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Automated systems are increasingly exerting influence on our lives, evident in scenarios like
AI-driven candidate screening for jobs or loan applications. These scenarios often rely on
eXplainable Artificial Intelligence (XAI) algorithms to meet legal requirements and provide
understandable insights into critical processes. However, a significant challenge arises when
some XAI methods lack determinism, resulting in the generation of different explanations for
identical inputs (i.e., the same data instances and prediction model). The question of explanation
stability becomes paramount in such cases. In this study, we introduce two intuitive methods
for assessing the stability of XAI algorithms. A taxonomy was developed to categorize the
evaluation criteria and the ideas were expanded to create an objective metric to classify the
XAI algorithms based on their explanation stability.

1 Introduction

As artificial intelligence (AI) becomes increasingly integrated into
people’s lives, a notable trend can be observed: automation of pro-
cesses and domains that significantly impact the well-being and
future prospects of individuals. For example, the initial screening
of job applicants can be considered. Given the substantial human
resource expenditure involved in this process, a compelling case
can be made for its automation. Candidate scores can be calculated
using artificial intelligence, as demonstrated in previous research
[1]. Refer to Figure 1 for more details. Nevertheless, the decision-
making process utilized by the underlying machine learning model
presents a challenge. The accumulation of applicant information
often results in a lack of transparency, a concern shared by HR
managers, companies, applicants, and regulators alike.
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Figure 1: The job application pipeline is depicted here. On the left, the input values
predicted by the ML model are displayed, while on the right, the corresponding
results are presented. Transparency issues arise when the information density is
reduced to a single numeric value. This lack of transparency makes it neither intuitive
nor comprehensible for the stakeholders involved. The question of: ”What impact
does feature x had on the prediction?“ arise.

One viable approach to address this concern is the integration of
explanation algorithms, often referred to as XAI algorithms. This
strategy enables visualization of model decisions in an understand-
able way. Additionally, both the transparency and the validity of
the predictive model can be improved, ensuring that the needs and
expectations of the relevant stakeholders are met.

However, it is essential to recognize that not all explanatory
algorithms can be used without restrictions in high-stake areas 1.
This journal paper extends the work originally presented in IEEE
ICCI*CC’22 [1]. The stability of the explanations was investigated
through different XAI approaches and ranked according to their
results. This was achieved by quantifying the feature importance
values (FIVs). In this work, the state of the art for the evaluation
of XAI explanations is presented, and the taxonomies found are
expanded or modified in terms of the aspect: stability. The corre-
sponding research questions are as follows.

• RQ1: What does the stability of an explanation mean?

• RQ2: How can the explanation of an XAI algorithm be mea-
sured in terms of stability?

By that, the following hypothesis can be stated: ”High stability
of an explanation is observed when the explanation undergoes mini-
mal changes in response to minor variations in unimportant features
of the data instance.“

*Corresponding Author:University of Applied Sciences Zittau/Görlitz, Faculty of Electrical Engineering and Computer Science, Görlitz, 02826, Germany,
Email: falko.gawantka@hszg.de

1This domains could harm people or the future of a person, for instance here the HR use case represents an automated decision that has an impact on a person.
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For example, in the case of an HR applicant selection process, a
change in the input features (i.e. 14 vs 16 YearsInJob) should not
produce a substantially different explanation.

The paper is organized as follows. In section 2, metrics and
evaluation techniques for XAI algorithms are presented, and the
foundations of XAI and representative methods are discussed in
detail. In section 3, an approach to quantify explanation stability
is introduced. The details and limitations of previous approaches
serve as a basis for a new scoring metric. The results are shown in
section 4. Potential future research directions are outlined in the
discussion in section 5.

2 Related Work and Background
For a deeper understanding and examination of XAI algorithms,
an overview of evaluation taxonomies, methodologies, and the un-
derlying calculation models is provided, forming the theoretical
foundations. In addition to that, some background information are
provided to enhance the understanding of XAI. This work aims to
be considered as best practices in the selection process of XAI al-
gorithms for real-world use cases, with the objective of uncovering
a comprehensive understanding of the model with high stability to
the respective explanation of XAI.

2.1 Related Work on XAI evaluation

To explore the stability of an explanation result, this subsection first
defines the relevant properties/criteria. It then provides an overview
of the measuring techniques and presents the mathematical founda-
tions.

2.1.1 Notions by different Taxonomies

In the work of [2], a comprehensive taxonomy is introduced, a dis-
tinction is made between the user aspect, the explanation aspect and
the model aspect. The focus of this work lies on the explanation as-
pect. In this aspect there are two further sub-criteria defined by [2],
which have to do with stability: Identity and Separability. Identity is
defined by: “ identical instances should have identical explanations”
and Separability is defined by: “non-identical instances should not
have identical explanations” [2]. To describe these two aspects, one
can think of the ends of a scale.

A paper cited by [2] was that of [3] that defines Stability as: It
represents how similar are the explanations for similar instances.
While consistency compares explanations between different mod-
els, stability compares explanations between similar instances for a
fixed model. High stability means that slight variations in the feature
values of an instance do not substantially change the explanation,
unless these slight variations also strongly change the prediction.

