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 Cybercriminal exploits integrity, confidentiality, and availability of information resources. 
Cyberattacks are typically invisible to the naked eye, even though they target a wide range 
of our digital assets, such as internet-connected smart devices, computers, and networking 
devices. Implementing network anomaly detection proves to be an effective method for 
identifying these malicious activities.  The traditional anomaly detection model cannot detect 
zero-day attacks. Hence, the implementation of the artificial intelligence method overcomes 
those problems. A specialized model, known as a recurrent neural network (RNN), is 
specifically crafted to identify and utilize sequential data patterns to forecast upcoming 
scenarios. The random selection of hyperparameters does not provide an efficient result for 
the selected dataset. We examined seven distinct optimizers: Nadam, Adam, RMSprop, 
Adamax, SGD, Adagrad, and Ftrl, with variations in values of batch size, epochs, and the 
data split ratio. Our goal is to optimize the performance of the bidirectional long short-term 
memory (Bi-LSTM) anomaly detection model. This optimization resulted in an exceptional 
network anomaly detection accuracy of 98.52% on the binary NSL-KDD dataset. Sampling 
techniques deal with the data imbalance problem. Random under-sampling, which involved 
removing data from the majority classes to create a smaller dataset, was less efficient for 
deep learning models. In contrast, the Synthetic Minority Oversampling Technique 
(SMOTE) successfully generated random data related to the minority class, resulting in a 
balanced NSL-KDD multiclass dataset with 99.83% Bi-LSTM model detection accuracy. 
Our analysis discovered that our Bidirectional LSTM anomaly detection model 
outperformed existing anomaly detection models compared to the performance metrics, 
including precision, f1-score, and accuracy. 
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1. Introduction 

This paper is an extension of "Efficacy of Bidirectional LSTM 
Model for Network-Based Anomaly Detection" [1] presented at 
the conference IEEE 13th Symposium on Computer Applications 
& Industrial Electronics (ISCAIE) in 2023. 

Information technology has revolutionized how essential data 
is conveyed, utilizing bits to transfer a wide range of information 
from one point to another. This transmitted data can encompass 
diverse forms, such as voice, images, or data, including sensitive 
details like banking information, personal records, and network 
traffic. Numerous tools and techniques are available to identify and 
thwart unauthorized access.  

 Anomaly is an unusual pattern present in the dataset. Some 
techniques or methods are required to detect those anomalies from 
the dataset. The anomaly is also called the outliers during the study 

of anomaly detection. Anomaly detection is used in large fields to 
sense abnormal patterns, such as in business, network attack 
detection, monitoring health conditions, detecting fraud credit card 
transactions, and detecting malicious activities in mission-critical 
systems. Detecting anomalies is critical in cyber security for 
achieving solid safeguards against cyber criminals. Figure 1. 
provides brief information about the taxonomy of anomaly 
detection methods [2]. 

The security of information resources is ensured when the three 
fundamental principles of computer security—confidentiality, 
integrity, and availability (CIA)—are appropriately obeyed [3]. An 
intrusion detection system is a mechanism used to monitor and 
scrutinize computer or network- related activities to identify 
potential threats by assessing the frequency at which computer 
security guidelines are violated based on confidentiality, integrity, 
and availability.  Intrusion is any unwelcome and illegal activity 
within an organization's internet-connected end terminal or 
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network-connected devices. These illegal activities aim to gain 
entry to a business computer or network device. An alternative 
term for intrusion is a malicious activity that disrupts the 
fundamental principles of information resource protection known 
as the CIA triad. An intrusion detection system examines computer 
network and host activities, pinpointing dubious traffic and 
abnormalities. Intrusion detection and prevention systems 
scrutinize traffic from both internal and external sources to identify 
potentially malicious actions. 

 
Figure 1: Taxonomy of Anomaly Detection [2] 

Detection of misuse and/or intrusion involves identifying 
potentially suspicious activities within a network or on hosts. 
Misuse detection focuses on recognizing deviations from 
established rules by individuals with valid system access rather 
than actual intrusions. For instance, when an employee uses the 
Internet for personal purposes in violation of company policy, it 
constitutes a misuse intrusion. In contrast, intrusion detection is 
designed to identify unauthorized individuals, such as external 
hackers or government spies, who lack authorized system access. 
The intrusion detection system primarily focuses on spotting 
ongoing intrusions within the system or network but does not 
proactively prevent malicious activities.  

There are two main types of methods for detecting intrusions: 
signature-based systems, known as SIDS, and anomaly-based 
systems, referred to as AIDS. Anomaly detection systems are 
further categorized into network-related and host-related intrusion 
detection systems. The identification of normal or anomalous data 
in anomaly detection techniques is achieved through the utilization 
of labels.  

A SIDS identifies suspicious activities through pattern 
matching with known external attack patterns, which fall into two 
categories: misuse detection and knowledge-based detection. This 
anomaly detection model compares the recent signature with a 
previously stored signature in its database. When a match occurs 
between these signatures, the IDS signals the presence of 

malicious activities within the network. Regular updates to the 
signature database are crucial to effectively detect malicious 
activities in a network. However, it's important to note that this 
type of detection system cannot identify zero-day attacks, as these 
novel attack types may not yet be contained in the signature 
archive. This anomaly detection model delivers optimal detection 
outcomes for recognized signatures associated with malicious 
activities. This type of anomaly detection model is known for its 
straightforward configuration and comprehensibility. Widely 
adopted intrusion detection systems include Snort and NetSTAT. 
In the traditional setup, the SIDS examines network packets and 
matches them against stored signatures. However, newly 
introduced attacks not yet included in the signature database can 
reduce intrusion detection accuracy. To address these limitations, 
the anomaly-based anomaly detection model offers enhancements 
and boosts the overall anomaly detection rate. The anomaly-based 
intrusion detection approach is designed to identify malicious and 
unreliable network exploitation activities within the corporation.  

