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 We present an inverted pendulum design using readily available V-slot rail components and 
3D printing to construct custom parts. To enable the examination of different pendulum 
characteristics, we constructed three pendulum poles of different lengths. We implemented 
a brake mechanism to modify sliding friction resistance and built a paddle that can be 
attached to the ends of the pendulum poles. A testing rig was also developed to consistently 
apply disturbances by tapping the pendulum pole, characterizing balancing performance. 
We perform a comprehensive analysis of the behavior and control of the pendulum. This 
begins by considering its dynamics, including the nonlinear differential equation that 
describes the system, its linearization, and its representation in the s-domain. The primary 
focus of this work is the development of two distinct control modes for the pendulum: a 
velocity control mode, designed to balance the pendulum while the cart is in motion, and a 
position control mode, aimed at maintaining the pendulum cart at a specific location. For 
this, we derived two different state space models: one for implementing the velocity control 
mode and another for the position control mode. In the position control mode, integral action 
applied to the cart position ensures that the inverted pendulum remains balanced and 
maintains its desired position on the rail. For both models, linear observer-based state 
feedback controllers were implemented. The control laws are designed as linear quadratic 
regulators (LQR), and the systems are simulated in MATLAB. To actuate the physical 
pendulum system, a stepper motor was used, and its controller was assembled in a DIN rail 
panel to simplify the integration of all necessary components. We examined how the 
optimized performance, achieved with the medium-length pendulum pole, translates to poles 
of other lengths. Our findings reveal distinct behavioral differences between the control 
modes. 
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1. Introduction   

1.1. Declaration 

This paper represents a substantial extension of work originally 
presented at the 2022 International Conference on System Science 
and Engineering (ICSSE) [1]. The differences with the previous 
publication are that here we now include the ability to change the 
physical pendulum’s mechanical characteristics, provide a more 
rigorous system analysis, build a custom testing rig, and improve 
upon previous system identification and testing procedures. 

1.2. Overview 

An inverted pendulum is a mechanical system comprising a 
rigid pole, with a pivot at one end that is located on a mobile cart. 
The challenge of building an inverted pendulum is that, in its 

inverted upright configuration, it represents a marginally an 
unstable system. The task is to maintain the system in this 
inherently unstable upright position, even in the presence of minor 
disturbances such as a gentle tap. Achieving this balance requires 
the implementation of a control strategy. The control mechanism 
must continuously measure the angular displacement of the 
pendulum from the vertical and correspondingly manipulate the 
cart's position to counteract any deviations. 

1.3. Previous work 

The inverted pendulum is widely recognized as one of several 
classical problems in the field of control engineering that is 
enlightening to study [2]. It has been used as a benchmark in 
robotics and control theory for almost the last 100 years and is 
often chosen to test and evaluate new control methods [3]. This 
preference arises because pendulum balancing represents behavior 
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relevant to a wide range of theoretical challenges and practical 
applications [4,5].  

One prominent example of these behaviors is the inverted 
pendulum's manifestation as a simple non-linear dynamic system, 
characterized by stable and unstable equilibrium points. During the 
dynamic transition from a downward to an upright position, the 
pendulum exhibits nonlinearity, primarily arising from how the 
pendulum angle affects the applied torque due to the pendulum's 
weight [6]. In addition, it represents a system for which it is crucial 
to achieve stability at the upright position in the presence of 
disturbances, which can only be achieved by moving the cart 
appropriately along its rail [7].  

James Kerr Roberge was one of the first researchers to describe 
an inverted pendulum [6]. Since then, many inverted pendulum 
designs and their variants have been constructed and studied, 
including ones aimed at teaching and research [8,9], mobile 
designs [10,11], pendulums mounted on drones [12], as well as 
rotary designs [13,14].  

Derivations of the dynamics of inverted pendulums and their 
simulation have been carried out by many researchers, for example 
[15]. Many different approaches to control have also been 
investigated. These include PID and classical approaches to 
control in the s-domain [16,17], state feedback control [1,18], and 
Lyapunov-based controller design [19], and comparisons have 
been made between different controllers [20]. Machine Learning 
(ML) approaches are becoming an increasingly successful way to 
deal with hard control problems. They mark a change from 
designing controllers based on explicit mathematical models 
derived from physics to more empirical methodologies that are 
essentially data driven [21]. ML approaches make use of 
reinforcement learning (RL) based on Q-Learning [22], Policy 
Iteration [23], and Deep Q-Networks [24]. The PILCO RL 
algorithm is especially data efficient, since it builds and makes use 
of a probabilistic model of the task dynamics as it learns to balance 
the pendulum [25]. Further ML approaches involve neural 
networks [26,27] and genetic algorithms [28,29]. Hybrid methods 
using control engineering approaches and neural network 
techniques have also been investigated [30]. Researchers often 
compare different control approaches [31]. More complex two-
link inverted pendulums have also been studied by several 
researchers and implemented using a range of control techniques 
[32]. Other researchers have even investigated the use of 
reinforcement learning to control a pendulum with three links [33]. 

The inverted pendulum also forms a basis for understanding 
simple balancing robots [34–36]. There is also increasing interest 
in the construction of legged and humanoid robots[37,38], in 
which control of balance plays an important role [39–41].   

Falls in the elderly are a common health issue worldwide and 
consequently understanding the mechanisms of how humans 
maintain balance whilst standing is an area of much research [42–
45]. The inverted pendulum has also been used to model and 
understand this process [44–52]. More recent work has also 
included the use of experiments with robotic manipulanda to 
investigate how humans can balance items with their hands [53–
56]. 

Given the significance of the inverted pendulum in the field of 
control engineering, inverted pendulum theory finds extensive 
applications across diverse fields, including robotics, aerospace 
systems, marine systems, flexible systems, mobile systems, and 
locomotive systems [57–59]. The characteristics of the inverted 
pendulum make it well-suited for modelling a multitude of 
practical scenarios, highlighting its significance and profound 
influence across various industries. 

 
Figure 1: Schematic diagram showing main pendulum components. 

2. Mechanical design of the Inverted Pendulum 

2.1. Extension of previous work 

The current inverted pendulum design expands upon our 
previous publication [1], in several important ways. We made 
modifications to the mechanical components of the pendulum 
system, enabling us to alter its physical characteristics and now 
utilize a range of pendulum configurations, with changes in 
pendulum length (635mm, 335mm, 233mm), viscous damping 
(adding a paddle to the pole), and friction (compression of a brake 
on the pendulum pole).  

2.2. Inverted pendulum components 

Here we build an inverted pendulum system consisting of a 
pole pivoted at one end on a cart that moves on a linear track 
actuated by a stepper motor, which can be balanced in its inverted 
position by observing the pole angle and controlling cart 
movement. Our design comprises several distinct component 
parts, illustrated in Figure 1.  

The pendulum assembly is composed of several distinct 
components. These include a v-groove aluminum profile track and 
a cart unit that supports the inverted pendulum, moving along the 
track on a wheeled cart. Additionally, a stepper motor unit propels 
the cart via a timing belt from one end of the track, while a passive 
idler pulley supports the belt at the opposite end. The motor and 
pulley mechanisms are securely affixed to the aluminum profile 
structure using T-nuts. This design not only offers the flexibility to 
easily remove and replace these parts with similar components but 
also simplifies the process of tensioning the drive belt. 

2.3. Track 

The mechanical design integrated a V-slot profile to realize the 
pendulum track. This streamlined construction since it enabled the 
use of readily available accessories. These included a stepper 
motor mounting plate, an idler pulley mechanism, as well as gantry 
plates.  
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2.4. Cart 

A 4-wheeled gantry plate formed the basis of the cart 
mechanism. During balancing operation, it traversed the V-slot 
aluminum track along its sides as needed to balance the pendulum 
pole. Wheel clearances were adjusted so the cart remained securely 
on the track without excessive wobbling, while also avoiding 
undue friction. 

A thick flat PLA+ 3D-printed rectangular sheet with mounting 
holes was affixed to the gantry plate. This served as the support for 
both a ball bearing race and an encoder unit, which held and 
facilitated the rotation of a shaft. This shaft, in turn, held the 
pendulum pole, allowing it to swing freely. The incremental 
encoder measured the pole's angular deviation from the vertical 
position, as depicted in Figure 2. 

 
Figure 2: 3D-printed pendulum cart incorporating an encoder and an inertial 
measurement unit (IMU). A flat-topped table can be attached to the end of the 
pendulum to support objects on its surface. 

2.5. Shaft friction adjustment 

Normally, the rotation of the pendulum shaft is resisted by a 
low level of friction, arising from the bearing and the incremental 
encoder. To increase the amount of friction and examine its effect 
on pendulum behavior, a spring-loaded braking assembly was 
constructed (Figure 3). This consisted of a semicircular brake pad 
section made of PLA+ that could be pressed against the pendulum 
rotary shaft using a compression spring, thereby hindering its 
rotation. By fully withdrawing the brake, it was also possible to 
remove its effect completely. 

2.6. Standard pendulum pole 

The standard pendulum pole consists of a pole crafted from a 
brass segment, selected for its easy machinability and high density. 
One end of the pole was threaded to securely screw into an 
attachment component connected to the main shaft, ensuring a 
sturdy attachment as depicted in Figure 2. This led to an overall 
pendulum length of 335mm. While a relatively short pole increases 

the balancing challenge, necessitating quicker cart reactions due to 
the system's elevated natural frequency, it yields several benefits. 
A compact pole is not only more manageable but also ensures 
increased safety by minimizing accidental impact risks. Moreover, 
it provides characteristics that better match other systems, like 
smaller balancing robots [60]. 

2.7. Additional pendulum poles 

An easy way to alter the fundamental characteristics of the 
pendulum is to change the length of the pole. To do so, two 
additional pendulum poles were built (Figure 4). These poles 
consisted of 8mm diameter stainless steel poles, leading to 
pendulum lengths of 222mm and 635mm. Since they were only 
required for intermittent use, no screw attachment was used, 
thereby facilitating construction. Instead, they were simply 
clamped at their endpoint into another attachment component 
connected to the main shaft. 

 
Figure 3: Shaft friction adjustment mechanism for the pendulum cart, designed to 
alter the sliding friction around the pendulum's rotational axis. 

2.8. Pendulum pole end attachments 

To provide a platform for placing objects, and to shield its 
endpoint for safety reasons, a round disc was 3D printed from 
PLA+ and slid onto the end of the pendulum pole, where it was 
held in place by friction. 

To offer a means to change the viscous air resistance 
experienced by the pendulum pole as it swung, the round disc at 
the endpoint of the pole could be replaced with a paddle (Figure 
5). The paddle consisted of a 5mm thick square measuring 100mm 
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by 100mm and was 3D printed from PLA+. It slid onto the end of 
the pole via a central mounting hole and was again held in place 
by friction. By rotating the paddle 90°, it was possible to adjust the 
amount of viscous resistance the pendulum pole experienced from 
a low to a high value. 

 
Figure 4: Three different pendulum poles were utilized to evaluate the controller's 
sensitivity to changes in pendulum length. 

