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 Mental stress assessment remains riddled with biases caused by subjective reports and 
individual differences across societal backgrounds. To objectively determine the presence 
or absence of mental stress, there is a need to move away from the traditional subjective 
methods of self-report questionnaires and interviews. Previously, it has been evidence that 
EEG Oscillations can discriminate mental states, for instance, stressed and non-stressed. 
However, it is still not clear in which range of EEG oscillations the neural activities are 
associated with the mental states. This paper presents a wavelet-based EEG feature 
extraction method for the classification of mental stress using machine learning classifiers. 
An EEG dataset of 22 participants was used to test the performance of the proposed wavelet-
based feature extraction method. The dataset includes both stress and control conditions, 
and the stress condition has multiple levels of stress, starting from low, mild, and high stress. 
The Daubechies mother wavelet of the fourth order was used to separate the EEG 
oscillations into 7 levels for the extraction of the absolute powers. Whereas Fast Fourier 
Transform were implemented to obtain the average power of the oscillations. The features 
were then used in support vector machine, decision tree, linear discriminant analysis and 
artificial neural network classifiers. A comparison between the classifiers using average 
power, absolute power, and a combination of both is provided. The EEG alpha, theta, and 
beta frequency bands showed promising results for the classification of mental stress vs. 
control conditions by achieving an average accuracy of 95% using the decision tree. The 
results of the proposed method suggest the potential use of wavelet analysis for mental stress 
detection despite FFT performing better. The proposed method has the potential to be used 
in Computer-Aided Diagnosis (CAD) systems for mental stress assessment in the future 
alongside the discovery of significant wave bands in relation to mental stress detection. 
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1. Introduction  

The Latin verb ‘strictus’, which merely means to draw tight, is 
whence the word "stress" gets its original meaning. The term 
"stress" didn't have psychological connotations until the late 19th 
century, thanks to the groundbreaking work of Hans Selye, who is 
regarded as the father of stress study. Before then, stress was 
always thought of as the act of applying physical pressure or force 
to an object. However, we also experience internal emotional 
pressures and invisible forces, which has led to a biological 
investigation into the causes of stress. This was illustrated in the 
work of W.B. Cannon, who detailed how biological systems have 

developed an internal system to preserve homeostasis, a stable 
internal state. In order to test his views concerning acute stress 
responses as opposed to chronic stress, Hans Selye carried out 
experiments. He then came up with the phrase "stress responses," 
defining stress as pressures or mutual actions that occur across any 
part of the body, whether it be psychological or physical. 

The broad term for stress can be further broken down into two 
categories: positive stress (Eustress) and negative stress (Distress). 
Eustress is perceived as a type of pressure that encourages a person 
to overcome obstacles by learning to see outside pressures as 
challenges rather than obstacles. On the other hand, distress results 
from a failure to use these needs as a motivator, which eventually 
stifles any advancement or success. Distress can also be divided 
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into two categories: acute distress, which is short-term, and chronic 
distress, which is long-term. It should be highlighted that current 
definitions and understanding suggest that stress results in a 
physical reaction as a stressor rather than a physical reaction to 
perceived threats or challenges.  

Both adults and children are afflicted by mental stress. Every 
human being suffers stress at some point in their lives, whether it 
is from work-related homework or just plain peer pressure from 
their employer. Short-term stress may be good for encouraging the 
improvement of work performed, while long-term stress can be 
destructive to one's physical and mental health [1]. If untreated or 
without an appropriate management strategy, it can seriously 
damage cognitive abilities and, as a result, the person's quality of 
life [2]. Studies have also revealed that prolonged work stress 
diminishes the grey matter volumes of the dorsolateral prefrontal 
cortex and the anterior cingulate cortex, which are accountable for 
memory, attention, and mood [3]. 

Despite advances in medicine, particularly in psychology, have 
made it possible for regular people to get the care or assistance they 
want. Patients only seek treatment when they can no longer tolerate 
to live in a situation of extended stress, therefore there is still much 
to learn and develop in this area. As a result, the general public 
continues to be untreated and lacks access to expert assistance to 
lessen future stress. Even worse, because conventional techniques 
for detecting mental stress primarily depend on self-report 
questionnaires and interviews, the results are still largely 
ambiguous. Therefore, subjective interpretations may be used to 
assess the degree to which a patient's stress level can be deemed 
harmful as well as whether or not the patient is experiencing stress. 
Therefore, the ability to anticipate a patient's likelihood of 
experiencing stress in the future or even just identify stress without 
consulting a medical practitioner may make it possible for patients 
to receive treatment and possibly even seek it out more voluntarily.  

Many attempts have been made up to this point to use a 
machine learning technique to swiftly evaluate and forecast a 
patient's state of health. Results in certain instances point to 
machine learning's potential to diagnose conditions more 
accurately than qualified medical professionals. But in many of 
these instances, there are numerous flaws and biases, which 
contribute to the widespread belief that machine learning can 
supplement, if not completely replace, medical professionals [4]. 
Nevertheless, we think that machine learning applications in the 
healthcare industry will only grow. Medical practitioners should 
then use artificial intelligence and machine learning as a tool to 
give patients better and more advanced medical care.  

By placing tiny electrodes on the scalp, an 
electroencephalogram (EEG) is a non-invasive, affordable, easily 
accessible, and painless test that looks for irregularities in brain 
waves. The potential difference between the cortical neuronal 
activity and the electrodes' detection of it is amplified and shown 
as a waveform. The cortical excitatory and inhibitory postsynaptic 
potential summations serve as the primary sources of 
electrographic activity [5]. Additionally, EEG scans reflect 
changes in brain activity almost instantaneously due to their high 
temporal resolution, while other scan types require several minutes 
following the occurrence of an event. Unfortunately, the limited 
spatial resolution of EEG makes it impossible to pinpoint the 
precise location of the cerebral waveforms. Furthermore, there will 
be significant contamination from other electrical noise as a result 
of the potential difference's amplification. Even though EEG 

signals are fascinating, they cannot be used by an interpreter to 
make future predictions. It's possible that any waveform anomalies 
that have happened before won't happen again. 