AIDS effectively addresses the limitations included in SIDS 
approaches. Likewise, the anomaly-based intrusion model 
leverages statistical-based, machine learning, and knowledge-
based techniques to model the typical behaviors of network traffic. 
An "anomaly" refers to any behavior that deviates from these 
established norms, and such traffic anomalies can harm computers 
and network devices. Anomaly-based detection can occasionally 
yield false results due to shifts in user behavior. AIDS can generate 
errors even when legitimate users alter their usual habits. This 
approach comprises two key stages: the testing and the training 
stages. In the training stage, the model is trained using normal 
traffic data to establish a baseline or "normal profile." In the testing 
stage, previously unseen data is employed to evaluate the model's 
performance. The primary benefit of this methodology is its ability 
to detect zero-day attacks. 

Three distinct anomaly detection methods include 
unsupervised, semi-supervised, and supervised anomaly detection 
methods based on the target class. AIDS addresses the limitations 
of SIDS by employing knowledge-based methods, machine 
learning, and statistical-based to model normal behaviors. Figure 
1 outlines the various approaches to anomaly detection [2].  

Deep learning has the capability to generate improved 
representations, enhancing the development of effective anomaly 
detection models. In contrast, conventional machine learning 
algorithms for network-related abnormality detection are more 
appropriate for smaller datasets and often rely on performance 
influenced by the implementation of feature engineering. The 
model benchmark indicators of conventional anomaly detection 
models are significantly influenced by the split ratio. While these 
conventional ML methods are uncomplicated and require minimal 
resources, they face limitations when dealing with extensive 
datasets and large feature sets, making them unsuitable for tasks 
such as machine vision, image translation, natural language 
processing, and similar applications.  

The convolutional neural network is primarily employed for 
computer vision using image datasets, with the lower layers' 
neurons responsible for feature reduction. These lower layers 
typically recognize image corners, boundaries, and intensity called 
small-scale features. As the information progresses to higher 
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layers, the network integrates these lower-level features to create 
forms, basic shapes, and partial objects. The final layer of the 
network amalgamates these lower-level features to generate the 
output. LSTM operates distinctively from a CNN as it is 
commonly applied for processing and predicting outcomes based 
on sequential data. Unlike CNNs, Recurrent Neural Networks 
(RNNs), including LSTMs, were specifically designed to preserve 
long-range information within a sequence, preventing the loss of 
important details in lengthy sequences. The Bidirectional LSTM 
(BiLSTM) enhances this by introducing an additional LSTM layer 
that reverses the flow of information, effectively addressing issues 
such as vanishing gradients.  

The deep learning methodology tackles challenges inherent in 
conventional machine learning, specifically its ability to handle 
extensive datasets and numerous features. The efficacy of anomaly 
detection algorithms based on deep learning depends on various 
factors, including the choice of hidden layers, determination of 
activation function, neurons, batch size, and epochs during both 
model training and testing. Strategic decisions regarding these 
hyperparameters, along with considerations for the ratio of the 
train to test data and the design of deep neural networks, are 
essential for improving the precision of network anomaly detection 
systems.  

In addition to fine-tuning hyperparameters, handling 
imbalanced data is vital, and creating a balanced dataset using 
various sampling methods contributes to improved anomaly 
detection. Under-sampling reduces data size, posing challenges for 
deep learning models. At the same time, over-sampling methods 
generate duplicate random data, proving more effective for deep 
learning models to improve the anomaly detection performance in 
network-based anomaly detection models. 

2. Literature Review 

The continuous generation of data generates big data and poses 
challenges for traditional machine learning algorithms, requiring 
extensive feature engineering efforts to perform adequately. Deep 
learning significantly enhances detection performance in such 
scenarios. However, the effectiveness of network anomaly 
detection varies on numerous factors, with the nature of the dataset 
(whether balanced or unbalanced), the hyperparameter of the 
neural network, the amount of model train and test data, and the 
architecture of the neural network in the deep learning model. 
These elements collectively play a crucial role in successfully 
identifying anomalies in the network. 

In their study, the researchers utilized the Bidirectional LSTM 
to alleviate the considerable requirements for feature reduction 
inherent in conventional machine learning-based anomaly 
detection approaches [4]. Additionally, they implemented data 
augmentation in data preprocessing of minor attacks user to root 
(U2R) and root to local (R2L) to create a well-adjusted NSL-KDD. 
This methodology resulted in higher anomaly detection accuracy 
of 90.73% and f1-scores of 89.65%. 

In their study, presented an algorithm for network intrusion 
detection that integrated a deep hierarchical network with hybrid 
sampling, incorporating SMOTE to create a balanced dataset [5]. 
They utilized a hybrid approach that combined CNN and Bi-

LSTM for anomaly detection accuracy of 83.58% on NSL-KDD 
and 77.16% on UNSW-NB15. 

In their study, presented a method utilizing bidirectional 
generative adversarial networks (Bi-GAN) on the CIC-DDoS2019 
and NSL-KDD datasets [6]. The Bi-GAN model exhibited strong 
performance, particularly on the imbalanced NSL-KDD, achieving 
an f1-score of 92.68% and an accuracy of 91.12%. The Bi-GAN 
approach was employed to enhance the performance of the NSL-
KDD imbalance dataset. 

 In their study, implemented a new method involving auxiliary 
classifier generative adversarial network (ACGAN) and ACGAN 
with SVM to tackle data unevenness concerns by leveraging GAN 
to produce synthetic attack network traffic for intrusion detection 
systems [7]. These artificially generated attacks were merged with 
the existing data, resulting in an extended dataset. Research carried 
out on the RAWDATA, CICIDS2017, UNSW-NB15, and NSL-
KDD showed that among the support vector machine, decision 
tree, and random forest models, the decision tree achieved a 
superior f1-score of 92% on the balanced NSL-KDD dataset.  

In [8], researchers utilized an assorted ensemble-aided 
approach to binary and multi-class network anomaly detection 
models to tackle the challenge of uneven traffic data in network 
traffic-related datasets, including NSL-KDD, UNSW-NB15, and 
KDD99 datasets. This approach achieved a true positive rate and 
area under the ROC curve of 94.5% and 96.2% on the NSL-KDD, 
respectively.  

According to their finding, the authors [9] concluded that the 
efficiency of the anomaly detection algorithm is improved when 
the number of output labels is reduced. This observation was 
explored across different conventional machine learning 
algorithms, including Naïve Bayes, J48, random forest, 
bayesinNet, bagging, and bayesinNet. The evaluation used three 
network datasets: KDD99, CICIDS2017_Thrusday, and UNSW-
NB15. 