2.9. Stepper motor actuation 

The motor drive assembly includes an aluminum plate, situated 
on the profile rail, which serves as firm support for a NEMA23 
stepper motor. The motor is securely affixed to the plate using 
bolts. The motor is connected to a drive pulley at its front, and an 
encoder is mounted on the rear end of its shaft. This enables 
accurate measurement of the cart's position, although it is only 
needed to analyze the pendulum’s behavior and is not involved in 
the balancing process (see Figure 6). 

To operate the stepper motor, an A4988 stepper controller is 
employed, driven from an Arduino Mega 2560 R3 
Microcontroller. The latter is programmed in C++ and provides 
precise control of the pendulum cart along the linear rail.  

2.10. Belt 

A pulley and belt mechanism are used to convert the motor's 
rotary motion into linear movement, thereby appropriately driving 

the cart along its rail. The cart traverses its designated rails using a 
GT2 timing belt, which is typically used in 3D printers. The belt, 
affixed to the cart using steel clamps, spans almost the entire length 
of the track. The stepper motor, located at one end of the track, has 
a 60-tooth GT2 motor pulley secured to its shaft. A passive idler 
pulley is situated at the opposite end of the track. Ball bearings, 
integrated into the idler pulley, minimize frictional resistance, 
ensuring smooth operation even under the stress of high belt 
tension. Adjusting the precise location of the idler provides an easy 
means to modify belt tension. 

  
Figure 5: The pendulum paddle can be rotated, thus adjusting the viscous drag due 
to air resistance from low to high values. 

 

 
Figure 6: Stepper motor actuation, showing the drive pulley and a custom-made 
3D-printed encoder mount at the motor's rear. 

2.11. Inertial Measurement Unit 

To support future developments of the pendulum system, a 
cost-effective 6-DOF accelerometer/gyro (MPU-6050) was 
strategically mounted to a 3D-printed support on the pendulum 
pole, aligning it with the pendulum shaft's rotational axis. This 
configuration presents an alternative method to measure the pole's 
angular displacement. The pendulum shaft's rotation revolves 
around the MPU-6050's y-axis. When in the inverted 

http://www.astesj.com/


L. Álvarez-Hidalgo et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 120-143 (2023) 

www.astesj.com     124 

configuration, its x-axis points downward, and the pole points 
upwards along its negative x-axis, with its z-axis horizontal (Figure 
2). 

2.12. Modular adjustable pendulum design 

The utilization of modular construction within the system 
ensures that the parameters governing the behavior of the inverted 
pendulum can easily be adjusted or reconfigured. Such adaptability 
can prove useful in educational contexts. With minimal 
adjustments to the apparatus, diverse tasks can be allocated to 
distinct student cohorts, each tackling a specific control problem. 
For instance, the pole's length, an essential aspect of the system's 
dynamics, can be altered by substituting the pole with another of a 
different length. Adaptability extends further to the motor unit. For 
example, stepper motor drive could be exchanged with actuation 
employing a BLDC motor, a modification that would support force 
control, as opposed to velocity control, of the pendulum system. 

2.13. 3D printing  

The components for the pendulum cart were designed using 
AutoCAD Fusion 360. This software also facilitated the 
conversion of the designs into STL format files, which is a critical 
step for additive manufacturing. The mechanical parts were then 
fabricated using PLA+ material on a Creality 6SE 3D printer. It is 
noteworthy to mention that although tougher plastics could further 
enhance the durability of the design, PLA+ was chosen for its ease 
of printing and cost-effectiveness. 

2.14. Pendulum Stand 

Operating the pendulum necessitates mounting the track at an 
elevation that ensures unobstructed swinging of the pole. We 
designed a custom-engineered support stand using aluminum 
profiles to secure the pendulum system (refer to Figure 7). This 
stand offers a robust yet lightweight construction that facilitates 
easy transportation. 

The support stand comprises two support pillars, fabricated 
from aluminum profile. These pillars are anchored at their base 
with additional lengths of aluminum profile, and 3D printed feet 
are used at each end to provide stable support. The top of each 
pillar is fitted with a 3D-printed bracket, tailor-made to 
accommodate the aluminum v-rail. To enhance the rigidity of the 
structure and to increase its resistance to mechanical stress, 
diagonal aluminum profile sections are incorporated, to brace the 
assembly. This results in a rigid structure, minimizing potential 
vibrations or displacements that could affect the system's 
performance.  

3. Mechanical tapper for performance evaluation 

3.1. Testing balancing systems 

Monteleone and his team [61] presented a methodology to 
evaluate the balance resilience of robots, utilizing unique 
performance indicators and a custom-made testbed. Through 
extensive testing on a humanoid robot, their study demonstrated 
the method's effectiveness in designing more robust robotic 
systems. 

 
Figure 7: Pendulum mounted on its stand: The structure uses diagonal bracing to 
increase its rigidity. 

3.2. Tapper components 

In the same vein, to conduct tests across various pendulum 
conditions, including different pendulum lengths, friction, and 
damping levels, as well as different control laws, and to compare 
the results, it was necessary to disturb the pendulum pole 
consistently. To achieve this, a tapping mechanism was 
constructed (Figure 8). 

We built and used a testing rig to deliver repeatable 
disturbances to the pendulum pole whilst balancing, to examine the 
recovery and robustness of control. This could be carried out 
during balancing whilst the cart was either static or moving. 

3.3. Finger-spring mechanism 

The primary component of this tapping mechanism is the 
'tapper finger,' which is mounted onto a baseplate. This mounting 
baseplate for the tapping mechanism is attached to a cart that can 
be maneuvered up and down a V-groove rail track by means of a 
stepper motor. 

The finger is composed of a stainless-steel pole inserted in a 
PLA+ holder, which pivots around a rotary axis located 3 cm from 
its lower end. Two sets of springs are connected at the endpoint of 
the holder and at the base on either side, pulling in opposite 
directions. When the finger is in its undisturbed equilibrium 
position, these springs ensure that it maintains a 0° orientation. 

This finger-spring assembly forms an underdamped second-
order system. Its behavior, particularly the overshoot following 
appropriate excitation, serves as an effective method to strike the 
pendulum pole. To generate a movement suitable for producing a 
tap, it is necessary to displace the lower end of the finger from its 
equilibrium position around its pivot and then release it suddenly. 
This action results in a rapid movement: the finger travels back 
through its equilibrium position and out the other side, which 
enables it to impact the pendulum pole and then quickly withdraw. 

Using this tapping mechanism, it is important to note that the 
pendulum pole must be positioned at an appropriate distance from 
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the tapping finger before operation commences, to prevent 
multiple impacts. At the tap, energy is transferred from the finger 
to the pendulum pole, and if the distance to the target pendulum 
pole is set correctly, it ensures that the finger only strikes once and 
then retreats without making further contact. 

3.4. Finger actuation 

Although it would be possible to manually displace the lower 
end of the tapping pole and release it by hand, we incorporated an 
RC servomechanism into the design to achieve this action 
automatically and more consistently. The RC servo first displaces 
the finger from its equilibrium position. Then, owing to the cam 
mechanism's design, it releases the finger suddenly as it passes the 
end point. This action consequently results in a rapid underdamped 
second-order trajectory of the end of the tapper finger, ideal for 
exciting the pendulum pole. 

 
Figure 8: 3D-printed tapping mechanism. Two sets of springs are configured to pull 
the bottom of the tapping pole to the left and right, thereby establishing a neutral 
equilibrium position at 0° as depicted. An RC servo is positioned to travel 180°, 
engaging and then releasing the rear of the tapping mechanism. This action, assisted 
by the tension of simultaneously contracted springs, causes the pole to swing in an 
under-damped motion, with overshoot delivering an appropriate tap to the 
pendulum pole. All custom parts were designed using AutoCAD Fusion 360 and 
printed with PLA+ material. 

To achieve a consistent tap, it is essential to maintain a constant 
distance between the tapping pole and the pendulum pole and to 
ensure that the tap occurs at the same location during each trial. 
This consistency is achieved by visually aligning the tapping finger 
with the pendulum pole before a tap is initiated. 

3.5. Tapper cart 

In the inverted pendulum position control mode, the pendulum 
cart remains stationary, simplifying the process of tapping its pole. 
However, in the velocity control mode, the cart moves along the 
rail while balancing. The goal was to create a tapping mechanism 
suitable for both velocity and position modes, necessitating the 
ability of the tapping mechanism to track the pendulum cart's 
movement by employing an additional cart. This capability ensures 
taps can be delivered effectively, even while the pendulum cart is 
in motion. To achieve necessary synchronization, the tapping 
mechanism's cart is propelled along a separate V-groove aluminum 

profile track, using a stepper motor that receives the same control 
signal as the pendulum cart's stepper motor. 

 
Figure 9: Schematic of the tapping mechanism mounted on its adjustable stand, 
showing all its main components.  

3.6. Adjustable height tapper stand 

The upper track of the tapper mechanism was mounted to the 
side of the support pillars, allowing for adjustable height of the 
tapper, as illustrated in Figures 9 and 10. 

.  

Figure 10: Side view of the adjustable mechanical tapper assembly. The cart 
supporting the tapping mechanism can be driven left and right to synchronize with 
the pendulum cart. The cart is mounted on a rail that can be slid up and down the 
outer stand legs, and then fastened firmly in place with screws, enabling adjustment 
of the height at which tapping occurs. 

4. Analysis of pendulum dynamics 

4.1. Mathematical analysis 

We performed a comprehensive analysis of the pendulum's 
dynamics, including the nonlinear differential equation, its 
linearization, and s-domain representation. This provided a 
theoretical foundation for our practical implementation. 
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4.2. Equilibrium positions 

A pendulum exhibits two distinct equilibrium points. In the 
stable equilibrium state, the pendulum hangs downward, 
functioning like a traditional pendulum, similar to those in 
pendulum clocks. At this stable equilibrium point, if the pendulum 
is slightly displaced, it will begin to oscillate back and forth with a 
characteristic frequency determined by its dynamic properties. 
Factors such as damping in the joints and air resistance lead to a 
gradual decrease in oscillation amplitude over time. Eventually, 
the pendulum will stop moving and return to a stationary state at 
its equilibrium position. In contrast, an unstable equilibrium occurs 
when the pendulum is delicately balanced upright on its pivot 
point. 

