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 The advent of laparoscopic surgery has increased the need to incorporate simulator-based 
training into traditional training programs to improve resident training and feedback. 
However, current training methods rely on expert surgeons to evaluate the dexterity of 
trainees, a time-consuming and subjective process. Through this research, we aim to extend 
the use of object detection in laparoscopic training by detecting and tracking surgical tools 
and objects. In this project, we trained YOLOv7 object detection neural networks on 
Fundamentals of Laparoscopic Surgery pattern-cutting exercise videos using a trainable 
bag of freebies. Experiments show that YOLOv7 has a mAP score of 95.2, 95.3 precision, 
94.1 Recall, and 78 accuracy for bounding boxes on a limited-size training dataset. This 
research clearly demonstrates the potential of using YOLOv7 as a single-stage real-time 
object detector in automated tool motion analysis for the assessment of the resident’s 
performance during training. 
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1. Introduction 
This paper is an extension of work originally presented in 

DICTA 2021 [1]. In this project, more data is collected and 
prepared to train YOLOv7 [2] as a real-time object detector of 
laparoscopic tools and objects in the Fundamentals of 
Laparoscopic Surgery (FLS) pattern-cutting exercise using a box 
trainer [3]. Laparoscopic procedures have become increasingly 
popular in operating rooms worldwide due to their numerous 
benefits, leading medical schools to incorporate this technique into 
their surgery curricula [4]. However, the one-on-one 
apprenticeship model is subjective and time-consuming. To 
address this issue, laparoscopic trainers and simulators have 
become well-accepted alternatives that allow for safe and harm-
free training [5]. Although simulation systems offer objective 
measurements and remote training, expert surgeons are still 
required to assess surgical skills proficiency. Virtual Reality (VR) 
training provides a completely virtual environment with haptic 
feedback and complex software, but it is expensive and requires 
highly sophisticated mechanical design [6]. By improving the real-
time object detection of laparoscopic tools and objects, this project 

aims to enhance the effectiveness and accessibility of laparoscopic 
training. 

Box trainers and physical trainers provide a practical 
environment for using real laparoscopic instruments to improve 
basic skills such as knotting, handling objects, and cutting tissues. 
While time is currently the primary metric for evaluating a 
surgeon's performance using statistical tools, studies have shown 
that box trainers enhance trainee confidence and dexterity [7], [8]. 
However, objective assessments of laparoscopic skills still require 
experienced surgeon evaluations. To address this issue, hybrid 
trainers combine the benefits of simulators and physical trainers to 
recreate real-world conditions and provide objective assessments 
through integrated software. Hybrid trainers provide a 
comprehensive approach to evaluating real-world situations by 
merging both simulators and physical trainers. 

The emergence of deep learning [9] has proven to be a highly 
effective machine learning approach for detecting and classifying 
objects from raw data by learning representations from the data. Its 
superior feature extraction and expression capability has surpassed 
other machine learning methods in many areas, especially when 
dealing with large data sets. Therefore, deep learning appears to be 
a very promising method for detecting tool presence [9]. 
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The main contributions of this research are as follows: 

• Contribution to the creation of the first laparoscopic box trainer 
custom dataset, i.e., the WMU's Laparoscopic Box-Trainer 
Dataset [10]. This custom dataset was developed through a 
research collaboration between Western Michigan University's 
Department of Electrical and Computer Engineering and the 
Department of General Surgery at Homer Stryker M.D. School 
of Medicine. Researchers are free to download the dataset at 
their convenience. This dataset was created specifically to aid 
research in the field of Laparoscopic Surgery Skill Assessment. 
It consists of videos showcasing four different tasks on the 
Laparoscopic Box-Trainer - two precision cutting tests, 
intracorporeal suturing, and peg transfer. These videos were 
recorded by surgeons, surgical residents, and OB/GYN 
residents at the Intelligent Fuzzy Controllers Laboratory at 
WMU. You can access the dataset at 
https://drive.google.com/drive/folders/1F97CvN3GnLj-
rqg1tk2rHu8x0J740DpC. The dataset also contains labeled 
images with related labels for all tasks, and more files will be 
added as the research progresses.  

• Proposing a robust real-time multi-class object detection and 
tracking module based on YOLOv7 as a single-stage real-time 
object detection neural network for surgical tools and objects 
in FLS pattern cutting test.  

