample frequency. Each patient conducted 15 tests, each of which 
is an ECG signal, with the results shown in the figures below. The 

results of a healthy heart are explained by Figure 6. The two key 
values obtained from the data were the form of the PQRST wave 
and the heart's BPM. An ECG wave was recorded and visualized 
using a Matlab interface in this example. The P wave, the QRS 
complex, and the T wave are all clearly split into three components 
in this ECG wave. A P-type wave is caused by the register of the 
SA node, which was a heart stimulating node. The QRS complex 
is formed when the ventricular muscle relaxes and contracts at the 
same time. A recording is made as the ventricular muscles 
repolarize to prepare for the next heartbeat; this is the T wave. 

 
(a) 

 
(b) 

 
(c) 

Figure 6: ECG signals for three patients 

4.2. Detection of the number of beats 

In an ECG signal, the R-wave represents the patient’s heart- 
beat [29]. We determine the main "R" peaks for each patient's ECG 
signal, as well as the typical period of the signal amplitude (figure 
7).  

Patient Patient1  Patient2  Patient3 

Sex Female Male Male 

Age  35  48  81 

Diabetic No  No  Yes 

Smoking No  No  No 

http://www.astesj.com/
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(a) 

 
(b) 

 
(c) 

Figure 7: Typical Period Variation of ECG Signal Amplitude for Three Patients 

The heart rate is measured in beats per minute (BPM) over a 
60-second period. A healthy heart rate is 60-100 beats per minute 
at rest, but it increases to around 110-150 beats per minute during 
exercise and 40-60 beats per minute during sleep [30]. When 
collecting data about a patient's heart, it's best to put them to sleep. 
The patient is affected by bradycardia if the heart rate is below 60 
BPM or tachycardia if the rate is beyond 100 BPM for a heart rate 
externally ranging between 60 to 100 BPM (Table 3). 

Table 3: Number of dominant peaks” R”. 

Patient Patient1 Patient2 Patient3 
Number of dominant 
peaks” R” 

8 33 13 

Number of beats 
(BPM) 

12 49 20 

4.3. ECG Signal Spectral Analysis 

For each patient, we determined the spectrum of the ECG 
signal (figure 8), Nyquist frequency (Table 4), and figure 9 depicts 
the PQRST cycle of three patients' ECG signals. 

 
(a) 

 
(b) 

 
(c) 

Figure 8: ECG signal spectral of patients 

Table 4: Patient Diagnosis. 

Patient  Patient 1 Patient 2 Patient 3 
Nyquist 
frequency (Hz) 

2.9511 6.5968 4.2440 

 

 

(a) 
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(b) 

 
(c) 

Figure 9: PQRST cycle of the ECG signal 

5. ECG Noises 

The ECG program contains a variety of noises. Baseline 
wander, power-line interference, and muscular artefacts are the 
most common. Body movement, breathing, poor electrode contact, 
and skin electrode impedance promote baseline wander [31]. The 
consequences of distortion of the ST segment and LF components 
of the ECG signal are dependent on electrode and electrolyte 
characteristics, skin impedance, and body movement, and range 
between 0.05 and 1Hz. Power-line interference [32], caused by 
capacitive and inductive couplings of ubiquitous power lines in the 
ECG signal acquisition circuit, with an amplitude and peak 
duration of 50% of the ECG signal amplitude, a spectrum with 
narrowband noise centered at 50/60 Hz with a bandwidth of 1 Hz, 
and the effect of produced is a distortion of the local low amplitude 
waveform of the ECG signal, amplitude, and duration. Muscle 
artefacts [33] are caused by electrical activity in muscles during 
contractions or when the body moves suddenly, with 10% of the 
ECG signal amplitude and spectrum at 20-1000 Hz. It has the 
effect of changing the local waveforms of the ECG signal [34]. 

