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The integration of fluctuating renewable resources such as wind and solar into existing power
systems poses challenges to grid reliability and the seamless incorporation of these resources.
To address the inherent variability in renewable generation, direct load control emerges as a
promising method for demand-side management. Thermostatically controlled appliances, like
air conditioners, hold a significant role in this approach. However, effective direct load control
necessitates accurate load magnitude estimation and the potential for load shifting. In this
paper, we introduce a smart-agent architecture that employs a mathematical model to forecast
aggregated power consumption behavior, even when changes are introduced by the controller.
To assess system performance, a numerical simulator was developed, demonstrating the sys-
tem’s adaptability to changes, its self-retraining capability, and its continuous improvement in
predicting aggregated power consumption.

1. Introduction

This paper builds upon the research initially introduced at ICCAD-
2023 [1], where the authors presented a smart agent to make a
mathematical model for a population of air conditioners and fore-
cast their power consumption and control it. This paper expands the
mathematical formulation for modeling and provides justification
for the linear approximation. Additionally, it improves the forecast-
ing model by introducing a new formulation for reserve capacity to
reshape the aggregated power demands.

The utilization of clean resources, such as wind and solar power,
for electricity generation has experienced substantial growth in the
past decade [2]. However, the integration of renewable resources
poses challenges to existing power grids, primarily due to the rapid
fluctuations in generation, diminishing the reliability and quality of
electric power systems [3]. While energy storage devices like batter-
ies can mitigate the swift fluctuations of wind and solar power [4],
the cost of deploying renewable energy increases with the use of en-
ergy storage. Direct Load Control (DLC) emerges as a cost-effective
demand-side management (DSM) method to address the intermit-
tency of generation [5]. Recent studies demonstrate that adjusting
set points or operation times of thermostatically controlled loads
(TCL), such as electric water heaters or air conditioners, effectively
controls aggregated power consumption [6, 7, 8, 9].

The system operator plays a crucial role in balancing generation
and demand sides, and an accurate forecast of the power consump-
tion is essential for this task. In a DLC program, the system operator
needs to understand the controller’s capacity to increase or decrease
the load, providing feasible instructions.. This research focuses on
developing a methodology for fast and accurate load controllability
forecasting.

In recent years, significant efforts have been dedicated to de-
veloping mathematical models and control strategies aimed at ef-
fectively managing the aggregate demand of air conditioners. One
approach involves designing a control strategy to adjust the ther-
mostat set point, thereby reducing peak demand and alleviating
the impact of renewable energy variability [10, 11]. Alternatively,
centralized or distributed/decentralized control strategies have been
explored, focusing on directly managing the on/off states of AC
compressors [11, 12, 13, 14, 15]. However, these methods fall short
in providing practical means to estimate essential model parameters
like thermal capacitance/resistance, or to dynamically adapt the
model to changing conditions. Another challenge lies in the absence
of information regarding the capacity to increase or decrease the
total load within a future time window.

In response to these challenges, several studies have shifted
focus towards forecasting the controllable load. Some utilize
neural networks to predict air conditioning power consumption
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based on temperature, humidity, and historical power consumption
[16, 17, 18]. Others employ regression-based algorithms coupled
with Kalman filters to forecast air-conditioning load using historical
data [19]. Least square support vector machines have also been pro-
posed for short-term load forecasts [20]. However, these methods
may face impracticalities when integrated with a control system
that alters load behavior. Furthermore, none of these methods offer
insights into how much the load can be changed due to a control
action or formulate the control capacity.

Introducing a dynamic process and a state space model, our
proposed methodology provides an efficient and accurate forecast
of the controllable load for the system operator. By constructing a
model adaptable to changes in thermal parameters and load behav-
ior, our method surmounts limitations associated with traditional
approaches. Furthermore, it equips the system operator with the
ability to estimate the controllable capacity of the load, a critical
factor in load balancing tasks.

