

www.astesj.com 67

Enhancing the Network Anomaly Detection using CNN-Bidirectional LSTM Hybrid Model and
Sampling Strategies for Imbalanced Network Traffic Data

Toya Acharya*, Annamalai Annamalai, Mohamed F Chouikha

Electrical and Computer Engineering, Prairie View A & M University, Prairie View, Texas,77446, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 November, 2023
Revised: 17 January, 2024
Accepted: 17 January, 2024
Online: 20 January, 2024

 The cybercriminal utilized the skills and freely available tools to breach the networks of
internet-connected devices by exploiting confidentiality, integrity, and availability. Network
anomaly detection is crucial for ensuring the security of information resources. Detecting
abnormal network behavior poses challenges because of the extensive data, imbalanced
attack class nature, and the abundance of features in the dataset. Conventional machine
learning approaches need more efficiency in addressing these issues. Deep learning has
demonstrated greater effectiveness in identifying network anomalies. Specifically, a
recurrent neural network model is created to recognize the serial data patterns for
prediction. We optimized the hybrid model, the convolutional neural network combined
with Bidirectional Long-Short Term Memory (BLSTM), to examine optimizers (Adam,
Nadam, Adamax, RMSprop, SGD, Adagrad, Ftrl), number of epochs, size of the batch,
learning rate, and the Neural Network (NN) architecture. Examining these
hyperparameters yielded the highest accuracy in anomaly detection, reaching 98.27% for
the binary class NSL-KDD and 99.87% for the binary class UNSW-NB15. Furthermore,
recognizing the inherent class imbalance in network-based anomaly detection datasets, we
explore the sampling techniques to address this issue and improve the model's overall
performance. The data imbalance problem for the multiclass network anomaly detection
dataset is addressed by using the sampling technique during the data preprocessing, where
the random over-sampling methods combined with the CNN-based BLSTM model
outperformed by producing the highest performance metrics, i.e., detection accuracy for
multiclass NSL-KDD and multiclass UNSW-NB15 of 99.83% and 99.99% respectively.
Evaluation of performance, considering accuracy and F1-score, indicated that the
proposed CNN BLSTM hybrid network-based anomaly detection outperformed other
existing methods for network traffic anomaly detection. Hence, this research contributes
valuable insights into selecting hyperparameters of deep learning techniques for anomaly
detection in imbalanced network datasets, providing practical guidance on choosing
appropriate hyperparameters and sampling strategies to enhance model robustness in real-
world scenarios.

Keywords:
Random Under Sampling
Random Over Sampling
Network Anomaly Detection
UNSW-NB15
 NSL-KDD
Data imbalance
Convolutional Neural Network
CNN-BLSTM
Data Imbalance

1. Introduction
This study is extension version of the presented conference

paper titled "Efficacy of CNN-Bidirectional LSTM Hybrid Model
for Network-Based Anomaly Detection" [1] at the 2023 IEEE 13th
Symposium on Computer Applications & Industrial Electronics
(ISCAIE).

As technology undergoes rapid advancements, the
transmission of information has transformed significantly,

adopting various methods such as wired, wireless, or guided
networks. This evolution in network technology is pivotal to
people's daily activities. Whether it's communicating with others,
accessing online resources, or sharing information, the efficiency
and security of these interactions depend heavily on the underlying
network infrastructure. A system attains security when it
effectively maintains the three essential notions of computer
information security: Availability, Integrity, and Confidentiality
(CIA). In essence, information security involves safeguarding
information from unauthorized entities and protecting against

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Toya Acharya, tacharya@pvamu.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com

Special Issue on Innovation in Computing, Engineering Science & Technology

https://dx.doi.org/10.25046/aj090107

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj090107

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 68

illegal access, use, disclosure, reformation, recording, or
destruction of data. Confidentiality guarantees that the information
is accessible only to individuals or systems. In information
network technology, encryption methods and access controls
prevent unauthorized users from gaining access to sensitive data
during transmission. Information integrity guarantees that data
remains unaltered during transmission. In the context of
information network technology, this involves implementing
mechanisms to detect and prevent unauthorized modifications to
data, ensuring that the information received is the same as what
was sent. Availability ensures that information and resources are
available and accessible when needed. In an information resources
and security environment, availability involves designing robust
and reliable systems that can withstand potential disruptions,
whether they are due to technical failures or malicious attacks. The
overarching goal of information security is to safeguard
information from unauthorized access and malicious activities.
This includes preventing unauthorized individuals or systems from
gaining access to sensitive data, ensuring that information remains
unchanged and reliable during transmission, and guaranteeing that
information and resources are available when needed.

Measures to achieve information security encompass a range
of strategies, including encryption to protect data confidentiality,
checksums or digital signatures to ensure data integrity, and
redundancy and fault-tolerant systems to enhance availability.
Additionally, access controls, firewalls, and intrusion detection are
commonly utilized to fortify the security posture of networked
systems, mitigating the risks associated with information
resources.

A traditional network cannot be fully protected by relying
solely on a firewall and antivirus software. These security
measures identify predefined anomalous activities and establish
the rule to prevent those unusual events by the cyber expert. In
anomaly detection, outliers and anomalies are occasionally
employed interchangeably. This approach finds extensive use
across diverse domains, such as commercial, network attack
detection, health systems monitoring, credit card fraud transaction
detection, and identifying faults in mission-critical infrastructure
systems. Anomaly detection is crucial in cybersecurity, providing
robust protection against cyber adversaries. Ensuring safeguard
network resources is essential to safeguard the organization from
cyber threats.

Anomalies are categorized into point, contextual, and
collective types based on the results generated by the detection
method [2]. Point anomalies occur when a specific activity
diverges from the typical rules or patterns. Contextual anomalies
involve unusual patterns within a particular circumstance that
consistently differ from numerous normal activities. Collective
anomalies occur when a group of related instances exhibit
anomalous behavior compared to the normal activity dataset.

Intrusion detection techniques can be broadly classed into two
main types: Signature-based Intrusion Detection System (SIDS)
and Anomaly-based Intrusion Detection System (AIDS). Anomaly
detections, in contrast, are classified according to their origins,
resulting in network-based and host-based intrusion/anomaly
detection systems. Detecting anomalies in data is facilitated by
employing labels to differentiate between normal and abnormal

occurrences. There are three fundamental approaches to detecting
anomalies: supervised, semi-unsupervised, and unsupervised
methods. In the supervised approach, the system is trained on
labeled data, distinguishing between normal and anomalous
instances. On the other hand, unsupervised methods detect
anomalies without prior labeling, relying on deviations from
established patterns. Semi-supervised techniques combine
elements of both, using labeled and unlabeled data for training.
AIDS overcomes the drawbacks of SIDS by utilizing ML,
statistical-based, or knowledge-based methods to model normal
behaviors. However, it's worth noting that anomaly-based
detection may produce false results due to alterations in user
habits.

Numerous traditional machine learning algorithms favor
shallow learning methodologies, giving significant importance to
feature engineering designed for smaller data. The feature
engineering phase needs more processing time and domain
expertise to create pertinent features and eliminate unrelated ones
from anomaly detection algorithms. The effectiveness of anomaly
detection is intricately tied to feature engineering and data
preprocessing implementation. Traditional machine learning
methods, characterized by simplicity, low resource consumption,
and subpar performance in areas like vision, language processing,
and image translations, underscore the limitations of these
approaches.

CNN is predominantly employed for image signals, leveraging
its architecture to effectively capture and analyze visual
information. Individual neurons play a key role in reducing the
dimensionality of the network's features in the lower layers of a
CNN. These neurons are adept at identifying essential small-scale
features within the images, including boundaries, corners, and
variations in intensity. The CNN network links lower-level
features to produce more complicated features in the upper layers,
encompassing fundamental shapes, structures, and partial objects.
The ultimate layer of the network amalgamates these lower
features to generate the output results.