Based on their frequency range, the waveforms found in an 
EEG can be grouped. The frequencies at which delta activity, theta 
activity, alpha activity, beta activity, and gamma activity occur are 
as follows in increasing order: delta activity occurs between 0.5 
and 4 Hz, theta activity between 5 and 7 Hz, alpha activity between 
8 and 13 Hz, beta activity between 14 and 30 Hz, and gamma 
activity between 30 and 80 Hz. Each of these waveforms, in turn, 
represents distinct brain states, including relaxation, sleep, anxiety, 
passive attention, and concentration [6]. EEG signal information is 
a well-known neuroimaging modality that records brain electrical 
activity for the diagnosis of various brain abnormalities, such as 
the identification of epileptic seizure activity, depression, stroke, 
and Alzheimer's disease [5]. Despite the vast amount of data that 
can be gleaned from an EEG reading, little research has been done 
on using it to identify mental stress. Furthermore, the research that 
has already been done does not consistently point to a general 
strategy for methodically combining machine learning with EEG 
for stress assessment [7]. This was demonstrated when various 
machine learning classifiers and feature extraction techniques were 
used in comparable circumstances. 

Since it has been shown in numerous studies that the alpha, 
theta, and beta bands of an EEG reading correlate to cognitive 
workload processing and, in turn, mental stress, here we propose 
to extract information from these bands in order to classify mental 
stress [8,9]. Therefore, the purpose of this study is to propose a 
machine learning (ML) framework for the extraction of EEG 
features based on fast Fourier transform and wavelet transform for 
the classification of mental stress, including high- and low-level 
stress. EEG information from an earlier investigation [10] were 
decomposed with discrete wavelet transform and fast Fourier 
transform into different frequency bands, including alpha, theta, 
and beta, and computed EEG frequency bands power. Widely used 
ML classifiers, including Support Vector Machine (SVM), Linear 
Discriminant Analysis (LDA), Decision Trees (DT), and Artificial 
Neural Networks (ANN), were used to model the EEG dataset in 
order to illustrate the performance of the suggested ML 
framework. Next, the Fourier Transform method—a conventional 
transformation technique for determining power spectral density—
is compared to the wavelet transform. 

The remaining sections of the paper are organized as section 
II explains the dataset and feature extraction and classification 
methodology, section III reports the findings, followed by the 
discussion in section IV, and finally section V concludes the 
paper. 

2. Literature Review 

2.1. Stress Detection and Appraisal 

It's interesting to note that stress is not a medical diagnosis or 
condition that calls for medical professionals to thoroughly and 
methodically evaluate their patients. In actuality, subjective 
questionnaires like the Perceived Stress Scale (PSS), which has 
14 questions (later lowered to 10) that the patient must answer, 
are the closest measurements of stress that are utilized in a 
medical setting [11], Stress Response Inventory [11], Holmes and 
Rahe Stress Scale (Social Readjustment Rating Scale) [12], 
Depression Anxiety Stress Scale [13], The Hospital Anxiety and 
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Depression Scale [14], The State Trait Anxiety Inventory [15]   
and Life Events and Coping Inventory [16].  The PSS was created 
in 1983 and is still a widely used tool to help us comprehend how 
various circumstances impact our emotions and our perceived 
stress levels, which range from low to high. The current problem, 
however, is that despite all the subjective questionnaires currently 
in use, the only stress that patients perceive is the stress that they 
observe and rate for themselves without any concrete data to 
support the presence or absence of stress. Given that mental stress 
is the psychological and physiological condition that has afflicted 
humans for the longest duration, it is unexpected that there isn't a 
methodical way to conclusively determine whether stress is 
present. 

Further, doctors and psychologists attempted to use 
physiological changes mentioned above for an objective measure 
such as increased heart rate through heart rate variability (HRV) 
[17]. HRV is where the amount of time between the heartbeats 
fluctuates slightly usually measured using an electrocardiogram 
(ECG) that detects the electrical activity of the heart using sensors 
attached to the skin of the chest. Galvanic Skin Responses (GSR) 
also known as electrodermal activity (EDA) measures the changes 
in sweat gland activity that are reflective of the intensity of our 
emotional state [18]. Moreover, research has tapped into the area 
of measuring stress through pupil dilation and blood pressure [19]. 
Consequently, salivary alpha-amylase and cortisol levels were 
used as a biomarker for stress indication due to their association 
with the activation of the sympathetic nervous system [20].  

2.2. Electroencephalography 

The use of electroencephalography (EEG) to measure stress 
has been the subject of recent research due to its relative 
affordability when compared to other methods that involve the 
collection of blood samples or the ingestion of radioactive 
chemicals, such as PET scans. But since this method is still 
relatively new, researchers have had differing degrees of success 
in identifying stress [5]. Many methods for using EEG signals to 
detect mental stress have been reported in the literature. These 
methods include using SVM, Multilayer Perceptron, and 
Convolutional Neural Networks in a virtual environment to detect 
mental stress [6]. The detection of stress is still very new and in 
its early stages, where researchers are still trying to determine 
electrical signals and patterns related to stress. One drawback of 
EEG is its limited spatial resolution, which makes it difficult to 
locate the precise region involved or responsible for stress 
because the electrical signals measured are only on the surface of 
the brain. Although there are studies that use direct 
experimentation and specific regions to identify stress using PET 
or MRI scans, these approaches are deemed impractical due to the 
high cost and limited accessibility of the necessary equipment. 
Furthermore, unlike the other resolution methods mentioned, 
using an EEG machine does not require extensive training. 

