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The navigation control of an autonomous vehicle can be determined by the coordinates of a
GPS (Global Positioning System) positioning system, angular velocity, and acceleration with
an INS (Inertial Navigation System). However, the errors associated with these devices do not
allow it to be the only measurement system used in an autonomous vehicle. The need arises
to implement tools that determine the system’s state reliably at any instant and perform the
necessary control actions to fulfill the trajectory optimally, considering the system’s internal
model. Therefore, applying a Diffuse Kalman filter is vital, allowing information integration
from GPS and other devices. This work was divided into three essential parts such as the
Kalman filter, the fuzzy control, and the simulation of a GPS sensor signal, taking into account
that, in this last part, a comparison is made with the behavior of a Diffuse Kalman filter. In
general, due to the comparisons of the position estimations in GPS measurements, it is evident
that the DKF achieves more efficient reliability values since the position estimation error is
reduced.

1. Introduction

The navigation control of an autonomous vehicle can be determined
by the coordinates of a GPS (Global Positioning System), angular
velocity, and acceleration with an INS (Inertial Navigation System).
However, the errors associated with these devices do not allow it
to be the only measurement system used in an autonomous vehicle.
The need arises then to implement tools that will enable the sys-
tem to reliably determine the state of the system at any instant and
perform the necessary control actions to fulfill the trajectory opti-
mally, considering the system’s internal model. Therefore, applying
a Diffuse Kalman filter (DKF) is critical at this stage since it allows
information integration from GPS and other devices. This work
was divided into 3 essential parts: the Kalman filter (KF), the fuzzy
control, and the simulation of a GPS sensor signal, considering
that in this last part, a comparison is made with the behavior of a
Diffuse Kalman filter. With the position estimation in GPS mea-
surements, high-reliability values are achieved. These variations
depend very much on how the position measurements are taken to
model the noise to which it is exposed. One of the advantages of
the Kalman filter is that it avoids acquiring very accurate sensors
since, if sensors with more accurate clocks and more advanced posi-
tion measurement techniques were considered, the costs would rise
considerably.

The Kalman filter originates in the paper ”A New Approach

to Linear Filtering and Prediction Problems” published by Rudolf
Emil Kalman in 1960, where he describes a recursive solution to
the problem of linear filtering of discrete data [1]. Nowadays, it is a
widely used method to optimally estimate the states of a dynamic
system in real-time from the indirect noisy measurements that are
taken from it [2]. These real-time estimates of the system state are
valuable when operating in the open loop; however, if closed-loop
operation is considered, they can be used to control and keep the
vehicle in the desired direction.

Filtering is desirable in engineering and embedded systems sit-
uations since a good filtering algorithm can eliminate noise from
the various eventualities to which the process to be monitored is
exposed. There are likely fluctuations or disturbances caused by the
environment or the existing sensor(s) characteristics. The Kalman
filter is a method for estimating the variables of various processes.
The Kalman filter estimates the states of a linear system in mathe-
matical terms. The filter is an algorithm based on the state space
model of a plan to assess the future shape and output by optimally
filtering the output signal, and depending on the delay of the incom-
ing samples, it can serve as an estimator or a filter but in both cases,
it can eliminate noise. The filter applied to a model formulated in
the state space allows a unified treatment of various aspects, such as
the estimation of model parameters, the prediction of values, or the
analysis of the system dynamics. This paper presents a review of the
principal associated ideas. Among its applications are demographic
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estimation, signal processing, navigation systems, predicting the be-
havior of economic variables, and image processing, among others.
Due to its wide field of action, it is essential to know how it works
to have the basic tools that solve several practical problems simply
and optimally [3].

2. Materials and Methods

2.1. The Kalman Filter

Rudolf Emil Kalman’s 1960 work ”A New Approach to Linear
Filtering and Prediction Problems” contains the original description
of the Kalman filter. It outlines a recursive solution to the linear
filtering of discrete data problems. Recursive least squares estimate
is at the heart of state-space models, which encompass the work he
did [1].