The functioning of a long short-term memory differs from that
of a CNN due to its specific design to safeguard long-range info
within a sequential order. Unlike CNNs, LSTMs are crafted to
remember and store information over extended sequences,
avoiding the loss of crucial details. In the case of BLSTM, an
additional LSTM layer is incorporated, introducing a reversal in
the information flow direction. This architectural enhancement
addresses challenges related to vanishing gradients, ensuring more
effective training by considering information from both forward
and backward directions in the sequence.

Data imbalance, including network anomaly detection, is a
common challenge in ML applications. In network traffic anomaly
detection, data imbalance refers to the unequal distribution of
normal and anomalous instances in the dataset for training the
detection model. Anomalies in network traffic are typically rare
incidents compared to normal activities, leading to imbalanced
data.

The deep learning approach addresses issues found in
conventional machine learning. The effectiveness of the deep
learning-based anomaly detection algorithm relies on factors such
as the NN architecture, #hidden layers, activation functions, batch

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 69

size, and the number of epochs utilized during DL model testing,
training, and validation. The careful selection of these factors,
including hyperparameters and the architecture of NN in deep
learning, is crucial for enhancing the detection accuracy of network
traffic anomaly detection. The essential selection of ML or DL
models overcomes the class imbalance problem. The ensemble
method, which combines more different individual models,
requires longer training time and consumes more resources. The
sampling method generates random data or deletes the random data
based on the implemented sampling methods to create the balanced
form of the final dataset, which is efficient in dealing with the
imbalanced dataset.

2. Literature Review

The rapid increase of information and technology has led to
widespread connectivity of numerous end terminals to the internet
and networks. Those smart terminals contribute to generating
substantial volumes of data, commonly referred to as big data. This
huge flood of data is a valuable resource for analysis and insights.
Machine learning and deep learning algorithms come into play to
extract meaningful information from this vast data pool. The daily
growth of big data presents difficulties for conventional machine
learning algorithms, necessitating thorough feature extraction and
discovery. DL substantially increases anomaly detection and
model performance. Nevertheless, the dataset's attributes and
features, hyperparameters in deep neural networks, and the
structure of neural networks are pivotal elements that impact the
efficacy of identifying anomalies in network-based IDS.

Conventional machine learning strongly relies on intricate and
time-consuming feature engineering, often impractical for real-
time applications. In the [3] study, the authors proposed an
approach for payload classification utilizing CNN and RNN to
detect attacks, achieving detection accuracies of 99.36% and
99.98% on the DARPA98 network data, respectively. CNN
methods discern specific grouping patterns through convolution
around input neighborhoods, while RNN works on sequences by
calculating correlations between previous and current states. In
another[4] study, class imbalance was handled utilizing a CNN
with a Gated Recurrent Unit (GRU) hybrid model. To address the
data class imbalance and feature redundancy, they used a hybrid
sampling technique that integrates Pearson Correlation Analysis
(PCA), repeated edited nearest neighbors, Random Forest (RF),
and adaptive synthetic sampling. With the detection accuracies of
99.69%, 86.25%, 99.69%, and 99.65% on the NSL-KDD,
UNSW_NB15, and CIC-IDS2017 datasets, respectively, their
CNN-GRU model performed better.

The research authors [5] proposed using an Adaptive Synthetic
Sampling (ADASYN) technique in a DL-based network intrusion
detection system to overcome dataset imbalance. On the NSL-
KDD network data, they used an autoencoder to reduce
dimensionality. The CNN-BLSTM hybrid DL method obtained
the greatest F1 score (89.65%) and accuracy (90.73%). To address
problems resulting from data in class imbalance and heterogeneous
data distribution across various information sources, the research
[6] used convolutional neural networks with federal transfer
learning. The UNSW-NB15 multiclass network dataset produced
an average detection accuracy was 86.85% for the model.

In [7], the researcher addressed data class imbalance on
network datasets: NSL-KDD, KDD99, and UNSW-NB15 datasets
using heterogeneous ensemble-assisted ML methods for binary
and multi-class network intrusion detection. Using the NSL-KDD
dataset, the model showed a 96.2% AUC and a true positive rate
(TPR) of 94.5%.

 The authors of [8]discovered that ML classifier performance
increased with the decrease in target classes. Conventional ML
approaches, such as Naïve Bayes, Random Forest, J48, Bagging,
Adaboost, and BayesianNet, were used to investigate this idea on
three network traffic-based intrusion datasets: KDD99, UNSW-
NB15, and CIC-IDS2017_Thursday.

In a study [9], the authors suggested a method for achieving
network intrusion classification with low computing cost, creating
a group of target classes based on the nature of network traffic.
They created cluster characteristics for each group using K-means
on the KDD99 network dataset, resulting in a detection accuracy
of 98.84%. However, the intrusion detection model accuracy for
user2root (U2R) is notably low at 21.92%, impacting overall
performance. In [10], authors employed a hybrid method,
combining CNN and LSTM, to enhance model classification
accuracy, achieving 96.7% and 98.1% on CIC-IDS2017 and NSL-
KDD network data, respectively.

 In the study[11], CNN and LSTM combined to create a hybrid
model was proposed to enhance network intrusion detection model
facilities for advanced metering infrastructure through cross-layer
features combination. This method achieved the highest network
intrusion detection accuracy of 99.79% on NSL-KDD and 99.95%
on KDD Cup99 but with limited user2root (U2R) detection
capabilities. Similarly, in [12], authors employed a hybrid method
of combining CNN and LSTM to improve model network
intrusion detection by capturing additional network traffic data's
spatial and temporal features.

In[13], the researchers implemented a hybrid technique based
on the mean control of the CNN and BLSTM to address issues of
conventional data pre-processing and imbalanced numerical
distribution of class instances in the NSL-KDD, achieving the
optimal detection accuracy of 99.10%. However, the accuracy for
the minority traffic data class remains suboptimal. Using a
different methodology, the authors [14] created a DL model that
combined CNN and BLSTM to learn temporal and spatial
characteristics. Accuracy levels on the binary class UNSW-NB15
were 93.84% and binary NSL-KDD of 99.30%.

Data was preprocessed using one-hot encoding and min-max
normalization by authors in [15], which achieved an accuracy of
96.3% on CNN and Bi-LSTM hybrid methods on the multiclass
NSL-KDD dataset. Using preprocessed on given NSL-KDD data,
researchers in[16] applied the hybrid model using CNN and
BLSTM algorithm with a 95.4% accuracy rate. A bidirectional
LSTM model was used by the authors in their study [17] for the
binary NSL-KDD dataset with the highest accuracy of 98.52%.
Using a Bidirectional LSTM deep learning model, authors[18] got
99% accuracy on UNSW-NB15 and KDDCUP-99, which is an
exceptional achievement. But a lot of the models that are now in
use need help effectively identifying uncommon (rare) attack
types, especially user2root (U2R) and remote2local (R2L) attacks,

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 70

which frequently have poorer detection accuracy as compared with
other network attack types.

To overcome the difficulties found in the above literature
review, authors in [19] presented a Bi-LSTM-based network
intrusion detection system on the NSL-KDD dataset, which
offered a binary classification accuracy of 94.26%. Furthermore,
the authors proposed a Bi-directional GAN-based method [20] for
the NSL-KDD and CIC-DDoS2019 datasets. The bidirectional
GAN model demonstrated strong performance with an f1 score
and detection accuracy of 92.68% and 91.12%, respectively, on the
unbalanced NSL-KDD dataset.

In the research study [1], [17] the Authors used the
hyperparameters tunning to obtain the best model performance on
network intrusion detection datasets, including NSL-KDD and
UNSW-NB15. In [21], the Authors implement the BLSTM model
combined with random over-sampling strategies, which produces
a high anomaly detection accuracy of 99.83% for multiclass
imbalance network anomaly datasets NSL-KDD dataset.

