

www.astesj.com 144

Optimizing the Performance of Network Anomaly Detection Using Bidirectional Long Short-Term
Memory (Bi-LSTM) and Over-sampling for Imbalance Network Traffic Data

Toya Acharya*, Annamalai Annamalai, Mohamed F Chouikha

Electrical and Computer Engineering, Prairie View A & M University, Prairie View, Texas,77446, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 07 November, 2023
Accepted: 22 December, 2023
Online: 30 December, 2023

 Cybercriminal exploits integrity, confidentiality, and availability of information resources.
Cyberattacks are typically invisible to the naked eye, even though they target a wide range
of our digital assets, such as internet-connected smart devices, computers, and networking
devices. Implementing network anomaly detection proves to be an effective method for
identifying these malicious activities. The traditional anomaly detection model cannot detect
zero-day attacks. Hence, the implementation of the artificial intelligence method overcomes
those problems. A specialized model, known as a recurrent neural network (RNN), is
specifically crafted to identify and utilize sequential data patterns to forecast upcoming
scenarios. The random selection of hyperparameters does not provide an efficient result for
the selected dataset. We examined seven distinct optimizers: Nadam, Adam, RMSprop,
Adamax, SGD, Adagrad, and Ftrl, with variations in values of batch size, epochs, and the
data split ratio. Our goal is to optimize the performance of the bidirectional long short-term
memory (Bi-LSTM) anomaly detection model. This optimization resulted in an exceptional
network anomaly detection accuracy of 98.52% on the binary NSL-KDD dataset. Sampling
techniques deal with the data imbalance problem. Random under-sampling, which involved
removing data from the majority classes to create a smaller dataset, was less efficient for
deep learning models. In contrast, the Synthetic Minority Oversampling Technique
(SMOTE) successfully generated random data related to the minority class, resulting in a
balanced NSL-KDD multiclass dataset with 99.83% Bi-LSTM model detection accuracy.
Our analysis discovered that our Bidirectional LSTM anomaly detection model
outperformed existing anomaly detection models compared to the performance metrics,
including precision, f1-score, and accuracy.

Keywords:
Network Anomaly Detection
Sampling
Machine Learning
Deep learning
Bidirectional-LSTM
NSL-KDD
Random Under Sampling (RUS)
Random Over Sampling (ROS)
SMOTE
Data Imbalance

1. Introduction

This paper is an extension of "Efficacy of Bidirectional LSTM
Model for Network-Based Anomaly Detection" [1] presented at
the conference IEEE 13th Symposium on Computer Applications
& Industrial Electronics (ISCAIE) in 2023.

Information technology has revolutionized how essential data
is conveyed, utilizing bits to transfer a wide range of information
from one point to another. This transmitted data can encompass
diverse forms, such as voice, images, or data, including sensitive
details like banking information, personal records, and network
traffic. Numerous tools and techniques are available to identify and
thwart unauthorized access.

 Anomaly is an unusual pattern present in the dataset. Some
techniques or methods are required to detect those anomalies from
the dataset. The anomaly is also called the outliers during the study

of anomaly detection. Anomaly detection is used in large fields to
sense abnormal patterns, such as in business, network attack
detection, monitoring health conditions, detecting fraud credit card
transactions, and detecting malicious activities in mission-critical
systems. Detecting anomalies is critical in cyber security for
achieving solid safeguards against cyber criminals. Figure 1.
provides brief information about the taxonomy of anomaly
detection methods [2].

The security of information resources is ensured when the three
fundamental principles of computer security—confidentiality,
integrity, and availability (CIA)—are appropriately obeyed [3]. An
intrusion detection system is a mechanism used to monitor and
scrutinize computer or network- related activities to identify
potential threats by assessing the frequency at which computer
security guidelines are violated based on confidentiality, integrity,
and availability. Intrusion is any unwelcome and illegal activity
within an organization's internet-connected end terminal or

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Toya Acharya, tacharya@pvamu.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj080614

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj080614

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 145

network-connected devices. These illegal activities aim to gain
entry to a business computer or network device. An alternative
term for intrusion is a malicious activity that disrupts the
fundamental principles of information resource protection known
as the CIA triad. An intrusion detection system examines computer
network and host activities, pinpointing dubious traffic and
abnormalities. Intrusion detection and prevention systems
scrutinize traffic from both internal and external sources to identify
potentially malicious actions.

Figure 1: Taxonomy of Anomaly Detection [2]

Detection of misuse and/or intrusion involves identifying
potentially suspicious activities within a network or on hosts.
Misuse detection focuses on recognizing deviations from
established rules by individuals with valid system access rather
than actual intrusions. For instance, when an employee uses the
Internet for personal purposes in violation of company policy, it
constitutes a misuse intrusion. In contrast, intrusion detection is
designed to identify unauthorized individuals, such as external
hackers or government spies, who lack authorized system access.
The intrusion detection system primarily focuses on spotting
ongoing intrusions within the system or network but does not
proactively prevent malicious activities.

There are two main types of methods for detecting intrusions:
signature-based systems, known as SIDS, and anomaly-based
systems, referred to as AIDS. Anomaly detection systems are
further categorized into network-related and host-related intrusion
detection systems. The identification of normal or anomalous data
in anomaly detection techniques is achieved through the utilization
of labels.

A SIDS identifies suspicious activities through pattern
matching with known external attack patterns, which fall into two
categories: misuse detection and knowledge-based detection. This
anomaly detection model compares the recent signature with a
previously stored signature in its database. When a match occurs
between these signatures, the IDS signals the presence of

malicious activities within the network. Regular updates to the
signature database are crucial to effectively detect malicious
activities in a network. However, it's important to note that this
type of detection system cannot identify zero-day attacks, as these
novel attack types may not yet be contained in the signature
archive. This anomaly detection model delivers optimal detection
outcomes for recognized signatures associated with malicious
activities. This type of anomaly detection model is known for its
straightforward configuration and comprehensibility. Widely
adopted intrusion detection systems include Snort and NetSTAT.
In the traditional setup, the SIDS examines network packets and
matches them against stored signatures. However, newly
introduced attacks not yet included in the signature database can
reduce intrusion detection accuracy. To address these limitations,
the anomaly-based anomaly detection model offers enhancements
and boosts the overall anomaly detection rate. The anomaly-based
intrusion detection approach is designed to identify malicious and
unreliable network exploitation activities within the corporation.

AIDS effectively addresses the limitations included in SIDS
approaches. Likewise, the anomaly-based intrusion model
leverages statistical-based, machine learning, and knowledge-
based techniques to model the typical behaviors of network traffic.
An "anomaly" refers to any behavior that deviates from these
established norms, and such traffic anomalies can harm computers
and network devices. Anomaly-based detection can occasionally
yield false results due to shifts in user behavior. AIDS can generate
errors even when legitimate users alter their usual habits. This
approach comprises two key stages: the testing and the training
stages. In the training stage, the model is trained using normal
traffic data to establish a baseline or "normal profile." In the testing
stage, previously unseen data is employed to evaluate the model's
performance. The primary benefit of this methodology is its ability
to detect zero-day attacks.