The adoption of YOLOv7 is a wise choice because of its 
superior network architecture, precise object detection, efficient 
label assignment, and resilient loss function and model training. 
Moreover, YOLOv7 is more cost-effective than other deep 
learning models [2] and is highly proficient in detecting and 
tracking surgical tools and objects within spatial boundaries. 

In order to fully explain our proposed system, this paper is 
organized as follows: Section 2 gives a brief introduction to the 
methods used for evaluating the performance of laparoscopic 
surgery training. In Section 3, we present our methodology. 
Section 4 contains a summary of our experimental findings, and in 
Section 5, we outline our plans for future work. 

2. Background 

FLS tool is widely used for psychomotor skill training in 
surgery. The American College of Surgeons (ACS) has created 
didactic instructions and manual skills to improve the basic 
laparoscopic surgery skills of surgical residents and practicing 
surgeons using the FLS box trainer [3]. 

The FLS box trainer, along with didactic instructions and 
manual skills, can help surgical residents and practicing surgeons 
improve their basic surgical skills. Current assessment methods 
focus on detecting surgical tools and analyzing motion, but it's also 
crucial to track surgical instruments during operations or training 
to analyze operations and assess training. 

In a previous study [5], computer vision algorithms were used 
to assess performance during surgical tool detection, 
categorization, and tracking in real-time FLS surgical videos. An 

artificial neural network learned from expert and non-expert 
behaviors and a web-based tool was created for uploading MIS 
training videos securely and receiving evaluation scores with 
trainee performance analysis over time. The assessment used a 
multi-dimensional vector consisting of smoothness of motion, 
proficiency of surgical gestures, and number of errors. 

Another study [6] presented a trainer for assessing laparoscopic 
surgical skills using computer vision, augmented reality, and AI 
algorithms on a Raspberry Pi programmed in Python. The 
assessment method employs an artificial neural network based on 
a predetermined threshold for the peg transfer task. A simulation 
of pattern-cutting was used to track laparoscopic instruments, 
while computer vision libraries counted the number of transferred 
points during the transfer task. 

 Recent advancements in deep learning, specifically CNN 
networks, have shown remarkable progress in computer vision 
tasks [11]. Various studies have implemented deep learning 
architectures to detect surgical tool presence in laparoscopic videos 
[12], [13], [14], and phase recognition [15].  

Some projects have created systems that can detect 
laparoscopic instruments in real-time during robotic surgery, using 
the real-time detection algorithm of the CNN network. These 
systems are based on the object detection systems YOLO [16] and 
YOLO9000 [17], with a mean average precision of 84.7 for all 
tools. They also have a speed of 38 frames per second (FPS). 

The available skill assessment frameworks have some 
limitations when it comes to evaluating fundamental laparoscopic 
skills based on globally accepted standards and criteria. These 
frameworks only focus on tool motion and do not consider surgical 
objects and their manipulation during training. For instance, the 
Objective Structured Assessment of Technical Skills (OSATS) 
[16] and the Global Operational Assessment of Laparoscopic 
Skills (GOALS) [17] are examples of such frameworks. To 
address this limitation, a new system was developed using a deep 
learning algorithm called YOLACT [18]. This system tracks 
surgical tool motion and detects surgical objects, including their 
deformability, shapes, and geometries in the surgical field of view. 
The system was tested on a modified FLS peg transfer exercise and 
provided a more comprehensive evaluation of laparoscopic skills 
beyond tool motion alone. 

To evaluate the abilities of those performing intricate 
intracorporeal suturing, automated systems have been suggested. 
One such system, developed by the authors in [19], uses the latest 
versions of One-Stage-Object-Detectors like YOLOv4, Scaled-
YOLOv4, YOLOR, and YOLOX. A dataset of suturing tasks was 
used to train this system, which strikes a balance between cutting-
edge architectures. In [20], the authors proposed a skill evaluation 
system that employs Scaled-YOLOv4 and a centroid tracking 
algorithm.
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 The authors presented a fuzzy logic supervisor system for 
assessing surgical skills in [21]. This system used multi-class 
detection and tracking of laparoscopic instruments during standard 
FLS pattern-cutting tests. However, the system had limitations 
when the instruments or objects were not within view of the 
camera. To address this issue, a new autonomous evaluation 
system was proposed by authors in [22], which utilized two 
cameras and multi-thread video processing to detect laparoscopic 
instruments.  