2.3. Machine Learning Methods for Stress Detection 

There has been much research that uses artificial intelligence 
for mental stress assessment through machine learning classifiers 

and algorithms. A machine learning classifier uses an independent 
set of information from a dataset known as features to predict the 
corresponding class it belongs to by having several parameters. 
Such features need to have unique characteristics that separate one 
class from another. Further, machine learning classifier will 
undergo either supervised or unsupervised training to predict the 
classes of new instances in an unseen testing dataset. Several 
machine learning techniques and algorithms often used in mental 
stress assessment are described below. 

Machine learning classifiers like SVM, ANN and k-NN have 
shown immense potential in stress detection with each classifier 
achieving accuracies of more than 85% [6,21,22]. However, it 
seems that each classifier is feature specific when comparing each 
studies above. For example, SVM seems to favor frontal alpha 
asymmetry as a feature whereas convolutional neural network, a 
branch of ANN performed much better when simply considering 
all the brain waves. K-NN on the other hand used only a few 
selective electrodes and achieved accuracies of 94 and 93.7% [22]. 
Meanwhile, LDA relied on multiple bio-signals besides EEG such 
as electrocardiography (ECG), electromyography (EMG) and 
galvanic skin response (GSR) to perform well [23].  

Further, given the complexities of the EEG signals alongside 
the variability in terms of the experimental conditions, a machine 
learning end-to-end approach may not be feasible. Among the 
many limitations of such an approach includes the huge amounts 
of data that is required to train the classifier alongside the 
difficulty to validate the output. Therefore, a traditional 
framework to train each classifier before forming an ensemble is 
required, especially in domain generalization, nullifying any 
opportunities to allow for an end-to-end deep learning model to 
be framed without considering the usual pre-processing and 
feature extraction process when training a classifier. 

It is interesting to note that SVM tops the list of classifiers 
used when analyzing EEG for stress detection in several review 
papers [5,24–26]. In fact, SVM is used in almost all the 
experiments when the Montreal Imaging Stress Task is used as a 
stressor [24]. This may be because SVM has stronger 
discriminatory powers than LDA, and less overfitting issues 
compared to neural networks. However, the field of deep learning 
for signal processing has been growing lately, especially the usage 
of pretrained CNN models for robust BCI framework [27]. 

Recent studies performed also involved the use of SVM 
classifier alongside Naïve Bayes, and K-Nearest Neighbours 
(KNN) achieved accuracies of up to 99.98% [28] whereby the 
participants were induced with stress through the performance of 
the Stroop Colour Word Test (SCWT). In this study, four different 
bands were explored, namely the alpha, beta, theta, and delta band 
before concluding that alpha and beta bands showed a higher 
accuracy than the other two. Other studies involving the use of K-
NN achieved maximum classification accuracy of 91.26% [29]. 
However, this may be caused by the low number of participants 
who participated in the study. Another paper involving the use of 
SVM and Naïve Bayes classifier successfully classified stress and 
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control subjects with up to 98.21% accuracies by focusing on all 
the power density of the frontal lobes [30]. While both achieved 
high accuracies in the experiment, it should be noted that these 
were conducted on subject-wise classification instead of a mixed 
classification such as control versus mental stress. When dealing 
with mixed classification, the accuracies dropped to around 80%, 
a problem that we are trying to address in our study. 

2.4. EEG Wavebands 

Alpha waves range from 8 to 12 Hz where it occurs in the 
occipital head area in the awake state. Regular meditation and 
relaxation have been shown to enhance alpha waves and the 
reason for why it is most recommended for lowering stress. Beta 
waves are most frequently observed around the frontal head zones 
and most closely associated with stress when there is an increased 
in beta waves. Delta waves are found in the frontocentral brain 
area, and these waves are associated with tiredness and early 
stages of sleep. Theta band is detected in anxiety activation and 
strongly observed in hypervigilance states such as meditation, 
prayer, and awareness. Finally, Gamma band is more related to 
ADHD and knowledge disabilities when there is an inadequate of 
the activity. Although the Gamma band has been associated with 
depression when there’s inadequate gamma signals which in turn 
suggests a relation between mental stress and depression, it 
remains a relatively unexplored area. There have been multiple 
findings with regards to the relation of stress and the associated 
wavebands. Namely the alpha, theta, and beta waves [31,32]. 
Gamma and Delta bands has been omitted from our experimental 
design as it has been found that Gamma band is more closely 
associated to wakefulness than in relation to stress [33]. Whereas 
Delta band has always been associated with slow brain activity 
and its occurrence is most prominent during sleep. Nonetheless, 
some studies have suggested the delta-beta relationship with 
regards to anxiety [34], a trait that is closely related to mental 
stress. 

3. Materials and Methodology 

3.1. Dataset 

Twenty-two healthy individuals (ages 19 to 25) without a 
history of illness or head trauma make up the EEG dataset. They 
don't take any kind of medication that could cause their heart rate 
to increase. Every participant participated in both the stress and 
control experimental sessions. They completed the Montreal 
Imaging Stress Task (MIST)-based Mental Arithmetic Task 
(MAT) [35] as it has shown the capability of producing stress-
related responses involving the hypothalamic pituitary-adrenal 
(HPA) axis. Accordingly, eight distinct conditions—four stress 
levels and four control levels—were applied to each participant 
based on the task's level of difficulty. Only levels 1 and 4 of stress, 
along with the controls that go with them, were used in this 
experiment; level 1 is referred to as low stress, and level 4 as high 
stress. 128 channels are used to record the EEG data, with a 500 
Hz sampling rate. In addition, the other channels are referenced to 
the 129th channel. Each subject has a total of two sets of 129 
channels of EEG data—one for control and one for stress. Prior to 

being sent to the machine learning classifier for classification, the 
dataset is normalized. According to the experiment's original 
report [10], The EEG trials lasted 2200ms for high stress and 
control and 1100ms for low stress and control. Therefore, 
averaged EEG power rather than absolute power is used to 
compare stress vs. control trials. EEG data from two experimental 
conditions—low stress versus control condition and high stress 
versus control condition—were analyzed. 

