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 The cybercriminal utilized the skills and freely available tools to breach the networks of 
internet-connected devices by exploiting confidentiality, integrity, and availability. Network 
anomaly detection is crucial for ensuring the security of information resources. Detecting 
abnormal network behavior poses challenges because of the extensive data, imbalanced 
attack class nature, and the abundance of features in the dataset. Conventional machine 
learning approaches need more efficiency in addressing these issues. Deep learning has 
demonstrated greater effectiveness in identifying network anomalies. Specifically, a 
recurrent neural network model is created to recognize the serial data patterns for 
prediction. We optimized the hybrid model, the convolutional neural network combined 
with Bidirectional Long-Short Term Memory (BLSTM), to examine optimizers (Adam, 
Nadam, Adamax, RMSprop, SGD, Adagrad, Ftrl), number of epochs, size of the batch, 
learning rate, and the Neural Network (NN) architecture. Examining these 
hyperparameters yielded the highest accuracy in anomaly detection, reaching 98.27% for 
the binary class NSL-KDD and 99.87% for the binary class UNSW-NB15. Furthermore, 
recognizing the inherent class imbalance in network-based anomaly detection datasets, we 
explore the sampling techniques to address this issue and improve the model's overall 
performance. The data imbalance problem for the multiclass network anomaly detection 
dataset is addressed by using the sampling technique during the data preprocessing, where 
the random over-sampling methods combined with the CNN-based BLSTM model 
outperformed by producing the highest performance metrics, i.e., detection accuracy for 
multiclass NSL-KDD and multiclass UNSW-NB15 of 99.83% and 99.99% respectively. 
Evaluation of performance, considering accuracy and F1-score, indicated that the 
proposed CNN BLSTM hybrid network-based anomaly detection outperformed other 
existing methods for network traffic anomaly detection. Hence, this research contributes 
valuable insights into selecting hyperparameters of deep learning techniques for anomaly 
detection in imbalanced network datasets, providing practical guidance on choosing 
appropriate hyperparameters and sampling strategies to enhance model robustness in real-
world scenarios. 
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1. Introduction 
This study is extension version of the presented conference 

paper titled "Efficacy of CNN-Bidirectional LSTM Hybrid Model 
for Network-Based Anomaly Detection" [1] at the 2023 IEEE 13th 
Symposium on Computer Applications & Industrial Electronics 
(ISCAIE).  

As technology undergoes rapid advancements, the 
transmission of information has transformed significantly, 

adopting various methods such as wired, wireless, or guided 
networks. This evolution in network technology is pivotal to 
people's daily activities. Whether it's communicating with others, 
accessing online resources, or sharing information, the efficiency 
and security of these interactions depend heavily on the underlying 
network infrastructure. A system attains security when it 
effectively maintains the three essential notions of computer 
information security: Availability, Integrity, and Confidentiality 
(CIA). In essence, information security involves safeguarding 
information from unauthorized entities and protecting against 
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illegal access, use, disclosure, reformation, recording, or 
destruction of data. Confidentiality guarantees that the information 
is accessible only to individuals or systems. In information 
network technology, encryption methods and access controls 
prevent unauthorized users from gaining access to sensitive data 
during transmission. Information integrity guarantees that data 
remains unaltered during transmission. In the context of 
information network technology, this involves implementing 
mechanisms to detect and prevent unauthorized modifications to 
data, ensuring that the information received is the same as what 
was sent. Availability ensures that information and resources are 
available and accessible when needed. In an information resources 
and security environment, availability involves designing robust 
and reliable systems that can withstand potential disruptions, 
whether they are due to technical failures or malicious attacks. The 
overarching goal of information security is to safeguard 
information from unauthorized access and malicious activities. 
This includes preventing unauthorized individuals or systems from 
gaining access to sensitive data, ensuring that information remains 
unchanged and reliable during transmission, and guaranteeing that 
information and resources are available when needed. 

Measures to achieve information security encompass a range 
of strategies, including encryption to protect data confidentiality, 
checksums or digital signatures to ensure data integrity, and 
redundancy and fault-tolerant systems to enhance availability. 
Additionally, access controls, firewalls, and intrusion detection are 
commonly utilized to fortify the security posture of networked 
systems, mitigating the risks associated with information 
resources. 

A traditional network cannot be fully protected by relying 
solely on a firewall and antivirus software. These security 
measures identify predefined anomalous activities and establish 
the rule to prevent those unusual events by the cyber expert. In 
anomaly detection, outliers and anomalies are occasionally 
employed interchangeably. This approach finds extensive use 
across diverse domains, such as commercial, network attack 
detection, health systems monitoring, credit card fraud transaction 
detection, and identifying faults in mission-critical infrastructure 
systems. Anomaly detection is crucial in cybersecurity, providing 
robust protection against cyber adversaries. Ensuring safeguard 
network resources is essential to safeguard the organization from 
cyber threats. 

Anomalies are categorized into point, contextual, and 
collective types based on the results generated by the detection 
method [2]. Point anomalies occur when a specific activity 
diverges from the typical rules or patterns. Contextual anomalies 
involve unusual patterns within a particular circumstance that 
consistently differ from numerous normal activities. Collective 
anomalies occur when a group of related instances exhibit 
anomalous behavior compared to the normal activity dataset. 

Intrusion detection techniques can be broadly classed into two 
main types: Signature-based Intrusion Detection System (SIDS) 
and Anomaly-based Intrusion Detection System (AIDS). Anomaly 
detections, in contrast, are classified according to their origins, 
resulting in network-based and host-based intrusion/anomaly 
detection systems. Detecting anomalies in data is facilitated by 
employing labels to differentiate between normal and abnormal 

occurrences. There are three fundamental approaches to detecting 
anomalies: supervised, semi-unsupervised, and unsupervised 
methods. In the supervised approach, the system is trained on 
labeled data, distinguishing between normal and anomalous 
instances. On the other hand, unsupervised methods detect 
anomalies without prior labeling, relying on deviations from 
established patterns. Semi-supervised techniques combine 
elements of both, using labeled and unlabeled data for training. 
AIDS overcomes the drawbacks of SIDS by utilizing ML, 
statistical-based, or knowledge-based methods to model normal 
behaviors. However, it's worth noting that anomaly-based 
detection may produce false results due to alterations in user 
habits. 

Numerous traditional machine learning algorithms favor 
shallow learning methodologies, giving significant importance to 
feature engineering designed for smaller data. The feature 
engineering phase needs more processing time and domain 
expertise to create pertinent features and eliminate unrelated ones 
from anomaly detection algorithms. The effectiveness of anomaly 
detection is intricately tied to feature engineering and data 
preprocessing implementation. Traditional machine learning 
methods, characterized by simplicity, low resource consumption, 
and subpar performance in areas like vision, language processing, 
and image translations, underscore the limitations of these 
approaches. 