In [10], the researchers observed the effectiveness of a 
recurrent neural network-based intrusion detection system (RNN-
IDS) in multi-class and binary-class scenarios. Performance on the 
NSL-KDD was observed, which is affected by the number of 
neurons and different learning rates. Experimental outcomes 
illustrated that RNN-IDS is adept at constructing a classification 
approach with high accuracy, outperforming traditional machine 
learning classification methods, including random forest, artificial 
neural network, J48, and support vector machine in both multiclass 
and binary network intrusion-related datasets. In their publication 
[11], presented a network anomaly detection technique utilizing a 
convolutional autoencoder and attained a model accuracy of 
96.87% on the NSL-KDD. The convolutional autoencoder 
methodology was utilized to simplify and determine the most 
significant features of the network anomaly dataset. 

 In [12], the authors investigated the usefulness of several 
autoencoders in detecting network anomalies. They compared four 
different types of autoencoders, including sparse autoencoders, 
undercomplete deep autoencoders, and denoising autoencoders, 
using the NSL-KDD. Sparse deep denoising autoencoder yielded 
a model accuracy of 89.34% compared with other models. 

http://www.astesj.com/


A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023) 

www.astesj.com     147 

In [13], the authors presented a model centered around a 5-
layer autoencoder (AE) tailored for network abnormality 
detection. The fine-tuned model designs demonstrated proficiency 
in attribute learning and the dimension of data reduction, resulting 
in improved performance metrics, including model accuracy and 
f1-score. The model produces the highest accuracy and f1-score of 
90.61% and 92.26% on the NSL-KDD, respectively. The 
researchers employed the reconstruction error to determine 
whether the network traffic is regular or attacked. 

In [14], [15], the researchers proposed a network anomaly 
detection approach with a combination of convolutional neural 
networks and bidirectional LSTM applied to the KDD99. They 
explored the influence of the number of nodes, the number of 
hidden layers and memory elements on it, and the number of 
epochs to improve their anomaly detection model accuracy. The 
performance metrics of different models, such as J48, k-nearest 
neighbors, NB, deep forest, RF, and convolutional neural network 
combined with bidirectional LSTM, were evaluated. The 
convolutional neural network bidirectional LSTM exhibited the 
ultimate model detection accuracy of 95.40%.  

In [16], the researchers assessed both single-layer and four-
layer LSTM models for weather forecasting, utilizing a weather-
related dataset from Hang Nadim Indonesia Airport. The top 
model validation accuracy of 80.60%. The four hidden layers 
comprise 50, 90, 100, and 200 memory elements. The split ratio 
for testing and training dataset was used at 0.30, and the models 
underwent training for 500 epochs.  

The researchers in [17] adopted a deep learning approach 
utilizing bidirectional LSTM, implemented on the UNSW-NB15 
and KDDCUP99, and achieved notable outcomes with a 99% 
accuracy rate for both datasets. Numerous current models 
encounter difficulties in effectively detecting uncommon attack 
traffic types, notably user-to-root and remote-to-local traffic, 
which often demonstrate lower detection accuracy than other types 
of attacks. The researchers in [18] deployed an intrusion detection 
system based on bidirectional LSTM to address the mentioned 
encounters on the NSL-KDD. This anomaly detection approach, 
utilizing Bi-LSTM, achieved a model detection accuracy of 94.26 
% for binary NSL-KDD data. 

The study in [19] delved into the influence of batch size and 
learning rates on the performance of CNN, focusing on image 
classification, particularly in the context of medical images. The 
results indicate that a larger batch size does not necessarily lead to 
higher accuracy. Moreover, the choice of learning rate and 
optimizer significantly affects performance. The authors found 
that reducing the learning rate and batch size, particularly during 
fine-tuning, enhances the network's training effectiveness. 

Diverse strategies were implemented to address the challenge 
of data imbalance, encompassing techniques such as data 
augmentation discussed in [4], application of SMOTE detailed in 
[5], the use of GAN technology explored in [6], [7], the assistance 
of Heterogeneous ensemble methods investigated in [8], and the 
reduction of the target class by combining smaller classes into a 
new category as discussed in [9]. A considerable number of 
research endeavors in the realm of deep learning for network 
anomaly detection have been scrutinized, incorporating 
methodologies like RNNIDS outlined in [10], CAE featured in 

[11], Autoencoder examined in [12], multilayer AE explored in 
[13], convolutional neural network combined with bidirectional 
LSTM hybrid methods presented in [14] and Bi-LSTM discussed 
in [17]-[18]. 

The researchers in [17] and [18] did not provide details on data 
pre-processing, the train-test split ratio, or adopting bidirectional 
LSTM hyper-parameters in their model study. Similarly, the 
researchers in [16] conducted weather forecasting using Bi-LSTM 
without specifying the hyperparameter values. In [10], there was 
no analysis information on epochs and the train test split ratio for 
the KDDTrain+ dataset. Most of the literature reviewed 
emphasizes enhancing model accuracy in conventional or deep 
learning algorithms. However, there is a notable lack of focus on 
deciding on hyper-parameters in deep learning approaches, 
determining the train test split ratio, and defining the architecture 
of neural networks. Some researchers do not clarify how these 
values are applied in their work. Consequently, our research aims 
to address these limitations in the network anomaly detection 
approaches by conducting experiments on NSL-KDD. 

3. Contributions 

The literature review examines a gap in the existing network 
intrusion detection systems during anomaly detection. The primary 
contribution of this research is to bridge this gap by proposing 
network anomaly detection models specifically tailored for 
imbalanced multiclass datasets. 

Arbitrarily selection of hyperparameters does not yield 
efficient anomaly detection performance on the given dataset. This 
research investigates the impact of epochs, batch size, and 
optimizers on the efficacy of a bidirectional LSTM anomaly 
detection model using the multiclass NSL-KDD. 

 The choice of the amount of training data and testing data also 
influences the model's performance. A larger training dataset 
requires a longer training time, whereas a smaller dataset leads to 
quicker model training. The model's efficacy is contingent on the 
data size utilized for both training and testing, a factor we explored 
by adjusting the test train split ratio to enhance the performance of 
network traffic anomaly detection on the NSL-KDD. 