Three distinct anomaly detection methods include
unsupervised, semi-supervised, and supervised anomaly detection
methods based on the target class. AIDS addresses the limitations
of SIDS by employing knowledge-based methods, machine
learning, and statistical-based to model normal behaviors. Figure
1 outlines the various approaches to anomaly detection [2].

Deep learning has the capability to generate improved
representations, enhancing the development of effective anomaly
detection models. In contrast, conventional machine learning
algorithms for network-related abnormality detection are more
appropriate for smaller datasets and often rely on performance
influenced by the implementation of feature engineering. The
model benchmark indicators of conventional anomaly detection
models are significantly influenced by the split ratio. While these
conventional ML methods are uncomplicated and require minimal
resources, they face limitations when dealing with extensive
datasets and large feature sets, making them unsuitable for tasks
such as machine vision, image translation, natural language
processing, and similar applications.

The convolutional neural network is primarily employed for
computer vision using image datasets, with the lower layers'
neurons responsible for feature reduction. These lower layers
typically recognize image corners, boundaries, and intensity called
small-scale features. As the information progresses to higher

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 146

layers, the network integrates these lower-level features to create
forms, basic shapes, and partial objects. The final layer of the
network amalgamates these lower-level features to generate the
output. LSTM operates distinctively from a CNN as it is
commonly applied for processing and predicting outcomes based
on sequential data. Unlike CNNs, Recurrent Neural Networks
(RNNs), including LSTMs, were specifically designed to preserve
long-range information within a sequence, preventing the loss of
important details in lengthy sequences. The Bidirectional LSTM
(BiLSTM) enhances this by introducing an additional LSTM layer
that reverses the flow of information, effectively addressing issues
such as vanishing gradients.

The deep learning methodology tackles challenges inherent in
conventional machine learning, specifically its ability to handle
extensive datasets and numerous features. The efficacy of anomaly
detection algorithms based on deep learning depends on various
factors, including the choice of hidden layers, determination of
activation function, neurons, batch size, and epochs during both
model training and testing. Strategic decisions regarding these
hyperparameters, along with considerations for the ratio of the
train to test data and the design of deep neural networks, are
essential for improving the precision of network anomaly detection
systems.

In addition to fine-tuning hyperparameters, handling
imbalanced data is vital, and creating a balanced dataset using
various sampling methods contributes to improved anomaly
detection. Under-sampling reduces data size, posing challenges for
deep learning models. At the same time, over-sampling methods
generate duplicate random data, proving more effective for deep
learning models to improve the anomaly detection performance in
network-based anomaly detection models.

2. Literature Review

The continuous generation of data generates big data and poses
challenges for traditional machine learning algorithms, requiring
extensive feature engineering efforts to perform adequately. Deep
learning significantly enhances detection performance in such
scenarios. However, the effectiveness of network anomaly
detection varies on numerous factors, with the nature of the dataset
(whether balanced or unbalanced), the hyperparameter of the
neural network, the amount of model train and test data, and the
architecture of the neural network in the deep learning model.
These elements collectively play a crucial role in successfully
identifying anomalies in the network.

In their study, the researchers utilized the Bidirectional LSTM
to alleviate the considerable requirements for feature reduction
inherent in conventional machine learning-based anomaly
detection approaches [4]. Additionally, they implemented data
augmentation in data preprocessing of minor attacks user to root
(U2R) and root to local (R2L) to create a well-adjusted NSL-KDD.
This methodology resulted in higher anomaly detection accuracy
of 90.73% and f1-scores of 89.65%.

In their study, presented an algorithm for network intrusion
detection that integrated a deep hierarchical network with hybrid
sampling, incorporating SMOTE to create a balanced dataset [5].
They utilized a hybrid approach that combined CNN and Bi-

LSTM for anomaly detection accuracy of 83.58% on NSL-KDD
and 77.16% on UNSW-NB15.

In their study, presented a method utilizing bidirectional
generative adversarial networks (Bi-GAN) on the CIC-DDoS2019
and NSL-KDD datasets [6]. The Bi-GAN model exhibited strong
performance, particularly on the imbalanced NSL-KDD, achieving
an f1-score of 92.68% and an accuracy of 91.12%. The Bi-GAN
approach was employed to enhance the performance of the NSL-
KDD imbalance dataset.

 In their study, implemented a new method involving auxiliary
classifier generative adversarial network (ACGAN) and ACGAN
with SVM to tackle data unevenness concerns by leveraging GAN
to produce synthetic attack network traffic for intrusion detection
systems [7]. These artificially generated attacks were merged with
the existing data, resulting in an extended dataset. Research carried
out on the RAWDATA, CICIDS2017, UNSW-NB15, and NSL-
KDD showed that among the support vector machine, decision
tree, and random forest models, the decision tree achieved a
superior f1-score of 92% on the balanced NSL-KDD dataset.

In [8], researchers utilized an assorted ensemble-aided
approach to binary and multi-class network anomaly detection
models to tackle the challenge of uneven traffic data in network
traffic-related datasets, including NSL-KDD, UNSW-NB15, and
KDD99 datasets. This approach achieved a true positive rate and
area under the ROC curve of 94.5% and 96.2% on the NSL-KDD,
respectively.

According to their finding, the authors [9] concluded that the
efficiency of the anomaly detection algorithm is improved when
the number of output labels is reduced. This observation was
explored across different conventional machine learning
algorithms, including Naïve Bayes, J48, random forest,
bayesinNet, bagging, and bayesinNet. The evaluation used three
network datasets: KDD99, CICIDS2017_Thrusday, and UNSW-
NB15.

In [10], the researchers observed the effectiveness of a
recurrent neural network-based intrusion detection system (RNN-
IDS) in multi-class and binary-class scenarios. Performance on the
NSL-KDD was observed, which is affected by the number of
neurons and different learning rates. Experimental outcomes
illustrated that RNN-IDS is adept at constructing a classification
approach with high accuracy, outperforming traditional machine
learning classification methods, including random forest, artificial
neural network, J48, and support vector machine in both multiclass
and binary network intrusion-related datasets. In their publication
[11], presented a network anomaly detection technique utilizing a
convolutional autoencoder and attained a model accuracy of
96.87% on the NSL-KDD. The convolutional autoencoder
methodology was utilized to simplify and determine the most
significant features of the network anomaly dataset.

 In [12], the authors investigated the usefulness of several
autoencoders in detecting network anomalies. They compared four
different types of autoencoders, including sparse autoencoders,
undercomplete deep autoencoders, and denoising autoencoders,
using the NSL-KDD. Sparse deep denoising autoencoder yielded
a model accuracy of 89.34% compared with other models.