4.3. Analysis of non-linear pendulum dynamics  

If sliding friction is neglected, the kinematics of an inverted 
pendulum can be characterized by the following non-linear 
differential equation: 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝜇𝜇
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑚𝑚𝑙𝑙 sin𝜃𝜃 + 𝑚𝑚𝑙𝑙
𝑑𝑑2𝑥𝑥𝑃𝑃
𝑑𝑑𝑡𝑡2

cos𝜃𝜃 (1) 

Here, the terms represent the following:  

θ: Angle of the pendulum pole to the vertical axis 

μ: Coefficient of viscosity 

m: Mass of the pendulum 

I: The Moment of Inertia (MoI) of the pendulum pole about its 
center of mass 

l: Distance from the pivot point to the pendulum pole’s center 
of mass (typically half the length of the pole) 

xp: Displacement of the pivot 

Although exponential decay due to viscous resistance is often 
assumed to be the primary cause of oscillatory decay in second-
order systems like the pendulum, it is known that sliding friction 
leads to a linear decay of oscillatory amplitude [62–65]. To 
account for sliding friction, we can also write 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 + 𝜇𝜇

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓 �

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡� = 𝑚𝑚𝑚𝑚𝑙𝑙 sin𝜃𝜃 + 𝑚𝑚𝑙𝑙

𝑑𝑑2𝑥𝑥𝑃𝑃
𝑑𝑑𝑡𝑡2 cos𝜃𝜃 (2) 

In this context, an additional friction term exists, scaled by the 
coefficient f, which is dependent on the sign of the angular 
velocity. The presence of this sign term complicates formal 
analysis; therefore, we initially disregard the effects of friction. 

We observe that the provided kinematic description suffices for 
deriving control, assuming reliance solely on the cart's velocity as 
the control input. Additionally, it's worth noting that force control, 
a common approach in numerous inverted pendulum 
implementations [66], would necessitate an extra equation to 
accurately capture the dynamics of the cart's force. 

Refactoring Eqn. (1) with the highest-order differential term on 
the left-hand side, yields: 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2 = −

𝜇𝜇
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡 +

𝑚𝑚𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2) sin𝜃𝜃 +

𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

𝑑𝑑2𝑥𝑥𝑃𝑃
𝑑𝑑𝑡𝑡2 cos𝜃𝜃 (3) 

we now write: 

𝑑𝑑2𝑥𝑥𝑃𝑃
𝑑𝑑𝑡𝑡2

=
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

(4) 

We will now represent the constant terms using coefficients as 
follows: 

𝑎𝑎1 =
𝜇𝜇

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
(5)

𝑎𝑎2 =
−𝑚𝑚𝑚𝑚𝑙𝑙

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
(6)

𝑏𝑏0 =
𝑚𝑚𝑙𝑙

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
(7)

 

This leads to the equation for dynamics: 

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= −𝑎𝑎1
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

− 𝑎𝑎2 sin𝜃𝜃 + 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

cos𝜃𝜃 (8) 

To express the system in state space form as two first-order 
differential equations, selecting the first state x1 is straightforward 
since it represents the pendulum angle, denoted as θ: 

𝑥𝑥1 = 𝜃𝜃 (9)
 

 

⇒ �̇�𝑥1 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

(10)
 

 

We now write the second state variable x2 as: 
 

𝑥𝑥2 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

− 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝜃𝜃 (11) 

Re-arranging Eqn. (11) gives: 

⇒
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝜃𝜃 (12) 

⇒ �̇�𝑥1 = 𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝑥𝑥1 (13) 

Differentiating Eqn. (12) with respect to time and using the 
product rule to the right-hand side terms 

⇒
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= �̇�𝑥2 + 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

cos𝜃𝜃 − 𝑏𝑏0𝑣𝑣𝑐𝑐 sin𝜃𝜃 (14) 

⇒
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= �̇�𝑥2 + 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

cos 𝑥𝑥1 − 𝑏𝑏0𝑣𝑣𝑐𝑐 sin 𝑥𝑥1 (15) 

Substituting the Equations (12, 15) into Eqn. (8) and replacing 
angle terms with state variables 

⇒ �̇�𝑥2 + 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

cos 𝑥𝑥1 − 𝑏𝑏0𝑣𝑣𝑐𝑐 sin 𝑥𝑥1 = −𝑎𝑎1(𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos 𝑥𝑥1)

−𝑎𝑎2 sin 𝑥𝑥1 + 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

cos𝑥𝑥1 (16)
 

⇒ �̇�𝑥2 − 𝑏𝑏0𝑣𝑣𝑐𝑐 sin 𝑥𝑥1 = −𝑎𝑎1(𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos 𝑥𝑥1) − 𝑎𝑎2 sin 𝑥𝑥1 (17) 

⇒ �̇�𝑥2 = −𝑎𝑎1(𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝑥𝑥1) − 𝑎𝑎2 sin 𝑥𝑥1 + 𝑏𝑏0𝑣𝑣𝑐𝑐 sin 𝑥𝑥1 (18) 
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This leads to the following expression: 

⇒ �̇�𝑥2 = −𝑎𝑎1𝑥𝑥2 − 𝑎𝑎2 sin 𝑥𝑥1 + (𝑏𝑏0 sin 𝑥𝑥1 − 𝑎𝑎1𝑏𝑏0 cos𝑥𝑥1)𝑣𝑣𝑐𝑐 (19) 

The two equations (13) and (19) can be used in a non-linear 
simulation of the pendulum system. 

5. Linearizing the non-linear system  

5.1. Equilibrium  

We now extend the mathematical analysis to derive the 
linearized state space model by calculating and evaluating the 
system's Jacobian around equilibrium positions. To linearize the 
nonlinear differential equation description of the pendulum around 
its equilibrium points, we first need to identify their locations. 
Equilibrium occurs when the control input is zero, and the state 
derivatives are also zero. That is 

�̇�𝑥1 = 𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝑥𝑥1 = 0 (20) 

�̇�𝑥2 = −𝑎𝑎1𝑥𝑥2 − 𝑎𝑎2 sin 𝑥𝑥1 + (𝑏𝑏0 sin 𝑥𝑥1 − 𝑎𝑎1𝑏𝑏0 cos𝑥𝑥1)𝑣𝑣𝑐𝑐 = 0 (21) 

Since control velocity is zero at the equilibrium points, we see 
that 𝑥𝑥2 = 0 and: 

�̇�𝑥2 = −𝑎𝑎1𝑥𝑥2 − 𝑎𝑎2 sin 𝑥𝑥1 = 0 (22) 

From Eqn. (22) we see that: 

−𝑎𝑎2 sin 𝑥𝑥1 = 0 (23) 

⇒ 𝑥𝑥1 = {0,𝜋𝜋} (24) 

Thus, the system has an equilibrium in an inverted 
configuration at 0 radians and a non-inverted configuration at π 
radians. To linearize the system at these equilibrium points, we 
need to calculate the Jacobian of the system, denoted as 𝐽𝐽𝐴𝐴, with 
respect to the system state, and evaluate it at those points. We first 
express the two state equations as functions: 

𝑓𝑓1 = 𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 cos𝑥𝑥1 (25) 

𝑓𝑓2 = −𝑎𝑎1𝑥𝑥2 − 𝑎𝑎2 sin 𝑥𝑥1 + (𝑏𝑏0 sin 𝑥𝑥1 − 𝑎𝑎1𝑏𝑏0 cos𝑥𝑥1)𝑣𝑣𝑐𝑐 (26) 

We then calculate the partial derivatives of these two functions 
with respect to the state variables: 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

= −𝑏𝑏0𝑣𝑣𝑐𝑐 sin 𝑥𝑥1 (27) 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

= 1 (28) 

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

= −𝑎𝑎2 cos 𝑥𝑥1 + (𝑏𝑏0 cos𝑥𝑥1 + 𝑎𝑎1𝑏𝑏0 sin 𝑥𝑥1)𝑣𝑣𝑐𝑐 (29) 

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

= −𝑎𝑎1 + (𝑏𝑏0 cos𝑥𝑥1 + 𝑎𝑎1𝑏𝑏0 sin 𝑥𝑥1)𝑣𝑣𝑐𝑐 (30) 

5.2. Jacobian in matrix form 

This leads to the Jacobian matrix: 

𝐽𝐽𝐴𝐴 = �
−𝑏𝑏0𝑣𝑣𝑐𝑐 sin𝑥𝑥1 1

−𝑎𝑎2 cos𝑥𝑥1 + (𝑏𝑏0 cos𝑥𝑥1 + 𝑎𝑎1𝑏𝑏0 sin𝑥𝑥1)𝑣𝑣𝑐𝑐 −𝑎𝑎1 + (𝑏𝑏0 cos𝑥𝑥1 + 𝑎𝑎1𝑏𝑏0 sin𝑥𝑥1)𝑣𝑣𝑐𝑐
� (31) 

We now evaluate this matrix at the equilibria points when 
control is zero. For the inverted configuration equilibrium at 0 
radians, we have 

𝐽𝐽𝐴𝐴[𝑥𝑥1 = 0] = �
0 1

−𝑎𝑎2 −𝑎𝑎1
� (32) 

For the non-inverted configuration equilibrium at 𝜋𝜋 radians we 
have 

𝐽𝐽𝐴𝐴[𝑥𝑥1 = 𝜋𝜋] = �
0 1

𝑎𝑎2 −𝑎𝑎1
� (33) 

We now need to linearize the control of the system. To do so, we 
calculate the Jacobian of the control, denoted as 𝐽𝐽𝐵𝐵, with respect to 
the control input. This involves calculating the partial derivatives 
of the two system functions with respect to the control input. 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑣𝑣c

= 𝑏𝑏0 cos𝑥𝑥1 (34) 

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑣𝑣c

= 𝑏𝑏0 sin 𝑥𝑥1 − 𝑎𝑎1𝑏𝑏0 cos𝑥𝑥1 (35) 

⇒ 𝐽𝐽𝐵𝐵 = �
𝑏𝑏0 cos 𝑥𝑥1

𝑏𝑏0 sin 𝑥𝑥1 − 𝑎𝑎1𝑏𝑏0 cos𝑥𝑥1
� (36) 

Evaluating this matrix for the equilibrium at 0 and π radians we 
have 

𝐽𝐽𝐵𝐵[𝑥𝑥1 = 0] = �
𝑏𝑏0

−𝑎𝑎1𝑏𝑏0
� (37) 

𝐽𝐽𝐵𝐵[𝑥𝑥1 = 𝜋𝜋] = �
−𝑏𝑏0
𝑎𝑎1𝑏𝑏0

� (38) 

The linearized system in state space notation takes the form: 

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵 (39)
 

𝑌𝑌 = 𝐶𝐶𝑋𝑋 + 𝐷𝐷𝐵𝐵 (40)
 

From Equations (33, 37), we can write the linearized system 
for the inverted configuration at 0 radians in matrix form as: 

�
�̇�𝑥1
�̇�𝑥2
� = �

0 1

−𝑎𝑎2 −𝑎𝑎1
� �
𝑥𝑥1
𝑥𝑥2
� + �

𝑏𝑏0
−𝑎𝑎1𝑏𝑏0

� 𝑣𝑣𝑐𝑐 (41) 
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Since we require the state space model to generate an output 
corresponding to the pendulum angle θ, its output equation is 
therefore: 

𝑌𝑌 = [1 0] �
𝑥𝑥1
𝑥𝑥2
� (42) 

5.3. Linearized ODE 

Multiplying out the matrix Equations (41, 42), we see that we 
have two linear equations. For the first state, we have: 

�̇�𝑥1 = 𝑥𝑥2 + 𝑏𝑏0𝑣𝑣𝑐𝑐 (43) 