Nonetheless, a lack of stability can also be created by non-
deterministic components of the explanation method, such as a data
sampling step. Regardless of that, high stability is always desirable.
This definition brings another dimension into play. The author in
[2] speaks only of “identical instances”, and [3] also mentioned the
predictor by constructing a context around the instance and saying
that there is also a predictor and an instance.

Following the definitions in [2], the author in [4] describes in
the work the so-called Co-12 properties. The Consistency property
coincides with the Identity criterion from [2]. Consistency is defined
as: “Identical inputs should have identical explanations” [4]. The
term inputs can be defined by the data instance as well as the ML
model. In this context, the model’s perspective is integrated, with
the rest remaining consistent with the definition in [2]. And there
is also a second aspect in [4], which can be equated with Stability
in [3]. The term Continuity introduced by [4] is defined as follows:
“Similar inputs should have similar explanations” [4]. The use of
similar inputs could mean both the model view and the data view.

Besides the Stability notion by [3] and the term Continuity by
[4] there is a another work [5], where the author measured the Sta-
bility of XAI algorithms. The underlying assumption was that: If
the inputs are almost identical, then it is expected that only minor
changes appear in the explanation. This can be used as a scoring
metric for the stability of an XAI algorithm. The term almost identi-
cal refers hereby to similar and therefore matches the understanding
of Stability by [3] and the notion Continuity from the work of [4].
The author in [5] gives no explicit definition, but: “similar instances
and an identical model should have similar explanations”, could be
suggested as a common understanding for the property of Stability.
Another property or criterion investigated in [1] was the Repro-
ducibility/Stability of the explanation. This refers to an aspect in
which an identical model predicts an identical data instance several
times (i.e., 10 times, 100 times, and 1000 times). In the context of
the reproducibility of explanation stability, Reliability would be a
more appropriate term than the one chosen by the author.

The entire notions of the taxonomies are grouped and summa-
rized on the Stability Scale and could be seen in Figure 2.
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Figure 2: Stability Scale: The scale visualize the different terms and group them on
the scale to show what terms could be used interchangeable.

The focus of this work lies in unifying different schools and
terms, proposing concrete measuring techniques, and establishing a
strong foundation from the mathematical perspective of XAI evalu-
ation metrics.

www.astesj.com 134

http://www.astesj.com


F. Gawantka et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 1, 133-142 (2024)

2.1.2 Quantifying XAI through Feature Importance Values

A formal introduction into machine learning is initiated, drawing
inspiration from a more detailed section in [6]. A comprehensive
introduction to artificial intelligence is available in the textbook [7].
The notion of explanation method is taken and adapted from [8].

Feature importance values are used to quantify the explanations.
These are numerical scores that help to evaluate the relative signifi-
cance of individual features of the model’s predictions, thus offering
transparency and interpretability. It is important to note that the
choice of the feature importance method matters and that different
methods may lead to varying results. Therefore, careful considera-
tion is needed to select the most appropriate method for a particular
application. Adopting the notions presented in subsubsection 2.1.1
to the feature importance values will provide evaluation metrics to
support the selection of data-driven methods.

In the context of supervised learning, XAI and the feature impor-
tance values will be considered. This is based on two fundamental
components: the model and the data. Given an input domain X and
an output domain Y , supervised learning aims to predict an output
y ∈ Y for given x ∈ X. In the example of classifying job applicants,
the input domain X reflects the data structure of the applicant pro-
file, while Y encodes the job profiles. The prediction mechanism is
described through a mathematical model that can be deterministic
or probabilistic.

A deterministic model is a function f : X → Y that predicts
exactly for a given input x ∈ X an output f (x) ∈ Y . This can be
a classification prediction, in case Y is a discrete set, or this can
be a regression prediction, if Y is a continuous set. For example f
assigns a job profile y ∈ Y to each applicant for a job x ∈ X.

A probabilistic model is a probability distribution p : X × Y →
[0, 1]. It can be recognized as a full distribution, giving the prob-
ability of assignment of x ∈ X and y ∈ Y by p(x, y), or it can be
recognized as a conditional distribution, providing the probability
of output y ∈ Y for chosen x ∈ X by p(y|x). In the latter case for
example, p would encode the probability that an applicant’s profile
x ∈ X will be classified as job profile y ∈ Y .

In either deterministic model or probabilistic model, the under-
lying function is usually parameterized. Training the model means
optimizing the parameters to achieve good predictions, based on a
data set {(x1, y1), . . . , (xm, yn)} ⊆ X × Y .

The input data are commonly structured data X = X1 × · · · × Xn

with the notion of a feature being applied context-dependent to any
primitive domain Xk or to any data entry xl ∈ Xk or instance x ∈ X.
The output y ∈ Y is called the label.

In the remainder of the paper, all models are considered to be
deterministic. The set of all (deterministic) models is denoted by
F = X → Y .

Having a (trained) model f , an explanation methodΦ : F ×(X =
(X1, . . . , Xn))→ Rn attributes an importance score Φ( f , x)i to each
feature xi describing its impact on prediction f (x). The range of
feature importance values is method-dependent. Common choices
are (−∞,∞) for SHAP, (0, 1) for Gini importance, (0,∞) for Gain,
(−1, 1) for Correlation Coefficients.