The deep learning model discussed in [3] and [4] overcomes
challenges traditional machine learning encounters in anomaly
detection. While the CNN standalone model is unsuitable for
sequential data preprocessing, and RNN requires complex data
preprocessing, this model effectively addresses these issues. Data
imbalance problems are tackled in [5]-[8]. Feature engineering
emerges as a critical factor in enhancing the accuracy of both ML
and DL models. Much research has been conducted on feature
engineering, with studies focusing on attribute grouping found in
[9]-[12]. The BLSTM, which brings together two distinct LSTMs
to allow input processing in both directions (from the past to the
future and vice versa), is implemented in [13]-[20] to improve the
accuracy of network anomaly detection models.

Most of the researchers mentioned above concentrate on
enhancing the detection accuracy of conventional or ML DL
models and employ ensemble methods for feature engineering to
address data imbalance. However, there needs to be more emphasis
on exploring hyperparameter selection in DL-based models,
determining the train-test split ratio, and defining the architecture
of DNN. Some researchers need to elaborate on adopting these
values in their studies. Subsequently, this research addressed these
limitations in network traffic anomaly detection systems. We
experimented using binary and multiclass versions of the UNSW-
NB15 and NSL-KDD. Our focus includes investigating the
performance comparison between random under-sampling and
over-sampling to identify superior methods for imbalanced
network data.

The contributions of our research effort in the area of network
anomaly detection and imbalanced datasets are listed as:

a. Examining the impact of CNN and BLSTM neural
network architecture and performance for binary/multi-
class datasets, specifically NSL-KDD and UNSW-NB15.

b. Exploring the model performance of hyperparameters on
binary and multi-class network datasets, namely UNSW-
NB15 and NSL-KDD.

c. Exploring the enhancement of CNN Bi-LSTM by
varying memory elements and numbers of layers of NN.

d. This study’s interest is developing and implementing a
CNN Bi-LSTM hybrid model for network anomaly
detection, achieving high accuracy rates of 98.27% on
NSL-KDD binary data and 99.87% on UNSW-NB15
binary data.

e. Exploring the network anomaly detection model based on
CNN Bi-LSTM using UNSW-NB15.

f. Investigating the random sampling methods for
imbalanced data with detection accuracy greater than
99.83% for NSL-KDD multiclass data and 99.99% for
the UNSW-NB15 multiclass dataset.

The rest of the paper unfolds: Section 3 delineates the system
model and individual blocks comprising our CNN Bi-LSTM
hybrid approach. Section 4 elucidates the experimental setup,
experimental results, and discussion of the findings, and section 5
encapsulates the conclusion of this research.

3. Network Anomaly Detection Model Description

The complete proposed model comprises the following steps:

1. Network traffic-based data collection

2. Data pre-processing and cleaning

3. Training and testing data preparation

4. CNN BLSTM model preparation

5. Train and test model

6. Evaluation of CNN BLSTM model

7. Compare the model and decision-making

The CNN BLSTM-based model's entire implementation
schematic is displayed in Figure 1. The ensuing sections offer a
thorough explanation of the approaches mentioned previously. The
components of CNN and BLSTM layers and the intricate
architecture of neural networks are seen in Figure 2.

3.1. Network traffic-based data collection

Numerous datasets are accessible for research in network
intrusion detection systems. Examples include the KDD Cup99,
Kyoto 2006+, NSL-KDD, CICIDS2017, UNSW-NB15, and
several others, providing valuable resources for intrusion detection
research. During this research, the UNSW-NB15 and NSL-KDD
datasets are specifically employed.

NSL-KDD KDDTrain+ [22] originates from the DARPA
KDD99 dataset, with the elimination of noise and undesired data.
This dataset encompasses the complete NSL-KDD training set,
including labels denoting attack types and difficulty levels.
Comprising 41 features, it delineates five different attack classes:
“Normal,” “DoS,” “Probe,” “R2L”, and “U2R”.

NSL-KDD represents a refined form of the KDD99 data, free
from duplicate records in the training set and the test sets. Each
entry in the dataset consists of 42 attributes, with 41 of them related
to the input traffic and the final label indicating whether the traffic

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 71

is normal or abnormal (target). The KDDTrain+ dataset
encompasses 125,973 data entries, while the KDDTest+ dataset
consists of 22,544 data entries utilized in this research work. Table
1 documents the detailed information regarding the traffic and data
information [23].

 Table 1: Details of NSL-KDD data

 Similarly, The Australian Centre for Cyber Security
(ACCS) cybersecurity research team constructed the UNSW-
NB15 dataset [24], unlike KDD99 and NSL-KDD, which is a
recently developed network intrusion dataset created by IXIA
PerfectStrom tools within the Cyber Range Lab of the ACCS, this
dataset consists of approximately 100GB of PCAP files capturing
raw network traffic flows between two hosts either server to client
or vice versa. The Argus and Bro_IDS tools and 12 other
algorithms generated 49 features accompanied by class labels.
Numerous records were utilized to construct the training and
testing sets, where UNSW_NB15_training-set and
UNSW_NB15_testing-set were used during this research work.
The training set comprises 175,341 records, while the testing set
comprises 82,332 records, encompassing various attacks and
normal network activity. Table 2 shows detailed information
regarding the attacks and normal traffic.

Table 2: Details of UNSW-NB15 data

Network Traffic testing-set.csv training-set.csv
Exploits 11,132 33,393
Generic 18,871 40,000
Worms 44 130
Fuzzers 6,062 18,184
DoS 4,089 12,264
Reconnaissance 3,496 10,491
Analysis 677 2,000
Backdoor 583 1,746
Shellcode 378 1,133
Normal 37,000 56,000
Total 82,332 175,341

 The KDDTrain+ and KDDTest+ subsets of the NSL-KDD
dataset were employed in our research experiment—likewise,
experiments involved using training-set.csv and testing-set.csv
from the UNSW-NB15 dataset.

3.2. Data pre-processing and cleaning

NSL_KDD data is an improved version of the KDD99 dataset;
minimum work is required for data preprocessing. The
downloaded separate data files are used to test and train the model.
The target class is initially isolated from the training and testing
datasets to create the class labels. From the remaining attributes,
numerical features and three categorical features—
"protocol_type”, “service”, and “flag” are extracted. The
categorical features undergo conversion into numerical values
using dummy one-hot encoding techniques, while the numerical
attributes are standardized using standard Scalar methods.
Afterwards, both types of feature sets are combined into a unified
data frame, yielding the final data sets for training and testing. One
hot encoding generates one binary variable for each individual
categorial value. The dummy encoding is similar to one hot
encoding and converts the categorical values into numeric binary
values. The dummy encoding represents N categories using N-1
binary variable. Let’s say we have three categories of traffic
“protocol_type,” “service,” and “flag” that are going to be dummy
encoded as [1 0], [0 1], and [0 0], respectively. The standard scalar
converts the numeric values so that the data standard deviations
become 1.

Since there are different types of services present in the
KDDTrain+ dataset and KDDTest+ dataset, the one hot encoding
produces unequal numbers of features. The KDDTrain+ dataset
contains 126 features, while the KDDTest+ includes a total of 120
features after the implementation of one hot encoding. Those
additional features “service_aol,” “service_harvest,”
“service_http_2784”, “service_http_8001”, “service_red_i,” and
“service_urh_i” are inserted into the KDDTest+ dataset after
finding the exact location where those features reside into the
KDDTrain+ dataset. We preserved the attacks_types and
difficulty_level features because those features are highly relevant
to the target class and increase the model's efficiency.