CNN is predominantly employed for image signals, leveraging 
its architecture to effectively capture and analyze visual 
information. Individual neurons play a key role in reducing the 
dimensionality of the network's features in the lower layers of a 
CNN. These neurons are adept at identifying essential small-scale 
features within the images, including boundaries, corners, and 
variations in intensity. The CNN network links lower-level 
features to produce more complicated features in the upper layers, 
encompassing fundamental shapes, structures, and partial objects. 
The ultimate layer of the network amalgamates these lower 
features to generate the output results. 

The functioning of a long short-term memory differs from that 
of a CNN due to its specific design to safeguard long-range info 
within a sequential order. Unlike CNNs, LSTMs are crafted to 
remember and store information over extended sequences, 
avoiding the loss of crucial details. In the case of BLSTM, an 
additional LSTM layer is incorporated, introducing a reversal in 
the information flow direction. This architectural enhancement 
addresses challenges related to vanishing gradients, ensuring more 
effective training by considering information from both forward 
and backward directions in the sequence. 

Data imbalance, including network anomaly detection, is a 
common challenge in ML applications. In network traffic anomaly 
detection, data imbalance refers to the unequal distribution of 
normal and anomalous instances in the dataset for training the 
detection model. Anomalies in network traffic are typically rare 
incidents compared to normal activities, leading to imbalanced 
data. 

The deep learning approach addresses issues found in 
conventional machine learning. The effectiveness of the deep 
learning-based anomaly detection algorithm relies on factors such 
as the NN architecture, #hidden layers, activation functions, batch 
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size, and the number of epochs utilized during DL model testing, 
training, and validation. The careful selection of these factors, 
including hyperparameters and the architecture of NN in deep 
learning, is crucial for enhancing the detection accuracy of network 
traffic anomaly detection. The essential selection of  ML or DL 
models overcomes the class imbalance problem. The ensemble 
method, which combines more different individual models, 
requires longer training time and consumes more resources. The 
sampling method generates random data or deletes the random data 
based on the implemented sampling methods to create the balanced 
form of the final dataset, which is efficient in dealing with the 
imbalanced dataset. 

2. Literature Review 

The rapid increase of information and technology has led to 
widespread connectivity of numerous end terminals to the internet 
and networks. Those smart terminals contribute to generating 
substantial volumes of data, commonly referred to as big data. This 
huge flood of data is a valuable resource for analysis and insights. 
Machine learning and deep learning algorithms come into play to 
extract meaningful information from this vast data pool. The daily 
growth of big data presents difficulties for conventional machine 
learning algorithms, necessitating thorough feature extraction and 
discovery. DL substantially increases anomaly detection and 
model performance. Nevertheless, the dataset's attributes and 
features, hyperparameters in deep neural networks, and the 
structure of neural networks are pivotal elements that impact the 
efficacy of identifying anomalies in network-based IDS. 

Conventional machine learning strongly relies on intricate and 
time-consuming feature engineering, often impractical for real-
time applications. In the [3] study, the authors proposed an 
approach for payload classification utilizing CNN and RNN to 
detect attacks, achieving detection accuracies of 99.36% and 
99.98% on the DARPA98 network data, respectively. CNN 
methods discern specific grouping patterns through convolution 
around input neighborhoods, while RNN works on sequences by 
calculating correlations between previous and current states. In 
another[4] study, class imbalance was handled utilizing a CNN 
with a Gated Recurrent Unit (GRU) hybrid model. To address the 
data class imbalance and feature redundancy, they used a hybrid 
sampling technique that integrates Pearson Correlation Analysis 
(PCA), repeated edited nearest neighbors, Random Forest (RF), 
and adaptive synthetic sampling. With the detection accuracies of 
99.69%, 86.25%, 99.69%, and 99.65% on the NSL-KDD, 
UNSW_NB15, and CIC-IDS2017 datasets, respectively, their 
CNN-GRU model performed better.  

The research authors [5] proposed using an Adaptive Synthetic 
Sampling (ADASYN) technique in a DL-based network intrusion 
detection system to overcome dataset imbalance. On the NSL-
KDD network data, they used an autoencoder to reduce 
dimensionality. The CNN-BLSTM hybrid DL method obtained 
the greatest F1 score (89.65%) and accuracy (90.73%). To address 
problems resulting from data in class imbalance and heterogeneous 
data distribution across various information sources, the research 
[6] used convolutional neural networks with federal transfer 
learning. The UNSW-NB15 multiclass network dataset produced 
an average detection accuracy was 86.85% for the model. 

In [7], the researcher addressed data class imbalance on 
network datasets: NSL-KDD, KDD99, and UNSW-NB15 datasets 
using heterogeneous ensemble-assisted ML methods for binary 
and multi-class network intrusion detection. Using the NSL-KDD 
dataset, the model showed a 96.2% AUC and a true positive rate 
(TPR) of 94.5%. 

 The authors of  [8]discovered that ML classifier performance 
increased with the decrease in target classes. Conventional ML 
approaches, such as Naïve Bayes, Random Forest, J48, Bagging, 
Adaboost, and BayesianNet, were used to investigate this idea on 
three network traffic-based intrusion datasets: KDD99, UNSW-
NB15, and CIC-IDS2017_Thursday. 

In a study [9], the authors suggested a method for achieving 
network intrusion classification with low computing cost, creating 
a group of target classes based on the nature of network traffic. 
They created cluster characteristics for each group using K-means 
on the KDD99 network dataset, resulting in a detection accuracy 
of 98.84%. However, the intrusion detection model accuracy for 
user2root (U2R) is notably low at 21.92%, impacting overall 
performance. In  [10], authors employed a hybrid method, 
combining CNN and LSTM, to enhance model classification 
accuracy, achieving 96.7% and 98.1% on CIC-IDS2017 and NSL-
KDD network data, respectively. 

 In the study[11], CNN and LSTM combined to create a hybrid 
model was proposed to enhance network intrusion detection model 
facilities for advanced metering infrastructure through cross-layer 
features combination. This method achieved the highest network 
intrusion detection accuracy of 99.79% on NSL-KDD and 99.95% 
on KDD Cup99 but with limited user2root (U2R) detection 
capabilities. Similarly, in [12], authors employed a hybrid method 
of combining CNN and LSTM to improve model network 
intrusion detection by capturing additional network traffic data's 
spatial and temporal features. 

In[13], the researchers implemented a hybrid technique based 
on the mean control of the CNN and BLSTM to address issues of 
conventional data pre-processing and imbalanced numerical 
distribution of class instances in the NSL-KDD, achieving the 
optimal detection accuracy of 99.10%. However, the accuracy for 
the minority traffic data class remains suboptimal. Using a 
different methodology, the authors [14] created a DL model that 
combined CNN and BLSTM to learn temporal and spatial 
characteristics. Accuracy levels on the binary class UNSW-NB15 
were 93.84% and binary NSL-KDD of 99.30%.  