3.2. EEG Feature Extraction 

EEG features are usually divided into three broad categories, 
the statistical time domain features, frequency domain features, 
and synchronicity domain features. Statistical time domain 
features are obtained directly from the raw EEG signals such as 
calculating the average amplitudes, standard deviation, and 
variance. Other time domain features frequently used are Hjorth 
parameters, entropies estimation and Higuchi’s fractal dimension. 
It should be noted that the raw EEG signals are usually filtered for 
noise and artefact removal before obtaining any features for 
machine learning classification. Whereas frequency domain 
features are usually computed by first converting the raw EEG 
signals that are in the time domain to the frequency domain alone 
by applying Fourier transforms or a time-frequency domain via 
wavelet transforms. Common wavelet transforms usually use 
Daubechies set of wavelets in the fourth order. In frequency 
domain features, we can obtain the power spectral density, the 
distribution of power in its frequency components where power is 
defined as the amount of energy transferred per unit time, once the 
raw EEG has been converted. Moreover, absolute and relative 
powers are commonly used to check the rhythm of EEG signals.  

Next, synchronicity domain features use an effective and 
functional measure of brain connectivity to examine significant 
coincidences that appear to have no apparent reason. The energy 
in each frequency is obtained by applying discrete wavelet 
transforms and Fourier transforms, which are then added to 
determine the absolute power or averaged to determine the power. 
With 129 channels and 22 participants from the experimental and 
control groups, the feature matrix for each EEG frequency band 
was 44x129x1, yielding a minimum of 5676 (22 x 2 x 129 x 1) 
features. 

3.2.1 Wavelet Transforms 

A collection of wave-like oscillations known as wavelets is 
produced by wavelet transforms, which break down EEG data. 
Wavelets are a class of functions with a variety of characteristics, 
including their ability to be stretched to capture high- or low-
frequency data; a stretched wavelet will typically capture data at a 
lower frequency. Furthermore, the function's integral must have 
zero mean and finite energy, and its integral squared function must 
yield a finite number, for a function to be considered a wavelet 
function. This is how wavelet differs from Fourier analysis, which 
assumes an infinite integral squared of a sin wave. Subsequently, 
the wavelet's location can be adjusted to precisely pinpoint the 
oscillation point. The wavelet's location and "stretch-ness" can 
therefore be changed as we slide it across any given signal. By 
doing this, the signal input can be represented by the wavelet 
transforms in both the time and space domains.  

Traditionally, the mathematical formula is represented in (1) 
using the first derivative of a Gaussian function. Increasing the 
value "a" will stretch the wavelet to capture low frequency 
information. In contrast, by lowering the value, the parameter "b" 
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establishes the wavelet's location; a left shift is necessary, and vice 
versa. 

 

𝑓𝑓(𝑥𝑥) =  − (𝑥𝑥 − 𝑏𝑏)𝑒𝑒
−(𝑥𝑥−𝑏𝑏)2/(2𝑎𝑎2)

√2𝜋𝜋𝑎𝑎3    (1) 

 
Figure 1: First Gaussian Derivative Function 

   
 Figure 2: Squishing (left) or Stretching (right) by decreasing or increasing the 

value of 'a' 

 

  
Figure 3: Sliding the gaussian derivative left (left) or right (right) by decreasing 

or increasing the value of 'b' 

Since a wavelet is made up of a chosen function, such as 
Gaussian, Harr, Daubechies, and so on, we have chosen to break 
down the EEG signal into sub-band frequencies using the 
Daubechies wavelet transform of fourth order (figure 4). This is 
mostly because, when compared to Haar, Morlet, and other 
wavelets, an EEG signal's Daubechies wavelet exhibits striking 
similarities to it. Moving on, we decompose the signal into 7 levels 
such that, in each level, half of the signal range is obtained, as 
shown in figure 1, where A1 to A7 is the approximate coefficient 
and D1 to D7 is the detailed coefficient. The sampling rate of the 
EEG data is set at 512 Hz. 

 
Figure 4:Daubechies Wavelet Function of the fourth order 'db4' 

As a result, we can derive the EEG data's absolute power 
within its frequency range. To get the absolute power from all 129 
channels, each of the estimated coefficients is squared before 
being added up. This gives us 129 channels in the alpha, beta, and 
theta bands, giving us three different sets of features. 

 
Figure 5: Wavelet Decomposition into 7 Levels 

3.2.2 Fourier Transforms 

Any given signal can be broken down using Fourier transforms 
by expanding a periodic function f(x) with an infinite sum of sines 
and cosines, which is a generalization of the complex Fourier 
series. It changes the time domain representation of the EEG data 
to the frequency domain. This is accomplished by using the 
formula in (2), where N is the number of time samples we have, n 
is the sample we are currently examining, xn is the signal's 
amplitude at time n, k is the frequency, and Xk is the signal's 
amount of frequency k. 

𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛 ∗ 𝑒𝑒−𝑖𝑖2𝜋𝜋𝑘𝑘𝑛𝑛/𝑁𝑁𝑁𝑁−1
𝑛𝑛=0    (2) 

𝑥𝑥𝑛𝑛 = 1
𝑁𝑁
∑ 𝑋𝑋𝑘𝑘 ∗ 𝑒𝑒−𝑖𝑖2𝜋𝜋𝑘𝑘𝑛𝑛/𝑁𝑁𝑁𝑁−1
𝑘𝑘=0   (3) 

We can determine the average power for each frequency band 
to be used as a feature by averaging the power obtained across the 
EEG dataset's sampling rate. Given that Fourier transforms data 
from the time domain to the frequency domain, it is limited in its 
applicability to time domain data. As a result, throughout the entire 
experimental process, we will be unable to determine when exactly 
the brain region responds to the stressful stimuli. 

3.3. Machine Learning Classifiers 

3.3.1 Support Vector Machines 

A machine learning classifier called the Support Vector 
Machine (SVM) looks for a hyperplane in an N-dimensional space, 
where N is the number of features needed to clearly separate the 
data points. The SVM will identify the ideal hyperplane by 
maximizing the margins between two or more data points because 
there are numerous hyperplanes available to divide data points. In 
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order to construct the position and orientation of the hyperplane, 
data points that are closest to it are referred to as support vectors.  

Since we are only classifying between stress and control 
classes, the kernel trick method suggested for non-linear dataset 
was not used. Consequently, MATLAB's default settings have 
our SVM's kernel function set to be linear, and its scale set to 
"automatic." The SVM's box constraint level is set to 1, and its 
multiclass method is configured as "One vs. One.". 

3.3.2 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is an extension of Fisher's 
linear discriminant, which looks for a linear feature set that clearly 
divides two or more classes. The multivariate Gaussian function to 
be used for prediction is subjected to a calculation of mean and 
variance when there are multiple feature variables. Plotting the 
data, however, is assumed by (LDA) to follow the Gaussian 
function in a bell-curve fashion. It also presumes that the variance 
around the mean of each feature variable is the same. As a result, 
the mean, value of each feature variable, x for each class, k, can be 
calculated by dividing the total number of instances by the sum of 
values, as shown in the following formula.: 

𝜇𝜇𝑘𝑘 = 1
𝑁𝑁𝑘𝑘∗∑𝑥𝑥

    (4) 

The variance is then calculated across each class, 𝑘𝑘 as follows: 
𝜎𝜎2 = 1

(𝑁𝑁−𝐾𝐾)∗ ∑(𝑥𝑥−𝜇𝜇)2
   (5) 

Using the input feature x from equation (6), where 𝑝𝑝𝑝𝑝𝑘𝑘 is 
the prior probability and 𝑓𝑓𝑘𝑘(𝑥𝑥) is the density function, LDA will 
apply the Bayes Theorem to estimate the probability of the 
predicted output class. LDA will use Bayes Theorem to estimate 
the probability of the predicted output class using the input 
feature, x that has been given in (6) where is the prior probability 
and is the density function. 

𝑃𝑃(𝑌𝑌 = 𝑘𝑘 | 𝑋𝑋 = 𝑥𝑥) = 𝑝𝑝𝑖𝑖𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)
∑ 𝑝𝑝𝑖𝑖𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)𝐾𝐾
𝑙𝑙=1

  (6) 

The default implementation of LDA from MATLAB’s 
classification learner app was used whereby the covariance 
structure is set as “full”. 

 

3.3.3 Decision Tree 

A decision tree is conceptualized as a tree root with numerous 
branches that eventually grow into leaves at the tip. But decision 
trees are illustrated in reverse, with the root at the top. This means 
that after applying a starting condition and a given value, the tree 
may split into branches based on a splitting criterion, ultimately 
leading to a final output at the leaf. Decision tree splitting criteria 
are typically based on the ecological diversity index, which 
provides a quantitative representation of the various species or 
classes within a dataset.  

The Simpson index, on which the Gini's diversity index is 
based, gauges the concentration levels when people are 
categorized into types such that the following probabilities apply 
when two people are randomly selected from the dataset to 
represent the same type: 

𝜆𝜆 =  ∑ 𝑝𝑝𝑖𝑖2𝑅𝑅
𝑖𝑖=1    (7) 

Where 𝑅𝑅 is the total number of classes in the dataset. 
Gini’s diversity index transforms equation (5) to capture the 
probability that the two individual data represent different types 
from the following equation: 

1 − 𝜆𝜆 = 1 − ∑ 𝑝𝑝𝑖𝑖2𝑅𝑅
𝑖𝑖=1 = 1 −  1

𝐷𝐷2
  (8) 

MATLAB’s preset for a fine tree to model our decision 
tree such that the maximum number of splits is set at 100 while 
the split criterion is based on Gini’s diversity index. 

3.3.4 Artificial Neural Network 

Artificial neural networks (ANN) are based on the idea of 
biological neural networks of the brain. Just as a biological neural 
network consists of the firing of neurons interconnected with 
synapses, ANN would generally consist of a few layers with 
connected neurons to simulate the human brain. Mainly, the first 
layer is known as the input layer as it receives external data as an 
input. The following layer is the hidden layer that obtains the raw 
information from the input layer and processes it by applying 
weights to the inputs and subsequently directs them through an 
activation function as the output. Finally, the output from the 
hidden layer is passed to the final layer known as the output layer 
where the ultimate result such as classifying between stress and 
non-stress is determined. Most ANNs allow for weight 
adjustments of the hidden layers by computing the gradient of the 
loss function with respect to its individual weight. To simplify our 
experimental set up for neural network models, we decided to use 
narrow neural network as preset by MATLAB’s built in function 
whereby there is only one fully connected layer with the first layer 
size of 10 and the activation function of ReLU. 