⟹ 𝑥𝑥2 = �̇�𝑥1 − 𝑏𝑏0𝑣𝑣𝑐𝑐 (44) 

⟹ 𝑥𝑥2̇ = �̈�𝑥1 − 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

(45) 

For the second state, we have: 

�̇�𝑥2 = −𝑎𝑎2𝑥𝑥1 − 𝑎𝑎1𝑥𝑥2 − 𝑎𝑎1𝑏𝑏0𝑣𝑣𝑐𝑐 (46) 

⟹ �̈�𝑥1 − 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

= −𝑎𝑎2𝑥𝑥1 − 𝑎𝑎1𝑥𝑥2 − 𝑎𝑎1𝑏𝑏0𝑣𝑣𝑐𝑐 (47) 

Substituting back in 𝑥𝑥1, �̇�𝑥1, �̈�𝑥1 and 𝑥𝑥2 from Eqn. (12) 

⟹
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

− 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

= −𝑎𝑎2𝜃𝜃 − 𝑎𝑎1 �
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

− 𝑏𝑏0𝑣𝑣𝑐𝑐 � − 𝑎𝑎1𝑏𝑏0𝑣𝑣𝑐𝑐 (48) 

⟹
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

= −𝑎𝑎2𝜃𝜃 − 𝑎𝑎1
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

+ 𝑏𝑏0
𝑑𝑑𝑣𝑣𝑐𝑐
𝑑𝑑𝑡𝑡

(49) 

5.4. System eigenvalues and stability 

The eigenvalues (λ) of the system matrix A represent the 
behavior of the pendulum system. These eigenvalues are related to 
the poles in the transfer function. The eigenvalues, denoted as λ, of 
matrix 𝐴𝐴  can be determined by solving the following matrix 
equation, involving the calculation of the determinant, where 𝐼𝐼 is 
the identity matrix: 

|(𝐴𝐴 − 𝜆𝜆𝐼𝐼)| = 0 (50) 

If all eigenvalues have a negative real part, the system will be 
stable. Conversely, if any eigenvalue has a positive real part, the 
system will be unstable. It is also important to note that if the real 
part of an eigenvalue is zero, then the system is marginally stable, 
existing on the boundary of stability, neither conclusively stable 
nor unstable. Complex eigenvalues typically lead to oscillatory 
behavior, especially if they have a non-zero real part.  

To incorporate feedback control into this system, the system 
must use a feedback mechanism. One approach involves utilizing 
full state feedback, as depicted in Figure 11. In this figure, the 
matrix K represents the gain of the state feedback, while R(t) 
denotes a reference input. If the reference input is zero, the state 
feedback can be described by the following expression: 

U = −KX (51) 

 
Figure 11: Signal flow graph of a plant under direct full-state feedback control: 
The red line delineates the feedback path, which includes multiplication by the 
feedback gain, denoted by K. Additionally, a feedforward gain term, represented 
by 𝑁𝑁�, is introduced to improve tracking of the reference input. 

Substituting the state space system equations (39) and (40) into 
this expression leads to the modified state space equations, which 
represent the system dynamics under the influence of the feedback 
mechanism.

�̇�𝑋 = 𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵 = (𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑋𝑋 (52) 

𝑌𝑌 = 𝐶𝐶𝑋𝑋 + 𝐷𝐷𝐵𝐵 = (𝐶𝐶 − 𝐷𝐷𝐵𝐵)𝑋𝑋 (53) 

Implementing state feedback alters the system dynamics 
leading to a new expression for the state derivative. This alteration 
involves not just multiplying the state by matrix A, but rather by 
(A−BK). Consequently, the eigenvalues (λ) of the full state 
feedback system can be determined by solving the updated 
characteristic equation: 

|(𝐴𝐴 − 𝐵𝐵𝐵𝐵 − 𝜆𝜆𝐼𝐼)| = 0 (54) 

Consequently, by modifying the gain matrix K, we can 
manipulate the location of the system's eigenvalues. The method 
for calculating K is discussed in Section 7. 

5.5. Using a Luenberger observer 

Many procedures in control design assume that the full state 
vector is available. However, this is often not the case, as in our 
pendulum design. In such circumstances, we can use an observer 
to estimate the full state using a linear plant model. The Luenberger 
observer computes the state estimate according to the differential 
equation: 

𝑋𝑋�
.

= 𝐴𝐴𝑋𝑋� + 𝐵𝐵𝐵𝐵 + 𝐿𝐿(𝑌𝑌 − 𝐶𝐶𝑋𝑋�) (55) 

The observer uses the state space matrices A and B to provide 
a linear model of the plant. In our case, we determine the observer 
gains, denoted as L, using MATLAB. Similar to the state feedback 
gain, the Luenberger observer gain vector L must be chosen such 
that all the eigenvalues of the observer system, as solutions to the 
characteristic equation, possess appropriate negative real values. 
The signal flow graph for the Luenberger observer is shown in 
Figure 12. The system’s eigenvalues satisfy the following 
characteristic equation: 

|(𝐴𝐴 − 𝐿𝐿𝐶𝐶 − 𝜆𝜆𝐼𝐼)| = 0 (56) 

The calculation of L is discussed in Section 7. 
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Figure 12: Estimation of plant state using a Luenberger observer. The observer, 
which simulates the real dynamics of the inverted pendulum, generates an 
estimated state, denoted as 𝑋𝑋�. This estimated state serves as a proxy for the actual 
system state, labeled X, some of which may be unobservable. The signal Y(t) is 
employed to correct the state estimate. 

6. Augmenting the state space model 

6.1. Adding cart positional state 

To enable control of both the cart's position and the balancing 
of the pole, we introduce an additional state variable x3 to explicitly 
represent the cart's position. We can relate the cart position to the 
control velocity input, since: 

�̇�𝑥3 = 𝑣𝑣𝑐𝑐 (57) 

The linearized system dynamics are then represented by a 3x3 
matrix, that includes the new positional state variable. The updated 
matrix equation is: 

�

�̇�𝑥1
�̇�𝑥2
�̇�𝑥3

� = �
0 1 0
−𝑎𝑎2 −𝑎𝑎1 0

0 0 0
� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

� + �

𝑏𝑏0
−𝑎𝑎1𝑏𝑏0

1

� 𝑣𝑣𝑐𝑐 (58) 

The output equation remains similar to before, but with an 
appended  coefficient of zero in the C matrix: 

⇒ 𝑌𝑌 = [1 0 0] �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

� (59) 

We can compute the numeric values of the matrices using 
MATLAB. See Figure 13 for the udpated state feedback controller 
signal flow graph schematic. 

6.2. Adding integral action 

We can further improve cart position performance and reduce 
its steady-state error by adding integral action on the cart position 
(see Figure 14). To incorporate integral action, a state is devised 
within the controller to compute the integral of the positional error 
signal. This is then used as a feedback term, as denoted by the red 
path on the schematic. Therefore, to achieve integral feedback, we 
simply augment a state-space system by adding another state Z, 
whereby the state Z is the integral of the error between the desired 

output refp (representing a reference input for cart position) and 
actual output Y. Thus, the standard state-space equation: 

��̇�𝑋� = [𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵] (60) 

Becomes: 

��̇�𝑋
�̇�𝑍
� = �𝐴𝐴𝑋𝑋 + 𝐵𝐵𝐵𝐵

𝑌𝑌 − refp � (61) 

Where the output is given by: 

Y = CX + DU (62) 

 
Figure 13: Adding a state for cart position provides a means to control cart 
position. 

State feedback control is now generated from the state X and 
also from the state Z. That is: 

U = −KX − K𝑍𝑍Z (63) 

Thus, to add integral action to the state-space model of the cart 
position-augmented pendulum, and use the cart position to 
generate error integrated over time, we further augment the system 
matrices given in Eq. (58). We add a fourth state, x4, to represent 
the integrated cart position error.  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
�̇�𝑥1

�̇�𝑥2

�̇�𝑥3

�̇�𝑥4⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0

−𝑎𝑎2 −𝑎𝑎1 0 0

0 0 0 0

0 0 1 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4⎦
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑏𝑏0

−𝑎𝑎1𝑏𝑏0

1

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑣𝑣𝑐𝑐 (64) 

y = [1 0 0 0]

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1

𝑥𝑥2

𝑥𝑥3

𝑥𝑥4⎦
⎥
⎥
⎥
⎥
⎥
⎤

(65) 
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Notice that here we update the integral state by selecting the 
position state x3 to generate the (Y− refp) term used for integral 
action. For this model, we assume the reference position, refp, is 
zero.  

 
Figure 14: Illustration of integral error feedback within the system. This 
mechanism reduces steady-state positional error of the cart by comparing the 
reference setpoint with the estimated cart position, integrating the positional error, 
and using it in the feedback path. 

7. Designing state feedback controllers 

7.1. Determining feedback gain  

In our pendulum design, a linear full state feedback controller 
is employed to balance the inverted pendulum. This method 
enables the maintenance of balance, even in the presence of noise 
and disturbances. Implementing this controller requires obtaining 
K, the feedback gain vector. 

Various strategies can be used to find K. One method is to use 
pole placement, whereby we calculate K in order to achieve what 
we consider to be a good choice of poles for the system when it is 
operating under full state feedback control. Alternatively, the gain 
K can be found by formulating gain calculation as an optimization 
problem, where we specify an objective function indicative of 
what we consider desirable performance should be. In this work, 
we adopted the latter optimal control approach. Specifically, we 
find the gain K utilizing the MATLAB lqr command (which 
designs a linear quadratic regulator). 

7.2. Velocity control mode 

To design an optimal controller to balance the inverted 
pendulum using velocity as the control input, we need to consider 
the linear 2 state model given by the equations (41) and (42). To 
build an appropriate cost function for the optimization, suitable 
values were implemented along the leading diagonal of the 2x2 Q 
matrix to penalize non-zero system states. In addition, a suitable 
value is used in the 1x1 R matrix to penalize the control input.  

Penalization of the state serves a crucial function: It ensures 
that the system approaches its target value. Within the scope of this 
design, it assists in keeping the pendulum’s angle close to zero, 
facilitating effective balancing. In contrast, penalizing control with 
R serves to reduce the speed of the cart. The penalization values 
were determined  through experimentation. 

Q = �
1 0

0 0
� (66)  

R = 1 (67)  

7.3. Position control mode 

To implement the control of the cart position as well as 
balancing the pendulum pole, we make use of the 4-state system 
that incorporates integral action. The linear state space system is 
described by equations (64) and (65). The diagonal entries of the 
4x4 Q matrix, along with the single scalar value in the R matrix, 
were defined to aptly penalize state and control. The penalization 
values in Q and R were found by trial and error. 

Q =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 20⎦
⎥
⎥
⎥
⎥
⎥
⎤

(68)  

R = 1 (69)  

To concurrently accomplish pendulum balancing as well as 
control of the cart position, we applied a larger penalty on state x4 
(which represents the integral of positional error), whereas state x3 
(which represents cart position) received a penalty term of zero. 