More layers add complexity to the neural network-based 
model. The program execution time (program training and testing 
time) is large compared to small numbers of neural network layers 
and memory elements. The memory elements and layers in the 
neural network architecture influence the network anomaly 
detection performance. Investing layers and memory elements of 
neural networks improves the bidirectional LSTM on the NSL-
KDD.  

The careful choice of machine learning and/or deep learning 
algorithms significantly impacts the effectiveness of network 
anomaly detection. This study introduces the creation and 
deployment of a network traffic anomaly detection system 
utilizing a bidirectional LSTM-based recurrent neural network 
model. The developed model demonstrates a remarkable anomaly 
detection accuracy of 98.52 % in the network, particularly for the 
binary NSL-KDD. 

The primary challenge when dealing with real datasets is the 
presence of imbalanced data. Various approaches can be employed 
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to address this issue. In the NIDS multiclass dataset, both under-
sampling and over-sampling methods are applied to tackle data 
imbalance. Notably, oversampling methods proved to be more 
effective, achieving the highest detection accuracy of 99.83% for 
the multiclass NSL-KDD datasets. 

4. Model Description 

The proposed model consists of different steps, which are 
listed: 

 1. Data collection and modelling 

 2. Data cleaning and pre-processing  

 3. Bidirectional LSTM model preparation  

 4. Model training and testing 

 5. Evaluation model 

 6. Compare the model for decision  

Figure 3 illustrates the schematic for the model based on 
Bidirectional LSTM. More elaborate explanations of the methods 
outlined above for the proposed model will be provided in the 
following sections.  

4.1. Data Collection and Modelling 

During this study, we employed the KDDTrain+ dataset, one 
of the subset data from the NSL-KDD. 

 
Figure 2:  DARPA, KDD99, and NSL-KDD Datasets 

 The NSL-KDD data is derived from the DARPA KDD99 data, 
as depicted in Figure 2, after the removal of noise and unwanted 
data. This includes the complete training data from the NSL-KDD 
set, including features named attack_type and difficulty. It 
encompasses 41 attributes and covers five separate attack 
categories: denial of service, normal, remote_to_local, probe, and 
user_to_root. NSL-KDD [20] represents an enhanced version of 
the KDD99 network traffic anomaly data, eliminating duplicate 
entries in the training data and ensuring the absence of repeated 
records in the test data. The KDDTrain+ dataset comprises 
125,973 records and includes 41 attributes. Notably, this is 
balanced, with 53.46% of total traffic being normal and 46.54% of 
total traffic entry being abnormal. We picked this data because it 
is balanced data between normal and abnormal traffic records 
within the subset, making it suitable for binary network anomaly 
detection data. Those numbers of attack class information from the 
NSL-KDD data were utilized to create the multiclass dataset for 
the experiment, detailed in the data pre-processing section. 

4.2. Data Cleaning and pre-processing 

The KDDCup99 data is widely employed in experiments 
related to anomaly detection in computer network traffic. It 
consists of network-related traffic that transfers from the virtual 

network environment utilized for the third knowledge discovery 
and data mining tools competition. The KDD99 network traffic 
data is a revision of the 1998 DARPA. The KDDCup99 dataset 
comprises three components: the "Whole" dataset, the "10% 
KDD," and the "Corrected KDD." The "Whole" dataset 
encompasses various attack traffic and one normal network traffic 
connection. This data involves two training data subsets: a full 
training data subset and a 10% training data subset.  The "Whole" 
dataset consists of 4,898,431 individual records containing 41 
attributes labeled as normal or an attack. 

 As indicated in reference [20], the KDD99 dataset 
encompasses 22 distinct attack traffic categorized into four classes: 
Denial of Service, Unauthorized Access to Local Privileges (U2R), 
Unauthorized Remote Machine Access (R2L), and Scan Network 
(Probe). The NSL-KDD data contains four sub-datasets, including 
KDDTest-21, KDDTest+, KDDTrain+_20Percent, and 
KDDTrain+. Notably, the KDDTrain+_20Percent and KDDTest-
21 portions are sub-datasets derived from the KDDTest+ and 
KDDTrain+, respectively. 

The KDDTrain+ dataset is designated as the training dataset, 
while the KDDTest+ dataset serves as the testing dataset for the 
machine learning model. KDDTest-21 is a subset of the test dataset 
that excludes the most challenging traffic records (with a score of 
21), and KDDTrain+_20Percent is a subset of the training dataset, 
encompassing 20% of the entire training dataset. It's important to 
note that the traffic records found in KDDTest-21 and 
KDDTrain+_20Percent are already included in the test and train 
datasets, respectively. The NSL-KDD dataset addresses the 
limitations found in the KDD'99 dataset. Unlike KDD'99, NSL-
KDD ensures the absence of redundant values in both the train and 
test datasets.  

Notably, NSL-KDD is advantageous due to its smaller test and 
train sets, eliminating the need for random selection of a small data 
subset, thus making experiments more cost-effective. Each record 
in the NSL-KDD dataset comprises 42 features, with 41 of them 
corresponding to the traffic input and the final label denoted as 
either "normal" or "abnormal." In the KDDTrain+ contains 
125,973 total network traffic records and 41 generated attributes, 
the data cleaning and pre-processing assigns a target label of ‘1’ 
for normal traffic and ‘0’ for attack traffic records, transforming 
the multiclass network traffic data into a binary class.  

achine learning and deep learning algorithms work only for 
numeric values, so ‘'protocol_type,' 'service,' and 'flag' are 
categorical attributes transformed into numeric values, either ‘0’ 
or ‘1’ using one hot encoding method called dummy one hot 
encoding. The dataset is then normalized using the standard scalar 
method. Correlation-based feature reduction is also implemented 
where those features with a correlation factor exceeding 0.5 are 
preserved to reduce the features. Binary class data is employed in 
experiments A to E. In experiment F, the multiclass (class 5) 
version of the NSL-KDD dataset is utilized. Prior to training and 
testing the BI-LSTM model, a sampling method is applied to 
balance the unbalanced multiclass data. Further details on data 
preprocessing and model information can be found in the 
experimental section in the subsequent chapter. 
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4.3. Train and test data preparation 

The train data and test data splitting method separate the data 
randomly into two different subsets of the dataset. These two 
subsets of data contain the designed amount of data based on our 
selection. Since our pre-processed dataset represents just one 
portion of the data, we employ two separate datasets for 
implementing the machine learning algorithms. Researchers 
typically have flexibility in determining the train-test split ratio, 
with common choices of 80% to 20%, 60% to 40%, 70% to 30%, 
and 75% to 25%. We conducted experiments to determine our 
model's most optimal splitting ratio and found that a 70% training 
and 30% testing dataset ratio yielded the best performance.  