Using this notion, Consistency means that Φ( f , x) evaluates to
the same value, regardless of how often it is calculated. Obviously,
this is always fulfilled, making the term irrelevant in the context of

feature importance values. But still, a similar metric might be useful,
as certain XAI methods, e.g. surrogate explainer methods, train a
model and try to approximate the original ML model, e.g. LIME is
such a method. In fact, each LIME instance Φ( f , x) might behave
differently depending on the training data points used. Demanding
that explanations at least do not deviate much would be a natural
extension of Consistency.

Thus, in [1], another evaluation criterion known as Reliability is
mentioned here. For every call of Φ an element is added to the result
set {Φ(r)( f , ·)}r. One can expect that a statistical quantity that mea-
sures the deviation, such as the length of confidence intervals, will
decrease with increasing r. However, its rate of decrease provides a
measure for Reliability.

The definition of Reliability is shown in the following equation:

{Φ(r)( f , ·)}r =
{ 

f ivi=1
...

f ivi=s


r=1

, · · · ,


f ivi=1
...

f ivi=s


r=c

}
(1)

In Equation 1 the result of a single call from Φ is shown as vector.
For every call r an explanation vector (F⃗) is calculated, so f ivi ∈ F⃗.
The result is a set of vectors that represents a matrix.

Based on this aspect, the mean over the 1st feature importance
value from r-repetitions could be defined by:

µF(i=1) =
1
c

c∑
r=1

f iv(i=1)r (2)

Therefore the variance could be calculated by the mean:

σ2
F(i=1)
=

1
c

c∑
r=1

( f iv(i=1)r − µF(i=1) )
2 (3)

The standard deviation for a single feature importance value is
then calculated from:

σF(i=1) =
√
σ2

F(i=1)
(4)

Finally, the deviation can establish the foundation for the confi-
dence interval of a single feature importance value.

CIF(i=1) = µF(i=1) ± (z = 1.96) ·
σF(i=1)
√

c
(5)

In the previous equations, an approach was presented to calcu-
late the confidence interval of the single feature importance value of
the feature importance vector F⃗. When this is done over the entire
feature importance vector and then the mean is built on top of it, this
matches the metric from [1]. This calculation process is denoted by
R(x).

The intuitive definition of Stability involves small perturbations
of an instance that result in only minor changes to the explanations
under the same model. To be numerically tangible this definition
has to be measurable, hence the notion of correlated small changes
needs to be quantified. In [9] the explanation methods SHAP and
LIME are evaluated in terms of Lipschitz continuity, using the best
Lipschitz constant as a stability measure. This approach is gener-
alized while keeping it local (depending on the chosen data point).
Furthermore, it will be demonstrated that the different stability mea-
sures previously used fall under this umbrella.
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Lipschitz continuity can be defined in a general sense for metric
spaces as follows: A function f : X → Y between metric spaces
(X, dX) and (Y, dY ) is called Lipschitz continuous if there is a real
constant L ≥ 0 (referred to as Lipschitz constant) such that for all
x, x̃ ∈ X,

dY ( f (x), f (x̃)) ≤ LdX(x, x̃) . (6)

This is, the distance of the images of f is bounded by the distance
of the respective arguments up to a constant factor. In case of local
explanation methods, e.g. as SHAP and LIME are, an instance-
independent constant is not attainable. Therefore, we will base
the definition on a data point-dependent Lipschitz factor within a
neighborhood of the data point.

Let X be an input domain, equipped with the metric dX . Let Y be
an output domain equipped with the metric dY . Let f ∈ F = X → Y
be a model, and Φ : F × X → X be an explanation method. An
explanation Φ( f , x) can be termed ε-stable if there is a local real
constant L(x) ≥ 0 such that

dY (Φ( f , x),Φ( f , x̃)) ≤ L(x)dX(x, x̃) (7)

for all x̃ ∈ Nε(x) = {x̃ ∈ X : dX(x, x̃) ≤ ε}. The Lipschitz factor L(x)
can be seen as a stability measure. The lower L(x), the smaller the
deviation, the higher the stability. Finding small Lipschitz factors
can be done using the Monte Carlo method. Examples from the
literature will be provided that specify the notion of stability.

Example 2.1. In [9] the metrics are induced by norms, resulting in
Nε(x) = {x̃ ∈ X : ∥x − x̃∥ ≤ ε}. The best Lipschitz constant is given
by

L(x) = max
x̃∈Nε(x)\{x}

∥Φ( f , x) − Φ( f , x̃)∥
∥x − x̃∥

. (8)

An approximation can be done by sampling with {x1, . . . , xn} ⊂

Nε(x).

Example 2.2. In [10] an evaluation metric for XAI methods called
Max-Sensitivity was introduced. The concept is taken up by [8]. To
derive the term, the inequality is revisited (7) and relaxed to

dY (Φ( f , x),Φ( f , x̃)) ≤ εL(x) = L′(x) . (9)

Now, again using norms as distance metrics, L′(x) can be obtained
by

L′(x) = max
x̃:∥x−x̃∥∞≤ε

∥Φ( f , x) − Φ( f , x̃)∥2 . (10)

This is in fact the Max-Sensitivity metric. Again, it can be approxi-
mated by sampling.