The Kalman filter is an ideal state estimation method for dy-
namic systems with stochastic disturbances. More specifically, the
Kalman filter provides a linear recursive algorithm that estimates the
states of a dynamic system with discrete noise in real-time, ideally
and with minimal variance error. Radar, ballistic missile trajectory
calculation, satellite navigation, and video and laser tracking sys-
tems are just a few of the many industrial, civil, and military uses for
it. Real-time applications of the Kalman filter have been developed
in response to the swift advancement of faster computers [4]. The
Kalman filter is also seen as an effective and versatile procedure to
combine the output of sensors with noise to estimate the states of a
system with uncertain dynamics.

In essence, this filter is a set of mathematical formulas that
construct an optimal predictor-corrector type estimator, meaning
that given certain conditions, it minimizes the estimated covariance
error [5]. A variety of time series models can be handled with the
state-space representation, which is a helpful notation for estimating
stochastic models where mistakes in the system’s measurement are
assumed. Specific applications include the depiction of other mod-
els that need maximum likelihood approximation and the modeling
of time-varying parameters and unobservable components. The
filter is a mathematical process that uses a mechanism for correction
and prediction. This algorithm predicts the next state based on its
previous estimation by introducing a correction term proportionate
to the prediction error and minimizing it statistically [5, 6, 7, 8].

The Kalman filter is the most popular linear estimation method
for estimating the states and parameters of linear and nonlinear
dynamic systems. Using a mathematical model of the plant and a
measurement model of the sensor systems [9], the Kalman filter can
anticipate the future values of any dynamic system. In attempting
to collect the most accurate estimates of the system state, inaccurate
data still frequently appears. According to [10], the user’s driving
style can alter the battery’s state of charge (SOC), which is influ-
enced by several factors, including temperature, internal resistance,
capacity, and charge and discharge rates, among others. The Kalman
filter is used to remove erroneous data due to these causes. The
process consists of calculating the new state and its uncertainties.

Within the state-space notation, the derivation of the Kalman
filter rests on the assumption of normality of the initial state vector
and system perturbations in such a way that it is possible to calcu-
late the likelihood function on the prediction error with which the

estimation of the unknown parameters of the system is carried out
(see figure 1).

Initial Conditions:  

- Equation of state 
- Observation equation 
- First variable estimate                
- Process error covariance matrix    
- Noise covariance matrix

3. Prediction calculation                      
4. Variance-covariance matrix 
prediction calculation

5. Kalman gain calculation

Calculation of 
innovation 
measure

1. Calculation of the estimation
2. Calculation of the 
variance-covariance matrix estimate

Figure 1: Kalman Algorithm Summary Diagram

2.2. Process estimation

The filter aims to solve the general problem of estimating the state
X ∈ Rn of a discrete-time controlled process, which is governed by
the linear equation of the stochastic differential equation as follows:

Xk = Axk−1 + Buk + wk−1 (1)

With a measurement z ∈ Rm that is:

Zk = Hxk + vk (2)

The random variables wk and vk represent the process and mea-
surement error respectively. They are assumed to be independent of
each other, white noise, and with normal probability distribution:

P(w) ≈ N(0,Q) (3)

P(v) ≈ N(0,R) (4)

Although they can be considered constant, the process noise
covariance Q and the measurement noise covariance R are matrices
that could vary with each time step or measurement in practice.
Matrix A of size n x n relates the state at the previous time step k -
1 to that at the current time step k. Matrix B of size n x l relates the
optional control input u ∈ Rl to the state x. Matrix H of size m x n
relates the state to the measurement zk. In practice, these matrices
may change each time, but they are usually assumed to be constant.

The KF estimates the process mentioned above using a feedback
control. In other words, it evaluates the process at a particular mo-
ment and then uses the observed data to get feedback. Two sets of
equations can be employed to obtain the filter: one updates the time
or prediction equations, and the other updates the observed data or
update equations. Those of the first group are responsible for the
state projection at time k, taking as reference the state at time k-1,
and for the intermediate update of the state covariance matrix. The
second group of equations is responsible for the feedback, i.e., they
incorporate new information into the previous estimate, resulting in
an improved state estimate [11].

www.astesj.com 125

http://www.astesj.com


M.G.T. Espinoza / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 124-132 (2024)

Forecasting equations can alternatively be defined as equations
that update in real-time, while correction equations incorporate new
information. A forecast-correction method for various issues can
be used to characterize the final estimation procedure. To correct
the projection using the new measurement and forecast the new
state and its uncertainty, the Kalman filter employs a projection
correction mechanism. This cycle is shown in Figure 2.