4.4. Bidirectional LSTM model preparation 

 A recurrent neural network comprises feedback paths that 
analyze data sequences and patterns to make predictions. These 
loops enable data sharing among nodes, facilitating predictions 
based on accumulated information referred to as memory. RNNs 
have been effectively applied to address machine learning 
challenges, including tasks such as language preprocessing 
models, human voice/ speech recognition, and image processing. 

 The LSTM-based model resolves the challenge of vanishing 
gradients encountered in RNNs. The LSTM architecture comprises 
a memory block and three units: input gates, output gates, and 
forget gates. These gates function similarly to read, write, and reset 
functions for the cells. Due to the presence of those three gates, 
LSTM memory cells can effectively store and retrieve data over 
prolonged times, mitigating the issue of vanishing gradients. 

 Conventional RNNs are limited in their capacity only to 
consider past context information. In contrast, Bidirectional RNNs 
overcome this constraint by analyzing data in forward (left to right) 
direction and backward (right to left) directions. This involves 
integrating two hidden layers, with the outcomes subsequently 
forwarded to a shared output layer. In a conventional LSTM neural 
network, the output signal/data is generated directly. In contrast, a 
bidirectional LSTM neural network incorporates both directions 
(forward and backward) layers at each stage, contributing the 
signal to the neural network activation layer. This configuration 
captures data from both preceding and succeeding data, allowing 
the bidirectional LSTM neural network model to predict the target 
sequence of each element by considering finite sequences in the 
circumstances of both past and future elements. This is achieved 
by employing two consecutive LSTMs—one processing data from 

both directions. Traditional RNNs are constrained by their 
dependence solely on the previous perspective. Bidirectional 
LSTM defeats this limitation by examining data feed from both 
directions through two hidden neural network layers and then 
forwarding the results to a similar recurrent neural network output 
layer.  

In a standard LSTM-based model, the model prediction is 
usually obtained directly via the given dataset. Conversely, the 
outputs from the forward layers and backward layers from each 
stage are combined and input into the activation layer in the 
bidirectional LSTM model. This resulting output encapsulates data 
from past and future data from the memory blocks in LSTM. The 
bidirectional LSTM predicts the labels or sequence from each 
element by leveraging finite sequences within the circumstances 
of preceding and following items. This process is accomplished 
through the sequential processing of two LSTMs—one data 
sequence from right to left direction and the same data sequence 
from left to right.  

The selection of neural network architecture components, 
including input layers, hidden layers, output layers, layer sizes, 
activation functions, and dropout rates, is a critical step following 
data preprocessing. Hyperparameter tuning is an integral part of 
this research. Initially, hyperparameters are chosen randomly for 
experimentation, as discussed in more detail in the subsequent 
experimental sections. The data sampling approaches are 
implemented to deal with the data unevenness problem. Random 
oversampling and random under-sampling methods created the 
balanced multiclass dataset.  

To initiate the random selection of the Bidirectional LSTM 
architecture, the neural network comprises a single input layer with 
64 neurons and a dropout rate of 20%. It features two hidden layers 
with 50 neurons each, both employing a 20% dropout rate. The 
output layers consist of a single dense layer, and the choice of 
activation function depends on the nature of the target class size, 
whether binary or multi-class. Once this model is defined, it is 
compiled using the appropriate loss function and optimizer in 
preparation for training.  

4.5. Evaluation Bi-LSTM model  

Multiple experiments have been conducted to analyze the 
efficacy of the bidirectional LSTM model, revealing 
inconsistencies in the effectiveness of both machine learning and 
deep learning models. Consequently, a comprehensive analysis of 
the model's hyperparameters becomes imperative for performance 

Figure 3: Bidirectional LSTM model block diagram 
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improvement. The selection of the optimizer, batch size, epochs, 
and train test splitting ratio is guided by a comparison of anomaly 
detection accuracy and f1-score metrics for the bidirectional 
LSTM model. Ultimately, the bidirectional LSTM's performance 
metrics are juxtaposed with previous research findings to assess its 
efficacy. Additionally, two distinct sampling methods, namely 
random under-sampling and random oversampling, were 
experimented with on the NSL-KDD and compared using the 
bidirectional LSTM model. 

4.6. Compare performance for decision-making. 

After conducting model testing and evaluation, the decision-
making process involves selecting the most suitable model 
pipeline from various alternatives. During this research, multiple 
sets of experiments are conducted to optimize the hyperparameters 
for the Bi-LSTM model, aiming to enhance its performance. These 
hyperparameters encompass factors such as optimizers, epoch 
count, batch size, neural network architecture, class size selection, 
and methods for preprocessing raw data. This optimization process 
is driven by comparing performance metrics obtained from these 
diverse sets of experiments. Additionally, the performance metrics 
of the bidirectional LSTM anomaly detection models for NSL-
KDD data are compared with published literature results. 

5. Experiments and Results 

Sets of experiments were conducted on a Windows 10 laptop 
with a 64-bit architecture, equipped with 16GB of random-access 
memory and an i7-1.99GHz processing unit. Python3.7.13, 
Keras2.6.0, and TensorFlow2.9.1 were utilized in this research. 
The investigation into train and test data split ratio, numbers of 
epochs, optimizers, and batch size for the bidirectional LSTM 
model was carried out across various experiments, as elaborated 
below. The intrusion detection system leverages machine and deep 
learning techniques for anomaly detection. Python is utilized to 
code network intrusion detection models, using packages such as 
NumPy, Pandas, Keras, imblearn, and Sci-kit-learn for developing 
machine learning models. Additionally, tools like WEKA, Java, 
C#, Visual C++, and MATLAB are commonly employed in 
intrusion detection. 