5.1. Baseline Wander 

The equipotential line of the heart is called the baseline; if the 
heart has no electrical activity, this is the trace that can be seen on 
the electrocardiogram [35]. During an ECG examination in the 
office or during a night Holter recording, this line is generally 
horizontal because the patient does not move, and the signal is little 
disturbed by outside noise. On the other hand, during the day, the 
movement of the patient will modify the relative position of the 
electrodes, so that this line appears wavy. 

5.2. Power line Interference 

It is activated at the same time by two myocardial regions 
which are flowing at the same time. This results, for example, in 

fusion complexes, aberrations or pseudo-blocks. This phenomenon 
also explains the aspects of QRS during atrial fibrillation caused 
by accessory bundles (see Atrial fibrillation / flutter and accessory 
bundles) [36]. 

5.3. Muscle artefacts 

Motion noises are similar to the characteristics of the baseline 
drift signal, but because their spectral content significantly 
overlaps the spectral content of the PQRST complex, it is more 
difficult to resolve. Stretching of the skin, which affects the 
impedance of the skin around the electrode, is the most common 
cause of electrode movement abnormalities. They mostly appear 
in the 1 to 10 Hz range, and on ECGs, these aberrations appear as 
greater amplitude waveforms that can be mistaken for QRS 
complexes. Electrode motion artifacts are a key source of a 
misperceived heartbeat in Holter surveillance [37]. 

6. Remove noises from our ECG signals 

Filtering the ECG signal is a technique for removing noise 
around the signal generated by the ECG machine. High frequency 
noise is caused by extracardiac muscle activity and interference 
from electronic equipment. Low frequency noise is caused by body 
movements associated with breathing, physical and chemical 
changes caused by electrodes placed on the skin, and small 
changes in blood flow. To reduce these noises (see parasites), the 
patient should breathe calmly and avoid moving or touching metal. 
Before placing the electrodes, the skin must be perfectly prepared 
(shaving, simple washing and rubbing to improve the capillary 
flow of the peripheral electrodes, do not use alcohol). It is also 
important to avoid overlapping recording threads (loops). Several 
types of filters can be used in the event of interference: 

• To remove interference from electric current (removal of 50 
or 60 Hz depending on the country). 

• To remove very low frequency noise, we use a classic high-
pass filter which removes in real mode noises below the 
threshold of 0.05 Hz. A 0.5 Hz, real time high pass filter 
records / generates ST segment distortions. This threshold can 
simulate an anteroseptal ST + infarction or a Brugada ECG. 

On the other hand, in automatic mode (analog recording then 
digital signal processing, usual mode of modern ECGs) a digital 
linear filter is acceptable up to the threshold of 0.67 Hz, because it 
eliminates the deviations from the baseline). 

A conventional low pass filter is used to eliminate high 
frequency noise, which removes noise over 150 Hz in real mode. 
A low pass filter calibrated to 75 Hz or less will slightly reduce the 
amplitude of QRS and the ability to detect small deviations (Q 
microwave, QRS fragment complex wave, J wave, wave). It 
further smooths the path and removes many fast artifacts. A low 
pass filter calibrated to 35 Hz or even 20 Hz can significantly 
reduce the amplitude of the QRS and reduce the signs of 
ventricular hypertrophy. 

The general recommended bandwidth for adults is between 
0.05 Hz and 150 Hz (250 Hz for children). But most devices on the 
market offer preset filters between 0.5 and 40-50 Hz, because the 
design is more stable and the noise is less, which makes basic users 
more satisfied. This is a compromise generally adopted by users 
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who are new to the more refined ECG ... and accept the risk of 
false positives / negatives, although rare this can be caused by 
improper filters. It is best to decide whether to enable low pass and 
/ or high pass filters before printing depending on the quality of the 
drawing. 

After applying filtering steps to each patient’s ECG signals, we 
transfer those signals to the right doctors and physicians to make 
the right decisions about the patient’s health (figure 10 and figure 
11). 

 
(a) 

 
(b) 

 
(c)  

Figure 10: Filtered ECG Signal 

 
(a) 

 
(b) 

 
(c)  

Figure 11: Filtered and Shifted ECG Signal 
To develop our IoT system for monitoring ECG signals, we 

have opted to use artificial intelligence, so we will offer an 
application of IoT and embedded AI for detection, monitoring of 
ECGs and learning for the detection of noises which generate these 
signals. 

