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 In this paper, we determine the feasibility of differentiating between the heart rate patterns 
of Macaca fascicularis and human infants by comparing pertinent hyperparameters. This 
verification process was undertaken to ascertain the suitability of Macaca fascicularis 
heart rate data as a testbed for evaluating heart rate parameter privacy safeguarding 
methodologies. The biological characteristics of Macaca fascicularis bear significant 
resemblance to those of humans, which consequently renders them useful subjects in 
medical experiments alongside other laboratory animals. The process of capturing 
heartbeat data from Macaca fascicularis is notably akin to the methodologies used to 
record human cardiac activity. In other hand, the recent years have witnessed the 
construction of extensive heart rate databases, thus raising important considerations 
surrounding privacy in their usage. Heartbeat recordings, indeed, can provide a wealth of 
diverse information, necessitating careful handling to maintain data privacy. Specifically, 
a Holter monitor, a type of electrocardiogram device, can record cardiac electrical activity 
for over 24 hours. The statistical indices derived from these recordings prove useful for 
various types of analysis, and simultaneously hold information relating to individual 
behaviors and health conditions. The extent to which individuals can be identified within 
such expansive databases is a topic warranting exploration; however, few individuals have 
granted consent for their data to be used for such research purposes. Given this scenario, 
since the protection of personal data is not a requisite for Macaca fascicularis, the 
proposition of employing Macaca fascicularis data to investigate the potential for 
individual identification appears to be a plausible approach. The experiment verified the 
similarity of cynomolgus monkey heart rate data to human heart rate data. The results are 
similar, suggesting that it is appropriate to use cynomolgus monkey heart rate data for 
personality identification experiments. 
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1. Introduction  

Macaca fascicularis exhibit a significant similarity to humans 
in terms of biological characteristics, making them suitable 
subjects in medical experiments alongside other laboratory 

animals [1] and [2]. Heartbeat data from Macaca fascicularis can 
also be recorded using methodologies similar to those employed 
for humans [3]. Concurrently, a large heart rate variability database 
has been developed in recent years [4], [5], [6] and [7] . Personal 
identity can be an issue when using large heart rate databases. 
Therefore, research is needed to verify individual identifiability, 
which is our overall goal. 
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Heart rate recordings are rich sources of data. Notably, 
wearable Holter electrocardiogram devices have the capacity to 
record cardiac electrical activity over a span exceeding 24 hours. 
The statistical indices derived from these recordings serve multiple 
analytical purposes and can also aid in predicting individual 
behaviors and health conditions. 

Analysis of these databases revealed that various personal 
attributes can be extracted from heart rate [8], [9] and [10]. It is 
therefore essential to consider the protection of personal data 
contained in heart rate variability. Therefore, it is important to 
ascertain the identifiability of heartbeats and explore methods to 
enhance their anonymization. 

Information pertaining to such health conditions, particularly 
cardiac diseases, is of a private nature and ought to be safeguarded 
from public disclosure. 

Hence, when disseminating such expansive databases for 
research purposes, it is imperative to apply processing techniques 
ensuring the heartbeat data contained therein cannot be attributed 
to a specific individual. Various methodologies have been 
proposed to hinder individual identification, including 
anonymization strategies. 

There is no absolute method to confirm that personal 
identification has been entirely thwarted. The effectiveness of 
identification prevention measures is typically evaluated 
empirically. Public tests, wherein attempts are made to identify 
specific individuals using test data, will be carried out, with the 
resultant outcomes undergoing evaluation. This necessitates the 
availability of appropriate test data. 

Nevertheless, employing human data for such public testing 
initiatives is untenable due to inherent privacy implications. 

The crux of this matter lies in the fact that the data that needs 
to remain unidentified pertains to personal health characteristics—
specifically diseases—that the individual would prefer to keep 
private. Should the test results lead to the identification of both the 
disease and the individual, this would pose serious ethical 
concerns. Contributing data to such tests would bring about 
substantial risks and minimal benefits to the subjects. 
Consequently, procuring consent for such use is virtually 
unfeasible. 

Consequently, we propose the use of Macaca fascicularis data 
for identification trials. Given that there is no requirement for the 
protection of personal data pertaining to Macaca fascicularis, there 
exist no ethical issues associated with identifying individual 
entities or symptoms within this data set. 

Nonetheless, if the heart rate data of Macaca fascicularis can 
be statistically distinguished from that of humans, it would be 
improper to incorporate the data of Macaca fascicularis into human 
data and investigate the feasibility of individual identification. This 
is due to the fact that if we can discern the data of Macaca 
fascicularis, it would inevitably lead to the recognition of data 
specific to an individual entity. 

Hence, it is crucial to establish that distinguishing between 
Macaca fascicularis and humans is sufficiently challenging. The 
primary aim of this study is to undertake this verification. 