The effectiveness of our methodology was rigorously evaluated
through simulations, comparing its performance with existing meth-
ods. The results demonstrate that our proposed method surpasses
existing approaches in terms of both accuracy and speed. This un-
derscores its potential to offer a more efficient and reliable solution
for managing the demand side in response to the integration of
renewable resources.

In conclusion, this paper introduces a novel methodology for
forecasting the controllable load of air conditioners, capable of
adapting to changes in thermal parameters and load behavior. The
proposed methodology not only delivers an accurate and efficient
load forecast but also empowers the system operator to estimate the
controllable capacity of the load. With promising results in simula-
tions, our method holds the potential for practical implementation,
promising improved demand side management in response to the
integration of renewable resources.

The remainder of this paper is structured as follows: Section 2
provides an overview of the system architecture, while Section 3
offers a concise introduction to the mathematical model of the sys-
tem. The learning algorithm is detailed in Section 4, and Section 5
outlines the process of generating forecasts. The capacity to control
the load is formulated in Section 6. The paper concludes with the
presentation of simulation results in Section 7.

2. System Architecture

The objective of this study is to devise a smart agent for the efficient
management of power consumption in thermostatically controlled
appliances. This system operates within a hierarchical structure,
collaborating with a system operator or a virtual power plant (VPP).
Its role is to receive a target aggregated power consumption, interact
with a load aggregator, and send control signals to adjust the load.
The goal is to minimize the discrepancy between the measured and
desired power consumption while maintaining customers’ comfort.
Figure 1 provides an overview of the system, which encompasses a
load aggregator with three distinct modules:

1. Learning Model Module: This module is tasked with estimat-
ing a mathematical model that articulates the power consump-
tion of the aggregated load based on input parameters.

2. Forecasting Module: Leveraging the estimated mathematical
model and input forecasts, this module generates predictions
for the baseline load and reserve capacity. Input forecasts
encompass variables like weather conditions, occupancy pat-
terns, and other factors influencing power consumption. The
baseline load forecast represents the expected power consump-
tion without any control action, while the reserve capacity
forecast indicates the potential power reduction or increase
through controller actions. These forecasts guide the con-
troller in determining appropriate control signals to align the
load with the desired power consumption.

3. Responsible for adhering to the desired aggregated load set
by the system operator, this module controls the load. Further
details on a simplified implementation of such a controller
are presented in [21].

Figure 1: A block diagram for direct load control system [1]

In Figure 1, the power consumption of the load population (Ag-
gregated Load) is input into the load aggregator at the current time
denoted by t0. Historical data from prior measurements (P(t0−k) for
times preceding t0) is utilized by the ’Learning Model’ to establish a
mathematical model for the system (Ha and Hs). Subsequently, the
’Forecasting’ module utilizes this model to generate forecasts for
the baseline load and control capacity. In the future, upon obtaining
actual measurements of the aggregated load, the forecast error can
be calculated as the difference between forecasted and actual power
(e f orecast). This error serves as a trigger mechanism, initiating the
training process.

3. Modeling the Aggregated Load

The controllable load in this research are a population of air con-
ditioners. A Mathematical model can provide a powerful tool to
analyze the behavior of such system. The following sections will
present a commonly used model for single AC and a population of
ACs.
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3.1. Individual Load

In this context, we denote m(k) as the on/off state of the air condi-
tioner at time k, and T as the room temperature. The dynamics of
room temperature changes are governed by Equation (1), a widely
adopted formulation in the literature [22, 23, 12, 21]:

Ṫ (t) = −
1

CR
(T (t) − Ta(t) + m(t)RPnomη) (1)

Here, R denotes the thermal resistance of the room, C is the
thermal capacitance of the room, Ta represents the ambient tem-
perature, Pnom corresponds to the nominal power rating of the air
conditioner, and η stands for the coefficient of performance. The
air conditioner switches on (m(t) = 1) when the room temperature
surpasses the higher threshold setpoint, aiming to reduce the room
temperature until it reaches the lower threshold, at which point the
air conditioner turns off (m(t) = 0).