Time update
Predict

Measurement update
Correct

Figure 2: Kalman Filter Cycle

The first step consists of generating a forecast of the future state
in time, taking into account all the information available at that
time, and in the second step, an improved prediction of the state is
generated so that the error is statistically minimized. The specific
equations for forecasting and status correction are given below.

x̂− = Ax̂k−1 + Buk (5)

P−x = APk−1AT + Q (6)

The equations in Table 2 forecast the state estimates and the
forward covariance from k-1 to k. Matrix A relates the state at the
previous time k-1 to the form at the current time k; this matrix could
change for different points in time (k). Q represents the covariance
of the random disturbance of the process trying to estimate the state.

Kk = P−k HT (HP−k HT + R)−1 (7)

x̂k = x̂−k + Kk(Zk − Hx̂−k ) (8)

Pk = (I − KkH)P−k (9)

The first task during the correction of the state projection is
calculating the Kalman gain, Kk, using equation (7). This weighting
factor or growth is selected to minimize the error covariance of
the new state estimate. The next step is to measure the process to
obtain Zk and then generate a new state estimate incorporating the
new observation as in equation (8). The final step is to get a new
assessment of the error covariance using equation (9).

After each pair of updates, both time and measurement, the pro-
cess is repeated, taking the new state and error covariance estimates
as a starting point. This recursive nature is one of the striking fea-
tures of the Kalman filter [4, 7]. Figure 3 gives a complete picture
of the operation of the filter, combining Figure 2 with equations
(5), (6), (7), (8) and (9). The KF uses the least squares method to
recursively generate an estimator of the state at time k, which is

linear, unbiased, and of minimum variance. The filter is in line with
the Gauss-Markov theorem, giving the KF enormous power to solve
a wide range of problems in statistical inference.

Weather Update
Predict

  1. Projecting the state forward.

  2. Project the error covariance forward.

Measurement Update 
Correct

  3. Calculate the Kalman gain.

  4. Update the estimate of the z_k measurement.

  5. Update the error covariance.

Figure 3: Kalman Filter Overview

It avoids the influence of possible structural changes in the es-
timation. Selective estimation starts with an initial sample and
updates the estimates by successively incorporating new observa-
tions until all the information is covered. This means that the most
recent assessment of the factors is influenced by the long history
of the series, which, in the case of structural changes, could distort
it. Sequential estimations can correct this bias, although doing so
will increase the standard error. As a result, the KF employs the
complete series history, much like recursive methods do. It does,
however, have the benefit of removing the chance of estimation bias
in structural modifications by aiming to estimate a stochastic route
for the coefficients instead of a deterministic one.

The filter stands out because it can predict the state of a model
in the past, present, and future, even when the modeled system’s
specific characteristics are unclear. One of the main distinguishing
features of the Kalman approach is the dynamic modeling of a sys-
tem. A linear transition from one period to the next characterizes
linear dynamic models, which include most of the models frequently
used in time series analysis.

One of the filter’s drawbacks is that to initiate the recursive
algorithm, initial conditions of the mean and variance of the state
vector must be met as starting conditions. There is still disagreement
about what these starting circumstances should be. For example, in
a Bayesian approach, this filter requires a priori values of the initial
coefficients and their respective variances to be specified. One way
may be to obtain this information by estimating a model similar
to the desired one but with fixed coefficients for a sample subpe-
riod. On the other hand, it is necessary to specify the variances for
which minimal and proportional conflicts are suggested about those
obtained for the initial coefficients [12].

The development of the Kalman filter, as found in the original
paper, assumes a broad knowledge of probability theory, specifi-
cally with the issue of Gaussian conditionality in random variables,
which may cause a limitation for its study and application. When
developed for autoregressive models, the results are conditioned to
the past information of the variable in question. In this sense, time
series forecasting represents the strength or inertia currently in the
system and is efficient only in the short term.
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2.3. Fuzzy Logic

Fuzzy logic (FL) is an extension of Boolean logic by Lotfi Zadeh
in 1965 based on the mathematical theory of fuzzy sets, which is a
generalization of classical set theory [13], has been developed basi-
cally in different disciplinary practices, especially in those related
to industrial process control, the computer sector and numerous
applications in economics [14, 15].