Data was preprocessed using one-hot encoding and min-max 
normalization by authors in [15], which achieved an accuracy of 
96.3% on CNN and Bi-LSTM hybrid methods on the multiclass 
NSL-KDD dataset. Using preprocessed on given NSL-KDD data, 
researchers in[16] applied the hybrid model using CNN and 
BLSTM algorithm with a 95.4% accuracy rate. A bidirectional 
LSTM model was used by the authors in their study [17] for the 
binary NSL-KDD dataset with the highest accuracy of 98.52%. 
Using a Bidirectional LSTM deep learning model, authors[18] got 
99% accuracy on UNSW-NB15 and KDDCUP-99, which is an 
exceptional achievement. But a lot of the models that are now in 
use need help effectively identifying uncommon (rare) attack 
types, especially user2root (U2R) and remote2local (R2L) attacks, 
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which frequently have poorer detection accuracy as compared with 
other network attack types.  

To overcome the difficulties found in the above literature 
review, authors in [19] presented a Bi-LSTM-based network 
intrusion detection system on the NSL-KDD dataset, which 
offered a binary classification accuracy of 94.26%. Furthermore, 
the authors proposed a Bi-directional GAN-based method [20] for 
the NSL-KDD and CIC-DDoS2019 datasets. The bidirectional 
GAN model demonstrated strong performance with an f1 score 
and detection accuracy of 92.68% and 91.12%, respectively, on the 
unbalanced NSL-KDD dataset. 

In the research study [1], [17] the Authors used the 
hyperparameters tunning to obtain the best model performance on 
network intrusion detection datasets, including NSL-KDD and 
UNSW-NB15. In [21], the Authors implement the BLSTM model 
combined with random over-sampling strategies, which produces 
a high anomaly detection accuracy of 99.83% for multiclass 
imbalance network anomaly datasets NSL-KDD dataset. 

The deep learning model discussed in [3]  and [4] overcomes 
challenges traditional machine learning encounters in anomaly 
detection. While the CNN standalone model is unsuitable for 
sequential data preprocessing, and RNN requires complex data 
preprocessing, this model effectively addresses these issues. Data 
imbalance problems are tackled in [5]-[8]. Feature engineering 
emerges as a critical factor in enhancing the accuracy of both ML 
and DL models. Much research has been conducted on feature 
engineering, with studies focusing on attribute grouping found in 
[9]-[12]. The BLSTM, which brings together two distinct LSTMs 
to allow input processing in both directions (from the past to the 
future and vice versa), is implemented in [13]-[20] to improve the 
accuracy of network anomaly detection models. 

Most of the researchers mentioned above concentrate on 
enhancing the detection accuracy of conventional or ML DL 
models and employ ensemble methods for feature engineering to 
address data imbalance. However, there needs to be more emphasis 
on exploring hyperparameter selection in DL-based models, 
determining the train-test split ratio, and defining the architecture 
of DNN. Some researchers need to elaborate on adopting these 
values in their studies. Subsequently, this research addressed these 
limitations in network traffic anomaly detection systems. We 
experimented using binary and multiclass versions of the UNSW-
NB15 and NSL-KDD. Our focus includes investigating the 
performance comparison between random under-sampling and 
over-sampling to identify superior methods for imbalanced 
network data. 

The contributions of our research effort in the area of network 
anomaly detection and imbalanced datasets are listed as: 

a. Examining the impact of CNN and BLSTM neural 
network architecture and performance for binary/multi-
class datasets, specifically NSL-KDD and UNSW-NB15. 

b. Exploring the model performance of hyperparameters on 
binary and multi-class network datasets, namely UNSW-
NB15 and NSL-KDD. 

c. Exploring the enhancement of CNN Bi-LSTM by 
varying memory elements and numbers of layers of NN. 

d. This study’s interest is developing and implementing a 
CNN Bi-LSTM hybrid model for network anomaly 
detection, achieving high accuracy rates of 98.27% on 
NSL-KDD binary data and 99.87% on UNSW-NB15 
binary data. 

e. Exploring the network anomaly detection model based on 
CNN Bi-LSTM using UNSW-NB15. 

f. Investigating the random sampling methods for 
imbalanced data with detection accuracy greater than 
99.83% for NSL-KDD multiclass data and 99.99% for 
the UNSW-NB15 multiclass dataset.  

The rest of the paper unfolds: Section 3 delineates the system 
model and individual blocks comprising our CNN Bi-LSTM 
hybrid approach. Section 4 elucidates the experimental setup, 
experimental results, and discussion of the findings, and section 5 
encapsulates the conclusion of this research. 

3. Network Anomaly Detection Model Description 

The complete proposed model comprises the following steps: 

1. Network traffic-based data collection 

2. Data pre-processing and cleaning 

3. Training and testing data preparation 

4. CNN BLSTM model preparation  

5. Train and test model 

6. Evaluation of CNN BLSTM model 

7. Compare the model and decision-making 

The CNN BLSTM-based model's entire implementation 
schematic is displayed in Figure 1. The ensuing sections offer a 
thorough explanation of the approaches mentioned previously. The 
components of CNN and BLSTM layers and the intricate 
architecture of neural networks are seen in Figure 2.   

3.1. Network traffic-based data collection 

Numerous datasets are accessible for research in network 
intrusion detection systems. Examples include the KDD Cup99, 
Kyoto 2006+, NSL-KDD, CICIDS2017, UNSW-NB15, and 
several others, providing valuable resources for intrusion detection 
research. During this research, the UNSW-NB15 and  NSL-KDD 
datasets are specifically employed. 

NSL-KDD KDDTrain+ [22] originates from the DARPA 
KDD99 dataset, with the elimination of noise and undesired data. 
This dataset encompasses the complete NSL-KDD training set, 
including labels denoting attack types and difficulty levels. 
Comprising 41 features, it delineates five different attack classes: 
“Normal,” “DoS,” “Probe,” “R2L”, and “U2R”.  

NSL-KDD represents a refined form of the KDD99 data, free 
from duplicate records in the training set and the test sets. Each 
entry in the dataset consists of 42 attributes, with 41 of them related 
to the input traffic and the final label indicating whether the traffic 

http://www.astesj.com/


A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024) 

www.astesj.com     71 

is normal or abnormal (target). The KDDTrain+ dataset 
encompasses 125,973 data entries, while the KDDTest+ dataset 
consists of 22,544 data entries utilized in this research work. Table 
1 documents the detailed information regarding the traffic and data 
information [23].  

    Table 1: Details of NSL-KDD data 

 

 

 

 

  Similarly, The Australian Centre for Cyber Security 
(ACCS) cybersecurity research team constructed the UNSW-
NB15 dataset [24], unlike KDD99 and NSL-KDD, which is a 
recently developed network intrusion dataset created by IXIA 
PerfectStrom tools within the Cyber Range Lab of the ACCS, this 
dataset consists of approximately 100GB of PCAP files capturing 
raw network traffic flows between two hosts either server to client 
or vice versa. The Argus and Bro_IDS tools and 12 other 
algorithms generated 49 features accompanied by class labels. 
Numerous records were utilized to construct the training and 
testing sets, where UNSW_NB15_training-set and 
UNSW_NB15_testing-set were used during this research work. 
The training set comprises 175,341 records, while the testing set 
comprises 82,332 records, encompassing various attacks and 
normal network activity. Table 2 shows detailed information 
regarding the attacks and normal traffic. 