Example 2.3. The work [5] considers a similarity measure by first
generating data points by perturbing a feature around 1% and then
evaluating the ratio of original feature importance value and per-
turbed feature importance value for that feature. Furthermore, the
feature importance values are normalized so that they form a proba-
bility distribution.

Modifying this approach by allowing perturbations of at least ε,
which bounds the values around one percent, allows to extend this
measure to

S i(x) = max
x̃∈Nε(x)

∣∣∣∣∣∣1 − Φ( f , x)i

Φ( f , x̃)i

∣∣∣∣∣∣ . (11)

Therefore, S i(x) is the best similarity to the feature i that all
x̃ ∈ Nε(x) fulfill. As a combined score for all features could be

S (x) = max
x̃∈Nε(x)

∥Φ( f , x) − Φ( f , x̃)∥∞
∥Φ( f , x̃)∥∞

. (12)

On one hand, this is similar to Lipschitz-based stability criteria; on
the other hand, it effectively demonstrates that the criteria proposed
in [5] normalize the feature importance values.

2.2 Background of XAI Taxonomies

At this point, eXplainable Artificial Intelligence is introduced as a
field of study within the domain of artificial intelligence, along with
an explanation of its associated focuses and terminology.

In [11, p. 3511] the author defines XAI as ”the study of explain-
ability and transparency for socio-technical systems, including AI.“
The 2019 XAI Taxonomy by [12] introduces important terms in
explainable artificial intelligence. Later, in [13] used this taxonomy
as a decision-making tool to choose the appropriate explanatory
algorithms for the IBM AIX 360 tool. The tree structure of the
taxonomy of [13] was transformed into a tabular format and can be
seen in Table 1. The focus of this work is to provide an overview of
explanatory models, which is highlighted in the table. The data leaf
is not shown in the table and the interactive path is actually empty.
The explainability of the model has a local and a global path; that
is, there is a distinction between explaining the data sample and
explaining the predictive model. Local interpretations of a single
data instance can be done ante-hoc, i.e., the predictor is so compre-
hensible that a closer look serves as an explanation, for example,
when the ML model is a simple decision tree. The other path, called
XAI post-hoc methods, needs at least one execution of the predictor
to produce information about the decision process of the ML model.
The global model explanation is divided into two parts. The direct
methods have the notion of direct interpretable and could be seen as
ante-hoc. Post-hoc refers, in contrast to that, to algorithms that can
create an explanation.

Due to rapid development in the field of XAI, the results of
Table 1 are supplemented by other essential terms. The simple XAI
taxonomy of [14], as well as the more sophisticated categories of
[15], served as the basis for the following taxonomy, which has
three sub-categories. The first sub-category is shown in Table 2.

Table 1: This IBM XAI Taxonomy is derived from the decision tree presented in
[13], and serves as a guide to find a suitable XAI method. This overview focuses
specifically on the model explanation aspect and does not present specific algorithms.

model
local global

ante-hoc post-hoc direct post-hoc
samples features surrogate visualize

In Table 2, the distinction between XAI algorithms is made
based on the creation of the explanation. For example, Local Pertur-
bation methods try to modify the input and find important features
as well as their corresponding feature importance values [14, 15].
The methods in Leveraging Structure use internal information from
the ML model, such as gradients, like Backprop in the paper by
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[14]. Meta Explanations abbreviated with Meta-Expl. exploit ex-
planations from different explanatory methods, and Architecture
Modification abbreviated with Arch. Mod. algorithms alter the
predictor with the goal of finding simpler representations [15]. Ex-
amples Methods derive explanations from input data and use the
output as an interpretation for similar inputs.

Table 2: This table presents the functional part by the XAI Taxonomy according to
[14] and [15]. The methods are classified based on their functional interaction with
the predictor model.

funtional approach
Local
Perturbation
(Perturbation)

Leveraging
Structure

Meta-
Expl.

Arch.
Mod.
(Backprob)

Examples

Another classification uses the output of the explanation ap-
proaches, which is shown in Table 3. The first sub-category is the
weighting of feature importance values that provides information
on which features have an influence and how great this influence
is. Surrogate Models try to approximate more complex models by
focusing only locally or by generally using ante hoc explanatory
models. In addition, example-based methods are also used here.
[15]

Table 3: The scope of this part from the introduced XAI Taxonomy according to [14]
and [15] is focused on the results that different explanation models provide. As it can
be seen there are Feature Importance as well as Example explanations and Surrogate
Models that can explain black box models.

result approach
Feature
Importance

Surrogate
Models Examples

The conceptual approach, shown in Table 4, is the last category
introduced by [15] and covers all aspects that were introduced by
[14] in 2020. Further breakdowns are made into the usage, the scope
of the explanation, and the other dimensions. The usage includes
procedures that can be explained from the outside or XAI algo-
rithms that provide a model agnostic (model-agno.) or model spe-
cific (model-spec.) explanation after the predictor model. The scope
describes the range of what is explained, e.g., the complete/global
ML model or individual data instances. Other dimensions include
outputs, among others [15]. IBM researchers suggest the following
approaches for a feature-based explanation: CEM [16], LIME [17],
and SHAP [18]. To understand the decision underlying the model,
it is not enough to explain the sample (data instance), but it is funda-
mental to explain the impact of each feature on the decision. Based
on the explanations for each feature, it may also be possible to
identify bias. Considering the subject of evaluation, it is necessary
to generate nearly equal outputs, falling into the sub-category of
Feature Importances. In the proposed use case shown in section 1,
and given the axiom that explanations are an advantage of decision
support systems (DSS), the easiest way to implement this is to use
local post-hoc Methods. A summary of suitable methods and their
limitations is presented.