Fuzzy logic can be defined as:

• Mathematics that generalizes two-valued (0,1) logic for rea-
soning under uncertainty.

• Theories and technologies that employ fuzzy sets, which are
set with boundaries based on a membership degree [16].

The first goal of fuzzy logic is to alleviate difficulties in de-
veloping and analyzing complex systems involving conventional
mathematical tools [17]. It is also motivated by the assumption that
human reasoning does not always have well-established boundaries.
Fuzzy logic can be used to model and control complex and nonlinear
systems or systems that need to be better defined for conventional
modeling and control techniques. Fuzzy logic is a technology for
developing intelligent control and information systems, as it offers
a practical way to design nonlinear control systems. It achieves
nonlinearity through a linear approximation of the system elements.
The basic building block for fuzzy control systems is the if-then
rule set, which performs a functional mapping [18].

Fuzzy logic techniques are based on four basic concepts:

• Fuzzy sets are those having smooth boundaries. Ambiguity.

• Linguistic variables are those whose values fit into a fuzzy
set and can be qualitative and quantitative.

• Distribution of Possibilities: Assigning a fuzzy set imposes a
linguistic variable’s value limitation.

• A fuzzy if-then rule is a knowledge representation scheme for
a functional mapping or a logical formula that generalizes an
implication into two logical values.

Fuzzy Sets allow the elimination of fixed and exact constraints
by using the membership of a set through its degree of membership.
A group’s membership degree is expressed by a number between
zero and one, where zero means altogether outside the scene, one
means entirely in the set, and a number between zero and one means
partially inside the group. In this way, a gradual and smooth transi-
tion can be described from outside the location to inside the set. So,
a fuzzy set is defined by a function that maps objects in a domain
concerning their membership value in the group. It is important to
remember that a fuzzy set is always expressed in a context, even if
the context is not explicit [19].

Linguistic variables allow their value to be described qualita-
tively (linguistic term) and quantitatively (corresponding to a mem-
bership value). The linguistic term is used to express concepts and
knowledge in human communication, while the membership func-
tion is helpful for input data processing. A linguistic variable is a
composition of a symbolic and numeric variable. For situations with
a very definite boundary between the possible and the impossible,

fuzzy logic offers an alternative, in which it generalizes the distinc-
tion between the possible and the impossible through a degree of
possibility.

Fuzzy if-then rules have been applied to many disciplines, such
as control systems, decision-making, pattern recognition, and sys-
tem modeling. Conceptually, these rules generalize a logical infer-
ence called Modus Ponens, in which the inferred conclusions are
modified by a degree of membership in which the antecedent is
satisfied. Mathematically, it can be seen as an interpolation scheme
because it allows the fusion of multiple fuzzy rules when all their
conditions are comfortable to a certain degree [16].

This theory is based on sets of fuzzy or fuzzy numbers, which
denote, in essence, groups of elements belonging with varying in-
tensities or degrees to a specific category. It allows multiple levels
between the extreme values of each interval, even with the opportu-
nity to establish references of resemblance between the limits and
their internal nuances [15].

The above contrasts with the ideal world posed by Classical
Logic (CL), which is based on the membership or not of the ele-
ments to each category. Consequently, LD has a more remarkable
resemblance to the reality of social phenomena, where expressions
are used whose boundaries are not clearly defined, as in the case
of the terms familiar, quickly, approximate, old, novice, warm, ex-
perienced, fleeting, firm, submissive, authoritarian, etc., making it
possible to classify an object or phenomenon into several concep-
tual categories at the same time, depending on the scale used by the
person making the judgment.

In this representation (Figure 4), the concept that is qualified
in a fuzzy way is the linguistic variable, while the different values
it takes or is associated with constitute the linguistic values. In
addition, each linguistic value is, in turn, another fuzzy set, and the
range of values that the linguistic variable can take is known as the
Discourse Universe, Universal Set, or simply Domain (U).