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 147

In [13], the authors presented a model centered around a 5-
layer autoencoder (AE) tailored for network abnormality
detection. The fine-tuned model designs demonstrated proficiency
in attribute learning and the dimension of data reduction, resulting
in improved performance metrics, including model accuracy and
f1-score. The model produces the highest accuracy and f1-score of
90.61% and 92.26% on the NSL-KDD, respectively. The
researchers employed the reconstruction error to determine
whether the network traffic is regular or attacked.

In [14], [15], the researchers proposed a network anomaly
detection approach with a combination of convolutional neural
networks and bidirectional LSTM applied to the KDD99. They
explored the influence of the number of nodes, the number of
hidden layers and memory elements on it, and the number of
epochs to improve their anomaly detection model accuracy. The
performance metrics of different models, such as J48, k-nearest
neighbors, NB, deep forest, RF, and convolutional neural network
combined with bidirectional LSTM, were evaluated. The
convolutional neural network bidirectional LSTM exhibited the
ultimate model detection accuracy of 95.40%.

In [16], the researchers assessed both single-layer and four-
layer LSTM models for weather forecasting, utilizing a weather-
related dataset from Hang Nadim Indonesia Airport. The top
model validation accuracy of 80.60%. The four hidden layers
comprise 50, 90, 100, and 200 memory elements. The split ratio
for testing and training dataset was used at 0.30, and the models
underwent training for 500 epochs.

The researchers in [17] adopted a deep learning approach
utilizing bidirectional LSTM, implemented on the UNSW-NB15
and KDDCUP99, and achieved notable outcomes with a 99%
accuracy rate for both datasets. Numerous current models
encounter difficulties in effectively detecting uncommon attack
traffic types, notably user-to-root and remote-to-local traffic,
which often demonstrate lower detection accuracy than other types
of attacks. The researchers in [18] deployed an intrusion detection
system based on bidirectional LSTM to address the mentioned
encounters on the NSL-KDD. This anomaly detection approach,
utilizing Bi-LSTM, achieved a model detection accuracy of 94.26
% for binary NSL-KDD data.

The study in [19] delved into the influence of batch size and
learning rates on the performance of CNN, focusing on image
classification, particularly in the context of medical images. The
results indicate that a larger batch size does not necessarily lead to
higher accuracy. Moreover, the choice of learning rate and
optimizer significantly affects performance. The authors found
that reducing the learning rate and batch size, particularly during
fine-tuning, enhances the network's training effectiveness.

Diverse strategies were implemented to address the challenge
of data imbalance, encompassing techniques such as data
augmentation discussed in [4], application of SMOTE detailed in
[5], the use of GAN technology explored in [6], [7], the assistance
of Heterogeneous ensemble methods investigated in [8], and the
reduction of the target class by combining smaller classes into a
new category as discussed in [9]. A considerable number of
research endeavors in the realm of deep learning for network
anomaly detection have been scrutinized, incorporating
methodologies like RNNIDS outlined in [10], CAE featured in

[11], Autoencoder examined in [12], multilayer AE explored in
[13], convolutional neural network combined with bidirectional
LSTM hybrid methods presented in [14] and Bi-LSTM discussed
in [17]-[18].

The researchers in [17] and [18] did not provide details on data
pre-processing, the train-test split ratio, or adopting bidirectional
LSTM hyper-parameters in their model study. Similarly, the
researchers in [16] conducted weather forecasting using Bi-LSTM
without specifying the hyperparameter values. In [10], there was
no analysis information on epochs and the train test split ratio for
the KDDTrain+ dataset. Most of the literature reviewed
emphasizes enhancing model accuracy in conventional or deep
learning algorithms. However, there is a notable lack of focus on
deciding on hyper-parameters in deep learning approaches,
determining the train test split ratio, and defining the architecture
of neural networks. Some researchers do not clarify how these
values are applied in their work. Consequently, our research aims
to address these limitations in the network anomaly detection
approaches by conducting experiments on NSL-KDD.

3. Contributions

The literature review examines a gap in the existing network
intrusion detection systems during anomaly detection. The primary
contribution of this research is to bridge this gap by proposing
network anomaly detection models specifically tailored for
imbalanced multiclass datasets.

Arbitrarily selection of hyperparameters does not yield
efficient anomaly detection performance on the given dataset. This
research investigates the impact of epochs, batch size, and
optimizers on the efficacy of a bidirectional LSTM anomaly
detection model using the multiclass NSL-KDD.

 The choice of the amount of training data and testing data also
influences the model's performance. A larger training dataset
requires a longer training time, whereas a smaller dataset leads to
quicker model training. The model's efficacy is contingent on the
data size utilized for both training and testing, a factor we explored
by adjusting the test train split ratio to enhance the performance of
network traffic anomaly detection on the NSL-KDD.

More layers add complexity to the neural network-based
model. The program execution time (program training and testing
time) is large compared to small numbers of neural network layers
and memory elements. The memory elements and layers in the
neural network architecture influence the network anomaly
detection performance. Investing layers and memory elements of
neural networks improves the bidirectional LSTM on the NSL-
KDD.

The careful choice of machine learning and/or deep learning
algorithms significantly impacts the effectiveness of network
anomaly detection. This study introduces the creation and
deployment of a network traffic anomaly detection system
utilizing a bidirectional LSTM-based recurrent neural network
model. The developed model demonstrates a remarkable anomaly
detection accuracy of 98.52 % in the network, particularly for the
binary NSL-KDD.

The primary challenge when dealing with real datasets is the
presence of imbalanced data. Various approaches can be employed

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 148

to address this issue. In the NIDS multiclass dataset, both under-
sampling and over-sampling methods are applied to tackle data
imbalance. Notably, oversampling methods proved to be more
effective, achieving the highest detection accuracy of 99.83% for
the multiclass NSL-KDD datasets.

4. Model Description

The proposed model consists of different steps, which are
listed:

 1. Data collection and modelling

 2. Data cleaning and pre-processing

 3. Bidirectional LSTM model preparation

 4. Model training and testing

 5. Evaluation model

 6. Compare the model for decision

Figure 3 illustrates the schematic for the model based on
Bidirectional LSTM. More elaborate explanations of the methods
outlined above for the proposed model will be provided in the
following sections.

4.1. Data Collection and Modelling

During this study, we employed the KDDTrain+ dataset, one
of the subset data from the NSL-KDD.

Figure 2: DARPA, KDD99, and NSL-KDD Datasets

 The NSL-KDD data is derived from the DARPA KDD99 data,
as depicted in Figure 2, after the removal of noise and unwanted
data. This includes the complete training data from the NSL-KDD
set, including features named attack_type and difficulty. It
encompasses 41 attributes and covers five separate attack
categories: denial of service, normal, remote_to_local, probe, and
user_to_root. NSL-KDD [20] represents an enhanced version of
the KDD99 network traffic anomaly data, eliminating duplicate
entries in the training data and ensuring the absence of repeated
records in the test data. The KDDTrain+ dataset comprises
125,973 records and includes 41 attributes. Notably, this is
balanced, with 53.46% of total traffic being normal and 46.54% of
total traffic entry being abnormal. We picked this data because it
is balanced data between normal and abnormal traffic records
within the subset, making it suitable for binary network anomaly
detection data. Those numbers of attack class information from the
NSL-KDD data were utilized to create the multiclass dataset for
the experiment, detailed in the data pre-processing section.