7.4. Designing the Luenberger observer 

To determine the Luenberger gain L, we again employed the 
MATLAB lqr command. We refrained from using the observer to 
predict the cart's velocity or position since estimating these is 
straightforward, given that velocity is directly used as the control 
signal. 

As with the determination of state feedback controller gains, 
the leading diagonal entries of the 2x2 Q matrix and the single 
value in the R matrix were selected to penalize the system states 
and the control action, respectively. Suitable parameter values for 
these matrices were ascertained through trial and error. 

Q = �
1 0

0 0
� (70)

 
 

R = 1 (71)  

7.5. Gain scheduling 

Transitioning between velocity control of the pendulum and 
position control of the pendulum was realized by selecting their 
respective system gain K and pre-processing term 𝑁𝑁� (as discussed 
later and presented in Table 2). We note that resetting the integral 
error state to zero was necessary each time the controller was 
switched from velocity to position mode, to ensure processing 
started with a zero positional error. 

In position control mode, we make use of integral action. In 
this case, the reference position input can have a zero value to 
preserve the cart's current position on the track.  

During the velocity control of the cart, the velocity of the cart 
is required to track the reference input. To ensure this takes place 
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the controller requires an appropriate feedforward pre-emphasis 
term, denoted as 𝑁𝑁�: 

𝑁𝑁� = −[C(A − BK)−1 B]−1 (72) 

For velocity control, we note that  𝑁𝑁� has a value of 1 (that is, a 
gain of unity). Thus, the reference input directly sets the cart 
velocity. This is achieved by a slight update to the calculation of 
the control signal, which now incorporates a non-zero reference 
input, referred to as 'ref': 

U = −KX + 𝑁𝑁�ref (73) 

8. Laplace Analysis of the Inverted Pendulum Dynamics 

8.1. System transfer function 

Laplace analysis can provide useful insights into system 
behaviour. Neglecting the non-linear effect of friction, the 
linearized  differential equation that describes the  pendulum can 
be expressed as: 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2

+ 𝜇𝜇
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑚𝑚𝑙𝑙𝜃𝜃 + 𝑚𝑚𝑙𝑙
𝑑𝑑2𝑥𝑥𝑃𝑃
𝑑𝑑𝑡𝑡2

(74) 

Applying the Laplace transform, and assuming initial 
conditions of zero we have: 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑓𝑓2Φ(𝑓𝑓) + 𝜇𝜇𝑓𝑓Φ(𝑓𝑓) = 𝑚𝑚𝑚𝑚𝑙𝑙Φ(𝑓𝑓) + 𝑚𝑚𝑙𝑙𝑓𝑓2𝑋𝑋𝑃𝑃(𝑓𝑓) (75) 

⟹ �(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑓𝑓2 + 𝜇𝜇𝑓𝑓 − 𝑚𝑚𝑚𝑚𝑙𝑙�Φ(𝑓𝑓) = 𝑚𝑚𝑙𝑙𝑓𝑓2𝑋𝑋𝑃𝑃(𝑓𝑓) (76) 

This leads to the s-domain transfer function relating output pole 
angle Φ(𝑓𝑓) to cart position 𝑋𝑋𝑃𝑃(𝑓𝑓): 

⟹
Φ(𝑓𝑓)
𝑋𝑋𝑃𝑃(𝑓𝑓) =

𝑓𝑓2𝑚𝑚𝑙𝑙
�(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑓𝑓2 + 𝜇𝜇𝑓𝑓 − 𝑚𝑚𝑚𝑚𝑙𝑙�

(77) 

We now rearrange terms in the denominator and use the 
relationship V(𝑓𝑓) = 𝑓𝑓𝑋𝑋𝑃𝑃(𝑓𝑓). This leads to the expression relating 
output pole angle Φ(𝑓𝑓) to cart velocity V(𝑓𝑓): 

⟹
Φ(𝑓𝑓)
V(𝑓𝑓) =

𝑓𝑓𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

�𝑓𝑓2 + 𝑓𝑓 𝜇𝜇
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2) −

𝑚𝑚𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)�

(78) 

8.2. 2nd order canonical form 

Comparing the expression with the second-order canonical 
form, we can identify the coefficients and characteristics of the 
system. This comparison allows us to further analyze the dynamics 
of the inverted pendulum and gain deeper insights into its behavior 
and control requirements. 

𝑓𝑓𝑠𝑠
(𝑓𝑓2 + 2𝜉𝜉𝜔𝜔𝑛𝑛𝑓𝑓 − 𝜔𝜔𝑛𝑛2) ⟺

𝑓𝑓𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

�𝑓𝑓2 + 𝑓𝑓 𝜇𝜇
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2) −

𝑚𝑚𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)�

(79) 

Here, k represents a simple gain factor. Upon examining the 
given expression, we find that it allows us to determine the natural 
frequency of the system as follows: 

𝜔𝜔𝑛𝑛=�
𝑚𝑚𝑚𝑚𝑙𝑙

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
(80) 

Given that angular frequency (𝜔𝜔𝑛𝑛) is related to frequency (𝑓𝑓𝑛𝑛) 
in cycles per second through the relationship 𝜔𝜔𝑛𝑛 =  2𝜋𝜋𝑓𝑓𝑛𝑛 we can 
write the expression: 

𝑓𝑓𝑛𝑛=
1

2𝜋𝜋
�

𝑚𝑚𝑚𝑚𝑙𝑙
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

(81) 

Similarly, by inspection, we can write down an expression for 
the damping ratio of the system: 

𝜉𝜉 =

𝜇𝜇
(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)

2𝜔𝜔𝑛𝑛
(82) 

9. Numeric integration to implement real-time control  

9.1. Euler integration 

To implement real-time state feedback control, some form of 
numerical integration is needed. Such integration can often be 
carried out satisfactorily on a digital computer using Euler's 
methods. Forward Euler integration works by incrementally 
calculating contributions to the integral that arise from the 
differential term. 

The basic idea is as follows. Consider a function y=f(x) such 
that when x=x0 then y=y0. This is illustrated in Figure 15. As we 
increase the value of x by Δx we reach a point where x1=x0+Δx 
and similarly this increases y by Δy reaching the value y1=y0+Δy. 
Therefore: 

(𝑥𝑥1,𝑦𝑦1) = (𝑥𝑥0 + ∆𝑥𝑥,  𝑦𝑦0 + ∆𝑦𝑦) (83) 

The gradient of the curve at (x0, y0) is the tangent at this point. 
From Figure 15, it is seen that the gradient at this point can be 
approximated by the ratio of a small change in y divided by a small 
change in x: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

|(𝑥𝑥0,𝑦𝑦0) ≈
Δ𝑦𝑦
Δ𝑥𝑥

(84) 

This is only strictly true in the limit where Δx tends to zero. In 
practical numerical methods, this limit is approximated by 
choosing a sufficiently small Δx. We also see that we can use this 
relationship to iteratively estimate y1 from y0 by replacing the Δy 
term by two very close and successive y values: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

|(𝑥𝑥0,𝑦𝑦0) ≈
(𝑦𝑦1 − 𝑦𝑦0)

Δ𝑥𝑥
(85) 

Re-arranging this equation and writing Δx as step size h gives: 
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𝑦𝑦1 = 𝑦𝑦0 + ℎ
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

|(𝑥𝑥0,𝑦𝑦0) (86) 

Writing the x-axis in terms of a time variable t, the gradient is 
given by: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑡𝑡,𝑦𝑦) (87) 

And initial conditions are given by: 

𝑓𝑓(𝑡𝑡0,𝑦𝑦) = 𝑦𝑦0 (88) 

We then obtain the recurrence relation for step n: 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓(𝑡𝑡𝑛𝑛,𝑦𝑦𝑛𝑛) (89) 

Where t is time, at initial time to the output is y0, at future time 
t(n+1) the output is y(n+1), and h is the step size. This expression can 
be used to iteratively find the next estimate of y1 if we know xo and 
the gradient at (x0, y0). This approach provides a method for 
integrating the differential term, which is generally satisfactory if 
a sufficiently small temporal step size, h, is used. This method is 
easily extended to vector form to perform the integration stage 
needed in state space models. 

 
Figure 15: The gradient dy/dx of a curve y=f(x) can be locally approximated at the 
point (x0,y0) as the ratio of a small change in the value of y to a corresponding 
small change in the value of x. 

9.2. Higher order numerical integration  

Euler integration is the simplest fixed-step numerical method 
that can be adopted. However, other more complex integration 
rules can also be used. These include the midpoint, trapezoidal, and 
Runge-Kutta methods, which, though requiring more 
computational steps in the estimation of the integral, offer higher 
accuracy. Additional methods utilize dynamic selection of step 
size, such as the ode45 function in MATLAB. See [67] for a 
discussion of these methods. 

Here, we use MATLAB's ode45 for simulations of the 
uncontrolled stable pendulum configuration. We use Euler 
Integration to model the controlled pendulum because of the 
method's simplicity and its ease of implementation on a 
microcontroller, especially considering its low computational 
requirements. 

10. System identification 

10.1. Large angle pendulum oscillatory behavior 

Approximately estimating observable parameters of a 
pendulum, such as length and weight, can be done with relative 
ease. However, assessing other parameters is considerably more 
challenging, and in some cases, impossible, solely based on 
observations of the static mechanical system. To accurately 
determine values for viscous and sliding friction, it is necessary to 
conduct measurements during pendulum movement. 

To examine the large-angle oscillatory behavior of the 
pendulum, we raised it from its resting, vertically hanging (non-
inverted) position to a horizontal alignment, corresponding to an 
angle of approximately 90°, before releasing it. The pendulum then 
oscillated until viscous damping and friction gradually brought it 
to a standstill in its vertical, non-inverted position. 

 

Figure 16: Pendulum large angle oscillation decay over time for three pendulum 
lengths. Data captured using an incremental encoder.  Top row: No added viscosity 
or friction for short, medium, and long pole lengths. Middle row: Effect of added 
friction for short, medium, and long pole lengths (SF, MF, and LF, respectively).  
Lower row: Effect of added viscosity for short, medium, and long pole lengths (SV, 
MV, and LV, respectively). 

10.2. Data logging 

To examine the pendulum's oscillation decay over time, we 
collected time-stamped pole angle data from its shaft encoder as 
the pendulum swung. In addition, the pendulum cart position was 
recorded using readings from the encoder mounted on the rear of 
the cart drive stepper motor. The data were gathered using a 
program running on an Arduino Mega, which transmitted the time 
and angular measurements to a host PC equipped with Microsoft 
Excel. The Excel program was used to record the data at a 25Hz 
rate and save it to the hard disk in Excel file format. Subsequently, 
the data were imported into MATLAB for analysis. This allowed 
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for the generation of a plot depicting the pendulum’s decaying 
oscillations under various conditions, as well as further analyses. 

The mechanical pendulum system features three 
interchangeable poles, and for each pole, the level of friction could 
be adjusted from low to high. Similarly, the viscous damping could 
be altered from low to high by manipulating the wind resistance 
experienced by the paddle mechanism. This configuration led to a 
total of 9 different experimental conditions. 