The UNSW-NB15 dataset was divided into two sets for
training and testing purposes: UNSW_NB15_training-set and
UNSW_NB15_testing-set. The UNSW_NB15_training-set
comprises 175,341 entries, while the UNSW-NB15_testing-set
contains 82,332 entries, encompassing various attacks and normal
data. Initially, the features on this dataset are 49. First, those
categorical attributes are changed into numeric using dummy one
hot encoding. All numerical attributes are applied to the standard
scalar normalization method. After preprocessing the numeric and
categorical features, 192 features for UNSW_NB15_testing-set

Traffic KDDTrain+ KDDTest+
R2L 995 2,885
U2R 52 67
DoS 45,927 7,460

Normal 67,343 9,711
Probe 11,656 2,421
Total 125,973 22,544

Figure 1: Pipeline for CNN BLSTM hybrid model

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 72

data and 196 features for UNSW_NB15_training-set data were
generated. Again, here we are taking two sets of data: one we can
use for training and the other for testing or vice versa. The
categorical values of data entries are not the same for both datasets;
hence, the one hot encoding produces unequal numbers of features
on both data sets after preprocessing.

Some features generated from one hot encoding, such as
state_ACC and state_CLO, are not included in the UNSW-
NB15_training-set. Similarly, proto_icmp, proto_rtp, state_ECO,
state_PAR, state_URN, and state_no features are not included on
UNSW_NB15_testing-set. The empty features columns are added
in the exact column location of those missing features on the
respective dataset, generating 198 features plus one target class.

3.3. Training and testing data preparation

In experiments concerning the binary NSL-KDD dataset, the
training and testing datasets were created using a split ratio. The
train-test split approach assesses the performance of machine
learning algorithms in making predictions from data that wasn't
part of the training set. We opted for a 70:30 split ratio to generate
the train and test dataset. For the CNN BLSTM hybrid model, 70%
of KDDTrain+ was used to train, and the remaining data was used
to test the model for binary NSL-KDD data.

A similar split percentage was employed in the binary class
UNSW-NB15, using the “UNSW_NB15_training-set”. In the case
of multiclass experiments for UNSW-NB15 and NSL-KDD, two
distinct files were selected—one subset for training the CNN-
BLSTM model and another for testing. Detailed information
regarding this split is provided in the respective experimental
sections.

3.4. CNN BLSTM model

 CNN is a forward DNN designed for image signal and
classification. CNN comprises three primary layers: the
convolutional, the pooling, and the fully connected layers. The
convolutional layer is the main component of CNN and uses the
convolutional operation to grab the various features from the
image signal. Then, the number of pooling layers extracts features,
and a fully connected layer employs the output from the preceding
layer for classification. Combining convolutional layers with
pooling layers is responsible for feature extraction, while the final
fully connected dense layer is utilized for classification purposes.
CNN also involves various hyperparameters, including the number
of filters, stride, zero-padding, pooling layers, and others.

An RNN is an artificial NN designed to manage sequential data
by integrating feedback loops into its structure. Diverging from
conventional feedforward neural networks that linearly handle
input data, RNNs feature connections forming loops, enabling
them to retain a memory of past inputs and utilize that information
to impact the current output. The memory in an RNN serves as a
short-term storage, allowing the network to retain information
about past events and use it to make predictions about future
events. This is especially valuable in applications where context
and temporal relationships are essential. Machine learning issues,
including speech recognition, language processing, and picture
categorization, have been resolved with RNN.

Yet, traditional RNNs encounter challenges, notably needing
help with learning long-term dependencies attributed to the
vanishing or exploding gradient problem. Advanced RNN versions
such as gated recurrent units (GRUs) and long short-term memory
(LSTM) networks have been devised in response to these
constraints. These architectures include mechanisms for
selectively storing and retrieving information across extended
sequences, enhancing their effectiveness in tasks that demand
capturing long-term dependencies.

Figure 2: CNN BLSTM layer architecture

LSTM handles the vanishing gradient in RNN. There is a
memory block and three multiplicative units in LSTM. The input
corresponds to the write operation, output to read and forget gates
corresponding to the reset operations for cells that make up the
LSTM architecture. By allowing LSTM memory cells to keep and
access data for longer periods. Those multiplicative gates mitigate
the vanishing gradient.

To process input in both directions—from the future to the past
and from the past to the future—bidirectional RNN combines two
independent RNNs. Both forward and backward LSTM networks
make up the Bi-LSTM. The features extracted by the forward
LSTM hidden layer point forward, whereas those extracted by the
reverse LSTM hidden layer point backward. By taking finite
sequences into account about earlier and later items, the
bidirectional LSTM can anticipate or tag the sequence of each
element. Two LSTMs processed in series—one from left to right
and the other from right to left—produce this. The CNN and
BLSTM hybrid models have several layers, each with a set of
hyperparameters. Figure 2 shows the CNN BLSTM's architectural
layout.

3.5. CNN BLSTM model training

The CNN BLSTM model's neural network architecture is
prepared for training. The datasets consist of two sets: one for
training and the other for testing, or vice versa. The split percentage
determines how much data is allocated for training and testing
when a single data set is present. The selection of hyperparameters
for model training is conducted through various experiments
involving fine-tuning epochs and batch size to enhance detection
efficiency. Within the training data, 20% is designated for
validating the CNN Bi-LSTM model.

3.6. Test the CNN BLSTM hybrid model and evaluation.

Deep learning (DL) and machine learning (ML) models offer
performance consistency. After the CNN BLSTM model is built,
the model is trained using the training dataset with specified
hyperparameter values. These chosen hyperparameter values
influence the training duration. Following training, the model can
assess the unseen dataset to evaluate its performance.

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 73

Hyperparameter selection lacks a predefined rule, allowing for
random selection and subsequent fine-tuning through various
experiments. After the model testing, performance metrics are
determined based on the type of ML model employed. In the case
of the supervised machine learning model, ground truth values are
utilized to measure the performance metrics on the test dataset.
Various metrics, such as detection accuracy, precision, F1-Score,
recall, program execution time, and Area under the ROC, are
available to compare the model efficiency. Confusion metrics from
Karas generate True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) values. In the context of a
classification report, the terms "weighted" and "macro" refer to
different strategies for computing metrics such as precision, recall,
and F1-score across multiple classes. Macro-averaging computes
the metric for every class separately before averaging them. This
means that each class is treated equally in the computation,
regardless of size. Macro-averaging gives the same weight to each
class, which can be useful when all classes are considered equally.
Weighted averaging, on the other hand, takes the average of the
metrics, but it weights each class's contribution based on its
proportion in the dataset. In other words, classes with more
samples have a greater impact on the average. W weighted
averaging is especially helpful when working with unbalanced
datasets—where certain classes may have substantially more
instances than others.

The classification report provides a thorough summary of the
model's performance metrics for the specified training and testing
data sets. Lastly, to assess the performance of our CNN BLSTM
hybrid model, the performance metrics are compared with the
findings of earlier research publications.

3.7. Compare models and decision-making.

 Several sets of experiments were conducted to find the
hyperparameter settings that yielded the best results. Following
model testing and evaluation, choosing the best model pipeline
from various options is part of the cognitive process of comparison
and decision-making. Throughout this study, several sets of
experiments are carried out to determine values for various CNN
Bi-LSTM model hyperparameters to enhance the model's
performance. To create an effective Bi-LSTM pipeline, it is
necessary to decide on the hyperparameters, which include
optimizers, number of epochs, batch, NN design, class size, and
techniques of raw data preprocessing. This is achieved by
evaluating performance metrics across multiple sets of
experiments. The performance metrics of the Bi-LSTM model are
then juxtaposed with previously published results for the
binary/numerous class UNSW-NB15 and NSL-KDD. The class
imbalance problem in the multiclass version of both NSL-KDD
and UNSW-NB15 datasets was exposed with sampling data during
the preprocessing stages. The sampling methods randomly deleted
on down-sampling and randomly generated data samples in over-
sampling. This resulted in the balanced form of datasets to
compare the CNN Bi-LSTM model performance.