4.2. Data Cleaning and pre-processing

The KDDCup99 data is widely employed in experiments
related to anomaly detection in computer network traffic. It
consists of network-related traffic that transfers from the virtual

network environment utilized for the third knowledge discovery
and data mining tools competition. The KDD99 network traffic
data is a revision of the 1998 DARPA. The KDDCup99 dataset
comprises three components: the "Whole" dataset, the "10%
KDD," and the "Corrected KDD." The "Whole" dataset
encompasses various attack traffic and one normal network traffic
connection. This data involves two training data subsets: a full
training data subset and a 10% training data subset. The "Whole"
dataset consists of 4,898,431 individual records containing 41
attributes labeled as normal or an attack.

 As indicated in reference [20], the KDD99 dataset
encompasses 22 distinct attack traffic categorized into four classes:
Denial of Service, Unauthorized Access to Local Privileges (U2R),
Unauthorized Remote Machine Access (R2L), and Scan Network
(Probe). The NSL-KDD data contains four sub-datasets, including
KDDTest-21, KDDTest+, KDDTrain+_20Percent, and
KDDTrain+. Notably, the KDDTrain+_20Percent and KDDTest-
21 portions are sub-datasets derived from the KDDTest+ and
KDDTrain+, respectively.

The KDDTrain+ dataset is designated as the training dataset,
while the KDDTest+ dataset serves as the testing dataset for the
machine learning model. KDDTest-21 is a subset of the test dataset
that excludes the most challenging traffic records (with a score of
21), and KDDTrain+_20Percent is a subset of the training dataset,
encompassing 20% of the entire training dataset. It's important to
note that the traffic records found in KDDTest-21 and
KDDTrain+_20Percent are already included in the test and train
datasets, respectively. The NSL-KDD dataset addresses the
limitations found in the KDD'99 dataset. Unlike KDD'99, NSL-
KDD ensures the absence of redundant values in both the train and
test datasets.

Notably, NSL-KDD is advantageous due to its smaller test and
train sets, eliminating the need for random selection of a small data
subset, thus making experiments more cost-effective. Each record
in the NSL-KDD dataset comprises 42 features, with 41 of them
corresponding to the traffic input and the final label denoted as
either "normal" or "abnormal." In the KDDTrain+ contains
125,973 total network traffic records and 41 generated attributes,
the data cleaning and pre-processing assigns a target label of ‘1’
for normal traffic and ‘0’ for attack traffic records, transforming
the multiclass network traffic data into a binary class.

achine learning and deep learning algorithms work only for
numeric values, so ‘'protocol_type,' 'service,' and 'flag' are
categorical attributes transformed into numeric values, either ‘0’
or ‘1’ using one hot encoding method called dummy one hot
encoding. The dataset is then normalized using the standard scalar
method. Correlation-based feature reduction is also implemented
where those features with a correlation factor exceeding 0.5 are
preserved to reduce the features. Binary class data is employed in
experiments A to E. In experiment F, the multiclass (class 5)
version of the NSL-KDD dataset is utilized. Prior to training and
testing the BI-LSTM model, a sampling method is applied to
balance the unbalanced multiclass data. Further details on data
preprocessing and model information can be found in the
experimental section in the subsequent chapter.

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 149

4.3. Train and test data preparation

The train data and test data splitting method separate the data
randomly into two different subsets of the dataset. These two
subsets of data contain the designed amount of data based on our
selection. Since our pre-processed dataset represents just one
portion of the data, we employ two separate datasets for
implementing the machine learning algorithms. Researchers
typically have flexibility in determining the train-test split ratio,
with common choices of 80% to 20%, 60% to 40%, 70% to 30%,
and 75% to 25%. We conducted experiments to determine our
model's most optimal splitting ratio and found that a 70% training
and 30% testing dataset ratio yielded the best performance.

4.4. Bidirectional LSTM model preparation

 A recurrent neural network comprises feedback paths that
analyze data sequences and patterns to make predictions. These
loops enable data sharing among nodes, facilitating predictions
based on accumulated information referred to as memory. RNNs
have been effectively applied to address machine learning
challenges, including tasks such as language preprocessing
models, human voice/ speech recognition, and image processing.

 The LSTM-based model resolves the challenge of vanishing
gradients encountered in RNNs. The LSTM architecture comprises
a memory block and three units: input gates, output gates, and
forget gates. These gates function similarly to read, write, and reset
functions for the cells. Due to the presence of those three gates,
LSTM memory cells can effectively store and retrieve data over
prolonged times, mitigating the issue of vanishing gradients.

 Conventional RNNs are limited in their capacity only to
consider past context information. In contrast, Bidirectional RNNs
overcome this constraint by analyzing data in forward (left to right)
direction and backward (right to left) directions. This involves
integrating two hidden layers, with the outcomes subsequently
forwarded to a shared output layer. In a conventional LSTM neural
network, the output signal/data is generated directly. In contrast, a
bidirectional LSTM neural network incorporates both directions
(forward and backward) layers at each stage, contributing the
signal to the neural network activation layer. This configuration
captures data from both preceding and succeeding data, allowing
the bidirectional LSTM neural network model to predict the target
sequence of each element by considering finite sequences in the
circumstances of both past and future elements. This is achieved
by employing two consecutive LSTMs—one processing data from

both directions. Traditional RNNs are constrained by their
dependence solely on the previous perspective. Bidirectional
LSTM defeats this limitation by examining data feed from both
directions through two hidden neural network layers and then
forwarding the results to a similar recurrent neural network output
layer.

In a standard LSTM-based model, the model prediction is
usually obtained directly via the given dataset. Conversely, the
outputs from the forward layers and backward layers from each
stage are combined and input into the activation layer in the
bidirectional LSTM model. This resulting output encapsulates data
from past and future data from the memory blocks in LSTM. The
bidirectional LSTM predicts the labels or sequence from each
element by leveraging finite sequences within the circumstances
of preceding and following items. This process is accomplished
through the sequential processing of two LSTMs—one data
sequence from right to left direction and the same data sequence
from left to right.

The selection of neural network architecture components,
including input layers, hidden layers, output layers, layer sizes,
activation functions, and dropout rates, is a critical step following
data preprocessing. Hyperparameter tuning is an integral part of
this research. Initially, hyperparameters are chosen randomly for
experimentation, as discussed in more detail in the subsequent
experimental sections. The data sampling approaches are
implemented to deal with the data unevenness problem. Random
oversampling and random under-sampling methods created the
balanced multiclass dataset.

To initiate the random selection of the Bidirectional LSTM
architecture, the neural network comprises a single input layer with
64 neurons and a dropout rate of 20%. It features two hidden layers
with 50 neurons each, both employing a 20% dropout rate. The
output layers consist of a single dense layer, and the choice of
activation function depends on the nature of the target class size,
whether binary or multi-class. Once this model is defined, it is
compiled using the appropriate loss function and optimizer in
preparation for training.