Figure 16 top row shows the temporal response waveforms for 
the undamped cases with no added friction for all three pendulum 
lengths, plotted on the same scale. It is observed that a longer 
pendulum length significantly increases the time required for the 
pendulum angle to decay to zero. Figure 16 middle and lower rows 
illustrate the responses of pendulums of three different lengths 
with additional friction and additional viscosity introduced, 
respectively. It is apparent that incorporating viscosity into the 
system accentuates the exponential decay. However, it is 
noteworthy that when friction is the dominant factor, the decay is 
linear rather than exponential. 

                      Tapper mechanism                  Hand tapping 

 
Figure 17: Testing the consistency of the tapping mechanism. Mean and standard 
deviation of the pendulum angular response averaged over 8 trials are shown using 
the tapper mechanism and hand excitations of the pendulum pole. 

10.3. Small angle pendulum oscillatory behavior 

The primary interest of this study is the examination of the 
balancing behavior of the pendulum system in its inverted 
configuration; therefore, large angle behavior is not of particular 
relevance. In a balancing configuration, the pendulum pole is 
maintained close to its unstable equilibrium position by the 
controller. In this case, the angular deviation from the 0° position 
is small, which is also essential for the validity of the linear 
approximation made in the observer model. Therefore, to estimate 
the parameters of the linear model accurately, it is necessary to 
examine the pendulum operation at small angles of deflection and 
to perform system identification for all pendulum parameters 
under these conditions. To generate consistent excitation to the 
pendulum, we utilized a mechanical RC servo tapping mechanism. 

11. Using the tapping mechanism 

11.1. Evaluating tapper consistency 

To evaluate the consistency of the tapping mechanism's 
operation, we conducted tests on the medium pendulum pole 

without added friction or viscosity. Figure 17 illustrates that the 
tapper provides very consistent excitation of the pendulum, 
particularly when compared to the variability typically observed 
with manual tapping by hand. 

11.2. Excitation of non-inverted pendulums 

We examined the pendulums in their normal, stable, hanging-
down mode to characterize the effects of the tapping. Figure 18 
illustrate the responses of pendulums of different lengths driven by 
the tapper mechanism, both with and without added friction and 
viscosity. In comparison to the large angle oscillation tests, it is 
noteworthy that at small angles, the paddle has only a minor effect, 
and additional friction more rapidly damps out pendulum 
oscillation. 

 
Figure 18: Pendulum small angle oscillation decay over time. Top row: No added 
viscosity or friction. Middle row: Effect of added friction for short, medium, and 
long pole lengths (SF, MF, and LF, respectively). Lower row: Effect of added 
viscosity for short, medium, and long pole lengths (SV, MV, and LV, 
respectively). 

11.3. Estimating pendulum parameters 

We performed grey-box system identification of the physical 
pendulum mechanism to identify parameters of viscous and static 
friction, and to fine-tune others, including pendulum length, 
weight, and moment of inertia. 

To fit the small angle pendulum response data, we focused on 
six of the nine configurations: the three pole lengths both with and 
without added viscosity. This fitting was accomplished with a 
simulation of its nonlinear dynamics, employing an optimization 
procedure using the MATLAB fmincon function. We discarded 
the configurations with extra friction due to the dramatic impact it 
had on the system’s behavior, which resulted in a limited amount 
of useful temporal data. This procedure optimized the mass, 
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effective pole length, pole moment of inertia, sliding friction, and 
viscous friction parameters of the pendulum system. 

We designed an objective function that minimized the sum of 
squared distances between the predicted oscillations and the 
measured data. To align the simulation with the measured data for 
comparison, we first trimmed the measured data to begin at its first 
positive peak in the pendulum's oscillation. The pendulum's 
angular velocity at this point is zero, and its corresponding angle 
was used to set the initial angular state in the non-linear simulation 
of the pendulum, based on Eqn. (2), that includes both viscosity 
and friction. This was carried out using the MATLAB ode45 solve. 

 
Figure 19: Running optimization to fit the measured response of the medium-
length non-inverted pendulum without additional viscosity or friction. Top plot 
shows the predicted response based on an initial rough guess. Middle plot shows 
the estimated response after running the optimization algorithm without including 
the friction term. Lower plot shows the estimated response when the friction term 
is present. It is evident that accounting for friction leads to a significantly better 
fit. 

We initialized the simulation parameters based on direct 
measurements of pendulum pole length and mass. Initially, we 
estimated the values of the friction and viscosity parameters 
through a process of trial and error, which was aided by careful 
observation of the simulated responses. During the fitting 
procedure, we allowed the optimization algorithm to refine all 
parameter values. However, it was necessary to constrain the 
parameter solutions to prevent fits that deviated substantially from 
the known ground truth values for mass and pendulum length. To 
this end, the mass and length were constrained to values between 
0.9 and 1.1 times their measured values. The other parameters, for 
which we had less grounded certainty, were allowed to vary from 
0.1 to 10 times their initial estimated values. 

Table 1: Physical Measurements of the three different pendulums and estimated 
values found by system identification. Values marked with 'F' represent estimates 
with friction included in the second-order nonlinear differential equation model of 
the pendulum. The bold values represent estimates made when only a viscous 
damping term is present. 

 Short Pendulum Medium Pendulum Long Pendulum 

Normal Viscous Normal Viscous Normal Viscous 

 
Measured 
Length to 

CoG 
[m] 

 

0.233/2 = 0.117 0.335/2 = 0.168 0.635/2 = 0.318 

 
Measured 

Weight 
[Kg] 

 

0.174 0.226 0.336 

 
Estimated 

Half-length to 
CoG 
[m] 

 

0.116(F) 

0.106 

0.117(F) 

0.105 

0.167(F) 

0.149 

0.164(F) 

0.149 

0.322(F) 

0.317 

0.308(F) 

0.316 

 
Estimated 

Weight 
[Kg] 

 

0.178(F) 

0.158 

0.174(F) 

0.157 

0.207(F) 

0.207 

0.202(F) 

0.207 

0.341(F) 

0.338 

0.327(F)x 

0.338 

 
Estimated 

MoI 
[Kg-m2] 

 

8.97e-04(F) 

9.02e-04 

8.47e-04(F) 

8.83e-04 

0.0024v 

0.0027 

0.0024(F) 

0.0027 

0.0142(F) 

0.0144 

0.0147(F) 

0.0146 

 
Estimated 
Viscosity 
[N-m-s/rad] 

 

2.21e-04(F) 

9.90e-04 

2.22e-04(F) 

1.00e-03 

3.36e-04(F) 

1.00e-04 

2.35e-04(F) 

1.00e-04 

2.22e-04(F) 

0.0038 

5.20e-04(F) 

0.0048 

 
Estimated 
Friction 

[N/Rads-1] 
 

5.05e-04(F) 

n/a 

6.16e-04(F) 

n/a 

3.07e-04(F) 

n/a 

3.87e-04(F) 

n/a 

3.87e-04(F) 

n/a 

5.46e-04(F) 

n/a 

Figure 19 shows the results of using system identification to fit 
model parameters to the measured data for the medium-length, 
low-friction, low-viscosity pendulum condition. The initial guess, 
which incorporated insufficient damping, is shown in Figure 19 
top plot. A reasonably good fit is achieved by fitting the model 
with only viscous damping, as demonstrated in Figure 19 middle 
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plot. An even better fit is obtained when the model also includes 
sliding friction, depicted in Figure 19 1ower plot. 

For each pendulum length, measured and estimated values 
were obtained, both with and without friction, leading to a total of 
six conditions. These conditions are presented in Table 1. The 
corresponding (no-friction) state space matrices and Luenberger 
gain L are shown in Table 2. The computed state feedback 
controller system gains K and reference pre-scaling factor 𝑁𝑁�, are 
shown in Table 3. 

11.4. Reality check using canonical form 

To provide a ballpark estimate of the main parameters of the 
three pendulums in their low-damping modes, each pendulum was 
first nudged using the tapper mechanism and then allowed to sway 
freely, eventually settling into its stable position, as depicted in 
Figure 20. Measured values are shown in Table 4. 

Table 2: Values of the state-space matrix and Luenberger observer gain, presented 
in MATLAB syntax. 

Parameter Value 

A [0  1  0  0; 41.4440 − 0.1692  0  0; 0  0  0  0; 0  0  1  0;] 

B [44.2247; −0.7147; 1; 0;] 

C [1 0 0 0] 

L [12.7461  80.7319] 

Table 3: Computed state feedback control K gains and 𝑁𝑁� values used for the two 
control mode (in MATLAB syntax). 

Control 1zModes K Gain 𝐍𝐍� 

Position Control [5.0514 0.7587; −4.4412; −4.4721;] 0 

Velocity Control [  3.2478; 0.4734; 0; 0; ] 1 

Table 4: Measured decay and nearest integer number of cycles as a function of 
time for all three pendulum lengths in undamped conditions. The values in 
brackets were found by the system identification procedure. 

 Short 
Pendulum 

Medium 
Pendulum 

Long 
Pendulum 

Measured Maximum 
Time [s] 13.50 27.0 54.8 

Measured 50% Decay 
Time [s] 5.99 12.15 26.2 

Measured 50% Decay 
Cycles [integer count] 7 12 19 

Observable frequency of 
oscillation fd 

[Hz] 

1.17 Hz 
(1.25 Hz) 

0.99 Hz 
(1.03) 

0.73 Hz 
(0.74 Hz) 

Estimated damping ratio 
ζ  

0.016 
(0.024) 

0.0091 
(0.011) 

0.0057 
(0.0084) 

We used Equations (80 and 81) to calculate the corresponding 
natural frequencies, which were essentially the same as the 
damped frequencies due to the very small damping ratio. These 
values aligned well (within 10%) with those obtained through 
system identification, confirming the appropriateness of the values 

found by the fitting procedure. We calculated the damping ratio 
from the decay to 50% in a time 𝑡𝑡50 using the equation: 

ζ =
−ln (0.5)
𝜔𝜔𝑛𝑛𝑡𝑡50

(90) 

From Table 4 it can be seen that the system identification yielded 
similar values. 

 

Figure 20: Approximate estimation of the canonical parameters for the pendulum 
system by observing the frequency of oscillation and the amplitude decay to 50% 
of the initial value. Plots are shown here for the short, medium, and long-length 
pendulums (with no extra damping), respectively. 

12. MATLAB SFC controller simulations 

12.1. Simulating the pendulum 

In MATLAB, we simulated the pendulum balancing using both 
velocity and position controllers. This involved the deployment of 
a non-linear state space model to simulate the pendulum plant. 
Additionally, a linear model was implemented for Luenberger 
observer full state feedback control. 

Following initial design of the two inverted pendulum 
controllers, they underwent iterative tuning and testing within 
MATLAB simulations. This methodology included assessing the 
behavior and stability of the inverted pendulum in response to cart 
movement and simulated impacts to the pole while it was balanced 
in its inverted position. Simulations carried out in both velocity 
control and position control modes, also involve modifying the 
reference input to maneuver the cart velocity or position. 