Table 4: This view of the XAI taxonomy from [14] and [15] highlight the explanatory
capability of XAI methods. The main questions addressed here are: what is being
explained and whether the explanation can be obtained from the XAI method before
the machine learning model makes predictions. Additional information related to the
XAI approach and the problem domain is also provided.

conceptual approach
stage (usage) scope other dim.

ante-hoc post-hoc glo. loc. res. issues

model-
agno.

model-
spec./
(intrinsic)

2.3 Background of XAI Algorithms

In this sub-section are reviewed three XAI methods such as LIME
(Local Interpretable Model-Agnostic Explanations by [17]), SHAP
(SHapley Additive exPlanations by [18]) and CIU (Contextual Im-
portance and Utility by [19]). To describe these algorithms, two
definitions are needed, namely deterministic and nondeterministic
algorithm.

An algorithm whose behavior depends entirely on the input data
is called deterministic. Thus, processing the same input data always
leads to the same result. A nondeterministic algorithm is an algo-
rithm that specifies several ways to process the same input data -
without any specification of which option will be chosen, which can
lead to either the same or different output [20].

2.3.1 LIME

The idea behind LIME is to consider the local model as a black
box model. The mode of operation of LIME is based on perturbing
an original data point as input into the black box model and using
the resulting predictions to train an interpretable surrogate model,
which locally approximates the predictions of the black box model.
The explanation provided by LIME is defined by:

ξ(x) = argmin
g∈G

L( f , g, πx) + Ω(g) (13)

In Equation 13, ξ is the explanation of instance x, which is
obtained through an optimization task. The function g is an inter-
pretable local model, and G is a class of potentially interpretable
models. The function f is the original predictor and πx defines the
radius of the neighborhood around instance x. L is the loss function
that measures the accuracy of the prediction of the instance x with
respect to the interpretable model g and the original prediction of f
in the area of πx around the original prediction. Ω is a complexity
measure of g and serves as a penalty function.

LIME calculates feature importance values that show the con-
tribution of each feature for and against a prediction in a certain
class. LIME values are numerical, where a negative numerical value
indicates that this feature is not in favor of the prediction. On the
other hand, a positive numerical value shows that this feature has a
positive influence on the prediction.

The advantages of LIME are the simple explanations diagrams
and the ability to process various types of input [21]. However,
LIME has some disadvantages: it provides only local explanations
and does not show this to the end user. The interpretation of the
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importance plots is often hard to understand by nonexperts. The
algorithm has consistency issues and can be attacked by adversarial
examples [21].

The consistency issues with LIME are not only related to mini-
mal changes in features but also to the fact that such changes can
lead to completely different explanations. In previous experiments
with LIME, it has been shown that by iterating with LIME over the
same data instance 10, 100 and 1000 times, the inconsistency is also
present [1]. These results and [22] show that the LIME algorithm is
nondeterministic.

2.3.2 SHAP

The idea of the SHAP algorithm has its origins in the game theory.
Calculate the extent to which a coalition (set of features) contributes
or does not contribute to a particular classification based on the
so-called Shapley values. The implementation used was the im-
plementation by [18], known as SHap Additive exPlanations. The
following definition describes the generation of explanations by the
algorithm [18, 23]:

g(z′) = ϕ0 +

M∑
i=1

ϕiz′i (14)

The function g describes the explanatory model and z′ describes
the data instance to be interpreted. The variable, z′ may have only
a subset of all features. The explanation is generated by a linear
model, where ϕi ∈ R and z′i are either zero or one, to represent the
presence or absence of a value from the feature set z′ [18].

The author in [18] presents various explainer models in the
framework, and the model used in [1] was the kernel explainer. The
computational model approximates Shapley values with perturba-
tions of z′. Thus, the complexity problem of computing Shapley
values could be solved. SHAP also generates feature importance val-
ues such as LIME. A higher FIV of SHAP means that it contributes
more to a prediction than a smaller one. A negative feature value
argues against a prediction in a class and a positive value argues for
a particular prediction.

SHAP also has some advantages: first, there is the sophisti-
cated mathematical model for greater consistency and accuracy
[17, 21, 23]. Besides that, the better intuition about feature weights,
which is more related to humans, is another reason mentioned in
[21]. Even though SHAP comes in hand with several advantages,
the algorithm is non-deterministic [24], the approximation time of
the Kernel SHAP is an issue [21, 23] and SHAP is also vulnerable
to adversarial attacks [21].