3.2. Aggregated Load

The power consumption of an air conditioner (AC) can be conceptu-
alized as a system with two inputs: the thermostat setpoint (as the
controllable input) and ambient temperature (as the disturbance sig-
nal). Other parameters, such as thermal resistance and capacitance,
may be considered as external hidden parameters of the system.

Simulation results demonstrate that the aggregated power de-
mand reaches a steady-state value when the inputs remain constant,
as depicted in Figure 2. In general, the steady-state response of the
aggregated power demand to the inputs is nonlinear. However, this
surface can be approximated by a plane described by:

Pss(Ta,Ts) = Pss0 + αTa + βTs, Ta < 34◦C,Ts ≤ Ta (2)

Figure 2 illustrates the simulated steady-state aggregated power
demand vs. the value obtained from (3). As expected, around
the nonlinear zone of high ambient temperature, the plane exhibits
larger differences than the simulated power demand. However, for
the middle sections of the surface, it provides a good approximation
for the steady-state aggregated power demand, with the error range
over the middle part of the surface being less than 5%.

Figure 2: Comparison of the Approximated Plane Surface given by (2) with Simu-
lated Aggregated Power Demand

Through numerical calculations, the coefficients for the best-
fitting plane have been determined as:

Pss(Ta,Ts) = 0.075Ta − 0.075Ts (3)

With this observation, it becomes plausible to consider model-
ing this system as a Linear Time-Invariant (LTI) system, with the
equilibrium point representing the DC gain of the model. Assuming
the system is given by:

δP(s) = Ha(s)δTa(s) + Hs(s)δTs(s) (4)

Here, δP denotes changes in the aggregated demand from the
equilibrium point due to variations in ambient temperature and ther-
mostat setpoints (δTa, δTs). Ha and Hs represent the LTI transfer
functions for Ta and Ts respectively. The steady-state output is then
given by:

δPss = Ha(0)δTa + Hs(0)δTs (5)

This equation mirrors (2), where Ha(0) = α and Hs(0) = β.
Now, by approximating the aggregated demand with a LTI sys-

tem, the dynamic response of the system can be captured by[24]:

P(k) = ya(k) + ys(k) + P0 (6)

Here, P0 denotes the aggregated demand at the equilibrium point (or
Pss), while ya and ys represent the change in aggregated power con-
sumption with respect to the equilibrium point, caused by variations
in the ambient temperature and thermostat set point, respectively.
These LTI system can be represented in state space model as:

Ha :

xa(k + 1) = Aaxa(k) + Baua(k),
ya(k) = Caxa(k)

(7)

and

Hs :

xs(k + 1) = Asxs(k) + Bsus(k),
ys(k) = Csxs(k)

(8)

where the matrices Aa, Ba, Ca, As, Bs and Cs should be identified
through the learning process.

4. Learning Model

The purpose of this module is to formulate an approximation model
for the population of air conditioners, eliminating the need for
knowledge about any of the physical parameters introduced in Sec-
tion 3.

The details of the model learning process is presented in [24].
As a short summary, the learning procedure initiates when the fore-
cast error surpasses a predefined threshold level. At this juncture,
Ta and Ts are determined, and the controller is temporarily dis-
abled to prevent any artificial fluctuation in the aggregated power
consumption.

The learning process encompasses two steps:

1. Determining Ha while holding Ts constant. In this scenario,
changes in the output power are solely governed by variations
in Ta.

2. Determining Hs when a small change is applied to Ts, and the
effect of changes in Ta can be estimated and removed using
Ha. The formulations for these steps are elaborated in detail
in [24].
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5. Load Forecast

To generate a load forecast, one can utilize the forecasted values
of the model inputs in equations (7)-(8) to obtain a forecast for the
output. However, this requires measurements of the states, which
are not physical parameters that can be directly measured. As a
result, a state observer is required to estimate these states.