Table 2: Details of UNSW-NB15 data 

Network Traffic testing-set.csv training-set.csv 
Exploits 11,132 33,393 
Generic 18,871 40,000 
Worms 44 130 
Fuzzers 6,062 18,184 
DoS 4,089 12,264 
Reconnaissance 3,496 10,491 
Analysis 677 2,000 
Backdoor 583 1,746 
Shellcode 378 1,133 
Normal 37,000 56,000 
Total 82,332 175,341 

 The KDDTrain+ and KDDTest+ subsets of the NSL-KDD 
dataset were employed in our research experiment—likewise, 
experiments involved using training-set.csv and testing-set.csv 
from the UNSW-NB15 dataset.  

3.2. Data pre-processing and cleaning 

NSL_KDD data is an improved version of the KDD99 dataset; 
minimum work is required for data preprocessing. The 
downloaded separate data files are used to test and train the model. 
The target class is initially isolated from the training and testing 
datasets to create the class labels. From the remaining attributes, 
numerical features and three categorical features—
"protocol_type”, “service”, and “flag” are extracted. The 
categorical features undergo conversion into numerical values 
using dummy one-hot encoding techniques, while the numerical 
attributes are standardized using standard Scalar methods. 
Afterwards, both types of feature sets are combined into a unified 
data frame, yielding the final data sets for training and testing. One 
hot encoding generates one binary variable for each individual 
categorial value. The dummy encoding is similar to one hot 
encoding and converts the categorical values into numeric binary 
values. The dummy encoding represents N categories using N-1 
binary variable. Let’s say we have three categories of traffic 
“protocol_type,” “service,” and “flag” that are going to be dummy 
encoded as [1 0], [0 1], and [0 0], respectively. The standard scalar 
converts the numeric values so that the data standard deviations 
become 1.  

Since there are different types of services present in the 
KDDTrain+ dataset and KDDTest+ dataset, the one hot encoding 
produces unequal numbers of features. The KDDTrain+ dataset 
contains 126 features, while the KDDTest+ includes a total of 120 
features after the implementation of one hot encoding. Those 
additional features “service_aol,” “service_harvest,” 
“service_http_2784”, “service_http_8001”, “service_red_i,” and 
“service_urh_i” are inserted into the KDDTest+ dataset after 
finding the exact location where those features reside into the 
KDDTrain+ dataset. We preserved the attacks_types and 
difficulty_level features because those features are highly relevant 
to the target class and increase the model's efficiency. 

The UNSW-NB15 dataset was divided into two sets for 
training and testing purposes: UNSW_NB15_training-set and 
UNSW_NB15_testing-set. The UNSW_NB15_training-set 
comprises 175,341 entries, while the UNSW-NB15_testing-set 
contains 82,332 entries, encompassing various attacks and normal 
data. Initially, the features on this dataset are 49. First, those 
categorical attributes are changed into numeric using dummy one 
hot encoding. All numerical attributes are applied to the standard 
scalar normalization method. After preprocessing the numeric and 
categorical features, 192 features for UNSW_NB15_testing-set 

Traffic KDDTrain+ KDDTest+ 
R2L  995 2,885 
U2R  52 67 
DoS 45,927 7,460 

Normal 67,343 9,711 
Probe  11,656 2,421 
Total 125,973 22,544 

Figure 1: Pipeline for CNN BLSTM hybrid model 
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data and 196 features for UNSW_NB15_training-set data were 
generated. Again, here we are taking two sets of data: one we can 
use for training and the other for testing or vice versa. The 
categorical values of data entries are not the same for both datasets; 
hence, the one hot encoding produces unequal numbers of features 
on both data sets after preprocessing.  

Some features generated from one hot encoding, such as 
state_ACC and state_CLO, are not included in the UNSW-
NB15_training-set. Similarly, proto_icmp, proto_rtp, state_ECO, 
state_PAR, state_URN, and state_no features are not included on 
UNSW_NB15_testing-set. The empty features columns are added 
in the exact column location of those missing features on the 
respective dataset, generating 198 features plus one target class. 

3.3. Training and testing data preparation 

In experiments concerning the binary NSL-KDD dataset, the 
training and testing datasets were created using a split ratio. The 
train-test split approach assesses the performance of machine 
learning algorithms in making predictions from data that wasn't 
part of the training set. We opted for a 70:30 split ratio to generate 
the train and test dataset. For the CNN BLSTM hybrid model, 70% 
of KDDTrain+ was used to train, and the remaining data was used 
to test the model for binary NSL-KDD data. 

A similar split percentage was employed in the binary class 
UNSW-NB15, using the “UNSW_NB15_training-set”. In the case 
of multiclass experiments for UNSW-NB15 and NSL-KDD, two 
distinct files were selected—one subset for training the CNN-
BLSTM model and another for testing. Detailed information 
regarding this split is provided in the respective experimental 
sections.  

3.4. CNN BLSTM model 

 CNN is a forward DNN designed for image signal and 
classification. CNN comprises three primary layers: the 
convolutional, the pooling, and the fully connected layers. The 
convolutional layer is the main component of CNN and uses the 
convolutional operation to grab the various features from the 
image signal. Then, the number of pooling layers extracts features, 
and a fully connected layer employs the output from the preceding 
layer for classification. Combining convolutional layers with 
pooling layers is responsible for feature extraction, while the final 
fully connected dense layer is utilized for classification purposes. 
CNN also involves various hyperparameters, including the number 
of filters, stride, zero-padding, pooling layers, and others. 

An RNN is an artificial NN designed to manage sequential data 
by integrating feedback loops into its structure. Diverging from 
conventional feedforward neural networks that linearly handle 
input data, RNNs feature connections forming loops, enabling 
them to retain a memory of past inputs and utilize that information 
to impact the current output. The memory in an RNN serves as a 
short-term storage, allowing the network to retain information 
about past events and use it to make predictions about future 
events. This is especially valuable in applications where context 
and temporal relationships are essential. Machine learning issues, 
including speech recognition, language processing, and picture 
categorization, have been resolved with RNN. 

Yet, traditional RNNs encounter challenges, notably needing 
help with learning long-term dependencies attributed to the 
vanishing or exploding gradient problem. Advanced RNN versions 
such as gated recurrent units (GRUs) and long short-term memory 
(LSTM) networks have been devised in response to these 
constraints. These architectures include mechanisms for 
selectively storing and retrieving information across extended 
sequences, enhancing their effectiveness in tasks that demand 
capturing long-term dependencies. 