2.3.3 CIU

The third model-agnostic algorithm is based on Decision Theory,
more specifically, based on the subdomain of Multiple Criteria
Decision Making (MCDM). In contrast to LIME and SHAP, this
approach distinguishes between the measured importance and the
utility of an attribute. Based on the relevance of the features, the fo-
cus lies on contextual importance (CI). This is described in [19, 25]
as follows:

CI j(C⃗, {i}) =
Cmax j (C⃗, {i}) −Cmin j (C⃗, {i})

absmax j − absmin j
(15)

The explanation model CIU calculates with the function CI j the
importance of feature i in the feature vector C⃗ for an output label
(value) j. The function Cmax j determines the maximum output of
the prediction j for a certain feature i. The Cmin j calculation follows
a similar approach. The functions absmax j and absmin j determine
the highest and lowest prediction from the given data set. More
details are provided in [19, 25, 26].

The CIU values are in the interval between 0 and 1, where a
higher numerical value represents a greater influence on the predic-
tion and vice versa. A value of 0 means that the attribute does not
influence the prediction. In contrast to the other methods, in which
negative values argue against a classification, this is not the case
here (i.e., values are between 0 and 1).

The advantages of the CIU algorithm are the different working
calculation model and the absence in the questions of consistency
(such as in LIME), as well as the calculation time as in SHAP [1].
Thus, this algorithm is suitable as a control method in the group of
model-agnostic methods like in [9]. In [1] it is shown that CIU has
the best stability during different runs with the same instances to ex-
plain, i.e. in terms of repeatability it is a good benchmark for SHAP
and LIME. The problem with the value interval of 0 to 1 was solved
in [9] by introducing a threshold value as a decision boundary. If
feature values exceed this limit, the value has a positive influence
and vica versa. Despite the advantages of the CIU algorithm, it
is also non-deterministic, due to its randomized data sampling for
numeric values, which the HR use case currently is [25].

3 The Idea
According to [2] there are two key criteria when you want to quan-
tify the stability of explanations. The first aspect is the Identity
criteria, i.e., that you should have identical explanations for identi-
cal instances. The second criterion is the Separability, which means
that when the data instances are not identical, the explanation should
not be identical.

The initial proposal of this work is to understand that these two
criteria are at different ends of the same scale. The next step is to
expand this scale by the criteria that are also presented in subsubsec-
tion 2.1.1. A representation of the so-called Stability Scale is shown
in Figure 3. The following sub-sections explain the development of
the scale in greater detail.

Separability

Reliability Stability

Consistency

Figure 3: Stability Scale and their aspects (sub-criteria, properties)

3.1 Unification of Notions

For the standardization of notions (terms) the left end of the scale in
Figure 3, serves as a fix point, from that other properties (terms), or
criteria are explained. In Figure 2 there are two notions shown at
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this fix point: Consistency and Identity. According to the definition
of Identity in [2] it is mainly focused on the instances and this could
lead to the idea that only the data instances are mentioned. In con-
trast, the definition of Consistency by [4] includes the data instances
and the predictor is considered. That means, the scope is broader
and not only data-centered. Due to this, the notion Consistency is
preferred, because of its wider scope.

Since the term Reliability, which comes next to Consistency, is
not considered in the other works, it is not necessary to unify this
notion with another.

Stability comes next to Reliability and in Figure 2 it is shown
that there are three notions. The definitions of the notions are very
similar, according to the majority usage of the term Stability, it
could be used as a common notion.

The right end of the scale, which is denoted with Separability, is
only mentioned by [2] and there is also no need for a standardization.

It could be summarized that the initial idea, denoted in this work
as Explanation-Stability, could be seen as an aspect of an explana-
tion produced by an XAI algorithm. When it comes to details, it
could be stated that this aspect of stability has sub-criteria and the
initial notion is not sufficient, that means the Stability Scale repre-
sents all kinds of aspects related to the proposed notion Explanation-
Stability.

3.2 The Notions of this work in Detail

In the following, it is explained why the notions (sub-criteria) are
ordered as seen in Figure 3. As a foundation, the arrangement of
the sub-criteria of Explanation Stability in Table 5 was employed.

Table 5: Comparison of sub-criteria from the Explanation Stability according to
[1, 2, 3, 4, 5]. The abbreviations used in the table are: id. as identical, sim as similar.
The aspects of the comparison are the input, the output (that is, the explanation),
and the constraints. The yellow-highlighted terms indicate the differences from the
previous row, specifically in comparison to the stricter criterion.

InputsNotion model data Explanation Constraints

Consistency id. id. id. determinism
Reliability id. id. highly sim. –
Stability id. sim. sim. –

Separability id. non-id. non-id. different
instances

The sub-criteria Consistency is the most strict criterion because
of the common definitions of [2] and [4]: “identical inputs should
result in identical outputs”. Despite this, [3] mentioned in their defi-
nition of Stability that: “Nonetheless, a lack of stability can also be
created by non-deterministic components of the explanation method,
such as a data sampling step. Regardless of that, high stability is
always desirable”. In this work, where Stability is examined in
detail, the constraint of determinism is assigned to the Consistency
criteria as the strongest requirement for stability.

A weaker requirement in terms of stability is Reliability. In
Table 5, the second row summarizes this criterion. The inputs are
the same as in the Consistency row, with the explanation being only
highly similar compared to the first criterion. Therefore, this stabil-
ity aspect could be fulfilled by nondeterministic XAI algorithms. To

ensure uniform inputs and solely vary the output – specifically, the
explanation property – the stability aspect here is weaker compared
to Consistency.