To ensure reproducibility, seed values are configured to obtain 
consistent results across multiple runs on the Jupyter Notebook 
platform. Subsequently, the experimental results are presented in 
the form of plots or tables, using the Microsoft Office suite for 
analysis.  

5.1. Experiment: Optimizers Vs. Bi-LSTM performance 

During this experimentation, the bidirectional LSTM was 
applied to the NSL-KDD, the details of which are outlined in the 
preceding sections. An appropriate optimizer is essential for 
enhancing the network traffic anomaly detection model's training 
time and the overall efficacy of the model. The choice of optimizer 
holds significant importance as it expedites results for the ML/DL 
model. The choice of the optimization algorithm made by a deep 
learning practitioner directly impacts both the training speed and 
the ultimate predictive performance of their model. TensorFlow is 
an open-source machine-learning library containing nine 
optimizers: Adam, Ftrl, Adagrad, Adamax, Adadelta, SGD, 
RMSProp, gradient descent, and Nadam. Among them, seven 

optimizers were experimented with to achieve the highest 
performance of the model. 

Table 1: Optimizer Vs. Accuracy 

 

In this experimental task, the hyperparameter values were 
picked randomly, and the performance metrics and optimizers are 
outlined in Table 1. The structure of the bidirectional LSTM model 
contained 64 units, featuring two B-LSTM hidden layers having 
50 units in each, along with the dense output layer. Each layer 
within the BLSTM model utilized an activation function called 
relu and 20% drop-out rate of 20%. 

Observing the above results (Table 1 and Figure 4), it is 
determined that the Nadam optimizer is the victorious optimizer, 
with the winning performance metrics having an accuracy of 
98.26%, precision of 97.76%, and f1-score of 98.37%.  Nadam 
enhances the Adam algorithm by integrating Nesterov momentum, 
resulting in an improved performance of the Adam optimizer.  

5.2. Experiment: Train test split ratio Vs. performance 

In this experiment, we investigated the impact of both the train 
test split ratio and model performances. The process of data 
splitting is crucial in data science, particularly when preparing 
machine learning models using the available data.  

The train test split methodology is utilized to calculate the 
efficiency of machine learning algorithms in predicting results 
from data that were unseen during the model training phase. Once 
the model gets trained, the test dataset is applied, and no fixed 
percentage split ratio to divide into training and test sets from the 
given dataset. The splitting ratio is explored to enhance the model 
performance by utilizing the Nadam optimizer on binary NSL-
KDD data. 

training data= 70%, Epochs = 50, batch size= 512 
SN Optimizer Accuracy % Precision % f1-score % 
1 Nadam 98.26 97.76 98.37 
2 Adam 98.24 97.66 98.35 
3 RMSprop 98.19 97.56 98.31 
4 Adamax 97.95 97.40 98.08 
5 SGD 91.19 88.67 92.02 
6 Adagrad 61.86 58.22 73.59 
7 Ftrl 53.14 53.14 69.40 

Figure 4: Optimizer Vs. Bi-LSTM performance 
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Table 2: Train test split ratio Vs. performance 

optimizer = Nadam, Epochs = 50, Batch_size = 512 
Testing data  % accuracy % precision % f1-score % 

10 98.15 97.55 98.29 
20 98.21 97.57 98.33 
30 98.24 97.66 98.36 
40 98.18 97.52 98.30 
50 98.13 97.50 98.26 
60        98.10 97.52 98.24 
70 98.12 97.65 98.25 
80 97.82 97.39 97.97 
90 97.92 97.31 98.07 

 

 
Figure 5: Test data size in % Vs. Bi-LSTM model performance 

 This experimental work presents the train test split ratio that 
achieves the optimal performance for our network traffic anomaly 
detection model on the NSL-KDD. The performances are 
tabulated in Table 2. and the plot is shown in Figure 5, where a 
30% test split percentage results in the model’s highest accuracy 
of 98.48% and f1-score of 98.57%.  

5.3. Experiment: Batch size Vs. performance 

This experimental work presents the train test split ratio that 
achieves the optimal performance for our network traffic anomaly 
detection model on the NSL-KDD. The performances are 
tabulated in Table 2. and the plot is shown in Figure 5, where a 
30% test split percentage results in the model’s highest accuracy 
of 98.48% and f1-score of 98.57%. 

Table 3: Batch size Vs. model performance 

Optimizer = Nadam, epochs = 105, testing data split= 0.30 
batch size f1-score % accuracy % prgm exe time (sec) 

50 98.58 98.48 2127.235 
500 98.47 98.36 514.770 
350 98.51 98.4 527.153 
450 98.51 98.41 454.989 
250 98.46 98.35 616.466 
150 98.52 98.42 858.070 
300 98.55 98.45 553.444 
200 98.55 98.45 796.898 
400 98.48 98.38 460.884 
15 98.56 98.45 5671.738 
100 98.56 98.46 1228.779 

 

A smaller batch size entails the introduction of limited data 
samples into the Bi-LSTM anomaly detection model, necessitating 

a lengthier training period than a larger batch. The performance 
metrics and batch size are presented in Table 3. The experimented 
results indicate that when applying this model to the NSL-KDD, a 
batch of 50 produces optimal accuracy and s1-score. A larger batch 
of data through the model takes less training time but exhibits 
lower accuracy, highlighting a significant trade-off for this Bi-
LSTM network traffic anomaly detection model. 

5.4. Experiment: Epochs Vs. performance 

 In machine learning, an epoch represents one complete pass 
through all the training data during a model's training. During each 
epoch, the model is exposed to the entire dataset, and the model's 
parameters (weights and biases) are adjusted based on the error or 
loss calculated from the model's predictions compared to the actual 
target values. 

Table 4: Epochs Vs. model performance 

optimizer = Nadam, batch= 50, test data= 30% , train data = 70% 
epoch accuracy  f1-Score  prgm exe time (sec) 
175 98.48 98.58 3965.207 
100 98.48 98.58 1878.803 
125 98.48 98.58 2470.620 

5 97.9 98.03 127.058 
35 98.35 98.46 761.278 

205 98.52 98.62 4103.767 
50 98.38 98.48 942.129 
45 98.37 98.47 1002.092 
75 98.46 98.56 1465.514 

150 98.48 98.58 2934.249 
25 98.3 98.41 527.524 
15 98.13 98.25 322.529 

Accuracy and f1-score in %, prgm exe time:: program train and testing time  
 

 In practice, the epoch is a hyperparameter set before the 
training begins. The choice of the epoch size depends on factors 
such as the model's complexity, the data size, and the model's 
convergence behavior during training. Selection of a small epoch 
may result in model underfitting, where the machine learning 
model hasn't learned the underlying patterns in the data. However, 
a large size epoch may lead the model to overfit, where the model 
starts memorizing the training data instead of generalizing well to 
unseen data. The epoch selection can be any integer value that lies 
between 1 to infinity. By tradition, the ML/ DL researcher selects 
large values of epochs. 