4. Results and Discussion

To detect anomalies, intrusion detection uses a mix of DL and
ML methods. The implementation of a network anomaly detection
model is implied using Python script. Python has specialized
packages for building machine learning models, including NumPy,

Pandas, Keras, and Scikit-learn. Additionally, commonly used
tools like Java, C#, WEKA, Visual C++, and MATLAB play vital
roles in network anomaly detection systems. On the Jupyter
Notebook platform, seed values are fixed to guarantee consistency
in outcomes over several runs. Plots and tables representing the
results of experiments are analyzed using the Microsoft Office
suite. Every experiment is run on a Windows machine with an i7
processor and 16GB of RAM.

Python and the packages it is linked with keep version
information used in all experiments. For example, TensorFlow
2.9.1, Keras 2.6.0, and Python 3.7.12 are used. Hyperparameters
will be determined, performance will be evaluated across class
sizes, and the efficacy of various sampling approaches will be
assessed about the CNN BLSTM model for the multi-class and
binary-class UNSW-NB15 and NSL-KDD. Detailed explanations
of these experiments are provided in subsequent sections.

The architecture shown in Figure 2 consists of a single 16-unit
convolution layer that uses batch normalization and max-pooling.
BLSTM neural network layer 1 contains 50 memory units; batch
normalization, max-pooling, and reshaping come next. Bi-LSTM
neural network layer 2 with 100 memory units and dropout is also
available. The dense layer consists of a sigmoid activation, and the
final output is obtained. The detection accuracy of the model is
evaluated through a series of tests involving the adjustment of
optimizers, learning rate (LR), number of epochs, batch size, and
dropout rate. As explained below, the UNSW-NB15 and NSL-
KDD binary/multiclass network traffic datasets are used for these
investigations.

4.1. Experiment: Model performance Vs. Optimizers

In the context of ML and DL, an optimizer is an algorithm or
method used to adjust the parameters of a model to minimize or
maximize a certain objective function. The performance of an
optimizer is crucial in training machine learning models because it
determines how well the model learns from the data. Choosing the
optimizer is essential during the training of the CNN BLSTM
model, as it significantly contributes to expediting results for the
machine learning/deep learning model.

 TensorFlow offers nine optimizers (Ftrl, Nadam, Adam,
Adadelta, Adagrad, gradient descent, Adamax, RMSprop, and
Stochastic Gradient Descent (SGD)) based on the optimizer's
methods. The choice of optimizer can significantly impact the
training performance of an ML model. Optimizers may converge
at different rates or achieve different final accuracies on a given
task. An optimizer's performance may be influenced by the model's
architecture, the dataset, and the hyperparameters employed.

It is common practice to experiment with several optimizers to
determine which combination of optimizers and hyperparameters
is optimum for a given task. Additionally, some optimizers may
perform better on certain types of neural network architectures or
for specific data types. In summary, the relationship between the
optimizer and machine learning performance is crucial, and
choosing the right optimizer is an important part of the model
training process. It often involves experimentation and tuning to
find the optimal combination for a given task.

 The model used in the experiment comparing Optimizers
versus Accuracy has a 20% dropout rate and the Relu activation

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 74

function. To determine the best optimizer for our CNN-BLSTM
model, seven optimizers, including Nadam, Ftrl, SGD, Adam,
RMSprop, Adagrad, and Adamax, were tested. Based on the model
performance metrics for UNSW-NB15 and NSL-KDD binary
data, which are shown in Table 3, it was found that the Nadam
optimizer performed best for NSL-KDD. In contrast, the Adam
optimizer produced the best accuracy for the UNSW-NB15
dataset. Interestingly, although both optimizers used the same
model architecture, they performed differently for both Network
Intrusion Detection System (NIDS) datasets.

Table 3: Model performance Vs. Optimizer

Number of epochs = 10, Batch = 256, NSL-KDD_C2 and UNSW-NB15_C2
Optimizer ACC-NSL F1-NSL ACC-UN F1-UN

Ftrl 53.47 69.68 80.99 80.99
RMSprop 97.87 98.01 97.93 98.46
Adamax 97.65 97.78 95.33 96.51

Adam 98.02 98.16 99.15 99.38
Adagrad 96.98 97.21 94.04 95.62

SGD 97.74 97.91 99.14 99.37
Nadam 98.13 98.26 99.11 99.34

 ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB

Table 4: CNN BLSTM performance Vs. Optimizer on NSL-KDD

Model Performance Vs. Optimizer on NSL-KDD Multiclass Datasets
Epochs=10, Batch_size= 512, Training_data = KDDTrain+, Testing_data =

KDDTest+, Multiclass=5
Optimizers Accuracy % wt_Precision % wt_F1score %

Adam 88.46 88.87 88.23
RMSprop 85.49 87.15 82.84

Nadam 84.79 86.97 82.45
SGD 82.86 84.99 77.12

Adamax 82.6 86.99 82.72
Adagrad 75.65 67.01 69.94

Ftrl 43.08 18.56 25.94

Table 5: CNN BLSTM performance Vs. optimizer on UNSW-NB15

CNN Bi-LSTM Performance Vs. Optimizer on UNSW-NB15 Multiclass
Datasets

Epochs=15, Batch_size= 512, Training data=UNSW-NB15Train82332,
Testing_data = UNSW-NB15Test175341, Multiclass=10

Optimizers Accuracy % wt_Precision % wt_F1score %
SGD 89.84 87.49 88.01
Adam 87.21 87.47 85.96
Nadam 84.59 84.48 83.38

RMSprop 79.3 75.71 76.85
Adamax 76.84 76.37 74.74
Adagrad 70.82 63.28 62.05

Ftrl 31.94 10.20 15.46

The selection of the optimizers depends on the combination of
the different hyperparameters and NN architecture of the CNN
BLSTM model. Popular optimization algorithm Adam combines
concepts from RMSprop and momentum. It adapts the learning
rates of individual parameters and is widely used in deep learning.
An Adam extension that uses the Nesterov Accelerated Gradient
(NAG). NAG involves looking ahead in the direction of the
momentum before computing the gradient that combines the
benefits of Adam and Nesterov momentum. Figure 3. shows the
accuracy comparison for NSL-KDD and UNSW15.

 Tables 4 and 5 shows the comparative performance metrics of
the multi-class NSL-KDD and UNSW-NB15. The same optimizer
does not provide the same performance for a similar dataset. The
hyperparameters and datasets used to test and train the CNN-based
BLSTM model are provided in Tables 4. and 5. For the NSL-KDD

multiclass dataset, Adam performed better than SGD, whereas for
the UNSW-NB15 multiclass dataset, SGD performed better than
other optimizers.

Figure 3: Optimizer Vs. Accuracy

4.2. Experiment: Learning rate Vs. model performance

The learning rate, a positive scalar multiplied by gradient
descent gradient, controls the step size in parameter space. A
higher rate facilitates faster convergence but raises the risk of
overshooting and oscillation. On the other hand, a lower rate
ensures stability but may demand more iterations for convergence.

With optimizers chosen from the preceding Experiment 4.1,
the same CNN BLSTM model neural network architecture is used
to determine the ideal learning rate to enhance the model
performance. The NSL-KDD binary data is preprocessed from the
subset of the KDDTrain+ dataset, and the split ratio splits the data
for training and testing. The learning rate determines the rate at
which new weights are added to neural network models. The other
hyperparameters remain constant throughout this experiment
while the learning rates are adjusted to optimize the model's
accuracy. Table 6 displays a comparison of learning rate with CNN
BLSTM model performance. The model performs best on the
UNSW-NB15 binary data and the NSL-KDD binary dataset,
achieving a learning rate of 0.01 and 0.0002, respectively. The
same learning rate provides different model performances.