3.4. Machine Learning Framework 

We extract the absolute and average power features from the 
collected data using the Fourier and Daubechies wavelet 
transforms. Next, we'll feed it into the four machine learning 
classifiers (SVM, LDA, DT, and NN) that were previously 
mentioned. Next, the dataset is divided using the ten-fold cross-
validation method, which divides the training data into ten distinct 
subsets, or folds, with 90% of the data in each fold being used for 
training and the remaining 10% for validation. To get the expected 
validation accuracy, this is done ten times over. Lastly, ten 
independent trials are used to train and validate each model to 
determine the average accuracy, which is displayed in the results 
section. 

4. Experimental Setup, Results and Discussion 

MATLAB R2022a was used to develop our machine learning 
classifiers through the help of the classification learner 
application using a Windows 10 Operating System running with 
8GB RAM and 11th Generation Intel® Core @ 2.40GHz. 
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Figure 7 a: Sample of Confusion Matrix in Number of Participants 

A fair assessment and evaluation are required to determine the 
usefulness and accuracy of the model. To validate the 
performance of the model, we have computed the accuracy, 
sensitivity and specificity of each model using the following 
equations in (5, 6, 7) based on the confusion matrix from figure 7. 
True Positive (TP) is used to denote correctly predicted cases 
while True Negative (TN) is used to denote correctly predicted 
non-cases. Likewise, False Positive (FP) and False Negative (FN) 
denotes incorrectly predicted cases and non-cases respectively. A 

sample of the confusion matrix is shown in figures 7a and 7b 
respectively where the control group is compared to stress such as 
low stress or high stress. 

 
Figure 7 b: Sample of Confusion Matrix in Percentages 

4.1. Accuracy 

The accuracy of the classifier is denoted by the percentage of 
true positive (first quadrant) and true negative (fourth quadrant) 
over the total sum of true positive, true negative, false positive and 
false negative. 

High 

High 

High 

High 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

 (9) 

4.2. Sensitivity 

The sensitivity of a classifier is the percentage of correctly 
predicted cases (True Positives – first quadrant) over the sum of 
the true positives and false negatives (first and third quadrant). 

𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝𝑆𝑆𝐴𝐴 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

  (10) 

4.3. Specificity 

The specificity of a classifier is the percentage of correctly 
predicted non-cases (True Negatives – fourth quadrant) over the 
sum of the true negatives and false positives (fourth and second 
quadrant). 

𝑆𝑆𝑝𝑝𝑒𝑒𝐴𝐴𝑝𝑝𝑓𝑓𝑝𝑝𝐴𝐴𝑝𝑝𝑆𝑆𝐴𝐴 =  𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇

  (11) 

4.4. Standard Deviation 

The standard deviation of each result mentioned is calculated 
based on formula (12) to indicate the average range of values 
obtained in 10 trials whereby a small standard deviation value tells 
us that the accuracy/sensitivity/specificity achieved does not 
deviate too far from the average value obtained. This is also an 
indication in our evaluation of whether the classifier performs in 
a stable manner instead of an erratic manner. 

𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 𝐷𝐷𝑒𝑒𝑆𝑆𝑝𝑝𝐴𝐴𝑆𝑆𝑝𝑝𝐷𝐷𝑆𝑆 =  �∑(𝑥𝑥𝑖𝑖−𝜇𝜇)2

𝑁𝑁
  (12) 

The rest of this section is arranged in the order of the type of 
machine learning classification used, followed by the 
experimental conditions of either control vs low stress or control 
vs high stress and a comparison between low stress vs high stress. 
Each table shows the result of the averaged validation accuracy, 
sensitivity, specificity, band spectrum and features used for each 
classification. Associated alongside is the standard deviation of 
the model after performing 10 trials. Finally, the best-performing 
features combination is bolded in each table. Given that absolute 
power was only used for comparison between stress and control 
of the same levels, it is not used in different levels as shown in 
control vs high stress and low stress vs high stress conditions. 

Table 1: Support Vector Machine Classifier Results 

Support Vector Machine Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

64.99±2.32 65.79±2.08 60.69±1.21 Alpha Absolute 
Power 

65.00±3.39 65.62±6.20 58.96±3.29 Theta Absolute 
Power 

67.05±3.26 72.38±10.4
2 63.45±5.12 Alpha, 

Theta 
Absolute 

Power 

65.92±3.53 72.79±6.40 63.39±3.16 
Alpha, 
Theta, 
Beta 

Absolute 
Power 

Support Vector Machine Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

61.14±2.57 55.84±4.77 52.64±2.29 Alpha Average 
Power 

69.33±2.33 75.68±3.43 65.24±1.79 Theta Average 
Power 

57.28±3.77 63.92±4.59 58.42±2.77 
Alpha, 
Theta, 
Beta 

Average 
Power 

63.86±2.14 68.54±4.70 62.03±2.76 
Alpha, 
Theta, 
Beta 

Absolute 
Power, 

Average 
Power 

Control VS High Stress 

82.03±1.24 92.69±2.28 75.13±1.97 Alpha Average 
Power 

86.83±2.64 94.61±0.23 83.10±2.60 Theta Average 
Power 

82.88±1.24 91.80±2.68 76.36±2.33 Beta Average 
Power 

84.10±2.69 94.07±0.16 77.54±1.55 Beta, Theta Average 
Power 

Low Stress VS High Stress 

59.09±3.52 39.11±6.49 79.10±2.20 Beta Average 
Power 

72.95±4.01 66.82±8.12 79.10±2.20 Alpha Average 
Power 

69.54±5.38 70.00±7.94 69.07±3.96 Theta Average 
Power 

73.64±3.81 74.54±5.45 72.72±2.88 Beta, Theta Average 
Power 

 

Table 2: Linear Discriminant Analysis Classifier Results 

Linear Discriminant Analysis Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