Figure 4: Belonging Functions

The Belonging Function (µ) assigns to each element of U a de-
gree of membership or belonging to the fuzzy set, which is always
in the interval [0, 1]; if it takes the value one (1), it means that it
fully complies with the condition or characteristic of the fuzzy set,
while a value of zero (0) would be equivalent to saying that the
element does not meet that condition.

The difference between FL and CL is that the former can estab-
lish degrees of membership to an element of the set, which implies
the validity of partial membership (valuations between 0 and 1). At
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the same time, in the latter, this is impossible since CL only allows
total membership (value 1) or exclusion (value 0) to each category
[20].

3. Results

3.1. Diffuse Kalman Filter

Based on the discrete Kalman filter presented in the previous sub-
section, it is used to design a fuzzy control to manage the covariance
matrix as it directly affects the filter performance. It has been deter-
mined that the main equations that model a Kalman Filter are given
in table 1:

Table 1: Main Equations that model the Kalman Filter

Item Equation Description
1 P−X = APK−1AT + Q A priori value of the

covariance of the esti-
mated error.

2 KK = P−K HT (HP−K HT + R)−1 Calculation of the cor-
rection gain.

3 PK = (I − KK H)P−K A posteriori value of
the covariance of the
estimated error.

It can be seen in Figure 5 that between the variables P−K (a priori
value of the estimated error covariance) and PK (a posteriori value
of the estimated error covariance), there is a difference that serves
as input to the fuzzy control, as proposed in [21]. The other input
value to the system is PK , which serves to know the covariance of
the error of the state vector after correction and to monitor how it
approaches zero.

Weather Update
Predict

  1. Projecting the state forward.

  2. Project the error covariance forward.

Measurement Update 
Correct

  3. Calculate the Kalman gain.

  4. Update the estimate of the z_k measurement.

  5. Update the error covariance.

Fuzzy System

Figure 5: Operation of the Kalman Filter with Fuzzy control

The output of the fuzzy system is the value of the decre-
ment/increment that is made to that same value of PK . This forces

the system to approach a covariance error equal to zero faster, de-
pending on the covariance’s position and the error between the two
covariance values (a priori and a posteriori). A general diagram of
the filter operation is shown in Figure 5.

The fuzzy system rules were represented (Table 2) because the
input Pk has the values of [Z, SP, LP] (Zero, Small Positive, and
Large Positive), the input ePk has the values of [LN, SN, Z] (Large
Negative, Small Negative and Zero), and the output ∆Pk can take
the values of [LN, SN, Z] (Large Negative, Small Negative and
Zero).

Table 2: Values in the fuzzy rules.

Item Inputs Values Description
1 Pk [Z, SP, LP] (Zero, Small Positive and

Large Positive)
2 ePk [LN, SN, Z] (Large Negative, Small Neg-

ative and Zero)
3 ∆Pk [LN, SN, Z] (Large Negative, Small Neg-

ative and Zero)

Figure 6 shows the rule matrix for the Diffuse Kalman Filter
and figure 7 shows the diffuse fuzzy control with two inputs Pk, ePk

and an output ∆Pk.

Figure 6: Rule matrix for the Diffuse Kalman filter

Figure 7: Diffuse Control

The following table 3 describes the rules to be used in fuzzy
control:
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Table 3: Values in the fuzzy rules.

Item Rules
1 If (PK is Z) and (ePk is LN) then (∆Pk is Z)
2 If (PK is Z) and (ePk is SN) then (∆Pk is Z)
3 If (PK is Z) and (ePk is Z) then (∆Pk is Z)
4 If (PK is SP) and (ePk is LN) then (∆Pk is Z)
5 If (PK is SP) and (ePk is SN) then (∆Pk is Z)
6 If (PK is SP) and (ePk is Z) then (∆Pk is SN)
7 If (PK is LP) and (ePk is LN) then (∆Pk is Z)
8 If (PK is LP) and (ePk is SN) then (∆Pk is SN)
9 If (PK is LP) and (ePk is Z) then (∆Pk is LN)

The rules are interpreted as follows: for the first rule, if Pk is
close to zero and the value of ePk is large negative, meaning that the
difference between P−k − Pk is large, it can be deduced that Pk is a
value close to zero and is approaching quickly, so no value needs to
be added or subtracted.