4.5. Evaluation Bi-LSTM model

Multiple experiments have been conducted to analyze the
efficacy of the bidirectional LSTM model, revealing
inconsistencies in the effectiveness of both machine learning and
deep learning models. Consequently, a comprehensive analysis of
the model's hyperparameters becomes imperative for performance

Figure 3: Bidirectional LSTM model block diagram

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 150

improvement. The selection of the optimizer, batch size, epochs,
and train test splitting ratio is guided by a comparison of anomaly
detection accuracy and f1-score metrics for the bidirectional
LSTM model. Ultimately, the bidirectional LSTM's performance
metrics are juxtaposed with previous research findings to assess its
efficacy. Additionally, two distinct sampling methods, namely
random under-sampling and random oversampling, were
experimented with on the NSL-KDD and compared using the
bidirectional LSTM model.

4.6. Compare performance for decision-making.

After conducting model testing and evaluation, the decision-
making process involves selecting the most suitable model
pipeline from various alternatives. During this research, multiple
sets of experiments are conducted to optimize the hyperparameters
for the Bi-LSTM model, aiming to enhance its performance. These
hyperparameters encompass factors such as optimizers, epoch
count, batch size, neural network architecture, class size selection,
and methods for preprocessing raw data. This optimization process
is driven by comparing performance metrics obtained from these
diverse sets of experiments. Additionally, the performance metrics
of the bidirectional LSTM anomaly detection models for NSL-
KDD data are compared with published literature results.

5. Experiments and Results

Sets of experiments were conducted on a Windows 10 laptop
with a 64-bit architecture, equipped with 16GB of random-access
memory and an i7-1.99GHz processing unit. Python3.7.13,
Keras2.6.0, and TensorFlow2.9.1 were utilized in this research.
The investigation into train and test data split ratio, numbers of
epochs, optimizers, and batch size for the bidirectional LSTM
model was carried out across various experiments, as elaborated
below. The intrusion detection system leverages machine and deep
learning techniques for anomaly detection. Python is utilized to
code network intrusion detection models, using packages such as
NumPy, Pandas, Keras, imblearn, and Sci-kit-learn for developing
machine learning models. Additionally, tools like WEKA, Java,
C#, Visual C++, and MATLAB are commonly employed in
intrusion detection.

To ensure reproducibility, seed values are configured to obtain
consistent results across multiple runs on the Jupyter Notebook
platform. Subsequently, the experimental results are presented in
the form of plots or tables, using the Microsoft Office suite for
analysis.

5.1. Experiment: Optimizers Vs. Bi-LSTM performance

During this experimentation, the bidirectional LSTM was
applied to the NSL-KDD, the details of which are outlined in the
preceding sections. An appropriate optimizer is essential for
enhancing the network traffic anomaly detection model's training
time and the overall efficacy of the model. The choice of optimizer
holds significant importance as it expedites results for the ML/DL
model. The choice of the optimization algorithm made by a deep
learning practitioner directly impacts both the training speed and
the ultimate predictive performance of their model. TensorFlow is
an open-source machine-learning library containing nine
optimizers: Adam, Ftrl, Adagrad, Adamax, Adadelta, SGD,
RMSProp, gradient descent, and Nadam. Among them, seven

optimizers were experimented with to achieve the highest
performance of the model.

Table 1: Optimizer Vs. Accuracy

In this experimental task, the hyperparameter values were
picked randomly, and the performance metrics and optimizers are
outlined in Table 1. The structure of the bidirectional LSTM model
contained 64 units, featuring two B-LSTM hidden layers having
50 units in each, along with the dense output layer. Each layer
within the BLSTM model utilized an activation function called
relu and 20% drop-out rate of 20%.

Observing the above results (Table 1 and Figure 4), it is
determined that the Nadam optimizer is the victorious optimizer,
with the winning performance metrics having an accuracy of
98.26%, precision of 97.76%, and f1-score of 98.37%. Nadam
enhances the Adam algorithm by integrating Nesterov momentum,
resulting in an improved performance of the Adam optimizer.

5.2. Experiment: Train test split ratio Vs. performance

In this experiment, we investigated the impact of both the train
test split ratio and model performances. The process of data
splitting is crucial in data science, particularly when preparing
machine learning models using the available data.

The train test split methodology is utilized to calculate the
efficiency of machine learning algorithms in predicting results
from data that were unseen during the model training phase. Once
the model gets trained, the test dataset is applied, and no fixed
percentage split ratio to divide into training and test sets from the
given dataset. The splitting ratio is explored to enhance the model
performance by utilizing the Nadam optimizer on binary NSL-
KDD data.

training data= 70%, Epochs = 50, batch size= 512
SN Optimizer Accuracy % Precision % f1-score %
1 Nadam 98.26 97.76 98.37
2 Adam 98.24 97.66 98.35
3 RMSprop 98.19 97.56 98.31
4 Adamax 97.95 97.40 98.08
5 SGD 91.19 88.67 92.02
6 Adagrad 61.86 58.22 73.59
7 Ftrl 53.14 53.14 69.40

Figure 4: Optimizer Vs. Bi-LSTM performance

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 151

Table 2: Train test split ratio Vs. performance

optimizer = Nadam, Epochs = 50, Batch_size = 512
Testing data % accuracy % precision % f1-score %

10 98.15 97.55 98.29
20 98.21 97.57 98.33
30 98.24 97.66 98.36
40 98.18 97.52 98.30
50 98.13 97.50 98.26
60 98.10 97.52 98.24
70 98.12 97.65 98.25
80 97.82 97.39 97.97
90 97.92 97.31 98.07

Figure 5: Test data size in % Vs. Bi-LSTM model performance

 This experimental work presents the train test split ratio that
achieves the optimal performance for our network traffic anomaly
detection model on the NSL-KDD. The performances are
tabulated in Table 2. and the plot is shown in Figure 5, where a
30% test split percentage results in the model’s highest accuracy
of 98.48% and f1-score of 98.57%.

5.3. Experiment: Batch size Vs. performance

This experimental work presents the train test split ratio that
achieves the optimal performance for our network traffic anomaly
detection model on the NSL-KDD. The performances are
tabulated in Table 2. and the plot is shown in Figure 5, where a
30% test split percentage results in the model’s highest accuracy
of 98.48% and f1-score of 98.57%.

Table 3: Batch size Vs. model performance

Optimizer = Nadam, epochs = 105, testing data split= 0.30
batch size f1-score % accuracy % prgm exe time (sec)

50 98.58 98.48 2127.235
500 98.47 98.36 514.770
350 98.51 98.4 527.153
450 98.51 98.41 454.989
250 98.46 98.35 616.466
150 98.52 98.42 858.070
300 98.55 98.45 553.444
200 98.55 98.45 796.898
400 98.48 98.38 460.884
15 98.56 98.45 5671.738
100 98.56 98.46 1228.779

A smaller batch size entails the introduction of limited data
samples into the Bi-LSTM anomaly detection model, necessitating

a lengthier training period than a larger batch. The performance
metrics and batch size are presented in Table 3. The experimented
results indicate that when applying this model to the NSL-KDD, a
batch of 50 produces optimal accuracy and s1-score. A larger batch
of data through the model takes less training time but exhibits
lower accuracy, highlighting a significant trade-off for this Bi-
LSTM network traffic anomaly detection model.