In addition, two fuzzy logic systems were implemented in 
parallel to evaluate left and right-hand movement. The authors in 
[23] have improved the YOLOV7x algorithm significantly for 
detecting surgical instruments. These enhancements effectively 
address concerns about dense arrangements, mutual occlusion, 
difficulty in distinguishing similar instruments, and varying 
lighting conditions. 

To provide a more comprehensive assessment of surgical 
quality, our approach includes examining circle shape 
deformability, as well as laparoscopic tool tracking and detection 
in box trainer pattern cut test recorded videos. 

3. Methodology 

The FLS box trainer boasts multiple exercises, but we've 
focused on perfecting a pattern-cutting exercise. Our system 
centers around two circles printed on artificial tissue, with a radius 
of 2.5 and 3.0 centimeters for the inner and outer circles 
respectively Figure 1. Keeping the scissors within these circles is 
essential for this exercise, as crossing either circumference will 
result in an incorrect cut. 

• In this paper, we propose a system that works seamlessly with 
our intelligent FLS box trainer. This system utilizes two 
cameras placed inside the box to record videos, which are then 
used to train a deep-learning object detector and tracker. We 
have employed powerful deep learning algorithms YOLOv7, 
which have set a new standard in real-time object detection. 
Our model has been trained, validated, and tested using a 
custom data set to track three objects - the scissors, the clipper, 
and the circle - within the box trainer's surgical view. The 
circle is the object that needs to be cut out, and this is achieved 
using laparoscopic scissors and clippers.  

• Figure 2 illustrates the complete workflow of our method. 
First, we divide the recorded videos into frames and 
preprocess them before training the YOLOv7 network. After 
successfully training the model, it can accurately detect and 
track intended objects in both tested videos and real-time 
videos. Lastly, we calculate the performance evaluation 
parameters and generate an output video that displays the 
labeled surgical objects. 

3.1. Network Architecture 

The YOLO family of models has a long-standing association 
with the Darknet framework [24], tracing back to its inception in 
2015 [25]. 

Figure 1: FLS Pattern cutting test setup views as captured by the two cameras. 

 

Figure 2: The proposed workflow chart.  

The YOLO (You Only Look Once) detection layers rely on 
regression and classification optimizers to determine the necessary 
number of anchors. The image is divided into cells using a 19x19 
grid, where each cell can predict up to five bounding boxes. 
However, some of these cells and boxes may not contain an object, 
so a probability of object presence (PC) is utilized to remove low-
probability bounding boxes. Non-max suppression is subsequently 
used to select the bounding boxes with the highest shared area. 
YOLO has many versions and variants that enhance performance 
and efficiency.  

The most recent official version, YOLOv7, was created by the 
original authors of the architecture. It is a single-stage real-time 
object detector and, according to the YOLOv7 paper [2], it is 
currently the fastest and most accurate real-time object detector 
available. 

• E-ELAN (Extended Efficient Layer Aggregation 
Network): It is the computational block in the YOLOv7 
backbone, in which the network learns faster by 
expanding, shuffling, and merging cards to continuously 
improve its ability to learn without destroying its gradient 
path. 

http://www.astesj.com/


K.N. Alkhamaiseh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 87-95 (2023) 

www.astesj.com     90 

• Concatenation-based model scaling allows the model to 
maintain the properties that it had at the initial design and thus 
maintain the optimal structure.  

• To replace the convolutional layer or residual with re-
parameterized convolution, planned re-parameterized 
convolution without an identity connection uses RepConv.  

• Coarse for auxiliary and Fine for lead loss: As YOLOV7 
includes multiple heads, the Lead Head is responsible for the 
final output, and the Auxiliary Head is used to train in the 
middle layers as illustrated in Figure 3 (a). Loss assists with 
updating the weights of these heads, allowing for Deep 
Supervision and better model learning. A Label Assigner 
mechanism was introduced to enhance deep network training, 
which considers the network prediction results and ground truth 
before assigning soft labels as shown in Figure 3 (b). Unlike 
traditional label assignment methods that generate hard labels 
based on given rules by directly referring to the ground truth, 
reliable soft labels use calculation and optimization methods 
that also consider the quality and distribution of prediction 
output together with the ground truth. 
YOLOv7 introduces important reforms that significantly 

improve real-time object detection accuracy while keeping 
inference costs low. Compared to state-of-the-art real-time object 
detections, YOLOv7 reduces parameter and computation costs by 
about 40% and 50%, respectively, resulting in faster inference 
speeds and higher detection accuracy [2]. YOLOv7 has a fast and 
robust network architecture that integrates features, provides 
better object detection performance, and employs an efficient 
model training process with a robust loss function and label 
assignment. Overall, YOLOv7 represents the best option for 
optimizing real-time object detection.      