Table 6: CNN BLSTM model Learning rate Vs. Performance metrics

Epochs size = 10, Batch = 256, KDD_C2 (Nadam), UNSW-NB15_C2 (adam)
LR ACC-NSL F1-NSL ACC-UN F1-UN
0.01 97.49 97.67 99.67 99.76
0.001 98.16 98.29 99.54 99.66
0.0001 98.06 98.20 95.81 96.85
0.0002 98.18 98.3 97.9 98.44
0.0003 98.14 98.27 98.44 98.86
0.0004 97.97 98.11 99.13 99.35
0.0005 98.11 98.25 99.09 99.32
LR: Learning rate, ACC: Accuracy in %, F1: F1Score in %, UN: UNSW_NB

4.3. Experiment: Model dropout rate Vs. model performance

The phrase "dropout rate" in machine learning usually refers to
a regularization method that neural networks employ to avoid
overfitting. When a model becomes overfit, it can have poor
generalization on new, unknown data because it has learned the
training set too well, including its noise and outliers. During
training, randomly selected neurons (units) in the neural network

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 75

are "dropped out" or omitted temporarily. This means these
neurons do not contribute to the forward or backward pass during
a particular iteration of training. The probability of a neuron being
dropped out is called the dropout rate. The dropout rate is one
hyperparameter that must be determined before training the model.

The CNN BLSTM model was tested and trained for both
datasets using a batch size of 256 and 10 epochs. Different dropout
rate values were used to evaluate the efficiency of the model. The
model performed better than the others, with a 30% dropout rate
on the UNSW-NB15 dataset; however, a 60% dropout rate worked
better for the NSL-KDD. The hyperparameter values, dropout
rates, and corresponding performance metrics are presented in
Table 7. The experimental results highlight the varying dropout
rates for distinct datasets despite the similarity between the two
datasets.

Table 7: Dropout rate Vs. model performance

Epochs size = 10, batch = 256, KDD_C2 (madam), UNSW-NB15_C2 (adam)
DropOut % ACC-NSL F1-NSL ACC-UN F1-UN

0.1 98.10 98.24 97.44 98.15
0.2 98.02 98.16 98.98 99.25
0.3 98.16 98.29 99.87 99.9
0.4 98.04 98.17 99.27 99.47
0.5 97.93 98.09 99.47 99.61
0.6 98.21 98.33 99.81 99.86
0.7 98.01 98.15 99.58 99.69
0.8 98.04 98.18 98.57 98.94

ACC: Accuracy in %, F1: F1Score in %, NSL: KDD-NSL, UN: UNSW_NB
KDDTrain+, UNSW-NB15 training.csv binary with test-train split

 The batch size is a hyperparameter in machine learning that
determines how many samples are used in a training iteration. The
batch size represents the number of samples used in a single
training iteration. Using a smaller batch size incorporates a limited
number of data samples and results in a longer training time for the
CNN Bi-LSTM model compared to a larger batch size.
Throughout experimentation (Experiment A-C), the batch size is
altered while maintaining other hyperparameters, such as a fixed
number of epochs is 5, the learning rate of the optimizer, and the
dropout rate values assigned to the model based on previous
findings with the respective datasets.

Table 8: Model performance Vs. batch size

Number of Epochs = 5, KDD_C2 (Nadam), UNSW-NB15_C2(adam)
Batch ACC-NSL % F1-NSL % ACC-UN % F1-UN %

32 97.89 98.04 99.40 99.55
64 97.95 98.10 99.35 99.52

128 98.06 98.20 99.33 99.50
256 97.64 97.79 96.36 97.26
512 97.92 98.08 96.90 97.70

 The dataset size, the amount of computing power available, and
the specifics of the optimization issue can all influence the batch
size decision. Experimenting with various batch sizes is a frequent
way to determine which is most effective for a certain task.

 The experimental result in Table 8 demonstrates how the neural
network's hyperparameter combinations affect performance. In
this experiment, batch sizes of 128 for the binary NSL-KDD
datasets and 32 for the binary UNSW-NB15 datasets for epochs 5
demonstrated the best performance of the CNN BLSTM model.

4.4. Experiment: Epochs Vs. model performance

An "epoch" in machine learning is one whole iteration through
the training dataset a model goes through while training. The
learning method processes the complete dataset throughout each
epoch, modifying the neural network weights and parameters to
reduce the error or loss function. A hyperparameter called epoch
count determines an algorithm's running frequency over the full
training dataset. The integer between one to infinity can be used as
the epoch. Selecting smaller epoch values results in a longer
training time for the model and vice versa. Underfitting, the ML
model cannot identify the original patterns in the data, which can
be caused by using too few epochs. However, an excessive number
of epochs might cause overfitting, in which case the model
becomes inattentive to new data and underperforms on previously
unknown data.

 The CNN BLSTM hybrid model performance for binary KDD-
NSL and binary UNSW-NB15 with the different values of epochs
are documented in Table 9. The performance increases with large
values of epochs but is different for a while. After 75 epochs, the
model performance decreases. The amount of data utilized for
training and testing, the size of the output class, and other
hyperparameter combinations affect the epochs and performance
of the machine learning/deep learning models.

Table 9: Epochs Vs. model performance

Batch size = 256, NSL- KDD_C2 (Nadam)
Number of Epochs Accuracy-NSL % F1Score-NSL %

2 95.48 95.94
10 98.13 98.26
25 98.21 98.33
50 98.20 98.33
75 98.27 98.39

100 98.26 98.39

 The selection of epoch size to produce a superior performance
on an imbalanced dataset is challenging. The binary dataset is more
balanced than the multiclass network-based intrusion dataset. The
experimental results in Table 9 are not the determining experiment
for the number of epochs on multiclass NSL-KDD and UNSW-
NB15 datasets. Hence, we experimented with and documented
multi-class experimental results to determine the values of epochs
where we can produce higher accuracy on the provided dataset.
Tables 10 and 11 show the experimental results for multiclass
datasets to investigate the values of epochs to make superior
detection accuracy. In summary, while epoch size and class size
are conceptually different, they can influence each other indirectly,
especially when dealing with imbalanced datasets. Selecting the
right number of epochs for a given problem is crucial, as is keeping
an eye on how class sizes affect model performance.

Table 10: Model performance Vs. Epochs on UNSW-NB15 multiclass data

Batch=512, Optimizer=SGD, Training=UNSW-NB15Train.csv82332
testing data= UNSW-NB15Test.csv175341, Multiclass=10

Epochs ACC wt_Prec wt_F1Score Prg_exe_time
10 93.10 91.10 91.94 0.64
25 83.09 79.94 79.69 1.17
50 86.4 82.47 83.35 2.24
75 87.1 86.46 85.24 3.12

100 90.04 88.36 88.01 4.24
150 82.23 81.49 80.82 6.36

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 76

200 81.13 78.65 78.84 7.95
ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score:
weighted F1Score in %, Prg_exe_time: Program script run time in hr.

 Program execution time is the sum of the model's training and
testing phases. The program execution time depends on various
factors, such as the neural network's architecture, training and
testing data size, class size, and combination of hyperparameters.
We documented the performance of the CNN BLSTM hybrid
model along with the program execution time. The higher the
epochs result, the longer the program execution time. Table 10 and
Table 11 show the multi-class NSL-KDD run for almost 8 Hrs. to
complete training testing and evaluate the model for 200 epochs.
A similar scenario for multiclass UNSW-NB15 dataset. Hence,
selecting epoch and batch size is the trade-off with the model
training, testing, and evaluation time. We found in Table 10 and
Table 11 the different epoch sizes for NSL-KDD (outperform at
epoch size 10) and UNSW-NB15 (outperform at epoch 100)
during multi-class model performance.