5.1. State Estimation

The overall architecture of the state observer for this system is
shown in Figure 3. In the figure, the changes in the output power are
denoted by y, while the estimated impact of us and ua are denoted
by ŷs and ŷa, respectively. The difference between the estimated
changes and the actual change in the aggregated power is then fed to
the state model through observer gains Hs and Ha to improve state
estimation.

x̂a(k + 1) = Aa x̂a(k) + Baua(k) + HaCa(xa(k) − x̂a(k))
ŷa(k) = Ca x̂a(k)

(9)

and similarly for the xs state:

x̂s(k + 1) = As x̂s(k) + Bsus(k) + HsCs(xs(k) − x̂s(k))
ŷs(k) = Cs x̂s(k)

(10)

where x̂a and x̂s are the estimated states.

Figure 3: The state observers for each input [1].

These equations can be rewritten in a matrix format as:

x̂(k + 1) = Ax̂(k) + B

ua

us

+Ka

Ks

 (y(k) − Cx̂(k))

ŷ(k) = Cx̂(k)

where

A =

[
Aa 0
0 As

]
, B =

[
Ba 0
0 Bs

]
(11)

and
C =
[
Ca Cs

]
(12)

By considering the state error: x̃(k) = x(k) − x̂(k), we will have:

x̃(k + 1) = (A− KC)x̃(k) (13)

And K can easily be determined so that the dynamics of the
state error would be faster than the y system through functions such
as pole placement technique in MATLAB.

5.2. Forecasting Baseline Load

When forecasting the baseline load, we operate under the assump-
tion that the controller does not influence the load. Let’s consider
a forecasting horizon of L samples, assuming that the forecast is
generated at time index k0. Within this interval, we have:

ûa(k) = T̂a(k) − T̂a0 k ∈ [k0 + 1, k0 + L] (14)

ûs(k) = 0 k ∈ [k0 + 1, k0 + L] (15)

Here, T̂a(k) is the forecasted ambient temperature at time k. Then
the forecast of the baseline aggregated power will be:

P̂b(k) = P0 + ŷa(k) k ∈ [k0 + 1, k0 + L] (16)

where P0 is the power consumption at equilibrium point andx̂a(k + 1) = Aa x̂a(k) + Baûa(k)
ŷa(k) = Ca x̂a(k)

(17)

where the initial state x̂a(k0) can be obtained from the state observer
that was presented earlier.

Equation (16) operates under the assumption that no previous
control actions have occurred, implying no fluctuations in the aggre-
gated power resulting from prior thermostat changes. Nevertheless,
past control actions may continue to influence future power con-
sumption. Given that the forecasting module receives information
about each control signal to the thermostat setpoints, it can consis-
tently revise the state space variables of the system. Consequently,
the forthcoming changes in ŷs can be determined by:x̂s(k + 1) = As x̂s(k)

ŷs(k) = Cs x̂s(k)
(18)

and the baseline load will be:

P̂b(k) = P̂0 + ŷa(k) + ŷs(k) k ∈ [k0 + 1, k0 + L] (19)

The payback effect, also known as rebound, is a well-established
phenomenon in DSM. It characterizes the transient surge in aggre-
gated power that occurs once control over the aggregated load is
relinquished, allowing the power to revert to its baseline. This
transient, initiated when the system shifts from controlled to un-
controlled operation, has the potential to give rise to unexpected
secondary demand peaks.
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The controller, tasked with executing demand-side management
measures, holds the key to influencing the rebound effect by sus-
taining control over the devices even beyond the system operator’s
requested interval. However, this strategy may not always be practi-
cal or desirable, particularly if associated with high costs or energy
consumption. Hence, in this section, we assume that the controller
will exclusively operate during the specified interval, refraining
from additional adjustments thereafter.

To equip the system operator with valuable insights into the
repercussions of control actions, we introduce a method for esti-
mating the payback of any desired demand even before initiating
control. This approach aids the system operator in evaluating the
acceptability of control actions and preemptively avoiding an esca-
lation in future peak demands. By furnishing a dependable estimate
of the payback effect, this method empowers the system operator to
optimize the control strategy and mitigate potential risks to power
system operation.