5.4. Experiment: Epochs Vs. performance

 In machine learning, an epoch represents one complete pass
through all the training data during a model's training. During each
epoch, the model is exposed to the entire dataset, and the model's
parameters (weights and biases) are adjusted based on the error or
loss calculated from the model's predictions compared to the actual
target values.

Table 4: Epochs Vs. model performance

optimizer = Nadam, batch= 50, test data= 30% , train data = 70%
epoch accuracy f1-Score prgm exe time (sec)
175 98.48 98.58 3965.207
100 98.48 98.58 1878.803
125 98.48 98.58 2470.620

5 97.9 98.03 127.058
35 98.35 98.46 761.278

205 98.52 98.62 4103.767
50 98.38 98.48 942.129
45 98.37 98.47 1002.092
75 98.46 98.56 1465.514

150 98.48 98.58 2934.249
25 98.3 98.41 527.524
15 98.13 98.25 322.529

Accuracy and f1-score in %, prgm exe time:: program train and testing time

 In practice, the epoch is a hyperparameter set before the
training begins. The choice of the epoch size depends on factors
such as the model's complexity, the data size, and the model's
convergence behavior during training. Selection of a small epoch
may result in model underfitting, where the machine learning
model hasn't learned the underlying patterns in the data. However,
a large size epoch may lead the model to overfit, where the model
starts memorizing the training data instead of generalizing well to
unseen data. The epoch selection can be any integer value that lies
between 1 to infinity. By tradition, the ML/ DL researcher selects
large values of epochs.

 This experiment aims to identify the optimal number of epochs
that yield the highest accuracy for the Bi-LSTM model. Similar to
the previous experiment, the Bi-LSTM hyperparameters were
randomly selected. Longer epochs result in extended training times
for the model. The random numbers of epoch values were chosen
between 5 to 205, and the accuracy and f1-score were found to be
highest at 205 epochs. However, it's important to note that a larger
epoch value increases the training time for our model. In this
experiment, a batch of 205 sizes enhances the accuracy of the Bi-
LSTM network traffic anomaly detection model, achieving a
detection rate of network anomalies at 98.5%.

5.5. Experiment: Model layers parameters Vs. accuracy

 In our prior experiments, 5.1 to 5.4, we investigated the impact
of various hyperparameters, including the optimizer, number of
epochs, batch size, and the train test data split ratio. Our results

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 152

reveal that the combination of the Nadam optimizer, 205 epochs, a
batch size of 50, and a train test split ratio of 70%: 30% delivers
optimal performance after evaluating the model performance
metrics.

Table 5: Bi-LSTM architecture Vs. accuracy

optimizer = Nadam, batch_size = 50, test data= 30%, train data=70%
Input layer Hidden layer 1 Hidden layer 2 acc. %

neuron act. fn neuron act. fn neuron act. fn
8 relu 8 relu 8 relu 97.48
4 sigmoid 4 sigmoid 4 sigmoid 97.05
16 relu 16 relu 16 relu 97.93
16 selu 16 selu 16 selu 97.97
64 sigmoid 50 sigmoid 50 sigmoid 98.52
49 sigmoid 128 sigmoid 128 sigmoid 98.18
80 relu 64 relu 64 relu 98.48
4 relu 4 relu 4 relu 97.55

act.fn::activation function, acc:: model accuracy

 This study investigated different configurations of neurons and
activation functions for the neural network of the Bi-LSTM model.
The dense output layer is structured to provide probabilities for
distinguishing between normal and abnormal classes, rendering
the softmax activation function the most appropriate selection for
the binary class dataset.

 This experiment evaluated diverse configurations of Bi-LSTM
neurons and activation functions for input and hidden layers.
Several results from the conducted experiment are outlined in
Table 4. Based on the tabulated results, 64 neurons in the input
layer and 50 neurons in each hidden layer of our model produce
the ultimate accuracy of 98.52 % in the domain of network
anomaly detection.

5.6. Experiment: Sampling Vs. performance metrics for
multiclass NSL-KDD dataset

 Since these data represent a refined version of the KDD99
dataset, minimal data preprocessing is required. The downloaded
train data (KDDTrain+) with the target class was initially separated
from the training dataset to establish the class label. Among the
remaining numerical features, three categorical attributes,
‘protocol_type,’ ‘service,’ and ‘flag,’ are extracted. Dummy one-
hot encoding methods convert categorical into numerical values,
while the numerical features are normalized using standard scaling
methods. Subsequently, both feature sets are merged into a unified
data frame, resulting in the final data set.

 The attack types on both KDD99 and NSL-KDD are presented
in Table 6. The network attack traffic in these datasets is classified
into ‘Denial of Service,’ ‘Probe,’ ‘Remote to Local,’ and ‘User to
Root’ [21]. A denial-of-service attack prevents legitimate users
from accessing resources via the network, causing a disruption in
the availability of those resources. On the other hand, a probe is a
scanning attack aimed at identifying vulnerabilities in a system
connected to the network. This probing attack targets weaknesses
and facilitates potential compromise of the system.

Table 6: Attack types and traffic information in NSL-KDD

Class Attack Types Data
Probe Satan, MScan, Upsweep, Saint, Nmap,

Portsweep
11656

U2R Ps, Perl, Buffer_overflow, Sqlattack, Rootkit,
Loadmodule, Xterm

52

Normal 67343
R2L Spy, Ftp_write, Guess_Password, Imap, Phf,

Multihop, Warezmaster, Xlock, Warezclient,
Xsnoop, Snmpguess, Snmpgetattack, Named,
Httptunnel, Sendmail

995

DoS Back, Worm, Apache2 Neptune, Smurf, Pod,
Teardrop, Udpstorm, Processtable, Land

45927

Total traffic data 12593

Likewise, the remote-to-local attack involves illegal access to
a remote terminal. The user-to-root attack entails gaining privilege
as a root user, with the root password obtained through various
techniques such as password sniffing, brute-forcing, or social
engineering.

 Under-sampling is a straightforward approach and a method
for addressing the class imbalance in datasets. This technique
involves preserving all data within the minority class while
reducing the volume of data in the majority class. It represents one
of several tools available to data scientists for enhancing the
accuracy of insights extracted from initially imbalanced datasets.
In under-sampling, data samples from the majority class are
randomly chosen and removed until a balanced distribution is
achieved. This reduction in data volume can alleviate storage
constraints and enhance processing efficiency. However, it's
significant to note that this reduction may result in the loss of
valuable information.