Another stability property denoted by Stability is not as strong
as the Reliability criterion. The only identical input is the model
(i.e., the predictor), while the data instances are only similar, rep-
resenting slight variations of an original data point. Consequently,
the explanations are only similar, not identical or highly similar.
This implies that the stability aspect, denoted as Stability, has less
stringent requirements than both Consistency and Reliability. Con-
sequently, it can be concluded that Stability is the least demanding
stability criterion represented in Figure 3.

The Separability property, situated at the opposite end of the
scale, asserts that two fundamentally different instances should not
produce the same explanation on the same ML model. This high in-
stability contrasts with or complements Consistency, measuring an
opposite aspect on the Stability Scale. The summarized information
is visualized in Figure 4.

Explanation-Instability ScopeExplanation-Stability Scope

Separability

Reliability Stability

Consistency

strongest
sub-criteria

weakest
sub-criteria

Complement

Figure 4: The proposed Stability Scale is shown here with additional context, starting
from the left with the strongest criterion, up to the right with the complement of
stability. The relations between the stability aspects: Consistency, Reliability and
Stability are presented in this overview.

3.3 Mapping of Stability Criteria and Measures

At this point, it can be stated that there is an overarching concept
for the stability of an explanation produced by an XAI approach.
This term was introduced as Explanation-Stability and has three sub-
criteria of stability. In order to quantify the Explanation-Stability
objectively and to take all aspects into account, one should measure
all sub-criteria of stability.

However, the properties of the XAI algorithms should be taken
into account (subsection 2.3). In the proposed use case of [1], all
XAI procedures are post-hoc approaches that generate local ex-
planations. The explanation is of the type where each predicted
feature f (xi) is associated with a feature importance value Φ( f , x)i.
Therefore, for every explanation method Φ, the stability has been
measured.

In case that all XAI approaches lack in terms of determinism,
this stability criterion is very hard to fulfill by the used approaches.
Therefore, more realistic stability measures such as Reliability and
Stability are focused when measuring nondeterministic XAI algo-
rithms. An overview of the measurement approaches assigned to
the XAI methods used is shown in Table 6.

After assigning concrete stability measures, it is now denoted as
Explanation-Stability-Metric due to the use of single stability-metric
approaches.
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Table 6: Assigning the proposed stability measures to non-deterministic, post-hoc
explanation methods is discussed in detail in section 2.

Explanation-Stability
XAI Algorithm Consistency Reliability Stability
LIME (2.3.1) violate

determinism R(x) S(x)SHAP (2.3.2)
CIU (2.3.3)

3.4 Problems of Reliability and Stability

Even though the proposed approaches of the reliability measure-
ment, presented in [1], as well as the stability analysis in [5] deliver
highly valuable information about the quality of a certain XAI
algorithm, the information are limited to one sub-criteria of the
explainable models. The confidence interval method in [1] focuses
on approaching the problem of Reliability, by conducting a test with
the same data samples/models and with the expectation of highly
similar data explanations. However, this approach lacks information
regarding the stability of an XAI model.

To solve that, the paper [5] implements a method to evaluate the
stability of an XAI model, by conducting changes on the input data.
In contrast to [1], however, information regarding the reliability are
missing. In addition, outliers are treated as regular explanations,
which negatively effects the overall stability performance of the
algorithm. An example for that can be seen in Figure 5, where
several XAI algorithms are compared based on the similarity of the
explanations in the feature ”Income”. By that, it can be seen that
for instance LIME suffer from a high data dispersion because of
several outliers. Due to a 1% change in one of the input features, the
explanation similarity is expected to be in a range of 99% to 101%,
where 100% refers to an identical explanation. However, algorithms
like LIME seem to be prone to outliers. To avoid an overall biased
score, those outliers needs to be handled accordingly.

Besides those problems, both papers do not provide a reference
point, specifically an optimality criterion that serves as a baseline
for gauging the algorithm’s performance at its optimum. Instead,
the only available approach is to compare algorithm A with an-
other XAI method to determine whether algorithm A outperforms
or underperforms in relation to algorithm B.

It can be concluded that stability measures are highly valuable
when, combined because they address both stability aspects. Addi-
tionally, the use of an optimality criterion for the reliability metric
is particularly interesting when evaluating the stability of an indi-
vidual XAI algorithm. When considering the stability metric, it is
important to take outliers into account.

3.5 Improvements of Reliability and Stability

To solve the problems mentioned in subsection 3.4, the current ar-
ticle presents a novel metric to evaluate current XAI solutions by
combining the strengths of several XAI criteria. In particular, based
on the approaches presented in equations R(x) and Equation 12,
the metric returns a vector of the corresponding scores to evaluate
the XAI models. Since multiple aspects are considered, the metric
provides an objective overall perspective on the performance of
an XAI algorithm. In addition to that, the result vector enables

comparability to other XAI models to find the best solution for the
corresponding use-case.
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Figure 5: Algorithm Comparison about the similarity of the explanations for the
feature ”Income“ - representation of the feature importance similarities for the data
pairs. The similarity measures the percentage match between the explanation of the
original data sample as well as the one with a feature change of around 1%. The
results of SHAP, LIME and CIU are compared.