3.2. Dataset 

Our laparoscopic detection and tracking project requires a 
dataset annotated with spatial bounds for objects and tools. To 
achieve this, we extracted 1572 labeled images from 13 videos 
ofthe FLS pattern-cutting test, recorded by an expert surgeon and 
residents from the School of Medicine at Western Michigan 
University [26]. These videos have a resolution of 640x480 pixels 
and a frame rate of 30 frames per second and were carefully 
selected to accurately depict various instrument scenarios, lighting 
conditions, and angles. We resized the images to 416x416 pixels 
with auto orientation as a preprocessing step. 

Figure 4 displays a ground-truth example utilizing a free 
preprocessing tool from Roboflow [27]. This tool manually labels 

the three intended objects- circle, clipper, and scissors in each 
frame. To augment our dataset's sample size, we employed various 
techniques, such as affine transformations, rotations, cropping, 
shearing, hue saturation, and blurs, as depicted in Figure 5. To 
ensure accuracy, new pixels were filled with the average RGB 
value of the corresponding image, which has proven to be highly 
reliable [28]. Our augmentation step yielded 3,458 images, with 
87% designated for training, 8% for validation, and 5% for testing. 
The dataset's distribution of instruments and objects is outlined in 
Table 1. 

3.3. Evaluation Criteria 

To evaluate our work, we used box loss, objectness loss, 
classification loss, precision, recall, and mean Average 
Precision(mAP) as performance metrics. Figure 6 depicts these 
metrics. By measuring box loss, we were able to determine the 
algorithm's ability to accurately locate the center of an object and 
ensure that its bounding box adequately covers it. Objectness 
measures the probability that an object exists within a proposed 
region, serving as a confidence metric. High objectness indicates a 
greater likelihood that an object will be visible in the image 
window. Classification loss evaluates the algorithm's ability to 
predict the correct object class. Ground-truth intersection over 
union (GIoU) refers to the overlap between the ground-truth region 
and the detection result region. In the context of GIoU judgment, 
precision is the ratio of true positives to total detections. 
Meanwhile, recall is the ratio of successful detections to the total 
number of classes. The mAP, on the other hand, displays our 
bounding box predictions based on various GIoU thresholds set at 
mAP@0.5:0.95 and mAP@0.5 on average. To obtain the final 
estimate, the AP value is computed for each class across all GIoU 
thresholds, and the mAP is averaged for all classes. 
Table 1: Details of the dataset: The number of instances for each instrument type 
is shown, distributed over 1572 images, and the resulting augmented sample size 
is included. 

Object type Instant samples Augmented sample size 
Scissors 1253 3759 
Clipper 1289 3867 
Circle  1432 4296 
Total instances  3974 11922 
Images 1572 3458 

 
(a) The addition of an auxiliary head is included in the model.                                          (b) Coarse-to-fine lead guide assigner. 

Figure 3: YOLOV7 multiple heads and Label Assigner [2]. 

http://www.astesj.com/


K.N. Alkhamaiseh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 87-95 (2023) 

www.astesj.com     91 

 
Figure 5: Some sample images for preprocessing using augmentation techniques. 

 
Figure 4: Image labeling process ground-truth example. 

4. Experimental Results  

This section outlines the setup used to train and evaluate 
CNN-based models for FLS trainer pattern-cutting test instrument 
recognition and tracking. We utilized a notebook developed by 
Roboflow.ai [29] to train YOLOv7 with our custom dataset and 
yolov7_training.pt pre-trained weights. 

4.1 Training 

To train YOLOv7, the proposed system used the Tesla P100-
PCIE-16 GB GPUs with 56 processors and 16,280 MB of memory 
obtained from Google Colab [30]. To implement the process and 
validate the performance of the model scripts, several Python 
libraries were used (e.g., in [31] and [32]). The YOLOv7 model 
was trained with 416 x 416-pixel images, 16 batches, and 200 
epochs. The training process took 3.357 hours with 10.6G of GPU 
memory. 

4.1 Quantitative and Qualitative Results 

In this subsection, we quantitatively and qualitatively evaluate 
the performance of our approach to detecting and tracking the FLS 
laparoscopic instruments and objects in the pattern-cutting test 
using YOLOv7.  