5.3. Approximating Control Signal

Let us consider a scenario where the system operator or VPP issues
a dispatch, denoted by ∆Pd(k), for a control interval of C samples.
In this scenario, the desired load can be considered as a change to
the baseline load, which is given by:

∆Pd(k) = Pd(k) − P̂b(k) (20)

Here, ∆Pd(k) represents the amount of power that needs to be added
to or reduced from the baseline load. To effect this change, the
thermostat set points, ûs, need to be adjusted so that they create
appropriate ŷs values.

Now, the controller needs to generate a ûs(k) that results in the
output ŷs(k), matching ∆Pd(k). This assumes that the linear model
remains valid when ys changes by ∆Pd.x̂s(k + 1) = As x̂s(k) + Bsûs(k)

ŷs(k) = ∆Pd(k) = Cs x̂s(k)
(21)

This equation can be rewritten as:

∆Pd(k + 1) = Cs
[
As x̂s(k) + Bsûs(k)

]
(22)

And the control signal. ûs(k) will be:

CsBsûs(k) = ∆Pd(k + 1) −CsAs x̂s(k) (23)

If the order of the system model is n, then the matrices Cs and
Bs will have dimensions 1 × n and n × 1, respectively. The product
CsBs will then result in a scalar value, and:

ûs(k) = (CsBs)−1(∆Pd(k + 1) −CsAs x̂s(k)
)

(24)

subject to:
−α ≤ us(k) ≤ α (25)

for customers’ comfort (will be described more in detail in Section
6). Then, the thermostat set points will be:

T̂s(k) = Ts0 + ûs(k) (26)

for k in the control interval. It should be noted that initial state
variable, x̂s(k0), is estimated using the state observer described in
Section 5.1.

Figure 4 illustrates an example of an arbitrary desired aggre-
gated load, represented by the top curve. The baseline load fore-
cast, P̂b, is also shown in this figure, where the forecast interval is
6 : 00 − 10 : 00 am. The desired aggregated load for the interval
of 7 : 00 − 8 : 30 am (control interval) is denoted by Pd. Equa-
tions (24)-(26) were utilized to determine how the thermostat set
points should be adjusted in order to achieve the desired load. The
resulting adjustments are illustrated by the bottom curve of Figure
4.

Figure 4: Example of desired load vs. calculated thermostat set point adjustments to
follow the load.

5.4. Forecasting Rebound

Once the system operator changes the shape of the power demand
over an interval, the profile of the demand will also change in the
subsequent intervals, which is referred to as the payback or rebound
effect of the control action. If an optimal controller adjusts the
thermostat set points to follow the desired load demand and stops
controlling it after that interval, the forecasting module can predict
the shape of the demand after the control interval even before it
starts. This feature can be beneficial for the system operator to
estimate the shape of the load after a proposed desired aggregated
load and determine if the consequences of the control actions are
acceptable (e.g., not producing a larger peak in the future). How-
ever, it should be noted that various control strategies may affect
this forecast.

Let us assume that the system operator issues a desired aggre-
gated power demand, denoted by Pd(k). This desired load can be
considered as a change to the baseline load:

Pd(k) = P̂b(k) + ∆Pd(k), (27)

where ∆Pd(k) is the amount of power that should be added to or
reduced from the baseline load. This change should be achieved
by adjusting the thermostat set points (ûs) to create an appropriate
ŷs. Thus, the controller should create a ûs(k) to match ŷs(k) with
∆Pd(k), so an estimation of the control signal will be:

ûs(k) = (CsBs)−1(∆Pd(k + 1) −CsAs x̂s(k)
)

(28)

Using (28), an estimation of the thermostat control signal can
be calculated with the given desired aggregated load. With this
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estimated us for the control interval and the forecast of the ambient
temperature, a new forecast can be generated to approximate the
payback of a control action.


x̂s(k + 1) = As x̂s(k) + Bsûs(k) for k in control interval

x̂s(k + 1) = As x̂s(k) otherwise
ŷs(k) = Cs x̂s(k)