71.15±2.88 71.84±4.18 67.39±3.54 Alpha Absolute 
Power 

51.14±7.47 59.02±5.15 56.14±3.83 Theta Absolute 
Power 

73.19±5.16 80.82±4.60 71.19±2.33 Alpha, 
Theta 

Absolute 
Power 

75.91±1.82 80.77±5.08 67.34±2.93 
Alpha, 
Theta,  
Beta 

Absolute 
Power 

47.74±4.55 51.62±4.42 51.2±3.18 Alpha Average 
Power 

72.95±5.50 72.48±2.39 69.04±1.97 Theta Average 
Power 

64.60±3.50 61.82±2.48 62.88±4.00 
Alpha, 
Theta,  
Beta 

Average 
Power 

85.01±2.74 93.25±3.26 79.53±3.66 
Alpha, 
Theta, 
Beta 

Absolute 
Power, 

Average 
Power 

Control VS High Stress 

71.82±3.81 73.70±5.89 70.45±3.46 Alpha Average 
Power 

68.41±4.14 72.32±6.12 68.04±3.34 Theta Average 
Power 

78.17±3.08 82.19±1.61 70.04±2.97 Beta Average 
Power 
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Linear Discriminant Analysis Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

82.53±3.22 86.08±4.90 77.83±2.65 Beta, 
Theta 

Average 
Power 

Low Stress VS High Stress 

81.14±4.70 72.27±8.75 90.02±4.46 Beta Average 
Power 

63.43±7.49 67.26±8.33 59.53±10.1 Alpha Average 
Power 

63.18±3.49 61.35±5.48 64.98±6.13 Theta Average 
Power 

79.54±3.21 75.01±5.83 84.10±2.30 Beta, Theta Average 
Power 

 

Table 3: Decision Tree Classifier Results 

Decision Tree Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

51.82±4.52 48.09±4.34 47.21±5.87 Alpha Absolute 
Power 

52.73±7.31 52.48±4.29 53.08±5.27 Theta Absolute 
Power 

54.57±3.81 52.91±5.35 53.46±5.33 Alpha, 
Theta 

Absolute 
Power 

58.88±3.11 56.32±5.12 58.14±7.26 
Alpha, 
Theta, 
Beta 

Absolute 
Power 

47.73±4.55 49.00±7.71 49.60±12.78 Alpha Average 
Power 

62.30±6.67 63.32±2.91 59.38±2.73 Theta Average 
Power 

61.83±5.35 51.23±5.59 50.61±4.27 
Alpha, 
Theta, 
Beta 

Average 
Power 

59.78±3.37 54.48±7.17 54.31±6.75 
Alpha, 
Theta, 
Beta 

Absolute 
Power, 

Average 
Power 

Control VS High Stress 

70.92±3.92 68.76±4.19 73.85±3.34 Alpha Average 
Power 

89.99±2.32 90.1±2.28 90.46±2.19 Theta Average 
Power 

92.95±3.13 94.81±6.61 93.28±3.07 Beta Average 
Power 

94.55±2.52 95.64±6.39 92.14±3.70 Beta, 
Theta 

Average 
Power 

Low Stress VS High Stress 

54.54±5.65 52.73±6.48 57.27±7.09 Beta Average 
Power 

67.98±2.37 61.80±2.20 74.09±4.11 Alpha Average 
Power 

61.57±8.53 67.72±10.24 55.44±13.3 Theta Average 
Power 

61.83±4.96 67.26±6.69 56.35±6.15 Beta, 
Theta 

Average 
Power 

 

 

 

Table 4: Artificial Neural Network Classifier Results 

Artificial Neural Network Classification 
Control VS Low Stress 

Validation 
Accuracy 

(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Band 
Spectrum Features 

60.22±3.09 58.62±5.15 61.79±4.17 Alpha Absolute 
Power 

62.73±4.58 56.34±5.46 69.09±6.37 Theta Absolute 
Power 

71.37±3.55 65.45±5.07 77.27±5.38 Alpha, 
Theta 

Absolute 
Power 

70.69±5.60 67.27±6.03 74.10±6.75 
Alpha, 
Theta, 
Beta 

Absolute 
Power 

42.73±2.66 41.82±6.98 43.65±5.44 Alpha Average 
Power 

68.65±3.91 68.18±7.04 69.09±5.69 Theta Average 
Power 

58.40±4.99 54.09±6.56 62.71±6.37 
Alpha, 
Theta, 
Beta 

Average 
Power 

76.59±4.76 79.99±9.59 73.18±5.17 
Alpha, 
Theta, 
Beta 

Absolute 
Power, 

Average 
Power 

Control VS High Stress 

74.32±2.29 75.69±2.07 72.99±4.45 Alpha Average 
Power 

81.35±2.46 84.56±3.64 78.18±4.46 Theta Average 
Power 

85.46±2.54 85.93±2.46 85.02±3.55 Beta Average 
Power 

86.83±1.34 83.65±3.03 90.00±1.80 Beta, 
Theta 

Average 
Power 

Low Stress VS High Stress 

64.38±1.43 63.63±4.54 65.13±3.52 Beta Average 
Power 

67.68±2.85 72.73±3.52 62.62±5.31 Alpha Average 
Power 

76.36±3.10 76.81±5.95 75.92±2.01 Theta Average 
Power 

73.64±2.58 71.91±7.16 76.37±2.61 Beta, Theta Average 
Power 

5. Discussion 

The results show that we can effectively classify between low 
stress and control and high stress and control by using the average 
and absolute power in the alpha, theta, and beta bands. We 
expanded the experimental setup even further to compare high and 
low stress levels while utilizing an artificial neural network as a 
fourth classifier. Notably, as table I, II, III, and IV demonstrate, the 
absolute power feature by itself does not perform well across all 
classifiers. For the most part, however, average power works better 
as a feature than other combinations of features and bands; this is 
not the case for LDA, which needs a combination of features from 
the theta band's average power and the alpha and beta bands' 
absolute power in order to improve the classifier's performance. 