7. The effect of filtering on ECG data classification for 
cardiovascular disease using a deep learning model 

Deep Learning-based classification methods for detecting 
cardiovascular disease ECG features are gradually gaining 
attention. In this section, we will discuss the importance of ECG 
signal filtering in detecting cardiovascular disease. The main 
contribution of this comparison is to highlight the importance of 
signal filtering in improving cardiovascular disease.  

Deep learning requires a large database to effectively train the 
model; thus, we decide to train our model with the PTB-XL 
database [38], which comprises 21 837 recordings. PTB XL is a 
dataset containing 23 classes; the ratio of each database is 
presented in Figure 12. 

 
Figure 12: Data Distribution. 
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7.1. Data preprocessing 

Classification researchers usually passed preprocessing of the 
data and feature extraction of the signal to train and evaluate the 
model correctly [39]. Data preprocessing is the process of 
preparing data for training by removing noise and filtering signals. 
Many researchers employed different noise removal approaches, 
such as wavelet transform-based algorithms [40] and adaptive 
digital filters [41]. 

In this paper, we propose to compare two methods one that 
does not filter ECG data and method 2, which is based on filtering, 
wavelet transform method was used to enhance the ECG signal. 
The wavelet transform technique decomposes nonstationary data 
into scale signals with various frequency bands [42]. 

This study has selected 23 ECG recordings for classification 
with length varies from signal to other, since the deep learning 
model requires a normalized dataset, in our study, the signal length 
has been segmented to 5000 samples (10 seconds).  

The use of embedded AI can be very useful for detecting ECG 
signals. For this, it is possible to design a learning model based on 
a convolutional neural network (CNN) for the detection of ECG 
signals. This model is trained on an image database, which is then 
processed and tested to improve detection performance. 
Experiment results reveal that our model outperforms other 
common object classifiers. The major improvements enable the 
model to work effectively in real ECG applications. In the second 
step, we applied this learning model on a database of ECG signals, 
these real signals were measured and monitored by our IoT 
monitoring system proposed and studied in the first section of this 
work. 

7.2. Model training 

For the training step, the two methods have been trained using 
Inception model figure 13, which is a variant of CNN, to classify 
23 cardiovascular diseases. To extract the deep features, five 
Inception blocks, concatenated with max polling (MaxPool), are 
used, each block contains six convolutional layers (Conv1d), five 
batch normalization layers (BatchNorm1d), six rectified linear unit 
(ReLU) activation layers, and max polling (MaxPool). Figure 13 
illustrates an overview of the model architecture. 

 
Figure 13: Model architecture. 

The dataset used was split into two sets: training & validation 
set contains recordings and test set contains 19653 & 2184 

recordings respectively, using cross-validation the dataset was 
randomly divided into 10 folds. In each round 9 out of 10 folders 
have been utilized for training, while one folder is used for 
validation, 5 epochs are created per each training fold, in total 50 
epochs. 

To train the model, the Adam optimizer has been used as the 
optimization method and binary cross-entropy as the loss function. 

7.3. Results and discussion 

This paper presented a model based on convolutional neural 
networks, optimized to limit the complexity of ECG detection and 
classification of cardiovascular diseases. Our proposed technique 
was implemented in Python 3.7 utilizing the Keras framework with 
a Tensorflow backend. 

The accuracy acquired throughout the training and validation 
phases is 96.72% and 96.45%, respectively in filtering method and 
96,23% and 96,20% for no filtering method. For loss, each phase 
reached 0.0227 and 0.1070 for no filtering and 0.0849 and 0.0866 
for filtering method. The data split is the usage of ten stratified 
folds that leads the model grow disorderly from the fold to fold 
until it stabilizes in the final fold. We can note that there is a 
disorder in value from one epoch to another caused by the usage 
of ten stratified folds, since each fold contains 5 epochs the 
disorder is clear after every 5 epochs. The results are relatively 
close in both methods accuracy of 96,72 % and loss of 0.0227 
without filtering, 96,23 % in term of accuracy and loss of 0.0849 
with filtering. The relevance of filtering is that the model’s results 
with filtering are more stable than without filtering. 