For the second rule if Pk is close to zero and the value of ePk is
small negative, that is, the difference between P−k −Pk is small, it can
be deduced that Pk is a value close to zero and is fast approaching,
so no value needs to be added or subtracted.

For the third rule, if Pk is close to zero and the value of ePk is
zero, meaning that the difference between P−k − Pk is zero, it can be
deduced that Pk is a heat close to zero and is approaching fast, so
no value needs to be added or subtracted.

For the fourth rule, if Pk is a small positive value and the value
of ePk is a large negative, that means the difference between P−k − Pk

is large, it can be deduced that Pk is a value close to zero, so no
value needs to be added or subtracted from it.

For the fifth rule, if Pk is a small positive value and the value of
ePk is a small negative, meaning that the difference between P−k − Pk

is small, it can be deduced that Pk is a value close to zero, so no
value needs to be added or subtracted.

For the sixth rule, if Pk is a small positive value and the value of
ePk is zero, meaning that the difference between P−k − Pk is zero, it
can be deduced that Pk is a value that is not close to zero, so a small
value needs to be subtracted from Pk to make it try to approach zero
faster.

For the seventh rule, if Pk is a large positive value and the
value of ePk is a large negative, meaning that the difference between
P−k − Pk is large, it can be deduced that Pk is a value close to zero,
so no value needs to be added or subtracted from it.

For the eighth rule, if Pk is a large positive value and the value of
ePk is a small negative, meaning that the difference between P−k − Pk

is small, it can be deduced that Pk is a value that is not close to zero,
so no small value needs to be subtracted from it.

For the ninth rule, if Pk is a large positive value and the value
of ePk is zero, this means that the difference between P−k − Pk is
large, it can be deduced that Pk does not try to approach zero, so it
is not necessary to subtract a large value from Pk to make it try to
approach zero faster.

Figures 8, 9, and 10 show the membership functions used by
the fuzzy control. Based on the above rules, it was decided to add a
fuzzy part to the existing simulation, so the MATLAB Fuzzy Logic
toolbox was used, with the following features:

• Fuzification : Singleton uncertainty.

• T-Norm : Minimal.

• Implication : Mamdani

• Defuzzification : Centroid

Figure 8: PK Membership Function

Figure 9: ePK Membership Function

Figure 10: ∆PK Membership Function

3.2. Simulation

This section analyzes, compares, and interprets the simulations of
the KF and the DKF with the characteristic values of a GPS sensor.

3.2.1. Latitude

Figure 11 shows the comparison between the two simulations, show-
ing that the error in the latitude processing of the DKF approaches
a value closer to zero than the conventional KF.

Figure 12 shows the comparison of the prediction of the Kalman
Filter versus the Diffuse Kalman filter on the latitude signal con-
cerning time, and it can be seen that the FKF prediction fits better
concerning the original signal with noise.
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Figure 11: Comparison of Latitude Error (KF vs FKF)

Figure 12: Comparison of Latitude Prediction (KF vs FKF)

Figure 13 shows the comparison of the Kalman Filter versus the
Diffuse Kalman filter update on the latitude signal concerning time,
and it can be seen that the FKF update fits better concerning the
original signal with noise.

3.2.2. Longitude

Figure 14 shows the comparison between the two simulations of the
conventional Kalman filter and the Diffuse Kalman filter, where it is
noted that the longitude error in the Diffuse Kalman filter approaches
a value closer to zero than the conventional Kalman filter.

Figure 15 shows the comparison of the prediction of the Kalman
Filter versus the Diffuse Kalman filter on the longitude signal con-
cerning time, and it can be seen that the FKF prediction fits better
concerning the original signal with noise.

Figure 16 shows the comparison of the Kalman Filter versus
Diffuse Kalman filter update on the longitude signal concerning
time and it can be seen that the FKF update fits better concerning
the original signal with noise.

3.2.3. Altitude

Figure 17 shows the comparison between the two simulations of the
conventional Kalman filter and the Diffuse Kalman filter, where it is
noted that the altitude error in the Diffuse Kalman filter approaches
a value closer to zero than the conventional Kalman filter.