The performance details during the training and validation 
phases are presented in Figure 6 and Table 2. Along with the 
losses, precision, recall, and mean average precision were 

calculated using GIoU thresholds of 50% and 50%:95% for up to 
200 iterations. The model's precision, recall, and mean average 
precision exhibited rapid improvement, stabilizing after roughly 
100 epochs with minor fluctuations at the start. Moreover, the 
validation data's classification loss decreased significantly until 
approximately epoch 50. To select weights, early stopping was 
employed. 

Further, Figure 7 presents a precision-recall curve that provides 
a granular performance indicator for each class. The PR curve 
analysis indicated that the circle provided the highest performance 
(98.7%), followed by the clipper (95.9%), and the scissors 
(91.0%). It was expected since the scissors were not always clearly 
visible. They may be obscured by the gauze while cutting and 
exhibit different orientations as they move. Table 3 shows the 
precision, recall, and mean average precision values for each class.  

Moreover, the F1 score measures the model accuracy by 
calculating the harmonic mean of precision and recall for the 
minority positive class. The harmonic mean emphasizes similar 
precision and recall values; the more precision and recall scores 
differ, the worse the harmonic mean.  This score provides both 
recall and precision, which means that it captures both positive and 
negative cases. For all classes, the F1 score for the proposed model 
is 0.95 at a confidence level of 0.78 as shown in Figure 8. 

Figure 6 showcases qualitative results for the suggested 
module. The top row displays the actual boxes, and the second row 
reveals the detection and classification outcomes obtained from 
YOLOv7. Despite the laparoscopic instruments and circles having 
deformities, varied orientations, locations, and some covering, the 
detection accuracy is quite high. 

Moreover, this system has demonstrated an exceptional ability 
to detect and track targeted objects with a high degree of accuracy 
in pattern-cutting test videos, taking only 12.3 milliseconds per 
frame for processing. An example of a pattern-cutting test with 
active tracking and detection can be seen in Figure 9, which shows 
some selected frames from two videos recorded by two different 
cameras. The trained model can detect and track the scissors, 
graspers, and circles despite their varying orientations, locations, 
and coverage.

http://www.astesj.com/


K.N. Alkhamaiseh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 87-95 (2023) 

www.astesj.com     92 

 
Figure 6: Plots of the box loss, objectness loss, classification loss, precision, recall, and mean average precision (mAP) for both the training and validation sets over the 

training epochs.

Table 2: Losses, mean average precision, precision, and recall final values.  Table 3: Precision, recall, and mean average precision values for each class. 

 

Figure 7: Precision-recall (PR) curves for all classes.                                                      
                        Figure 8: F1 score curves for all classes.

Afterward, testing was conducted on the lab's main 
workstation. This workstation is equipped with a 2.5GHz Intel(R) 
Xeon(R) CPU E5-1650 v4 and 32.0GB of RAM. With a delay of 
1.67 seconds, the model can detect and track the circle, the grasper, 
and the scissors. In this case, the delay was caused by the time it 
took to capture and process frames. To conduct real-time 
assessments, more powerful hardware is required. 

Our study proposes a new approach for detecting and tracking 
laparoscopic instruments, using deep-learning neural networks.  

We have compared our approach with other methods reported 
in the literature, summarizing the number of extracted images, 
labeling tools, model built, and results in Table 4. Our proposed 
approach outperforms previously reported models, achieving an 
F1 score of 0.95 at a confidence level of 0.78, and a mAP score of 
95.2, 95.3 precision, 94.1 Recall, and real-time processing speed 
of 83.3 FPS, despite the limited number of videos. The models in 
previous studies may differ in construction, which could explain 
the differences in results. Overall, our study presents a reliable and 
efficient method for assessing the performance of trainers in 
laparoscopic instrument use.

Evaluation Criteria Circle Clipper Scissors 
Precision 0.979 0.949 0.932 
Recall 0.966 0.957 0.9 
mAP@0.5 0.987 0.959 0.91 
mAP@0.5:0.95 0.889 0.537 0.495 

Evaluation Criteria Final Value 
Box Loss 0.01391 
Objectness 0.004788 
Class. Loss 0.0003568 
mAP@0.5 0.951 
mAP@0.5:0.95 0.641 
Precision 0.95 
Recall 0.941 
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Figure 9: Qualitative results showing the detection of four test images. 