Table 11: Performance Vs. epochs on NSL-KDD multiclass data

Batch=512, Optimizer= Adam, Data=KDDTrain+_125973,
KDDTest+_22544, Multiclass = 5

Epochs ACC wt_Prec wt_F1Score Prg_exe_time
10 86.21 88.13 83.85 0.45
25 86.64 88.01 84.1 1.08
50 86.64 88.7 84.78 2.15
75 87.11 88.39 84.84 3.31

100 87.63 89.85 86.44 4.53
150 87.22 89.66 85.81 7.03
200 86.84 90.61 86.41 8.76

ACC: Accuracy in %, wt_Prec: weighted Precision in %, wt_F1Score:
weighted F1Score in %, Prg_exe_time: Program script run time in hr.

4.5. Experiment: Imbalance data sampling Vs. performance

This experiment investigates the sampling techniques for
imbalanced data to provide a high detection rate. The researcher
employed various techniques, such as a critical selection of ML
and DL algorithms, ensemble methods, data sampling, etc., to
address the issue of data imbalance because there are fewer attacks
than typical traffic data in the provided network intrusion detection
dataset.

 Sampling methods generate or delete random data from the
dataset based on class data distribution. Random under-sampling
and random over-sampling are two techniques used in imbalanced
classification problems, where one class (usually the minority
traffic class) is significantly under-represented compared to the
other class(es). These methods are utilized to tackle class
imbalance and enhance the efficacy of machine learning models.
Random Under Sampling (RUS) involves randomly removing
instances from the majority class until the distribution between the
majority and minority classes is more evenly distributed. However,
random over-sampling produces an equal distribution by randomly
duplicating minority class instances or creating synthetic instances
to increase the number of minority class instances.

 Tables 12 and 13 provide the hyperparameter information and
performance of this experiment's CNN BLSTM hybrid model.
Table 12 compares the NSL-KDD multiclass dataset's
performance when random over- and under-sampling is applied.
After preprocessing multi-class NSL-KDD data, the training and
testing datasets merge into a single file. Sampling is implemented

on merged data, and a 70:30 split ratio is used to split data into
train and test datasets.

Table 12: CNN BLSTM performance Vs. Sampling on NSL-KDD

CNN BILSTM, Epochs= 25, Batch_size= 512, Data = combine
(KDDTrain+KDDTest+) (sampling)

Class Recall_RUS F1_RUS Recall_ROS F1_ROS
DoS 0 0 99.86 99.92
Probe 100 36.69 99.89 99.91
U2R 10 18.18 100 99.73
R2L 0 0 99.45 99.63
Normal 0 0 99.93 99.93
Wt_Average  22.15 10.07 99.83 99.83
Macro_Avg 22 10.97 99.83 99.83
Accuracy % 22.15 99.83

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] %

 Similarly, preprocessed training data and testing data files are
merged into a single file to implement the sampling method on the
UNSW-NB15 multiclass dataset. The sampled data is then split
into training and testing datasets using a 70:30 train-test split ratio
During Random under-sampling, data instances are randomly
deleted from the majority class, resulting in significant information
loss. Deleting samples from the majority class results in a smaller
sample, unsuitable for the deep learning model and worsens the
model performance, which is found in the experiment and
documented in Tables 12 and Table 13. Random over-sampling
(ROS) helps prevent information loss, as none of the minority class
instances are removed. It can be more effective when the amount
of data in the minority class is limited.

Table 13: Model performance Vs. sampling on UNSW-NB15

CNN_BLSTM Epochs=25, Batch_size=512, data = combine (UNSW-
NB15training-set_175341+UNSW-NB15testing-set_82332) sampling

Class Recall_RUS F1_RUS Recall_ROS F1_ROS
Analysis 0 0 100 100
Backdoor 0 0 100 100
DoS 0 0 100 99.95
Exploits 100 17.51 99.91 99.95
Fuzzers 0 0 99.98 99.99
Generic 0 0 99.98 99.98
Normal 0 0 100 100
Reconnaissance 0 0 100 100
Shellcode 0 0 100 100
Worms 0 0 100 100
Weighted_Average 9.2 1.61 99.99 99.99
Macro Average 10 1.75 99.99 99.99
Accuracy (%) 9.20 99.99

[F1:F1Score, RUS: Random Under Sampling, ROS: Random Over Sampling] %

 This method generates random data based on the data
distribution in the dataset. The huge amount of data is always
suitable for deep learning models. Regarding detection accuracy,
our suggested CNN BLSTM hybrid model performs better than the
random over-sampling technique, offering over 99%. Tables 12,
13, and Figure 4 above detailed the CNN BLSTM hybrid model's
performance for the UNSW-NB15 imbalance dataset and the
multiclass NSL-KDD.

5. Conclusion

The previous research from the literature reviews shows that
while the detection accuracy for rarely occurring attack classes
(U2R, R2L) is low, the average model accuracy for normal traffic
in the UNSW-NB15 and NSL-KDD is roughly 99%. Regardless

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 77

of the type of attack, each poses a threat to network machines
equally. To provide a comparative analysis, we juxtapose our
results with existing findings of 91.12% [20] and 90.83% [5]
detection accuracy for NSL-KDD binary, and 99.70% [18],
82.08% [14], 82.08% for UNSW-NB15 binary datasets. Our
experiments enhance accuracy to 98.27% on NSL-KDD and
99.87% on UNSW-NB15 binary datasets by carefully selecting
hyperparameters and conducting various experiments. We
explored the CNN BLSTM hybrid model's hyperparameters
(dropout. epochs, batch size, learning rate, and optimizer) to
maximize detection accuracy for the binary NSL-KDD and
UNSW-NB15.

Figure 4: Sampling Vs. multiclass model accuracy (%)

The model performance depends on the combination of
hyperparameters, the size of the dataset used to train/test the
model, and the selection of the machine learning/ deep learning
model. Our research provides information about the data size used
during the experiments and the choice of hyperparameters. The
suggested model uses random over-sampling techniques on a
single set of data to provide 99.99% and 99.83% model accuracy
for the multiclass UNSW-NB15 and NSL-KDD datasets,
respectively (train and test data merge into a single file before
sampling).
 Selecting random over-sampling or under-sampling relies on
the particulars of the dataset and the issue at hand. To achieve a
balance, combining the two methods, a practice known as hybrid
sampling may occasionally be necessary. It's crucial to remember
that there are more sophisticated methods for dealing with class
imbalance, such as SMOTE (Synthetic Minority Over-sampling
Technique), which creates synthetic instances for the minority
class instead of merely copying real instances. Thoroughly
examining those approaches in various network intrusion detection
multiclass datasets extends this research effort. The proper use of
hyperparameters of neural networks, size of dataset used to train
the model, and sampling methods for CNN BLSTM network
anomaly model provide the highest detection accuracy for
imbalance network data.
Conflict of Interest
The authors declare no conflict of interest.
Acknowledgment
The National Science Foundation (NSF) and Scholarship for
Service CyberCorps (SFS CyberCorps) programs support this

research study. The award information of NSF and CyberCorps
are #1910868 and #2219611, respectively. This cannot be
completed without the continuous support of advisors and the
Electrical and Computer Engineering Departments of Prairie
View A&M University

References

[1] T. Acharya, A. Annamalai, M.F. Chouikha, “Efficacy of CNN-
Bidirectional LSTM Hybrid Model for Network-Based Anomaly
Detection,” in 13th IEEE Symposium on Computer Applications and
Industrial Electronics, ISCAIE 2023, Institute of Electrical and Electronics
Engineers Inc.: 348–353, 2023,
doi:10.1109/ISCAIE57739.2023.10165088.

[2] N. Moustafa, J. Hu, J. Slay, “A holistic review of Network Anomaly
Detection Systems: A comprehensive survey,” Journal of Network and
Computer Applications, 128, 33–55, 2019, doi:10.1016/j.jnca.2018.12.006.