 Conversely, oversampling is employed when the available data
is insufficient in quantity. Its objective is to rectify dataset
imbalance by augmenting the number of rare samples. Instead of
discarding abundant samples, oversampling techniques generate
new rare samples through replication, bootstrapping, or SMOTE
(Synthetic Minority Over-Sampling Technique). SMOTE, which
stands for synthetic minority over-sampling technique, is a specific
form of oversampling that involves the synthetic generation of data
points for the minority class. In this process, a random selection of
k nearest neighbors is chosen to determine the appropriate
oversampling level.

After preprocessing, the NSL-KDD KDDTrain+ multiclass
data initially exhibits imbalanced class distributions. Various
techniques can be employed to rectify this imbalance, including
under-sampling, over-sampling, and hybrid sampling. Our
experiment utilized an automated sampling approach combining
random under-sampling and SMOTE to restructure the data for all
classes based on our implemented sampling method. Random
oversampling consists of randomly choosing instances from the
minority class, replacing them, and incorporating them into the
training dataset. On the other hand, random under-sampling entails
randomly selecting instances from the majority class and removing
them from the dataset.

Table 7: Bi-LSTM with random under-sampling and performance

 BI-LSTM Model with Random Under-Sampling and Performance
Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS
SN Class Precision % Recall % F1-Score %
1 DoS 100 100 100
2 Probe 100 79.17 88.37
3 R2L 88.89 80 84.21
4 U2R 73.68 93.33 82.35

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 153

5 Normal 86.67 100 92.86
Average 91.29 89.74 89.81
Accuracy = 89.74 %
Program exe time = 17.72 sec

 The number of new datasets generated depends on each target
class's original data size. Random under-sampling reduced the
NSL-KDD data to 52 instances in each of the five classes by
randomly eliminating data points. Conversely, SMOTE, an
oversampling technique, augmented the dataset by introducing
additional data points. During this experiment, substantial data
augmentation created well-balanced datasets, with each target
class containing 67,343 instances.

 The balanced NSL-KDD data has been partitioned into training
and testing subsets to facilitate the training and evaluation of the
Bidirectional LSTM model. As determined in previous
experiments, the train test data split ratio of 70%:30%.

 The architecture of the Bi-LSTM neural network mirrors that
used in prior experiments, with the input layer containing 64
elements and both hidden layer1 and hidden layer2 comprising 50
elements. A trade-off analysis was conducted to determine the
optimal combination of epochs and batch size while considering
the Bi-LSTM model's performance.

Table 8: Bi-LSTM with SMOTE technique and performance

BI-LSTM Model with SMOTE and Performance
Epochs= 50, Batch_size= 512, Data = NSL-KDD Multiclass (5 class) _RUS
SN Class Precision % Recall % F1-Score %
1 DoS 99.99 99.98 99.98
2 Probe 99.99 99.98 99.98
3 R2L 99.99 99.18 99.59
4 U2R 99.18 1 99.59
5 Normal 1 99.99 1
 Average 99.83 99.83 99.83
Accuracy = 99.83 %
Program exe time = 770.52 sec

Figure 6: Bi-LSTM performance Vs. oversampling and under-sampling

 In our hyperparameter tuning, we aimed to balance program
execution time and model performance, as previously
demonstrated. As a result, the model was trained for 50 epochs
using a batch size of 512 and the Nadam optimizer with a learning
rate of 0.041, as detailed in the accompanying table.

 The random under-sampling methods produce the NIDS
multiclass accuracy of 89.74%, average precision of 91.29 %,

recall of 89.74%, and 89.91% f1-score referenced from Table 7.
The program execution time is short as compared with
oversampling.

 Table 8. Shows the performance of the Bi-LSTM with over-
sampling methods called SMOTE where the default value of K,
i.e., 5, is taken during this experiment. The nearest neighbors value
K defines the neighborhood of samples to generate the synthetic
samples. We listed the individual class performance as well as
average class performance. Figure 6 shows the visualization plot
to compare the under-sampling and over-sampling performance on
the NSL-KDD multiclass dataset using the Bi-LSTM model. The
over-sampling (SMOTE) for the NSL-KDD multiclass dataset
provides the 99.83% average precision, recall, and F1 score.

6. Conclusion

The Highest performance is achieved during network traffic
anomaly detection using the bidirectional LSTM model. The
combination of tunned different hyperparameters (from the above
experiments) values, including epoch, optimizer, and batch size,
outperformed the anomaly detection model. Determination of
hyperparameters’ values for the Bi-LSTM anomaly detection
model on the NSL-KDD dataset highly contributes to the domain
of anomaly detection using machine learning and deep learning.
Similarly, we can use no fixed split ratio values for the efficient
anomaly detection model. This research work determines the split
ratio to produce the highest performance on anomaly detection
using the Bi-LSTM model on the NSL-KDD dataset. The
combination of neural network architecture memory elements
plays an important role in training and testing the model during
network anomaly detection. Data imbalance is another main
problem to deal with during network anomaly detection. The
sampling techniques either delete the data entry randomly or
generate the data entry randomly. The sampling technique
balances the data in the multiclass dataset. During this research
work, the implementation of the random up-sampling methods
outperformed the model and produced the highest performance.

 We compare our results with existing research [17] to prove
that our model is outperformed on the KDD-NSL multiclass
dataset. The previously completed research compared their model
performance in paper at 99.70% with the other previously
researched model’s performance, such as Artificial Neural
Network (ANN) model at 95%, Decision Tree and Random Forest
with 92.60%, Linear Regression, and Random Forest with 94%,
Random Forest, and Bayesian Network with 93.4 %, Deep Neural
Network with 97% [17]. Our proposed model pipeline for the Bi-
LSTM-based network anomaly detection model delivers a higher
accuracy of 99.83% is greater than the obtained model
performance in research work [17]. The values of bidirectional
LSTM model hyperparameters, including epochs values,
optimizer, batch size, train test slit ratio, and SMOTE sampling
technique for the multilayer bidirectional LSTM neuron
architecture (layers, activation function, and memory units) are
examined to achieve the highest anomaly detection model
performance. The results from these experiments consistently
demonstrate that the bidirectional LSTM model, configured with
the explored parameters, significantly enhances detection accuracy
and f1-score. This model can be experimented with using different
network intrusion datasets. Creating a new network intrusion

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 8, No. 6, 144-154 (2023)

www.astesj.com 154

dataset with the latest network attacks will be the extension of this
task in the future.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

The National Science Foundation (NSF) and Scholarship for
Service CyberCorps (SFS CyberCorps) programs support this
research study. The award information of NSF and CyberCorps
are #1910868 and #2219611, respectively. This cannot be
completed without the continuous support of advisors and the
Electrical and Computer Engineering Departments of Prairie
View A&M University

References

[1] T. Acharya, A. Annamalai, M.F. Chouikha, “Efficacy of Bidirectional
LSTM Model for Network-Based Anomaly Detection,” in 13th IEEE
Symposium on Computer Applications and Industrial Electronics, ISCAIE
2023, Institute of Electrical and Electronics Engineers Inc.: 336–341, 2023,
doi:10.1109/ISCAIE57739.2023.10165336.