 
Figure 2: CNN BLSTM layer architecture 

LSTM handles the vanishing gradient in RNN. There is a 
memory block and three multiplicative units in LSTM. The input 
corresponds to the write operation, output to read and forget gates 
corresponding to the reset operations for cells that make up the 
LSTM architecture. By allowing LSTM memory cells to keep and 
access data for longer periods.  Those multiplicative gates mitigate 
the vanishing gradient. 

To process input in both directions—from the future to the past 
and from the past to the future—bidirectional RNN combines two 
independent RNNs. Both forward and backward LSTM networks 
make up the Bi-LSTM. The features extracted by the forward 
LSTM hidden layer point forward, whereas those extracted by the 
reverse LSTM hidden layer point backward. By taking finite 
sequences into account about earlier and later items, the 
bidirectional LSTM can anticipate or tag the sequence of each 
element. Two LSTMs processed in series—one from left to right 
and the other from right to left—produce this. The CNN and 
BLSTM hybrid models have several layers, each with a set of 
hyperparameters. Figure 2 shows the CNN BLSTM's architectural 
layout.  

3.5. CNN BLSTM model training  

The CNN BLSTM model's neural network architecture is 
prepared for training. The datasets consist of two sets: one for 
training and the other for testing, or vice versa. The split percentage 
determines how much data is allocated for training and testing 
when a single data set is present. The selection of hyperparameters 
for model training is conducted through various experiments 
involving fine-tuning epochs and batch size to enhance detection 
efficiency. Within the training data, 20% is designated for 
validating the CNN Bi-LSTM model. 

3.6. Test the CNN BLSTM hybrid model and evaluation. 

Deep learning (DL) and machine learning (ML) models offer 
performance consistency. After the CNN BLSTM model is built, 
the model is trained using the training dataset with specified 
hyperparameter values. These chosen hyperparameter values 
influence the training duration. Following training, the model can 
assess the unseen dataset to evaluate its performance. 
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Hyperparameter selection lacks a predefined rule, allowing for 
random selection and subsequent fine-tuning through various 
experiments. After the model testing, performance metrics are 
determined based on the type of ML model employed. In the case 
of the supervised machine learning model, ground truth values are 
utilized to measure the performance metrics on the test dataset. 
Various metrics, such as detection accuracy, precision, F1-Score, 
recall, program execution time, and Area under the ROC, are 
available to compare the model efficiency. Confusion metrics from 
Karas generate True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN) values. In the context of a 
classification report, the terms "weighted" and "macro" refer to 
different strategies for computing metrics such as precision, recall, 
and F1-score across multiple classes. Macro-averaging computes 
the metric for every class separately before averaging them. This 
means that each class is treated equally in the computation, 
regardless of size. Macro-averaging gives the same weight to each 
class, which can be useful when all classes are considered equally. 
Weighted averaging, on the other hand, takes the average of the 
metrics, but it weights each class's contribution based on its 
proportion in the dataset. In other words, classes with more 
samples have a greater impact on the average. W weighted 
averaging is especially helpful when working with unbalanced 
datasets—where certain classes may have substantially more 
instances than others. 

The classification report provides a thorough summary of the 
model's performance metrics for the specified training and testing 
data sets. Lastly, to assess the performance of our CNN BLSTM 
hybrid model, the performance metrics are compared with the 
findings of earlier research publications. 

3.7. Compare models and decision-making. 

 Several sets of experiments were conducted to find the 
hyperparameter settings that yielded the best results. Following 
model testing and evaluation, choosing the best model pipeline 
from various options is part of the cognitive process of comparison 
and decision-making. Throughout this study, several sets of 
experiments are carried out to determine values for various CNN 
Bi-LSTM model hyperparameters to enhance the model's 
performance. To create an effective Bi-LSTM pipeline, it is 
necessary to decide on the hyperparameters, which include 
optimizers, number of epochs, batch, NN design, class size, and 
techniques of raw data preprocessing. This is achieved by 
evaluating performance metrics across multiple sets of 
experiments. The performance metrics of the Bi-LSTM model are 
then juxtaposed with previously published results for the 
binary/numerous class UNSW-NB15 and NSL-KDD. The class 
imbalance problem in the multiclass version of both NSL-KDD 
and UNSW-NB15 datasets was exposed with sampling data during 
the preprocessing stages. The sampling methods randomly deleted 
on down-sampling and randomly generated data samples in over-
sampling. This resulted in the balanced form of datasets to 
compare the CNN Bi-LSTM model performance. 

4. Results and Discussion 

To detect anomalies, intrusion detection uses a mix of DL and 
ML methods. The implementation of a network anomaly detection 
model is implied using Python script. Python has specialized 
packages for building machine learning models, including NumPy, 

Pandas, Keras, and Scikit-learn. Additionally, commonly used 
tools like  Java, C#, WEKA, Visual C++, and MATLAB play vital 
roles in network anomaly detection systems. On the Jupyter 
Notebook platform, seed values are fixed to guarantee consistency 
in outcomes over several runs. Plots and tables representing the 
results of experiments are analyzed using the Microsoft Office 
suite. Every experiment is run on a Windows machine with an i7 
processor and 16GB of RAM. 

Python and the packages it is linked with keep version 
information used in all experiments. For example, TensorFlow 
2.9.1, Keras 2.6.0, and Python 3.7.12 are used. Hyperparameters 
will be determined, performance will be evaluated across class 
sizes, and the efficacy of various sampling approaches will be 
assessed about the CNN BLSTM model for the multi-class and 
binary-class UNSW-NB15 and NSL-KDD. Detailed explanations 
of these experiments are provided in subsequent sections.  

The architecture shown in Figure 2 consists of a single 16-unit 
convolution layer that uses batch normalization and max-pooling. 
BLSTM neural network layer 1 contains 50 memory units; batch 
normalization, max-pooling, and reshaping come next. Bi-LSTM 
neural network layer 2 with 100 memory units and dropout is also 
available. The dense layer consists of a sigmoid activation, and the 
final output is obtained. The detection accuracy of the model is 
evaluated through a series of tests involving the adjustment of 
optimizers, learning rate (LR), number of epochs, batch size, and 
dropout rate. As explained below, the UNSW-NB15 and NSL-
KDD binary/multiclass network traffic datasets are used for these 
investigations. 

4.1. Experiment: Model performance Vs. Optimizers 

In the context of ML and DL, an optimizer is an algorithm or 
method used to adjust the parameters of a model to minimize or 
maximize a certain objective function. The performance of an 
optimizer is crucial in training machine learning models because it 
determines how well the model learns from the data. Choosing the 
optimizer is essential during the training of the CNN BLSTM 
model, as it significantly contributes to expediting results for the 
machine learning/deep learning model.  