4 Results

The motivation for the novel approach to assess the stability aspects
of XAI explanations was derived from the need to unify various
notions. A comprehensive foundation was established through an
extensive review of survey papers and articles on stability, including
references such as [1]–[5]. This research aided in the identification
and consolidation of the most relevant concepts and terms, forming
the basis for the proposed Stability Scale, as depicted in Figure 2.

After gathering all key ideas and notions, a suitable process for
unifying terms is detailed in subsection 3.1. The proposed and con-
sistent scale is presented in Figure 3. The suggested notion of the
XAI explanation stability is Explanation-Stability, it is important
to emphasize that this is an overarching concept. For a more de-
tailed view, the Explanation Stability is defined by three sub-criteria.
These are visualized on a scale and ordered by their strictness ac-
cording to Table 5. In fact, by defining the table and identifying
these sub-criteria, research question RQ1 is fully answered.

Considering the real-world scenario presented in [1], it can be
concluded that the Explanation-Stability construct of nondetermin-
istic XAI approaches deteriorates in only two of the three criteria,
namely Reliability and Stability. Furthermore, the outstanding idea
of this work is to propose a concrete measurement approach for ev-
ery stability aspect (sub-criterion). The sub-criterion of Reliability
is measured by R(x) and Stability is measured by S (x), this concept
is denoted as Explanation-Stability-Metric. Measures are described
in depth in subsubsection 2.1.2 and improvements are identified in
subsection 3.4.

This level of explicitness is unprecedented; unlike [2, 3], which
provided only evaluation criteria and definitions. These works and
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considerations were pivotal when addressing the overarching ques-
tion: “How can we evaluate XAI in general?” When the focus
narrows to evaluating specific aspects, such as the actual explana-
tion, and the scope is tightly defined, sources are rarely limited.
Developing a new standard for evaluating XAI methods entails con-
structing a robust foundation from an initial and intuitive idea. This
process involves being highly specific and thereby bridging existing
gaps.

In addressing research question RQ2, the newly proposed ap-
proach, known as Explanation-Stability-Metric, has the potential to
provide at least a partial answer to nondeterministic XAI approaches.
With additional effort, expanding the metric to incorporate the sta-
bility aspect of Consistency, it could also be applied to deterministic
XAI methods.

The key idea is to provide a holistic measure of Explanation-
Stability; therefore, it is necessary to furnish information about
stability. Upon the development of an initial outcome from the exe-
cution of this metric, a stability vector would provide all stakehold-
ers with sufficient information to better trust, build, and comprehend
AI models. Furthermore, this work should contribute to making
autonomous systems applicable in high-risk domains.

5 Discussion

Future work and assumptions are considered to enhance the new
stability assessment approach outlined in this study. Firstly, the
question arises: “How useful is the addition of the stability metric
for Consistency concerning nondeterministic XAI methods?”. This
can be achieved by incorporating a distance measure that supports
multidimensional data, such as the Euclidean distance. This en-
hancement provides a more objective overview of stability, which
is valuable even when these methods produce less accurate scores
than deterministic methods.

In the proposed stability metric, a complementary aspect to Con-
sistency, referred to as Separability, was identified. Its addition
could prove beneficial not only for measuring stability aspects but
also for assessing instability, as mentioned in subsection 3.2. This
broadens the scope of stability and introduces a related aspect into
the metric. However, the inclusion of these two additional criteria
requires further exploration in future work.

Considering the scope of stability, measuring all four sub-criteria
could prove valuable, potentially making this approach applicable
to deterministic XAI algorithms.

When considering the representation of the results, a second
significant question arises: how to combine the measures of all sub-
criteria into a single score. Several reasons justify this additional
processing step. The fundamental concept of a metric is to distill
relevant information into a real-valued single score. This approach
offers a significant advantage, preventing information overload for
those seeking insights.

As AI systems become more prevalent in our daily lives, en-
suring information about stability is accessible to non-experts is
essential. A single-score approach facilitates this by offering a
concise and easily understandable representation.

However, aggregating the information also introduces a few
disadvantages as it may lead to the loss of detailed information

when reducing the sub-criteria scores of Explanation-Stability into a
single score. When the resulting scores from each sub-criterion are
condensed into a single value, questions such as “Could Stability
sub-criterion A potentially compensate for the lower performance
of Stability sub-criterion B, and to what extent does this influence
exist?” arise.

Other important considerations include “How strong is the cor-
relation between these stability aspects?”, “Is there a dominant
stability criterion?” and “Are there domain-dependent sub-criteria
that should be prioritized, such as in the medical field or other sensi-
tive use cases?” These are the research questions that will need to
be explored as this metric approach is implemented in real-world
use cases.

6 Conclusion
In conclusion, the development of autonomous systems must adhere
to specific quality criteria. Given that these systems frequently em-
ploy artificial intelligence for critical tasks, assessing the stability of
complex machine learning models is imperative for comprehension,
creation, and improvement. This work aims to lay the groundwork
for future endeavors in verifying the stability of such models and
their applicability in real-world scenarios.
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