[2] N. Moustafa, J. Hu, J. Slay, “A holistic review of Network Anomaly
Detection Systems: A comprehensive survey,” Journal of Network and
Computer Applications, 128, 33–55, 2019, doi:10.1016/j.jnca.2018.12.006.

[3] S. Samonas, D. Coss, THE CIA STRIKES BACK: REDEFINING
CONFIDENTIALITY, INTEGRITY AND AVAILABILITY IN
SECURITY.

[4] Y. Fu, Y. Du, Z. Cao, Q. Li, W. Xiang, “A Deep Learning Model for
Network Intrusion Detection with Imbalanced Data,” Electronics
(Switzerland), 11(6), 2022, doi:10.3390/electronics11060898.

[5] K. Jiang, W. Wang, A. Wang, H. Wu, “Network Intrusion Detection
Combined Hybrid Sampling with Deep Hierarchical Network,” IEEE
Access, 8, 32464–32476, 2020, doi:10.1109/ACCESS.2020.2973730.

[6] W. Xu, J. Jang-Jaccard, T. Liu, F. Sabrina, J. Kwak, “Improved Bidirectional
GAN-Based Approach for Network Intrusion Detection Using One-Class
Classifier,” Computers, 11(6), 2022, doi:10.3390/computers11060085.

[7] L. Vu, Q.U. Nguyen, “Handling Imbalanced Data in Intrusion Detection
Systems using Generative Adversarial Networks,” Journal of Research and
Development on Information and Communication Technology, 2020(1), 1–
13, 2020, doi:10.32913/mic-ict-research.v2020.n1.894.

[8] T. Acharya, I. Khatri, A. Annamalai, M.F. Chouikha, “Efficacy of
Heterogeneous Ensemble Assisted Machine Learning Model for Binary and
Multi-Class Network Intrusion Detection,” in 2021 IEEE International
Conference on Automatic Control and Intelligent Systems, I2CACIS 2021 -
Proceedings, Institute of Electrical and Electronics Engineers Inc.: 408–413,
2021, doi:10.1109/I2CACIS52118.2021.9495864.

[9] T. Acharya, I. Khatri, A. Annamalai, M.F. Chouikha, “Efficacy of Machine
Learning-Based Classifiers for Binary and Multi-Class Network Intrusion
Detection,” in 2021 IEEE International Conference on Automatic Control
and Intelligent Systems, I2CACIS 2021 - Proceedings, Institute of Electrical
and Electronics Engineers Inc.: 402–407, 2021,
doi:10.1109/I2CACIS52118.2021.9495877.

[10] C. Yin, Y. Zhu, J. Fei, X. He, “A Deep Learning Approach for Intrusion
Detection Using Recurrent Neural Networks,” IEEE Access, 5, 21954–
21961, 2017, doi:10.1109/ACCESS.2017.2762418.

[11] Z. Chen, C.K. Yeo, B.S. Lee, C.T. Lau, “Autoencoder-based network
anomaly detection,” in Wireless Telecommunications Symposium, IEEE
Computer Society: 1–5, 2018, doi:10.1109/WTS.2018.8363930.

[12] M. Ganesh, A. Kumar, V. Pattabiraman, “Autoencoder based network
anomaly detection,” in Proceedings of 2020 IEEE International Conference
on Technology, Engineering, Management for Societal Impact Using
Marketing, Entrepreneurship and Talent, TEMSMET 2020, Institute of
Electrical and Electronics Engineers Inc., 2020,
doi:10.1109/TEMSMET51618.2020.9557464.

[13] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, F. Sabrina, “Improving
Performance of Autoencoder-Based Network Anomaly Detection on NSL-
KDD Dataset,” IEEE Access, 9, 140136–140146, 2021,
doi:10.1109/ACCESS.2021.3116612.

[14] J. Gao, “Network Intrusion Detection Method Combining CNN and
BiLSTM in Cloud Computing Environment,” Computational Intelligence
and Neuroscience, 2022, 2022, doi:10.1155/2022/7272479.

[15] T. Acharya, A. Annamalai, M.F. Chouikha, “Efficacy of CNN-Bidirectional
LSTM Hybrid Model for Network-Based Anomaly Detection,” in 13th IEEE
Symposium on Computer Applications and Industrial Electronics, ISCAIE
2023, Institute of Electrical and Electronics Engineers Inc.: 348–353, 2023,
doi:10.1109/ISCAIE57739.2023.10165088.

[16] A.G. Salman, Y. Heryadi, E. Abdurahman, W. Suparta, “Single Layer &
Multi-layer Long Short-Term Memory (LSTM) Model with Intermediate
Variables for Weather Forecasting,” in Procedia Computer Science, Elsevier
B.V.: 89–98, 2018, doi:10.1016/j.procs.2018.08.153.

[17] P. TS, P. Shrinivasacharya, “Evaluating neural networks using Bi-
Directional LSTM for network IDS (intrusion detection systems) in cyber
security,” Global Transitions Proceedings, 2(2), 448–454, 2021,
doi:10.1016/j.gltp.2021.08.017.

[18] Y. Imrana, Y. Xiang, L. Ali, Z. Abdul-Rauf, “A bidirectional LSTM deep
learning approach for intrusion detection,” Expert Systems with
Applications, 185, 2021, doi:10.1016/j.eswa.2021.115524.

[19] I. Kandel, M. Castelli, “The effect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset,” ICT Express,
6(4), 312–315, 2020, doi:10.1016/j.icte.2020.04.010.

[20] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in IEEE Symposium on Computational Intelligence
for Security and Defense Applications, CISDA 2009, 2009,
doi:10.1109/CISDA.2009.5356528.

[21] L. Dhanabal, S.P. Shantharajah, “A Study on NSL-KDD Dataset for
Intrusion Detection System Based on Classification Algorithms,”
International Journal of Advanced Research in Computer and
Communication Engineering, 4, 2015, doi:10.17148/IJARCCE.2015.4696.

http://www.astesj.com/

	1. Introduction
	2. Literature Review
	3. Contributions
	4. Model Description
	4.1. Data Collection and Modelling
	4.2. Data Cleaning and pre-processing
	4.3. Train and test data preparation
	4.4. Bidirectional LSTM model preparation
	4.5. Evaluation Bi-LSTM model
	4.6. Compare performance for decision-making.

	5. Experiments and Results
	5.1. Experiment: Optimizers Vs. Bi-LSTM performance
	5.2. Experiment: Train test split ratio Vs. performance
	5.3. Experiment: Batch size Vs. performance
	5.4. Experiment: Epochs Vs. performance
	5.5. Experiment: Model layers parameters Vs. accuracy
	5.6. Experiment: Sampling Vs. performance metrics for multiclass NSL-KDD dataset

	6. Conclusion
	Conflict of Interest
	Acknowledgment
	References