 TensorFlow offers nine optimizers (Ftrl, Nadam, Adam, 
Adadelta, Adagrad, gradient descent, Adamax, RMSprop, and  
Stochastic Gradient Descent (SGD)) based on the optimizer's 
methods. The choice of optimizer can significantly impact the 
training performance of an ML model. Optimizers may converge 
at different rates or achieve different final accuracies on a given 
task. An optimizer's performance may be influenced by the model's 
architecture, the dataset, and the hyperparameters employed. 

It is common practice to experiment with several optimizers to 
determine which combination of optimizers and hyperparameters 
is optimum for a given task. Additionally, some optimizers may 
perform better on certain types of neural network architectures or 
for specific data types. In summary, the relationship between the 
optimizer and machine learning performance is crucial, and 
choosing the right optimizer is an important part of the model 
training process. It often involves experimentation and tuning to 
find the optimal combination for a given task. 

 The model used in the experiment comparing Optimizers 
versus Accuracy has a 20% dropout rate and the Relu activation 
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function. To determine the best optimizer for our CNN-BLSTM 
model, seven optimizers, including Nadam, Ftrl, SGD, Adam, 
RMSprop, Adagrad, and Adamax, were tested. Based on the model 
performance metrics for UNSW-NB15 and NSL-KDD binary 
data, which are shown in Table 3, it was found that the Nadam 
optimizer performed best for NSL-KDD. In contrast, the Adam 
optimizer produced the best accuracy for the UNSW-NB15 
dataset. Interestingly, although both optimizers used the same 
model architecture, they performed differently for both Network 
Intrusion Detection System (NIDS) datasets. 

Table 3: Model performance Vs. Optimizer 

Number of epochs = 10, Batch = 256, NSL-KDD_C2 and UNSW-NB15_C2  
Optimizer ACC-NSL F1-NSL ACC-UN F1-UN 

Ftrl 53.47 69.68      80.99 80.99 
RMSprop 97.87 98.01      97.93 98.46 
Adamax 97.65 97.78     95.33 96.51 

Adam 98.02 98.16 99.15 99.38 
Adagrad 96.98 97.21 94.04 95.62 

SGD 97.74 97.91     99.14 99.37 
Nadam 98.13 98.26      99.11 99.34 

 ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB 

Table 4: CNN BLSTM performance Vs. Optimizer on NSL-KDD 

Model Performance Vs. Optimizer on NSL-KDD Multiclass Datasets 
Epochs=10, Batch_size= 512, Training_data = KDDTrain+, Testing_data = 

KDDTest+, Multiclass=5 
Optimizers Accuracy % wt_Precision % wt_F1score % 

Adam 88.46 88.87 88.23 
RMSprop 85.49 87.15 82.84 

Nadam 84.79 86.97 82.45 
SGD 82.86 84.99 77.12 

Adamax 82.6 86.99 82.72 
Adagrad 75.65 67.01 69.94 

Ftrl 43.08 18.56 25.94 

Table 5: CNN BLSTM performance Vs. optimizer on UNSW-NB15 

CNN Bi-LSTM Performance Vs. Optimizer on UNSW-NB15 Multiclass 
Datasets 

Epochs=15, Batch_size= 512, Training data=UNSW-NB15Train82332, 
Testing_data = UNSW-NB15Test175341, Multiclass=10 

Optimizers Accuracy % wt_Precision % wt_F1score % 
SGD 89.84 87.49 88.01 
Adam 87.21 87.47 85.96 
Nadam 84.59 84.48 83.38 

RMSprop 79.3 75.71 76.85 
Adamax 76.84 76.37 74.74 
Adagrad 70.82 63.28 62.05 

Ftrl 31.94 10.20 15.46 

The selection of the optimizers depends on the combination of 
the different hyperparameters and NN architecture of the CNN 
BLSTM model. Popular optimization algorithm Adam combines 
concepts from RMSprop and momentum. It adapts the learning 
rates of individual parameters and is widely used in deep learning. 
An Adam extension that uses the Nesterov Accelerated Gradient 
(NAG). NAG involves looking ahead in the direction of the 
momentum before computing the gradient that combines the 
benefits of Adam and Nesterov momentum. Figure 3. shows the 
accuracy comparison for NSL-KDD and UNSW15. 

 Tables 4 and 5 shows the comparative performance metrics of 
the multi-class NSL-KDD and UNSW-NB15. The same optimizer 
does not provide the same performance for a similar dataset. The 
hyperparameters and datasets used to test and train the CNN-based 
BLSTM model are provided in Tables 4. and 5. For the NSL-KDD 

multiclass dataset, Adam performed better than SGD, whereas for 
the UNSW-NB15 multiclass dataset, SGD performed better than 
other optimizers. 

 
Figure 3: Optimizer Vs. Accuracy 

4.2. Experiment: Learning rate Vs. model performance 

The learning rate, a positive scalar multiplied by gradient 
descent gradient, controls the step size in parameter space. A 
higher rate facilitates faster convergence but raises the risk of 
overshooting and oscillation. On the other hand, a lower rate 
ensures stability but may demand more iterations for convergence. 

With optimizers chosen from the preceding Experiment 4.1, 
the same CNN BLSTM model neural network architecture is used 
to determine the ideal learning rate to enhance the model 
performance. The NSL-KDD binary data is preprocessed from the 
subset of the KDDTrain+ dataset, and the split ratio splits the data 
for training and testing. The learning rate determines the rate at 
which new weights are added to neural network models. The other 
hyperparameters remain constant throughout this experiment 
while the learning rates are adjusted to optimize the model's 
accuracy. Table 6 displays a comparison of learning rate with CNN 
BLSTM model performance. The model performs best on the 
UNSW-NB15 binary data and the NSL-KDD binary dataset, 
achieving a learning rate of 0.01 and 0.0002, respectively. The 
same learning rate provides different model performances. 

Table 6: CNN BLSTM model Learning rate Vs. Performance metrics 

Epochs size = 10, Batch = 256, KDD_C2 (Nadam), UNSW-NB15_C2 (adam) 
LR ACC-NSL F1-NSL ACC-UN F1-UN 
0.01 97.49 97.67 99.67 99.76 
0.001 98.16 98.29 99.54 99.66 
0.0001 98.06 98.20 95.81 96.85 
0.0002 98.18 98.3 97.9 98.44 
0.0003 98.14 98.27 98.44 98.86 
0.0004 97.97 98.11 99.13 99.35 
0.0005 98.11 98.25 99.09 99.32 
LR: Learning rate, ACC: Accuracy in %, F1: F1Score in %, UN: UNSW_NB 

4.3. Experiment: Model dropout rate Vs. model performance 

The phrase "dropout rate" in machine learning usually refers to 
a regularization method that neural networks employ to avoid 
overfitting. When a model becomes overfit, it can have poor 
generalization on new, unknown data because it has learned the 
training set too well, including its noise and outliers. During 
training, randomly selected neurons (units) in the neural network 
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are "dropped out" or omitted temporarily. This means these 
neurons do not contribute to the forward or backward pass during 
a particular iteration of training. The probability of a neuron being 
dropped out is called the dropout rate. The dropout rate is one 
hyperparameter that must be determined before training the model.  