In essence, within our research purpose, the data of Macaca 
fascicularis and humans do not have to be entirely 
indistinguishable. If we select human data that bears similarity to 
the data of Macaca fascicularis, our objective is to ensure that 
distinguishing between Macaca fascicularis and humans proves 
challenging. Should this validation be successful, we can draw the 
conclusion that the Macaca fascicularis data, which represents the 
ultimate objective of this study, can be effectively utilized. 

2. Proposed method 

2.1. Data preparation 

Thirty seven neonatal human samples and Macaca fascicularis 
ECGs, a single case of ECG data obtained from a Macaca 
fascicularis were utilized for this study. 

Thirty seven neonatal Human heartbeat samples were obtaine 
from ALLSTAR (Allostatic State Mapping by Ambulatory ECG 
Repository) database, those are all available data in the database. 
ALLSTAR is database based in Japan (https:/allstar.jpn.org/). The 
data contained within the ALLSTAR database was gathered 
utilizing a Holter electrocardiograph, a product of Suzuken Co., 
Ltd., Japan. 

The Macaca fascicularis used in this study was male and it is 
the only data we could use. The heart rate data for these specimens 
were collected using a two-lead electrocardiograph provided by 
Tokyo University of Agriculture and Technology, Japan. 

2.2. Analysis Method  

A prevalent technique for the detection of R-waves in both the 
Macaca fascicularis and human neonatal data involves the 
extraction of baseline fluctuation components, followed by the 
isolation of feature points through waveform detection processing. 
For this study, we opted for a device that is capable of 
automatically calculating RRI. 

Utilizing the heart rate variability index as a high-dimensional 
feature, we sought to determine whether it could be visualized 
using three representative methods of classification visualization. 

Visualization using PCA, t-SNE, UMAP were executed.  

PCA (Principal Component Analysis): 

PCA stands for Principal Component Analysis and is a 
classical technique used for dimensionality reduction and 
information extraction of data. It transforms the data into a low-
dimensional space, mainly by finding new axes (principal 
components) that maximize the variance of the data. 

Since PCA extracts features in the range of linear 
transformations, it is specificly useful in this study to see the 
relationship between features and original variables in linear 
transformations. 

t-SNE (t-Distributed Stochastic Neighbor Embedding) is a 
nonlinear dimensionality reduction technique. High-dimensional 
data can be mapped into a low-dimensional space while 
maintaining data similarity. This is particularly suitable for 
visualizing cluster structures. Neighborhoods in high-dimensional 
space are also mapped to neighborhoods in low-dimensional space. 

http://www.astesj.com/
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This transformation not only provides visualization, but also 
gives insight into how each piece of data is categorized. In this 
study, it is useful to visualize nonlinear structures. 

UMAP (Uniform Manifold Approximation and Projection) is 
a newer technique than t-SNE. It performs non-linear 
dimensionality reduction like t-SNE, but makes it possible to 
capture the overall structure while preserving the local structure of 
high-dimensional data. It is used for visualization and clustering of 
high-dimensional data. 

It reflects the local and global structures of high-dimensional 
data in a well-balaned manner. In addition, it is resistant to noise 
and provides stable and good results. 

In this experiment, we expected that PCA could confirm the 
relationship between the feature value and the original space in the 
linear transformation relationship, that visualization of the cluster 
structure by t-SNE and that UMAP would provide a well-balanced 
view of local and global structures. 

Commonly utilized features of heart rate variability were 
computed and employed for multi-dimensional analysis. These 
features encompass HR, MNN, SDNN, SDNN, rMSSD, TPW, 
ULF, VLF, LF, HF, VHF, , and LFHF. These features are widely 
employed in various heart rate variability analyses[7][8]. 

3. 3D visualization 

3.1. 3D visualization using PCA 

Figure 1 presents a three-dimensional visualization created 
through the principal component analysis (PCA) method. In this 
visualization, the principal components are derived through PCA, 
with the three most significant components being transformed into 
a three-dimensional format. The data points corresponding to 
Macaca fascicularis are circled in red. 

Since PCA is a technique used for converting high-dimensional 
data into lower dimensions, it amalgamates dimensions in a high-
dimensional linear space and extracts the dimension contributing 
most significantly to the data's variability. Consequently, 
dimensions that do not illustrate data differences are minimized, 
allowing for a reduction in dimensions while preserving 
information vital for data identification to the maximum possible 
extent. 

In the figure 1, Macaca fascicularis is situated peripherally 
within the overall distribution. Nonetheless, numerous human data 
points exist in proximity to those of Macaca fascicularis, including 
closely neighboring human samples, thereby rendering the 
differentiation between the two challenging. 

3.2. 3D visualization using t-SNE  

Figure 2 presents the data visualization in three dimensions via 
the t-SNE method. 