Figure 18 shows the comparison of the prediction of the Kalman
Filter versus the Diffuse Kalman filter on the altitude signal con-
cerning time and it can be seen that the FKF prediction fits better
concerning the original signal with noise.

Figure 19 shows the comparison of the Kalman Filter versus
Diffuse Kalman filter update on the altitude signal concerning time
and it can be seen that the FKF update fits better concerning the
original signal with noise.

4. Discussion

KF is a widely used filtering technique for predicting the state of
a dynamic system considering noisy measurements. However, tra-
ditional KF is designed for linear and Gaussian systems, which
limits its applicability to complex and nonlinear systems. The DKF
is an extension of the KF that allows estimation in nonlinear and
non-Gaussian systems by combining the Kalman Filter with fuzzy
logic [22].

Fuzzy logic helps to represent uncertainty and imprecision in
complex systems. DKF uses fuzzy sets instead of probability dis-
tributions to represent system states and measurements. This helps
to handle noisy measurements better and capture uncertainty in
nonlinear systems.

The advantage of the DKF is that it can handle complex, non-
linear systems, making it applicable in a wide range of areas, such
as robotics, navigation, economics, and biomedicine. In addition,
DKF provides more accurate and robust estimation than other non-
linear methods, such as particle filters. However, DKF also has
some limitations. The main one is computational complexity, as
the computation of fuzzy logic and updating estimates may require
more computational resources than the traditional Kalman filter.
In addition, proper selection of the fuzzy sets and DKF parameter
settings can be challenging and require specialized knowledge.

DKF can handle noisy measurements and non-Gaussian error
distributions by combining fuzzy logic with the Kalman filter. This
provides a more accurate and robust estimation of the system state,
which is crucial in applications where accuracy is essential, such as
real-time navigation or complex process monitoring.

DKF can also handle smooth transitions between various mod-
els or regimes, making it more adaptable and flexible. This is
particularly crucial in dynamic environments where systems face
disturbances, condition changes, or unforeseen events.

Using the KF and DKF to treat the GPS signal proved an excel-
lent option for reducing sensor error. However, there are much more
efficient techniques, such as the particle filter, that effectively treat
non-Gaussian noise and nonlinear models, especially in applica-
tions where the computational cost is cheap and the sampling rate is
moderate, so this line of research can obtain essential contributions.
Still, it must be addressed in the present work since it is not part of
the stated objectives.
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Figure 13: Latitude Updating Comparison (KF vs FKF)

Figure 14: Comparison of longitude Error (KF vs FKF)

Figure 15: Comparison of longitude Prediction (KF vs FKF)

Figure 16: Comparison of longitude Updating (KF vs FKF)

Figure 17: Comparison of Altitude Error (KF vs FKF)

Figure 18: Comparison of Altitude Prediction (KF vs FKF)
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Figure 19: Comparison of Altitude Updating (KF vs FKF)

5. Conclusions

This work proposes using the fuzzy Kalman filter with a GPS sensor
to maximize the accuracy in the prediction of position and velocity
in an autonomous vehicle. This work was divided into 3 essential
parts: the Kalman filter, the fuzzy control, and the simulation of the
signal from a GPS sensor, taking into account that in this last part, a
comparison is made in the behavior between the discrete Kalman
filter and the Fuzzy Kalman filtert.

In general, high-reliability values are achieved with position
estimation in GPS measurements. The variations depend very much
on how the position measurements are taken to model the noise to
which it is exposed. One of the advantages of the Kalman filter
is that it avoids the purchase of costly and accurate sensors since
if sensors with more accurate clocks and more advanced position
measurement techniques were considered, the costs would rise con-
siderably.

Finally, the benefit of using techniques related to Fuzzy Logic in
the design of fuzzy control is compelling, as it reduces the position
estimation error. The fuzzy Kalman filter is worth studying because
of its ability to handle complex and nonlinear systems, improve the
robustness and accuracy of estimates, incorporate expert informa-
tion, and adjust to model changes. Because of these qualities, the
fuzzy Kalman filter is a valuable tool in many estimation problems.
A comparison and analysis of the Fuzzy Kalman Filter, the Extended
Kalman Filter, and the Particle Filter is suggested for future work.
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