The Metrics results of model proposed in each method are 
illustrated in Figures 14 and 15. 

 
(a) Accuracy : Validation phase: 96.20% ; Training phase: 96.23% 

 

(b) Loss : Validation phase : 0.1070 ; Training phase : 0.0227 

 Figure 14: Method 1: without filtring. 
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(a) Accuracy : Validation phase: 96.45% ; Training phase: 96.72% 

 
(b) Loss : Training phase : 0.0845; Validation phase :0.0866 

Figure 15: Method 2: with filtring. 
 

     A deep convolution neural network (DCNN) to classify 5 types 
of ECG, and their approach achieves an accuracy of 93.19%. In 
[43] authors proposed an 11 layers CNN to detect 2 types of 
heartbeats, they achieve an accuracy of 95.22 %, meanwhile in 
[44] authors succeed to achieve 97.2% in term of accuracy to detect 
five cardiovascular diseases using a CNN network. Comparing to 
resultants achieved in the literature, our results for classifying 23 
cardiovascular diseases are significant and acceptable. 
Table 5 compares the accuracy and loss of our research to the 
literature studies. 
 

Table 5. Comparison of different literature studies. 

Author, year Preprocssing ECG 
classes 

Classifier 
used 

Results 

Atal et al, 
2020 

Gabor filter 
and wavelet 
transform 

5 classes DCNN Acc: 
93.19% 

Acharaya et 
al, 20 

Denoising 2 classes CNN Acc: 
95.22% 

Wu et al, 
2021 

wavelet 
transform 
method 

1 classe CNN Acc: 
97.2% 

Proposed 
approach, 

2022 

wavelet 
transform 
method 

23 
classes 

Inception Acc: 
96.72% 

 
The disorder in second method, after filtering the signals, is 

more stable than in the first method. As a result, we may conclude 
that filtering is critical for model stability, even if the gap between 
the validation and training phases is tiny enough to ensure that our 
model learns effectively.  

It is more crucial to raise the metrics of the classification model 
for disease diagnosis because the correct detection of a 
cardiovascular disease is more significant than a misdiagnosis our 

future work will be based on model improvements to obtain 
important results. 

8. Conclusions 

The use of ECG monitoring equipment has been extensively 
studied in the literature. We have provided an in-depth overview 
of the literature related to ECG monitoring systems in this article, 
focusing on a variety of factors such as application, technologies 
used, architecture, life cycle, categorization, and defiance. The 
Internet of Things (IoT) delivers remote, infinite connection and 
services that harness data and enable fast, relevant and vital 
lifestyle decisions. We proposed a new compact IoT system for 
remotely monitoring ECG signals in patients. The data are shown 
via the Matlab interface after converting the data gathered by the 
electrodes and the AD8232 sensor built into the Arduino board into 
a "csv" or ".m" extension file. Following that, we used various 
digital filtering methods to remove any noise that could have 
caused these ECG readings. To that purpose, we support this work, 
as well as a detailed assessment of other related research projects 
that provide a comprehensive overview of the state of the art in 
ECG monitoring systems. It can serve as a resource for various 
researchers and field participants to compare, assess, and evaluate 
the functionality of ECG monitoring systems. It also highlights the 
main defiance that occurs with these systems. We also developed 
a deep learning model based on a convolution neural network to 
evaluate the results of metrics (accuracy and loss) with and without 
filtering, and we were able to attain an important and acceptable 
accuracy when compared to results achieved in the literature. We 
attain an accuracy of 96.23% with filtering and 96.72% without, 
they are relatively close but filtering with wavelet transform makes 
our model more stable. Finally, it discusses how next-generation 
ECG monitoring devices for healthcare will be perceived in the 
future. 
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