(29)
The aggregated power demand will be:

P̂payback(k) = P̂0 + ŷa(k) + ŷs(k) (30)

6. Feasible Desired Demand

One of the key parameters in DLC is ensuring that the controller
does not interfere with customers’ comfort. For air conditioners,
the controller can adjust the thermostat set point to change the ag-
gregated power consumption to follow a desired load. However, if
the controller sets the thermostat to a very high or very low value, it
may cause discomfort for the end-users and prompt them to opt-out
of the DLC program. Therefore, the controller cannot change the
thermostat set point to any arbitrary value. The set point must be
changed within a certain range to ensure that customers remain
comfortable.

This means that the system operator must send a desired de-
mand that can be followed without disturbing the customers. Such
a demand is called a feasible desired demand. To ensure that only
feasible desired demands are sent, a method will be presented in the
next subsections that defines more precisely the customers’ comfort
and the criteria for feasible desired demands.

6.1. Customers’ Comfort

One method of ensuring customers’ comfort in DLC is to limit the
range of change for the thermostat set point. The preferred ther-
mostat set point for a group of loads can be denoted by T 0

s . The
controller can then adjust the Ts within the range of [T 0

s −α,T
0
s +α],

where α determines the comfort zone. Once the Ts reaches these
limits, the controller cannot adjust it beyond this range, thus losing
control over the aggregated power. This signifies the point when
there is no more reserve capacity available.

It is crucial to note that this method of limiting the range of
Ts affects the controller’s ability to adjust the aggregated power
consumption to follow a desired load. Infeasible desired loads may
arise due to the limitations imposed by the comfort zone. Thus,
the system operator should only send feasible desired loads that
can be followed without disturbing the customers’ comfort. In the
following subsections, the concept of customers’ comfort and feasi-
ble desired loads will be defined more precisely, and a method for
informing the system operator about the criteria for feasible desired
loads will be presented.

6.2. Formal Formulation

A feasible desired dispatch is a power profile that satisfies three con-
ditions. First, it should be within the range, i.e. 0 ≤ Pd(k) ≤ Pmax.

Second, the controller should be able to produce appropriate changes
to the thermostat set points, so that the aggregated demand of the
loads would follow the desired load. Third, the changes on the ther-
mostat set points should not exceed the customers’ comfort level, as
described previously in Section 6.1.

This means that the desired load should be within the range
of feasible set point changes. If the desired load is outside of this
range, the controller will not be able to follow it without causing
discomfort to customers, and therefore, it is not a feasible desired
demand.

Assuming that the aggregated power can be modeled with a
second-order system, the transfer function representation is given
by:

Ys(z)
Us(z)

=
b1z−1 + b2z−2

1 + a1z−1 + a2z−2 (31)

Here, Y(z) and U(z) represent the z-transform of the ys(k) and
us(k) signals, respectively. This equation in time domain will be:

b1us(k − 1) + b2us(k − 2) = ys(k) + a1ys(k − 1) + a2ys(k − 2) (32)

In this equation, ys(k) represents the required changes that
should be compensated by changing the thermostat set points, and
us(k) is the control signal which is the change in thermostat set
point, issued by the controller to follow ys(k). It is assumed that the
initial conditions are zero, i.e.:

us(k) = 0 for k < 0 (33)

and
∆Pd(k) = 0 for k ≤ 0 (34)

If we require ys(k) to track ∆Pd(k) over the control interval, then
it can be shown that the solution for us(k) is:

us(k) = ρ∆Pd(k + 1) + σ∆Pd(k) + τ∆Pd(k − 1)
+
∑k−2

i=1
(
(−b2/b1)k−1−iτ∆Pd(i)

)
(35)

where 
ρ = 1

b1

σ = a1b1−b2
b2

1

τ =
a2b2

1−a1b1b2+b2
2

b3
1

(36)

As discussed earlier, a given desired demand is feasible if, for
all time steps k, it satisfies the following two conditions:

T 0
s − α ≤ us(k) ≤ T 0

s + α (37)

or:

T 0
s − α ≤ ρ∆Pd(k + 1) + σ∆Pd(k) + τ∆Pd(k − 1) +∑k−2

i=1
(
(− b2

b1
)k−1−iτ∆Pd(i)

)
≤ T 0

s + α (38)

To ensure the feasibility of a desired demand profile, it is essen-
tial to verify that it satisfies Equation (38) for all k samples of the
profile. However, in order to obtain a general form for feasibility,
it may be useful to study the feasibility of specific class of desired
demand profiles.
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An example class is the trapezoidal shape, where ys starts from
0 with a constant slope, reaches a maximum value of Pmax

d and
remains constant for kc samples, then goes back down to 0 with a
constant slope.

One approach to studying feasibility is to determine the length of
time that us(k) can satisfy (37) when ∆Pd is a ramp. This evaluation
can be repeated for different values of the ramp rate.

Figure 5 displays two ramp-shaped desired demand profiles and
the corresponding control signal us. The us curve for each profile is
computed using Equation (35) until the customers’ comfort level is
reached at T 0

s ± α, where α = 0.5◦C. The plot illustrates that higher
ramp slopes require more changes in Ts, causing the system to reach
its limit faster. Consequently, the feasibility of profiles with steeper
slopes is lower than those with slower rates of change. Figure 10
compares the feasibility intervals of ramp-shaped desired demand
profiles with various slopes.

Figure 5: Feasibility intervals for two ramp shape desired demand profiles

It should also be mentioned that the ramp-rate is given for nor-
malized power, which means that the actual rate for power will
be obtained by multiplying this rate with the number of individual
loads N and nominal power Pnom. For instance, a rate of 0.02/min
for a group of 1, 000 air conditioners with a nominal rating of 2kW
would correspond to a ramp rate of 40kW/min.

Feasibility studies can also be conducted for the class of
trapezoidal-shaped desired demand profiles with varying slope and
Pmax

d . Figure 6 provides an example of such a profile, along with
the calculated Ts needed to track the desired demand when α is
assumed to be 0.5◦C. As the slope and Pmax

d values change, so will
the corresponding feasibility interval. Figure 12 illustrates how the
feasibility interval is affected by these parameters.

Figure 6: Feasibility interval for a trapezoidal-shaped desired demand

7. Simulation Results

To assess the effectiveness of the proposed method, a numerical
simulator was developed in MATLAB to simulate a population of
N = 10, 000 individual air conditioners. As explained in Section
3, we assume that all ACs have the same nominal power, and their
thermal capacities follow a log-normal distribution. The simulation
employs values listed in Table 1, which have also been used in
several other studies.

Table 1: Simulation Parameters [13]

Parameter Value Description
Pnom 2kW Nominal power rating of the

AC
η 3 Coefficient of performance
R 2◦C/kW Thermal resistance
µC 3.6kWh/◦C Mean value of the thermal ca-

pacitance
σrel 0.2 Standard deviation of log-

normal distribution for C

7.1. System Modeling

For the given population of ACs in this simulation, the mathematical
system that was identified is formulated as:

Aa =

[
1.975 −.977

1 0

]
, Ba =

[
1
0

]
,Ca =

[
0.0027 −.0025

]
As =

[
1.898 −.903

1 0

]
], Bs =

[
1
0

]
,Cs = [−.1381, .1376]

7.2. Baseline Forecast

Figure 7 shows an example of a forecast profile for the next four
hours, generated by the forecasting module at 6:00am on July 3,
2020, using the ambient temperature profile in Barbados. The
dashed curve represents the forecasted normalized aggregated power
calculated using Equation (16), while the solid curve represents the
actual normalized aggregated power calculated using a numerical
simulator. The figure illustrates that the forecast module is capa-
ble of predicting future power consumption with high accuracy,
demonstrating the effectiveness of the mathematical model.