The CNN BLSTM model was tested and trained for both 
datasets using a batch size of 256 and 10 epochs. Different dropout 
rate values were used to evaluate the efficiency of the model. The 
model performed better than the others, with a 30% dropout rate 
on the UNSW-NB15 dataset; however, a 60% dropout rate worked 
better for the NSL-KDD. The hyperparameter values, dropout 
rates, and corresponding performance metrics are presented in 
Table 7. The experimental results highlight the varying dropout 
rates for distinct datasets despite the similarity between the two 
datasets. 

Table 7: Dropout rate Vs. model performance 

Epochs size = 10, batch = 256, KDD_C2 (madam), UNSW-NB15_C2 (adam) 
DropOut % ACC-NSL F1-NSL ACC-UN F1-UN 

0.1 98.10 98.24 97.44 98.15 
0.2 98.02 98.16 98.98 99.25 
0.3 98.16 98.29 99.87 99.9 
0.4 98.04 98.17 99.27 99.47 
0.5 97.93 98.09 99.47 99.61 
0.6 98.21 98.33 99.81 99.86 
0.7 98.01 98.15 99.58 99.69 
0.8 98.04 98.18 98.57 98.94 

ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB 
KDDTrain+, UNSW-NB15 training.csv binary with test-train split 

 The batch size is a hyperparameter in machine learning that 
determines how many samples are used in a training iteration. The 
batch size represents the number of samples used in a single 
training iteration. Using a smaller batch size incorporates a limited 
number of data samples and results in a longer training time for the 
CNN Bi-LSTM model compared to a larger batch size. 
Throughout experimentation (Experiment A-C), the batch size is 
altered while maintaining other hyperparameters, such as a fixed 
number of epochs is 5, the learning rate of the optimizer, and the 
dropout rate values assigned to the model based on previous 
findings with the respective datasets. 

Table 8: Model performance Vs. batch size 

Number of Epochs = 5, KDD_C2 (Nadam), UNSW-NB15_C2(adam) 
Batch ACC-NSL %  F1-NSL % ACC-UN % F1-UN % 

32 97.89 98.04 99.40 99.55 
64 97.95 98.10 99.35 99.52 

128 98.06 98.20 99.33 99.50 
256 97.64 97.79 96.36 97.26 
512 97.92 98.08 96.90 97.70 

 The dataset size, the amount of computing power available, and 
the specifics of the optimization issue can all influence the batch 
size decision. Experimenting with various batch sizes is a frequent 
way to determine which is most effective for a certain task. 

 The experimental result in Table 8 demonstrates how the neural 
network's hyperparameter combinations affect performance. In 
this experiment, batch sizes of 128 for the binary NSL-KDD 
datasets and 32 for the binary UNSW-NB15 datasets for epochs 5 
demonstrated the best performance of the CNN BLSTM model.   

 

 

4.4. Experiment: Epochs Vs. model performance 

An "epoch" in machine learning is one whole iteration through 
the training dataset a model goes through while training. The 
learning method processes the complete dataset throughout each 
epoch, modifying the neural network weights and parameters to 
reduce the error or loss function. A hyperparameter called epoch 
count determines an algorithm's running frequency over the full 
training dataset. The integer between one to infinity can be used as 
the epoch. Selecting smaller epoch values results in a longer 
training time for the model and vice versa. Underfitting, the ML 
model cannot identify the original patterns in the data, which can 
be caused by using too few epochs. However, an excessive number 
of epochs might cause overfitting, in which case the model 
becomes inattentive to new data and underperforms on previously 
unknown data.  

 The CNN BLSTM hybrid model performance for binary KDD-
NSL and binary UNSW-NB15 with the different values of epochs 
are documented in Table 9. The performance increases with large 
values of epochs but is different for a while. After 75 epochs, the 
model performance decreases. The amount of data utilized for 
training and testing, the size of the output class, and other 
hyperparameter combinations affect the epochs and performance 
of the machine learning/deep learning models. 

Table 9: Epochs Vs. model performance 

Batch size = 256, NSL- KDD_C2 (Nadam) 
Number of Epochs Accuracy-NSL % F1Score-NSL % 

2 95.48 95.94 
10 98.13 98.26 
25 98.21 98.33 
50 98.20 98.33 
75 98.27 98.39 

100 98.26 98.39 
  

 The selection of epoch size to produce a superior performance 
on an imbalanced dataset is challenging. The binary dataset is more 
balanced than the multiclass network-based intrusion dataset. The 
experimental results in Table 9 are not the determining experiment 
for the number of epochs on multiclass NSL-KDD and UNSW-
NB15 datasets. Hence, we experimented with and documented 
multi-class experimental results to determine the values of epochs 
where we can produce higher accuracy on the provided dataset. 
Tables 10 and 11 show the experimental results for multiclass 
datasets to investigate the values of epochs to make superior 
detection accuracy. In summary, while epoch size and class size 
are conceptually different, they can influence each other indirectly, 
especially when dealing with imbalanced datasets. Selecting the 
right number of epochs for a given problem is crucial, as is keeping 
an eye on how class sizes affect model performance. 

Table 10: Model performance Vs. Epochs on UNSW-NB15 multiclass data 

Batch=512, Optimizer=SGD, Training=UNSW-NB15Train.csv82332 
testing data= UNSW-NB15Test.csv175341, Multiclass=10 

Epochs ACC wt_Prec wt_F1Score Prg_exe_time 
10 93.10 91.10 91.94 0.64 
25 83.09 79.94 79.69 1.17 
50 86.4 82.47 83.35 2.24 
75 87.1 86.46 85.24 3.12 

100 90.04 88.36 88.01 4.24 
150 82.23 81.49 80.82 6.36 
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200 81.13 78.65 78.84 7.95 
ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score: 
weighted F1Score in %, Prg_exe_time: Program script run time in hr. 

 Program execution time is the sum of the model's training and 
testing phases. The program execution time depends on various 
factors, such as the neural network's architecture, training and 
testing data size, class size, and combination of hyperparameters. 
We documented the performance of the CNN BLSTM hybrid 
model along with the program execution time. The higher the 
epochs result, the longer the program execution time. Table 10 and 
Table 11 show the multi-class NSL-KDD run for almost 8 Hrs. to 
complete training testing and evaluate the model for 200 epochs. 
A similar scenario for multiclass UNSW-NB15 dataset. Hence, 
selecting epoch and batch size is the trade-off with the model 
training, testing, and evaluation time.  We found in Table 10 and 
Table 11 the different epoch sizes for NSL-KDD (outperform at 
epoch size 10) and UNSW-NB15 (outperform at epoch 100) 
during multi-class model performance. 