[3] H. Liu, B. Lang, M. Liu, H. Yan, “CNN and RNN based payload
classification methods for attack detection,” Knowledge-Based Systems,
163, 332–341, 2019, doi:10.1016/j.knosys.2018.08.036.

[4] B. Cao, C. Li, Y. Song, Y. Qin, C. Chen, “Network Intrusion Detection
Model Based on CNN and GRU,” Applied Sciences (Switzerland), 12(9),
2022, doi:10.3390/app12094184.

[5] Y. Fu, Y. Du, Z. Cao, Q. Li, W. Xiang, “A Deep Learning Model for
Network Intrusion Detection with Imbalanced Data,” Electronics
(Switzerland), 11(6), 2022, doi:10.3390/electronics11060898.

[6] X. Ji, H. Zhang, X. Ma, “A Novel Method of Intrusion Detection Based on
Federated Transfer Learning and Convolutional Neural Network,” in IEEE
Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), Institute of Electrical and Electronics Engineers Inc.:
338–343, 2022, doi:10.1109/ITAIC54216.2022.9836871.

[7] T. Acharya, I. Khatri, A. Annamalai, M.F. Chouikha, “Efficacy of
Heterogeneous Ensemble Assisted Machine Learning Model for Binary
and Multi-Class Network Intrusion Detection,” in 2021 IEEE International
Conference on Automatic Control and Intelligent Systems, I2CACIS 2021
- Proceedings, Institute of Electrical and Electronics Engineers Inc.: 408–
413, 2021, doi:10.1109/I2CACIS52118.2021.9495864.

[8] T. Acharya, I. Khatri, A. Annamalai, M.F. Chouikha, “Efficacy of Machine
Learning-Based Classifiers for Binary and Multi-Class Network Intrusion
Detection,” in 2021 IEEE International Conference on Automatic Control
and Intelligent Systems, I2CACIS 2021 - Proceedings, Institute of
Electrical and Electronics Engineers Inc.: 402–407, 2021,
doi:10.1109/I2CACIS52118.2021.9495877.

[9] M. Xiong, H. Ma, Z. Fang, D. Wang, Q. Wang, X. Wang, “Bi-LSTM:
Finding Network Anomaly Based on Feature Grouping Clustering,” in
ACM International Conference Proceeding Series, Association for
Computing Machinery: 88–94, 2020, doi:10.1145/3426826.3426843.

[10] S.N. Pakanzad, H. Monkaresi, “Providing a hybrid approach for detecting
malicious traffic on the computer networks using convolutional neural
networks,” in 2020 28th Iranian Conference on Electrical Engineering,
ICEE 2020, Institute of Electrical and Electronics Engineers Inc., 2020,
doi:10.1109/ICEE50131.2020.9260686.

[11] R. Yao, N. Wang, Z. Liu, P. Chen, X. Sheng, “Intrusion detection system
in the advanced metering infrastructure: A cross-layer feature-fusion CNN-
LSTM-based approach,” Sensors (Switzerland), 21(2), 1–17, 2021,
doi:10.3390/s21020626.

[12] P. Sun, P. Liu, Q. Li, C. Liu, X. Lu, R. Hao, J. Chen, “DL-IDS: Extracting
features using CNN-LSTM hybrid network for intrusion detection system,”
Security and Communication Networks, 2020, 2020,
doi:10.1155/2020/8890306.

[13] L. Zhang, J. Huang, Y. Zhang, G. Zhang, “Intrusion Detection Model of
CNN-BiLSTM Algorithm Based on Mean Control,” in Proceedings of the
IEEE International Conference on Software Engineering and Service
Sciences, ICSESS, IEEE Computer Society: 22–27, 2020,
doi:10.1109/ICSESS49938.2020.9237656.

[14] J. Sinha, M. Manollas, “Efficient Deep CNN-BiLSTM Model for Network
Intrusion Detection,” in ACM International Conference Proceeding Series,

http://www.astesj.com/

A. Toya et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 67-78 (2024)

www.astesj.com 78

Association for Computing Machinery: 223–231, 2020,
doi:10.1145/3430199.3430224.

[15] A. Li, S. Yi, “Intelligent Intrusion Detection Method of Industrial Internet
of Things Based on CNN-BiLSTM,” Security and Communication
Networks, 2022, 2022, doi:10.1155/2022/5448647.

[16] J. Gao, “Network Intrusion Detection Method Combining CNN and
BiLSTM in Cloud Computing Environment,” Computational Intelligence
and Neuroscience, 2022, 2022, doi:10.1155/2022/7272479.

[17] T. Acharya, A. Annamalai, M.F. Chouikha, “Efficacy of Bidirectional
LSTM Model for Network-Based Anomaly Detection,” in 13th IEEE
Symposium on Computer Applications and Industrial Electronics, ISCAIE
2023, Institute of Electrical and Electronics Engineers Inc.: 336–341, 2023,
doi:10.1109/ISCAIE57739.2023.10165336.

[18] P. TS, P. Shrinivasacharya, “Evaluating neural networks using Bi-
Directional LSTM for network IDS (intrusion detection systems) in cyber
security,” Global Transitions Proceedings, 2(2), 448–454, 2021,
doi:10.1016/j.gltp.2021.08.017.

[19] Y. Imrana, Y. Xiang, L. Ali, Z. Abdul-Rauf, “A bidirectional LSTM deep
learning approach for intrusion detection,” Expert Systems with
Applications, 185, 2021, doi:10.1016/j.eswa.2021.115524.

[20] W. Xu, J. Jang-Jaccard, T. Liu, F. Sabrina, J. Kwak, “Improved
Bidirectional GAN-Based Approach for Network Intrusion Detection
Using One-Class Classifier,” Computers, 11(6), 2022,
doi:10.3390/computers11060085.

[21] T. Acharya, A. Annamalai, M.F. Chouikha, “Optimizing the Performance
of Network Anomaly Detection Using Bidirectional Long Short-Term
Memory (Bi-LSTM) and Over-sampling for Imbalance Network Traffic
Data,” Advances in Science, Technology and Engineering Systems Journal,
8(6), 144–154, 2023, doi:10.25046/aj080614.

[22] M. and B.E. and L.W. and G.A.A. Tavallaee, “A detailed analysis of the
KDD CUP 99 data set,” in 2009 IEEE Symposium on Computational
Intelligence for Security and Defense Applications, IEEE, 2009,
doi:{10.1109/CISDA.2009.5356528}.

[23] L. Dhanabal, S.P. Shantharajah, “A Study on NSL-KDD Dataset for
Intrusion Detection System Based on Classification Algorithms,”
International Journal of Advanced Research in Computer and
Communication Engineering, 4, 2015, doi:10.17148/IJARCCE.2015.4696.

[24] N. Moustafa and J. Slay, "UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),"
2015 Military Communications and Information Systems Conference
(MilCIS), Canberra, ACT, Australia, 2015, 1-6, doi:
10.1109/MilCIS.2015.7348942.

Copyright: This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC
BY-SA) license (https://creativecommons.org/licenses/by-
sa/4.0/).

http://www.astesj.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	1. Introduction
	2. Literature Review
	3. Network Anomaly Detection Model Description
	3.1. Network traffic-based data collection
	3.2. Data pre-processing and cleaning
	3.3. Training and testing data preparation
	3.4. CNN BLSTM model
	3.5. CNN BLSTM model training
	3.6. Test the CNN BLSTM hybrid model and evaluation.

	4. Results and Discussion
	4.1. Experiment: Model performance Vs. Optimizers
	4.2. Experiment: Learning rate Vs. model performance
	4.3. Experiment: Model dropout rate Vs. model performance
	4.4. Experiment: Epochs Vs. model performance
	4.5. Experiment: Imbalance data sampling Vs. performance

	5. Conclusion
	Conflict of Interest
	Acknowledgment

	References