12.2. Reference tracking 

Simulated results of velocity tracking are shown in Figure 21 
left column. The cart nearly achieved the reference velocity using 
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a feedforward velocity command applied directly to it. In this 
scenario, feedback control of the cart's velocity was not utilized. 
As a result, the tracking was not entirely accurate; this is partly 
because the feedback control required for stabilizing the balance 
tends to counteract the cart's movement. 

Simulated results of position tracking are presented in Figure 
21 right column. Utilizing integral action to correct the cart's 
position error proved effective for tracking the desired cart 
position. However, the response to the target location was not 
immediate, with a noticeable delay before the cart aligned with the 
desired position. 

12.3. Recovery from impulsive disturbance 

To simulate kick disturbances, we manipulated the state of the 
pendulum to mimic the effect of an elastic collision with another 
hard object. This involved setting the pendulum’s angular state (x1) 
to zero and its second state (x2), which comprises an angular 
velocity component and a control input term, to a small positive 
value. The results of this simulation are shown in Figure 22. 

 
Figure 21: The pendulum angle and cart position are depicted in response to the 
cart movement, driven by changes in the cart position reference setpoint. Left 
column: MATLAB simulation of the pendulum with velocity control. The 
pendulum angle and cart position are shown in response to moving the cart, driven 
by changes in the velocity reference input. Right column: MATLAB simulation of 
the pendulum under position control of the cart with integral action on cart 
positional error.  

The left column of Figure 22 shows the response of the inverted 
pendulum to an impulsive disturbance while operating in velocity 
control mode. It demonstrates a successful recovery to the initial 
pole deviation from the vertical position. However, it is notable 
that the cart position shifts and does not return to its initial starting 
position. 

The right column of Figure 22 shows the behavior of the 
inverted pendulum to the same disturbance while operating in 
position control mode. Again it can be seen that a good recovery 
to the initial pole deviation from the vertical orientation is 

achieved. However, although the cart initially drives away from its 
initial location, is slowly moves back after a few seconds. 

13. DIN Rail Panel Construction 

13.1. Connections to controller 

A DIN rail panel was tailor-made to control the inverted 
pendulum system. Figures 23 and 24 show the connectors and their 
corresponding wiring diagrams. The controller interface, located 
at the top of the panel enclosure, features a female USB-B port. 
This port connects the Arduino Mega 2560, located inside the 
controller assembly, to an external computer, which is used for 
software development and relaying control commands. 

The panel features seven female D-connectors. The interfaces 
are configured to connect with four stepper motors, an I²C device, 
an SPI device, and two encoders. The use of these D-connectors 
allows for easy and quick connection of the panel to the inverted 
pendulum apparatus or other equipment. 

 

Figure 22: The pendulum angle and cart position are depicted in response to a 
simulated tap. Left column: MATLAB simulation of the pendulum with velocity 
control. The pendulum angle and cart position are shown in response to a 40 deg/s 
initial velocity disturbance. Right column: MATLAB simulation of the pendulum 
under position control of the cart, with integral action on cart positional error.  

 
Figure 23: View of the actual controller panel cover, which was designed in 
Autodesk Fusion 360 and then 3D printed. 
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Special care was taken in the wiring of the plugs for each 
attached component, and they were configured with a unique 
connection pattern. This design feature serves to prevent accidental 
inappropriate connections that could result in electrical damage. 
The primary focus was on the power pin assignments, ensuring 
their isolation from other signal inputs and outputs. This safeguard 
ensures that potential connection errors will not result in 
component damage. 

13.2. Panel internal layout 

The controller panel’s internal layout comprises three specific 
DIN rails, as depicted in Figure 25, which shows a photograph of 
the assembled unit. It consists of a microcontroller rail, a rail for 
motor drivers and power converters, and a power supply rail. 
Additionally, wiring conduit was strategically placed to manage 
the cabling in a tidy manner. This arrangement not only enhanced 
the orderly appearance but also reduced the risk of unintended 
cable contact with other components or causing interference. 

 
Figure 24: Rear view of soldered D-Sub connections on the male plugs (left-hand 
column) and the female sockets (right-hand column) mounted on the panel. The 
top row shows the Inter-Integrated Circuit (I²C) pinout, the second row is for Serial 
Peripheral Interface (SPI), the third row is dedicated to stepper motors, and the 
bottom row is configured for encoders 

13.3. Panel DIN rail components 

In the selection of panel components, preference was given to 
components equipped with rear mounts for DIN rail attachment. 
For other components, custom 3D printed support structures were 
made and fitted with clips to attach them to the DIN rails. The 
power rail within the controller panel was compartmentalized into 
three principal sections: 

1. An AC circuit breaker section that is responsible for 
regulating overcurrent conditions and interrupting the main 
supply. 

2. A region featuring a PULS Dimension DIN rail power supply, 
which delivers 24 volts at 5A, and meets the voltage and 
current prerequisites of the system. 

3. A region containing three discrete DC circuit breakers, to 
permit individual disconnection of each control component. 
This feature provides additional protection against potential 
damage due to short circuits. 

13.4. Stepper motor drivers 

The power converter and motor driver rails were engineered to 
facilitate the operation of up to four stepper motors, each capable 
of being directly interfaced with the control panel's motor driver 
rail. The motor driver rail featured two 3D-printed carriers, each 
housing a pair of A4988 stepper motor drivers. These motor 
drivers were powered by a 24-volt supply operating on mains 
power. 

 
Figure 25: View displaying the internal layout of the controller panel, which is 
partitioned into distinct sections for power management, motor control, and 
microcontroller functions. 

The A4988 driver offers eight distinct micro-stepping 
resolutions, providing flexibility in stepper motor control. For this 
project, we employed a one-fourth step resolution for all motors. 
To realize the one-fourth step resolution setting on the expansion 
board, the DIL switches were configured appropriately. The 
A4988 driver can operate within a voltage range of 8V to 35V and 
can deliver a current ranging from 1.5A to 2.2A. A potentiometer 
is incorporated into the driver breakout board, enabling hands-on 
fine-tuning of the current supplied to the stepper motor. To 
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determine the current limit, Ilim, it's essential to gauge the reference 
voltage (Vref) on the potentiometer and apply the given formula to 
compute its desired value: 

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 = 2𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 (90) 

This facilitates precise control over the motor current, 
optimizing performance and efficiency. Our adjustment of the 
current limit was a critical step to ensure the proper functioning of 
our NEMA23 stepper motors. A current limit of 1.5A was 
determined to be ideal for this specific application. Exceeding this 
current threshold may damage both the motors and the drivers. 
Conversely, setting the current below 1.5A could compromise the 
motors' operation, raising the likelihood of stalling. Thus, 
appropriate calibration is paramount to ensure good performance 
while safeguarding the components from potential harm. 

 
Figure 26: DIN Rail holder for the A4988 Driver Module. This setup mounts two 
stepper motor controller breakout boards onto a DIN rail. Notably, it includes a 
cooling fan to ensure the controllers remain at optimal temperatures and prevent 
overheating. 

 
Figure 27: Pinouts for the Arduino Mega 2560. The connections are configured to 
control up to three stepper motors and communicate with peripherals via the I²C 
and SPI data buses. 

To prevent overheating of the motor drivers, the incorporation 
of a cooling solution was essential. A pair of compact DC axial 
fans were positioned above them to prevent thermal damage to the 
chips. These fans required a supply voltage of 12V, which was 
furnished through a Buck converter operating from the 24V power 
line (refer to Figure 26). This setup ensured that the motor drivers 
stayed at a safe temperature during operation, enhancing both their 
performance and longevity. 

At the heart of the controller panel, on the microcontroller rail, 
the Arduino Mega 2560 is prominently featured. Selected for its 
robust I/O capabilities, it offers 54 digital input/output pins, 
including 15 suitable for PWM, 256KB of flash memory, and a 
clock speed of 16MHz (refer to Figures 27 and 28). The Arduino 
Mega facilitates seamless communication with the host PC, 
aligning perfectly with the project's requirements. 

 
Figure 28: Arduino Mega 2560 pinout connections used for reading the system’s 
two encoders. 

14. Software Implementation in Arduino 

14.1. Arduino software overview 

Control over the pendulum was overseen by the Arduino Mega, 
which was employed to implement a state feedback controller 
function within its primary polling loop. During the polling 
operation, the control process begins by reading the encoder to 
ascertain the pendulum pole's angle relative to the vertical. For the 
state feedback controller to operate, it required the pendulum 
system's full state. Since only the angle was directly available, the 
second state was estimated using a Luenberger observer. Using the 
full state estimate, the control command was generated by 
multiplying it with the specified feedback gain. Based on the 
measured angle, the feedback controller then calculated the stepper 
motor velocity control signal. This signal produced an output pulse 
train, driving the stepper motor and allowing the cart to move at 
the ideal speed to maintain balance. State updates were computed 
utilizing Euler integration. 

14.2. Arduino command menu 

Within the polling cycle, the system processes and interprets 
incoming commands received through the serial interface. The 
suite of accessible commands encompasses the following: 
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• Activate control: Starts balancing when the pendulum is 
brought up to an inverted configuration. 

• Deactivate control. 

• Display help menu: View controller parameters. 

14.3. Main Arduino loop pseudocode  

The pseudocode for the main Arduino poll loop is shown 
below. This makes use of function calls the can reset the encoder, 
calculate the motor command, and drive the stepper motor. The 
loop is continuously run to control the system, ensuring that the 
pendulum maintains its desired position or follows a certain 
trajectory. In addition, there are command responses from calls to 
the menu system so that the program can be operated from a serial 
monitor over a USB connection. 

Main Arduino Poll loop  
 
Result: Balances pendulum on track 
 
Initialization of SFC parameters and flags 
 
while program running do 
 
 Call the menu object for input commands, act accordingly 

Read time  

Read pendulum pole angle 

Read reference value 

Call SFC function to compute control u 

Generate stepper control pulses to  

Drive stepper motor 

 
 
 
 
 

end    
   

14.4. Pseudocode to implement SFC  

The state feedback controller is implemented as a C++ class. 
Its constructor sets up the parameters for the state space model, as 
well as the SFC gain K and the Luenberger gain L. A SFC function 
is called with the current time and the measured pendulum pole 
position. It returns the control value U, which is subsequently used 
to set the rotational velocity of the stepper motor and drive the 
pendulum cart. 