Table 11: Performance Vs. epochs on NSL-KDD multiclass data 

Batch=512, Optimizer= Adam, Data=KDDTrain+_125973, 
KDDTest+_22544, Multiclass = 5 

Epochs ACC wt_Prec wt_F1Score Prg_exe_time 
10 86.21 88.13 83.85 0.45 
25 86.64 88.01 84.1 1.08 
50 86.64 88.7 84.78 2.15 
75 87.11 88.39 84.84 3.31 

100 87.63 89.85 86.44 4.53 
150 87.22 89.66 85.81 7.03 
200 86.84 90.61 86.41 8.76 

ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score: 
weighted F1Score in %, Prg_exe_time: Program script run time in hr. 

4.5. Experiment: Imbalance data sampling Vs. performance 

This experiment investigates the sampling techniques for 
imbalanced data to provide a high detection rate.  The researcher 
employed various techniques, such as a critical selection of ML 
and DL algorithms, ensemble methods, data sampling, etc., to 
address the issue of data imbalance because there are fewer attacks 
than typical traffic data in the provided network intrusion detection 
dataset. 

 Sampling methods generate or delete random data from the 
dataset based on class data distribution. Random under-sampling 
and random over-sampling are two techniques used in imbalanced 
classification problems, where one class (usually the minority 
traffic class) is significantly under-represented compared to the 
other class(es). These methods are utilized to tackle class 
imbalance and enhance the efficacy of machine learning models. 
Random Under Sampling (RUS) involves randomly removing 
instances from the majority class until the distribution between the 
majority and minority classes is more evenly distributed. However, 
random over-sampling produces an equal distribution by randomly 
duplicating minority class instances or creating synthetic instances 
to increase the number of minority class instances. 

 Tables 12 and 13 provide the hyperparameter information and 
performance of this experiment's CNN BLSTM hybrid model. 
Table 12 compares the NSL-KDD multiclass dataset's 
performance when random over- and under-sampling is applied. 
After preprocessing multi-class NSL-KDD data, the training and 
testing datasets merge into a single file. Sampling is implemented 

on merged data, and a 70:30 split ratio is used to split data into 
train and test datasets. 

Table 12: CNN BLSTM performance Vs. Sampling on NSL-KDD 

CNN BILSTM, Epochs= 25, Batch_size= 512, Data = combine 
(KDDTrain+KDDTest+) (sampling) 

Class Recall_RUS F1_RUS Recall_ROS F1_ROS 
DoS 0 0 99.86 99.92 
Probe 100 36.69 99.89 99.91 
U2R 10 18.18 100 99.73 
R2L 0 0 99.45 99.63 
Normal 0 0 99.93 99.93 
Wt_Average  22.15 10.07 99.83 99.83 
Macro_Avg 22 10.97 99.83 99.83 
Accuracy % 22.15 99.83 

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] % 

 Similarly, preprocessed training data and testing data files are 
merged into a single file to implement the sampling method on the 
UNSW-NB15 multiclass dataset. The sampled data is then split 
into training and testing datasets using a 70:30 train-test split ratio 
During Random under-sampling, data instances are randomly 
deleted from the majority class, resulting in significant information 
loss. Deleting samples from the majority class results in a smaller 
sample, unsuitable for the deep learning model and worsens the 
model performance, which is found in the experiment and 
documented in Tables 12 and Table 13. Random over-sampling 
(ROS) helps prevent information loss, as none of the minority class 
instances are removed. It can be more effective when the amount 
of data in the minority class is limited. 

Table 13: Model performance Vs. sampling on UNSW-NB15 

CNN_BLSTM Epochs=25, Batch_size=512, data = combine (UNSW-
NB15training-set_175341+UNSW-NB15testing-set_82332) sampling 

Class Recall_RUS F1_RUS Recall_ROS F1_ROS 
Analysis  0 0 100 100 
Backdoor 0 0 100 100 
DoS 0 0 100 99.95 
Exploits 100 17.51 99.91 99.95 
Fuzzers 0 0 99.98 99.99 
Generic 0 0 99.98 99.98 
Normal 0 0 100 100 
Reconnaissance 0 0 100 100 
Shellcode 0 0 100 100 
Worms 0 0 100 100 
Weighted_Average 9.2 1.61 99.99 99.99 
Macro Average 10 1.75 99.99 99.99 
Accuracy (%) 9.20 99.99 

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] %  
 

 This method generates random data based on the data 
distribution in the dataset. The huge amount of data is always 
suitable for deep learning models. Regarding detection accuracy, 
our suggested CNN BLSTM hybrid model performs better than the 
random over-sampling technique, offering over 99%. Tables 12, 
13, and Figure 4 above detailed the CNN BLSTM hybrid model's 
performance for the UNSW-NB15 imbalance dataset and the 
multiclass NSL-KDD. 

5. Conclusion 

The previous research from the literature reviews shows that 
while the detection accuracy for rarely occurring attack classes 
(U2R, R2L) is low, the average model accuracy for normal traffic 
in the UNSW-NB15 and NSL-KDD is roughly 99%. Regardless 
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of the type of attack, each poses a threat to network machines 
equally. To provide a comparative analysis, we juxtapose our 
results with existing findings of 91.12% [20] and 90.83% [5] 
detection accuracy for NSL-KDD binary, and 99.70% [18], 
82.08% [14], 82.08% for UNSW-NB15 binary datasets. Our 
experiments enhance accuracy to 98.27% on NSL-KDD and 
99.87% on UNSW-NB15 binary datasets by carefully selecting 
hyperparameters and conducting various experiments. We 
explored the CNN BLSTM hybrid model's hyperparameters 
(dropout. epochs, batch size, learning rate, and optimizer) to 
maximize detection accuracy for the binary NSL-KDD and 
UNSW-NB15.  

 
Figure 4: Sampling Vs. multiclass model accuracy (%) 

The model performance depends on the combination of 
hyperparameters, the size of the dataset used to train/test the 
model, and the selection of the machine learning/ deep learning 
model. Our research provides information about the data size used 
during the experiments and the choice of hyperparameters. The 
suggested model uses random over-sampling techniques on a 
single set of data to provide 99.99% and 99.83% model accuracy 
for the multiclass UNSW-NB15 and NSL-KDD datasets, 
respectively (train and test data merge into a single file before 
sampling). 
 Selecting random over-sampling or under-sampling relies on 
the particulars of the dataset and the issue at hand. To achieve a 
balance, combining the two methods, a practice known as hybrid 
sampling may occasionally be necessary. It's crucial to remember 
that there are more sophisticated methods for dealing with class 
imbalance, such as SMOTE (Synthetic Minority Over-sampling 
Technique), which creates synthetic instances for the minority 
class instead of merely copying real instances. Thoroughly 
examining those approaches in various network intrusion detection 
multiclass datasets extends this research effort. The proper use of 
hyperparameters of neural networks, size of dataset used to train 
the model, and sampling methods for CNN BLSTM network 
anomaly model provide the highest detection accuracy for 
imbalance network data.  
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