 
Figure 10: Qualitative results showing detection and tracking of laparoscopic instruments in two tested videos 

(a) First camera tested video. 

(b) Second camera tested video. 
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One significant use of this model lies in the field of surgical 
education and performance evaluation. The output of the model, 
which includes images and videos, can serve as feedback for 
surgical performance or as a means of deliberate practice for 
cognitive behaviors during tests. Moreover, these results are 
accurate and can be utilized as input for further analysis. 
5. Conclusions and Future Work 

The aim of this study was to enhance laparoscopic surgical 
training and assessment by developing an extended dataset of 
instruments and objects for a box trainer pattern-cutting test and 
implementing a real-time object detection approach based on 
YOLOv7. Our findings demonstrate that our method effectively 

detects and tracks spatial tool and object movements and could be 
used to create a reliable real-time assessment system. Moving 
forward, we plan to integrate these results into a fuzzy logic 
decision support system to develop an automated GOALS 
assessment system. 
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Table 4: A comparison summary of the proposed model with the related reported approaches in the literature. 

Approach Dataset Labeling 
Tool Model Accuracy

% Precision % Speed 

The proposed model 
1572 images 

extracted from 
our lab dataset [10] 

Roboflow 
[27] Yolov7 78 mAP 95.2 

In real-
time at 

83.3 FPS 

Surgical tools detection based 
on modulated anchoring network in 
laparoscopic videos [12] 

5696 extracted 
from m2cai16-

tool-locations and 
AJU-Set datasets 

The data 
already 
labeled 

Faster R-CNN 
 

69.6% and 
76.5% for 

each 
dataset 

mAP 
69.6% and 

76.5% 
for each 
dataset 

not 
reported 

Real-Time 
Surgical Tool Detection in 
Minimally Invasive Surgery Based 
on Attention- 
Guided Convolutional Neural 
Network [13] 

4011 extracted 
from EndoVis 

Challenge, 
ATLAS Dione, 
and Cholec80-

locations 
datasets 

 
not 

reported 

ResNet50 with 
multi-scale 

pyramid 
pooling. 

not 
reported 

100, 94.05, 
and 91.65 
for each 
dataset 

 

In real-
time at 

55.5 FPS 
 

Deep learning based multi-label 
classification for surgical tool 
presence detection in laparoscopic 
videos [14] 

29478 

Pixel 
Annotatio

n 
Tool36 

EndoNet not 
reported 

mAP 
63.36 

not 
reported 

Identifying 
surgical instruments in laparoscopy 
using deep learning instance 
segmentation [15] 

333 not 
reported Mask R-CNN not 

reported AP 81 not 
reported 

Surgical-tools detection based on 
convolutional neural network in 
laparoscopic robot-assisted surgery 

[17] 

M2CAI 2016 
Challenge 

videos 

not 
reported 

YOLO 
 

not 
reported 

mAP 
72.26 48.9 FPS 

Robust real-time detection of 
laparoscopic instruments in robot 
surgery using convolutional neural 
networks with motion vector 
prediction [18] 

7492 extracted 
from m2cai16-
tool-locations 

dataset 

not 
reported 

 

YOLO9000 
 

not 
reported 

mAP 
84.7, 

 
38 FPS 

Instrument Detection for the 
Intracorporeal Suturing Task 
in the Laparoscopic Box Trainer 
Using Single-stage object detectors 

[19] 

900 images 
extracted from 

our lab dataset [10] 
 

Roboflow 
[27] 

 

YOLOv4, 
Scaled-

YOLOv4, 
YOLOR, and 

YOLOX 

not 
reported 

mAP50 
0.708 0.969 
0.976 0.922 

for each 
model 

not 
reported 

Surgical Skill Assessment System 
Using Fuzzy Logic in a Multi-Class 
Detection of Laparoscopic Box-
Trainer Instruments [21] 

950 images 
extracted from 

our lab dataset [10] 

not 
reported 

SSD 
ResNet50 V1 
FPN and SSD 
Mobilenet V2 

FPN 

not 
reported 

65% and 80% 
reliability, 70 

and 90 of 
fidelity for 

each 
architecture 

not 
reported 

Surgical Instrument Detection 
Algorithm Based on 
Improved YOLOv7x. [23] 

452 LabelImg 
Improved YOLOV7x 
algorithm based on 
RepLK Block and 

ODConv 
94.7 not reported not 

reported 
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