State Feedback Controller 
 

 
Result: state feedback control variable u 
 
Initialization state space matrices A, B, C 
Initialization SFC gain K 
Initialization Luenberger gain L 
Initialization state estimate;  𝑋𝑋� = [0; 0; 0; 0]; 
 
while balancing pendulum do 
 
 Read reference value ref 

 

 Read pendulum output angle y 
 

 Calculate time step: h. = time - lastTime  
 

 Update last time:  lastTime = time 
 

 Calculate control:  u = - K𝑋𝑋� + ref * 𝑁𝑁�   
 

 Calculate Output prediction error: yErr = y – C𝑋𝑋� 
 

 Calculate 1st pendulum state derivative: 
𝑋𝑋�
.
(0) = A[0][0] * 𝑋𝑋�[0] + A[0][1] * 𝑋𝑋�[1] + B[0] * u + 

L[0] * yErr 
 

 Calculate 2nd pendulum state derivative: 
𝑋𝑋�
.
(1) = A[1][0] * 𝑋𝑋�[0] + A[1][1] * 𝑋𝑋�[1] + B[1] * u + 

L[1] * yErr 
 

 Calculate 3rd cart position state derivative: 
𝑋𝑋�
.
(2) =  B[2] * u 

 
 Calculate 4th integral position error state derivative: 

𝑋𝑋�
.
(3) =  𝑋𝑋�(2) =  B[2] – ref 

 
 Perform Euler integration: 

𝑋𝑋� = 𝑋𝑋� + h𝑋𝑋� 
 

 Return u 
 

end    

15. Experimental results 

15.1. Online demonstration videos 

Viewers can watch the inverted pendulum operations, 
including various tests, on the YouTube channel 'Robotics, Control 
and Machine Learning'. All related videos are grouped under the 
'ASTESJ Inverted Pendulum' playlist. Please follow the provided 
link for direct access to these videos: 

https://youtu.be/pvF0Zhs501U?si=P7vknbwL11tvBksE 

15.2. Perturbation tests 

We use a straightforward approach to assess control law 
performance by simultaneously monitoring the cart's position and 
the pendulum's angle during minor system disturbances. We obtain 
these measurements using encoders on the cart's stepper motor and 
at the pendulum's axis for angle measurement. During the balance 
test, disturbances are introduced by systematically applying an 
impulse to the pendulum using a tapping mechanism. 

Experiments were conducted in both position and velocity 
control modes, varying the pole length from shorter to longer 
dimensions. These tests demonstrated the system’s ability to 
maintain stability, even when subjected to additional loads altering 
its dynamic characteristics. Video demonstrations of these 
experiments can be found on YouTube, as per the link provided 
above. 
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15.3. Position mode results 

Figure 29 shows the results of the test conducted in position 
control mode. The pendulum was initially stabilized and held 
stationary in a balanced position. Following the disturbance, 
immediate and noticeable changes occurred in both the pendulum 
angle and the cart's position. The pendulum angle plot showed 
minor fluctuations around zero. The motor encoder data revealed 
that the cart moved quickly to restore balance in the system and 
then gradually returned to its original position. This behavior, 
referring to the cart's movement and pendulum stabilization, is also 
evident in the YouTube videos. 

During tests with the long-length pole, we observed a small 
oscillation of the cart, even in the absence of disturbance. This 
oscillation likely stems from a significant mismatch between the 
long-length pole's parameters and those of the medium-length 
pole, for which the controller was originally designed. Based on 
these observations, modifying the control law appears necessary to 
effectively manage the pendulum's behavior with its increased 
length. 

 

Figure 29: Responses of real, physically position-controlled inverted pendulums 
(using integral action on cart position) to impulsive disturbances delivered by the 
tapping mechanism. Results are for all three pendulum lengths in their low 
damping configurations. The solid blue line represents the mean response 
averaged across eight aligned recordings, and the light blue shading indicates the 
corresponding standard deviation.  

15.4. Velocity mode results 

The pendulum's performance was closely examined while 
operating under velocity control, as illustrated in Figure 30. The 

velocity control operation was initiated via the keyboard on the 
main PC. Users could select a cart velocity, resulting in the cart 
moving as specified in both left and right directions. 

To further evaluate the system's resilience against knocks, 
representing impulsive disturbances, we conducted an additional 
test. In this test, the pole was gently tapped while the velocity was 
set to zero. In all instances, the pendulum system demonstrated 
notable stability and effectiveness in mitigating the disturbance. 
Compared to the position control mode, disturbances in the 
velocity control mode led to uncompensated cart movements, 
particularly for the short pendulum, as shown in the lowest row of 
Figure 30. Again, this behavior is also apparent in the YouTube 
videos. This is also worth noting that using a longer pole again 
resulted in a modest reduction in performance in velocity control 
mode, with some cart oscillations observed after the impulsive 
disturbance. However, this effect was less pronounced than in 
position control mode. 

 
Figure 30: Responses of  real, physically velocity-controlled inverted pendulums 
to impulsive disturbances delivered by the tapping mechanism. Results are for all 
three pendulum lengths in their low damping configurations. The solid blue line 
represents the mean response averaged across eight aligned recordings, and the 
light blue shading indicates the corresponding standard deviation.  

16. Discussion 
16.1. Summary 

In this study, we demonstrated the design, implementation, 
analysis, simulation, and testing of an inverted pendulum. The 
mechanical system was built utilizing V-slot rail components and 
custom 3D printed parts. 
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Novel features of this work included: 
1. The construction of a physical pendulum in which the pole 

length, viscosity, and resistive friction could be easily 
modified. 

2. The construction of a testing rig, designed to apply 
consistent taps to the pendulum pole, to evaluate its 
reaction to impulsive disturbances. 

3. Use of system identification to investigate and quantify the 
pendulum’s uncontrolled dynamics as the physical 
characteristics of the pendulum system were changed.  

4. The design of two linear controllers, based on observer-
based full state feedback control modes, supporting either 
velocity or position control of the pendulum cart while 
balancing the pendulum pole. 

5. Performance testing to investigate the pendulum’s 
controlled dynamics as its physical characteristics were 
changed.  

16.2. Uncontrolled pendulum oscillations 
We first investigated the behavior of the pendulum in its stable 

downward inverted configurations. This was done for all three test 
pendulum pole lengths, as well as under conditions of both high 
and low static friction and high and low viscous damping. We 
examined the pendulum's free oscillations following an initial 
large angle displacement of approximately 90°, and also after 
initial small angle displacements of about 5°, caused by taps from 
the tapping mechanism. As expected, increasing the pole length 
reduced the oscillatory frequency of the pendulum. 

Increasing viscosity using the paddle mechanism significantly 
reduced the decay time of oscillations in the large angle case. In 
this scenario, the added viscous resistance dominated the 
pendulum's oscillatory decay, resulting in an exponential reduction 
in amplitude over time. However, in the small angle condition, 
where static sliding friction was a significant source of decay, the 
paddle had minimal effect. This was evidenced by a more linear 
decay of oscillatory amplitude. 

When we increased static friction equally in both the large and 
small angle cases, the effects differed. In the large angle case, this 
increase led to a noticeable, albeit modestly more linear, decay of 
oscillations. Conversely, in the small angle condition, the same 
level of friction had a dramatic effect, rapidly decelerating 
oscillations and bringing them to a standstill within just a few 
cycles. 

These observations indicate that the viscous resistance from the 
paddle is better represented by the square of the movement velocity 
than by the linear model commonly used in mathematical 
modeling. This is particularly true since the paddle's effect is 
significant only during faster movements. Furthermore, at small 
amplitudes, where the effect of gravity acting on the pole produces 
minimal torque, any substantial static frictional resistance can 
dominate the damping behavior. 
16.3. System identification 

To estimate the pendulums' parameters, we applied a system 
identification procedure to the small angle dataset. This data best 
represents the small angle condition occurring during the 
balancing of the inverted pendulum. We used optimization to fit 
the predicted pendulum damped oscillatory decay waveform with 
data recorded from the pendulum in different configurations. We 

noted that including a friction term in the mathematical model of 
the non-inverted pendulum was necessary in this process. This 
addition accounts for the linear aspect of decay and achieves a 
good fit. The fitting procedure enabled the estimation of the 
viscous and static friction terms, as well as an updated estimate of 
the effective pendulum pole length, mass, and moment of inertia. 
16.4. Controlled pendulum results 

We undertook a sequence of system tests, starting with the 
standard pendulum pole length for which the controllers were 
developed. We then investigated how the stabilized pendulum pole 
responded to light taps from the tapper mechanism, creating 
impulses. This testing was carried out in both velocity and position 
control modes. In velocity mode, the cart could be driven with a 
feedforward velocity command to move left or right while 
maintaining balance. In position control mode, which operates 
with integral action on the cart's position, the control system 
maintains the pendulum's cart at a specified location. We observed 
distinct behavioral differences between the two control modes. 

Unsurprisingly, velocity control, unconcerned with cart 
position, responded to disturbances to the pendulum pole with 
balancing movements of the cart, typically causing a positional 
shift. In position control mode, a disturbance similarly resulted in 
balancing movement, but the cart gradually returned to its initial 
position. 

Since the cart's movement velocity is limited, any disturbance 
requiring faster movement would naturally result in a loss of 
balance. This limitation also affects the balancing robustness in 
velocity control mode. If the cart is already moving in one 
direction, its capacity for additional corrective velocity in that 
direction is restricted. 
16.5. Transfer of controller operation to other pole lengths 

To assess controller performance, we conducted balancing 
system tests using both shorter and longer pendulum pole lengths, 
comparing them to the standard length for which the controllers 
were developed. We found that the controllers operated well with 
the shorter length pendulum pole. However, with the longer 
pendulum pole, we observed some oscillatory behavior of the cart, 
particularly in position control mode. Despite this, the inverted 
pendulum balance was still maintained. 

We note that the gains for both controller modes, derived from 
the Linear Quadratic Regulator (LQR) design process, were based 
solely on experimentation with the standard pendulum. Naturally, 
there remains a strong likelihood that more optimal controllers for 
both modes could exist, particularly if they were specifically 
designed for these varying pendulum lengths. 
16.6. Future work 

In the current study, we examined the effects of a relatively 
low-intensity, fixed impulsive disturbance on pendulums using a 
tapper mechanism. We utilized this setup to assess how the 
pendulums responded as their characteristics were altered and to 
observe the behaviors of velocity and position control. These tests 
did not result in a loss of balance; rather, they only evaluated the 
reactions necessary to maintain equilibrium. It would be 
enlightening to apply a wider range of impulse intensities and 
compare the behaviors related to loss of balance across the various 
conditions and controllers examined in this study. The existing 
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tapper mechanism could not be easily adjusted to provide a range 
of impulse intensities. For future research, constructing a tapper 
device that employs a motor to drive the tapper rod would be a 
valuable exercise, allowing for precise control over the impulse 
intensity. 

Currently, we have examined the behavior of two different 
state feedback controller architectures for balancing a pendulum. 
Many other control approaches exist, and a comparison with 
methods such as PID (Proportional-Integral-Derivative) [16,17],  
and reinforcement learning [22–24], would be informative. 

The inverted pendulum has been valuable in understanding 
human balance while standing [44–52]. Future studies within the 
framework of our pendulum system could further explore and 
model human behavior in such tasks. These studies could 
investigate factors that constrain human performance, including 
sensory feedback latency, noise in the control and sensory systems, 
as well as the force, stiffness, and speed of movement 
characteristics of muscles [68]. Such issues could be readily 
incorporated into the MATLAB simulations as well as real-time 
control of the physical pendulum system. 
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