Figure 7: A forecast of the aggregated power consumption, vs. simulated aggregated
power consumption in 15 minutes intervals for 4 hours.
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Comparison metrics such as the mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square error
(RMSE) are commonly used by researchers to assess the accuracy of
forecast models. The proposed method’s performance is evaluated
using these metrics and compared with other methods in Tables ??.
The results show that the proposed method has slightly improved the
performance of the baseline forecast. However, the main strength of
this method is its ability to predict the load in the presence of control
actions, as discussed in the next section. It should also be noted that
the MAE and RMSE are calculated based on the normalized power,
which is the total power demand divided by the number of loads
and the nominal power of each device.

7.3. Forecasting Rebound Effect

Figure 8 illustrates the impact of a desired aggregated load on the
original baseline forecast (P̂b) and the resulting baseline with pay-
back (P̂payback). The blue curve represents the original forecast for
the baseline load, while the green curve depicts the desired aggre-
gated load. The orange curve shows the resulting forecast after
applying the desired load, which includes the payback effect. The
payback effect causes the load profile to be higher after the control
interval, compared to the profile if no control action was taken. This
figure demonstrates how the desired aggregated load can be used to
adjust the power consumption profile over a specified interval.

Figure 8: Baseline forecast (P̂b) and forecast with payback effect(P̂payback).

7.4. Forecasting Control Capacity

Figure 9 illustrates an example of using a high-rate slope as a de-
sired demand (the red curve). Applying the mathematical model,
the required temperature set point is depicted in green in this figure.
Applying these values for the thermostat set points on a simulated
population of ACs will result in the aggregated power demand that
is shown by the solid blue curve. If we apply a controller to follow
this desired demand, the thermostat set point and the aggregated
power look like the dotted blue curves.

In Figure 10, the feasibility intervals of desired demand profiles
with different slopes are compared. The graph indicates that as the
ramp speed increases, the time during which the load can be con-
trolled to align with the desired power consumption decreases. This
phenomenon is attributed to the necessity of preserving customers’
comfort as discussed earlier.

Figure 9: Feasibility of a high-speed ramp desired demand obtained from the model
and simulation

Figure 11 illustrates an example of using a trapezoidal-shape as
a desired demand (the red curve). Applying the mathematical model,
the required temperature set point is depicted in green in this figure.
Applying these values for the thermostat set points on a simulated
population of ACs will result in the aggregated power demand that
is shown by the solid blue curve. If we apply a controller to follow
this desired demand, the thermostat set point and the aggregated
power look like the dotted blue curves.

Figure 10: Feasibility intervals for ramp shape desired demand profiles with varying
slopes

Figure 11: Feasibility of trapezoidal desired demand obtained from the model and
simulation

An important aspect of the forecast module is to communicate
this information to the system operator. With this knowledge, the
operator can make informed decisions on how to generate the de-
sired demand, taking into account the capacity of the controller to
track the load.
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Figure 12 visually demonstrates the impact on the feasibility
interval when altering the slope and Pmax

d values of the trapezoidal
shape. Once more, the observation is evident: a higher slope (faster
rate) and a larger maximum value lead to reduced controllability
intervals in order to maintain customers’ comfort.

Figure 12: Feasibility intervals for trapezoidal shaped desired demand profiles with
varying slopes and Pmax

d

Conclusions

Thermostatically controlled devices have the potential to be utilized
as controllable loads for direct load control, presenting a practical
solution to address rapid fluctuations in power generation. The
effective management of such loads requires precise predictions of
future power consumption and the ability to adjust capacity relative
to the baseline.

This study introduces an intelligent agent specifically designed
to learn the behavior of a population of air conditioners. It provides
a mathematical model for forecasting parameters such as baseline
load, controllable load, and the impact of past and present con-
trol actions on the forecast. Moreover, the agent assesses potential
alterations in the load. The proposed learning mechanism offers
two significant advantages: 1) it eliminates the need for knowledge
about physical parameters like thermal capacitance or resistance,
and 2) it demonstrates adaptability to changing parameters over time.
This makes it a practical and versatile plug-and-play load aggregator
suitable for deployment in various locations and environments.
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