 According to a previous report, in the low stress condition, the 
average power obtained from the theta band using Fourier 
transforms analysis consistently performed better across all 
classifiers. This is in line with previous studies that propose using 
theta range oscillations as a tool to identify mental illnesses and 
markers of mental stress [31,36]. Furthermore, all three of the 
initial classifiers demonstrated a significant increase in 
classification accuracy between high stress and control, averaging 
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87% ((86.83 + 82.53 + 94.55)/3) for SVM, 82.53% for LDA, and 
94.55% for DT. The accuracy falls between 50% and 75% when 
there is less stress and control. This is expected given the strong 
similarities between the low levels of stress and control in terms of 
brain region activation. Surprisingly, the LDA classifier 
outperforms the other classifiers in this condition, achieving an 
accuracy of 85% in the classification between low stress and 
control by aggregating the Alpha, Theta, and Beta bands in table 
II. In contrast, DT performs better than all other classifiers—
including LDA—in the second condition of control vs. high stress. 
But LDA performs better than the other classifier once more when 
it comes to the final condition of low stress vs. high stress. Except 
in the second case, LDA outperforms the other classifier in general. 
However, because LDA has a simpler discriminatory power to 
classify between two classes linearly, it did not perform 
significantly worse than DT, staying above the 80% range.  

 Although it has been suggested that Alpha and Theta bands 
correlates to mental stress and cognitive workload [31,36], studies 
have suggest the capabilities of Beta waves associated to stress 
[37] as well. This explains the surprising effects of aggregating the 
average power from the beta band to the Theta band in the control 
VS high-stress condition as  it has been shown that beta band is 
used as a dynamic marker for stress assessment [32,38]. Further, 
our results point to the fact that alpha band waves from average or 
absolute power features do not perform as well generally compared 
to beta and theta features. This is likely because alpha waves are 
often correlated to awake states where further and more distinctive 
pre-processing methods to further segment alpha wave bands is 
needed to use it as a feature for stress detection. 

It is therefore very likely that future research will call for the 
reduction of such channels in order to prevent noisy data from 
being used as a feature by classifiers. Furthermore, we discovered 
that the validation accuracy for individual Alpha and Theta waves 
absolute power classification using SVM is 68% and 71% when 
utilizing only 13 channels, specifically those from the parietal, 
frontal, and temporal lobes. This yields an accuracy that is 
comparable to, and in the case of Alpha waves, better than, using 
129 channels. We further hypothesize that, since a decision tree 
has low discriminatory power, reducing its features should be able 
to achieve higher accuracy because it won't overfit the 
classification model like other classifiers like SVM and LDA tend 
to do. Nevertheless, this will be examined in later research when 
examining the classification of stress and control using decision 
trees. Furthermore, since we only have 22 subjects in our dataset, 
our findings are not indicative of the whole population. Larger 
dataset samples will be needed for future research in order to 
properly extrapolate our findings to other populations. 

Moving on, the results produced from the neural network 
classifier are comparatively well given that we only used the 
minimum settings provided by MATLAB’s toolbox extension. To 
be able to perform with accuracies of 76% to 86% suggests that 
fine-tuning the hyperparameters of the neural network and the 
implementation of a search strategy will aid the improvement of 
the results. Moreover, genetic algorithm such as swarm 
optimization can be implemented in addition to usual search 
strategies such as was done in [39] to detect emotional stress. 

Additionally, there are studies involving the use of alpha 
asymmetry and the frontal region of the brain to determine the 
presence of stress. These are then used in a neurofeedback system 
to train people how to better manage their stress [40]. The authors 
also suggested the potential use of gaming simulation to better 

alleviate stress among university students, providing a good 
platform for future works regarding this.  

The overall sensitivities and specificities of the best performing 
models tend to classify the participants as stressed compared to 
control. Finally, our result is comparable to the original author’s 
dataset and its classification with our proposed features and 
classifiers where linear regression and naïve bayes classifiers were 
used to obtain accuracies from 75% to 83% [10]  whilst ours 
ranged from 68% to 83% with SVM, LDA, DT and ANN 
classifiers. One aspect to consider in our slightly underperforming 
accuracies could be caused by the lack of features used as the 
original author had use absolute powers, relative powers, 
coherence, amplitude asymmetry and phase lag. Furthermore, our 
study only used three sets of features, alpha, beta, and theta to 
achieve the reported accuracies. This contrasts with another study 
using four sets of features whereby the delta waveband is included 
to achieve 99.98% accuracy [28]. However, it should be 
emphasized that the accuracy reported in this study drops to around 
80% when looking at mixed classification (between stress and 
control) as opposed to subject-wise classification, providing a 
useful platform for further studies. Our future work intends to 
focus on the usage of singular value decomposition (SVD) to 
obtain the features of all the channels with minimal loss of 
information and possibly the use of PCA-enabled classifiers for 
dimensionality reduction of features. 

6. Conclusion 

We have successfully shown the usefulness and effectiveness 
of classifying mental stress states from control conditions using 
alpha, theta, and beta waves with the LDA, SVM, DT and ANN 
classifiers of up to 95% accuracy. This is in line with existing 
work to suggest the usage of the potential application of discrete 
wavelet transform with Machine Learning classifiers for EEG 
extraction and classification of mental states efficiently. The 
proposed framework based on wavelet transform shows 
significant potential for mental stress assessment, which could be 
further improved for developing a Computer-Aided Diagnosis 
(CAD) technique for automatic mental assessment in the future. 
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