 This experiment aims to identify the optimal number of epochs 
that yield the highest accuracy for the Bi-LSTM model. Similar to 
the previous experiment, the Bi-LSTM hyperparameters were 
randomly selected. Longer epochs result in extended training times 
for the model. The random numbers of epoch values were chosen 
between 5 to 205, and the accuracy and f1-score were found to be 
highest at 205 epochs. However, it's important to note that a larger 
epoch value increases the training time for our model. In this 
experiment, a batch of 205 sizes enhances the accuracy of the Bi-
LSTM network traffic anomaly detection model, achieving a 
detection rate of network anomalies at 98.5%.  

5.5. Experiment: Model layers parameters Vs. accuracy 

 In our prior experiments, 5.1 to 5.4, we investigated the impact 
of various hyperparameters, including the optimizer, number of 
epochs, batch size, and the train test data split ratio. Our results 
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reveal that the combination of the Nadam optimizer, 205 epochs, a 
batch size of 50, and a train test split ratio of 70%: 30% delivers 
optimal performance after evaluating the model performance 
metrics. 

Table 5: Bi-LSTM architecture Vs. accuracy 

optimizer = Nadam, batch_size = 50, test data= 30%, train data=70%  
Input layer  Hidden layer 1  Hidden layer 2 acc. % 

neuron act. fn neuron act. fn neuron act. fn  
8 relu 8 relu 8 relu 97.48 
4 sigmoid 4 sigmoid 4 sigmoid 97.05 
16 relu 16 relu 16 relu 97.93 
16 selu 16 selu 16 selu 97.97 
64 sigmoid 50 sigmoid 50 sigmoid 98.52 
49 sigmoid 128 sigmoid 128 sigmoid 98.18 
80 relu 64 relu 64 relu 98.48 
4 relu 4 relu 4 relu 97.55 

act.fn::activation function, acc:: model accuracy 
 

 This study investigated different configurations of neurons and 
activation functions for the neural network of the Bi-LSTM model. 
The dense output layer is structured to provide probabilities for 
distinguishing between normal and abnormal classes, rendering 
the softmax activation function the most appropriate selection for 
the binary class dataset. 

 This experiment evaluated diverse configurations of Bi-LSTM 
neurons and activation functions for input and hidden layers. 
Several results from the conducted experiment are outlined in 
Table 4. Based on the tabulated results, 64 neurons in the input 
layer and 50 neurons in each hidden layer of our model produce 
the ultimate accuracy of 98.52 % in the domain of network 
anomaly detection. 

5.6. Experiment: Sampling Vs. performance metrics for 
multiclass NSL-KDD dataset 

 Since these data represent a refined version of the KDD99 
dataset, minimal data preprocessing is required. The downloaded 
train data (KDDTrain+) with the target class was initially separated 
from the training dataset to establish the class label. Among the 
remaining numerical features, three categorical attributes, 
‘protocol_type,’ ‘service,’ and ‘flag,’ are extracted. Dummy one-
hot encoding methods convert categorical into numerical values, 
while the numerical features are normalized using standard scaling 
methods. Subsequently, both feature sets are merged into a unified 
data frame, resulting in the final data set.  

 The attack types on both KDD99 and NSL-KDD are presented 
in Table 6. The network attack traffic in these datasets is classified 
into ‘Denial of Service,’ ‘Probe,’ ‘Remote to Local,’ and ‘User to 
Root’ [21]. A denial-of-service attack prevents legitimate users 
from accessing resources via the network, causing a disruption in 
the availability of those resources. On the other hand, a probe is a 
scanning attack aimed at identifying vulnerabilities in a system 
connected to the network. This probing attack targets weaknesses 
and facilitates potential compromise of the system. 

Table 6: Attack types and traffic information in NSL-KDD 

Class Attack Types Data   
Probe Satan, MScan, Upsweep, Saint, Nmap, 

Portsweep 
11656 

U2R Ps, Perl, Buffer_overflow, Sqlattack, Rootkit, 
Loadmodule, Xterm 

52 

Normal  67343 
R2L  Spy, Ftp_write,  Guess_Password, Imap, Phf, 

Multihop, Warezmaster, Xlock, Warezclient, 
Xsnoop, Snmpguess, Snmpgetattack, Named, 
Httptunnel, Sendmail 

995 

DoS  Back, Worm, Apache2 Neptune, Smurf, Pod, 
Teardrop, Udpstorm, Processtable, Land 

45927 

Total traffic data 12593 
 

Likewise, the remote-to-local attack involves illegal access to 
a remote terminal. The user-to-root attack entails gaining privilege 
as a root user, with the root password obtained through various 
techniques such as password sniffing, brute-forcing, or social 
engineering. 

 Under-sampling is a straightforward approach and a method 
for addressing the class imbalance in datasets. This technique 
involves preserving all data within the minority class while 
reducing the volume of data in the majority class. It represents one 
of several tools available to data scientists for enhancing the 
accuracy of insights extracted from initially imbalanced datasets. 
In under-sampling, data samples from the majority class are 
randomly chosen and removed until a balanced distribution is 
achieved. This reduction in data volume can alleviate storage 
constraints and enhance processing efficiency. However, it's 
significant to note that this reduction may result in the loss of 
valuable information. 

 Conversely, oversampling is employed when the available data 
is insufficient in quantity. Its objective is to rectify dataset 
imbalance by augmenting the number of rare samples. Instead of 
discarding abundant samples, oversampling techniques generate 
new rare samples through replication, bootstrapping, or SMOTE 
(Synthetic Minority Over-Sampling Technique). SMOTE, which 
stands for synthetic minority over-sampling technique, is a specific 
form of oversampling that involves the synthetic generation of data 
points for the minority class. In this process, a random selection of 
k nearest neighbors is chosen to determine the appropriate 
oversampling level.  

After preprocessing, the NSL-KDD KDDTrain+ multiclass 
data initially exhibits imbalanced class distributions. Various 
techniques can be employed to rectify this imbalance, including 
under-sampling, over-sampling, and hybrid sampling. Our 
experiment utilized an automated sampling approach combining 
random under-sampling and SMOTE to restructure the data for all 
classes based on our implemented sampling method. Random 
oversampling consists of randomly choosing instances from the 
minority class, replacing them, and incorporating them into the 
training dataset. On the other hand, random under-sampling entails 
randomly selecting instances from the majority class and removing 
them from the dataset. 

Table 7: Bi-LSTM with random under-sampling and performance 

 BI-LSTM Model with Random Under-Sampling and Performance  
Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS 
SN Class Precision % Recall % F1-Score % 
1 DoS 100 100 100 
2 Probe 100 79.17 88.37 
3 R2L 88.89 80 84.21 
4 U2R 73.68 93.33 82.35 
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5 Normal 86.67 100 92.86 
Average 91.29 89.74 89.81 
Accuracy    = 89.74 % 
Program exe time = 17.72 sec 

 
 The number of new datasets generated depends on each target 
class's original data size. Random under-sampling reduced the 
NSL-KDD data to 52 instances in each of the five classes by 
randomly eliminating data points. Conversely, SMOTE, an 
oversampling technique, augmented the dataset by introducing 
additional data points. During this experiment, substantial data 
augmentation created well-balanced datasets, with each target 
class containing 67,343 instances. 

 The balanced NSL-KDD data has been partitioned into training 
and testing subsets to facilitate the training and evaluation of the 
Bidirectional LSTM model. As determined in previous 
experiments, the train test data split ratio of 70%:30%. 

 The architecture of the Bi-LSTM neural network mirrors that 
used in prior experiments, with the input layer containing 64 
elements and both hidden layer1 and hidden layer2 comprising 50 
elements. A trade-off analysis was conducted to determine the 
optimal combination of epochs and batch size while considering 
the Bi-LSTM model's performance. 

Table 8: Bi-LSTM with SMOTE technique and performance 

BI-LSTM Model with SMOTE and Performance  
Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS 
SN Class Precision % Recall % F1-Score % 
1 DoS 99.99 99.98 99.98 
2 Probe 99.99 99.98 99.98 
3 R2L 99.99 99.18 99.59 
4 U2R 99.18 1 99.59 
5 Normal 1 99.99 1 
 Average 99.83 99.83 99.83 
Accuracy    = 99.83 % 
Program exe time = 770.52 sec 

 

 
Figure 6: Bi-LSTM performance Vs. oversampling and under-sampling 

 In our hyperparameter tuning, we aimed to balance program 
execution time and model performance, as previously 
demonstrated. As a result, the model was trained for 50 epochs 
using a batch size of 512 and the Nadam optimizer with a learning 
rate of 0.041, as detailed in the accompanying table.  

 The random under-sampling methods produce the NIDS 
multiclass accuracy of 89.74%, average precision of 91.29 %, 

recall of 89.74%, and 89.91% f1-score referenced from Table 7. 
The program execution time is short as compared with 
oversampling. 

 Table 8. Shows the performance of the Bi-LSTM with over-
sampling methods called SMOTE where the default value of K, 
i.e., 5, is taken during this experiment. The nearest neighbors value 
K defines the neighborhood of samples to generate the synthetic 
samples. We listed the individual class performance as well as 
average class performance. Figure 6 shows the visualization plot 
to compare the under-sampling and over-sampling performance on 
the NSL-KDD multiclass dataset using the Bi-LSTM model. The 
over-sampling (SMOTE) for the NSL-KDD multiclass dataset 
provides the 99.83% average precision, recall, and F1 score. 

6. Conclusion 

The Highest performance is achieved during network traffic 
anomaly detection using the bidirectional LSTM model. The 
combination of tunned different hyperparameters (from the above 
experiments) values, including epoch, optimizer, and batch size, 
outperformed the anomaly detection model. Determination of 
hyperparameters’ values for the Bi-LSTM anomaly detection 
model on the NSL-KDD dataset highly contributes to the domain 
of anomaly detection using machine learning and deep learning. 
Similarly, we can use no fixed split ratio values for the efficient 
anomaly detection model. This research work determines the split 
ratio to produce the highest performance on anomaly detection 
using the Bi-LSTM model on the NSL-KDD dataset. The 
combination of neural network architecture memory elements 
plays an important role in training and testing the model during 
network anomaly detection. Data imbalance is another main 
problem to deal with during network anomaly detection. The 
sampling techniques either delete the data entry randomly or 
generate the data entry randomly. The sampling technique 
balances the data in the multiclass dataset. During this research 
work, the implementation of the random up-sampling methods 
outperformed the model and produced the highest performance. 

 We compare our results with existing research [17] to prove 
that our model is outperformed on the KDD-NSL multiclass 
dataset. The previously completed research compared their model 
performance in paper at 99.70% with the other previously 
researched model’s performance, such as Artificial Neural 
Network (ANN) model at 95%, Decision Tree and Random Forest 
with 92.60%, Linear Regression, and Random Forest with 94%, 
Random Forest, and Bayesian Network with 93.4 %, Deep Neural 
Network with 97% [17]. Our proposed model pipeline for the Bi-
LSTM-based network anomaly detection model delivers a higher 
accuracy of 99.83% is greater than the obtained model 
performance in research work [17]. The values of bidirectional 
LSTM model hyperparameters, including epochs values, 
optimizer, batch size, train test slit ratio, and SMOTE sampling 
technique for the multilayer bidirectional LSTM neuron 
architecture (layers, activation function, and memory units) are 
examined to achieve the highest anomaly detection model 
performance. The results from these experiments consistently 
demonstrate that the bidirectional LSTM model, configured with 
the explored parameters, significantly enhances detection accuracy 
and f1-score. This model can be experimented with using different 
network intrusion datasets. Creating a new network intrusion 
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dataset with the latest network attacks will be the extension of this 
task in the future.  
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