Since t-SNE (t-Distributed Stochastic Neighbor Embedding) is 
a dimensionality reduction technique that is designed to maintain 
data differences while reducing the dimensionality of high-
dimensional data to low dimensionality, a key feature of t-SNE is 
its inclusion of non-linear transformations, which enhances its 
performance in data clustering and the preservation of similarity. 

 
Figure 1: 3D visualization using PCA. 3-dimensional representation is obtained 
by selecting the top three eigenvectors associated with the largest eigenvalues of 
the covariance matrix. These eigenvectors capture the most significant variance in 
the original data, ensuring that the essential information is retained while reducing 
computational complexity and facilitating data interpretation. The selected 3-
dimensional subspace preserves the main patterns and relationships present in the 
original data, enabling efficient data analysis and visualization. Macaca 
fascicularis is circled in red. It can be seen that there are human samples in the 
vicinity and it is difficult to distinguish them. Local structure in the cluster is not 
clear in case of PCA analysis. 

In this analysis, t-SNE compresses from a high dimension to a 
3-dimensional space. 

This technique performs non-linear transformations to preserve 
the similarity of data. In other words, data points from the same 
class are located in close proximity to each other even in a three-
dimensional space, while data points from different classes are 
more distantly spaced. Hence, some degree of clustering can be 
discerned in the figure, making it easier to understand the 
relationships between different groups of data in the original high-
dimensional space. 

Given that t-SNE reduces dimensions while preserving 
similarities between data points in the high-dimensional space, the 
figure tends to reflect some relative distances and similarities 
between the data in the original high-dimensional space. 

Moreover, patterns and similarities within the data can be 
discerned more clearly with t-SNE than with PCA. This is 
attributed to t-SNE's ability to emphasize local data structures. 
Data points that were closely situated in high-dimensional space 
should also tend to be close together in 3D space, allowing local 
features to be more clearly discerned in the figure. 

However, it should be noted that dimensionality reduction by 
t-SNE does not necessarily preserve the global structure. 
Therefore, it should be considered that the global arrangement in 
the 3D space may not necessarily reflect the global arrangement in 
the higher dimensions. 

3.3. 3D visualization using UMAP 

Figure 3 shows a three-dimensional visualization by UMAP. 

UMAP embeds data in a three-dimensional space while 
preserving data similarity, resulting in a distribution that reflects 
the features and clusters of the original high-dimensional data. 

la b e l, e le ctro-ca rd iogra m
Hum a n infa nts , 
Ma ca ca , 
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Figure 2: Visualization using t-SNE. Macaca fascicularis is circled in red. It can 
be seen that there are three or four clusters but local structure of the clusters are 
punctuated. It can be seen that there are human samples in all around it and it is 
difficult to distinguish from them. 

Similar to t-SNA, data belonging to the same class are plotted 
close together in 3D space and data of different classes are plotted 
far apart. As a result, clusters of data are clearly visible in the 
figure, making it easier to understand the relationships between 
groups of data. 

Also, like t-SNA, UMAP emphasizes local structures, so data 
that were close together are arranged close together in 3D space. 
Data that are plotted close together on the figure are likely to be 
nearby even in a high-dimensional space, making it easier to read 
the cluster structure. 

Unlike t-SNA, UMAP also reflects global data placement to 
some extent. The structure between clusters can also be read in the 
figure, but in the case of UMAP, it is thought that this reflects the 
structure in a high-dimensional space. 

This figure seems to be useful for understanding the 
characteristics of high-dimensional data by performing 
dimensionality reduction and visualization of data, but it is not true 
that there is no information loss due to dimensionality reduction. 

4. 2D visualizations 

Figures 4 to 6 provide two-dimensional (2D) visualizations, 
achieved through further dimensionality reduction from the 
previous three-dimensional (3D) representations. While 2D 
inherently contains fewer dimensions than 3D, this can actually be 
advantageous when visualizing data. When 3D visualizations are 
projected onto a 2D plane (such as a computer screen or printed 
page), some information can be lost due to the lack of depth 
perception. This could potentially obscure important features or 
relationships in the data. Therefore, if the 3D visualization isn't 
explored with a 3D viewer or software that allows for rotation and 
inspection from different angles, it can sometimes be more 
insightful to create a 2D visualization from the outset. This can 
ensure that the most significant data relationships are immediately 
visible, and are not hidden by the 3D to 2D transformation at the. 

4.1. 2D visualization using PCA 

Figure 4 presents a two-dimensional (2D) visualization using 
Principal Component Analysis (PCA). Here, the dimension that 
contributes the least to the variability of the data has been removed, 
effectively reducing the data from three dimensions down to two. 

 
Figure 3: 3D visualization using UMAP. There are three or four clusters and the 
local structure of those are also visible. Macaca fascicularis is circled in red. It can 
be seen that it is in one of the clusters and there are human samples in the all-
around it and it is difficult to distinguish from them. 

The reduction process in PCA is designed to retain the features 
that account for the most variability in the data. Consequently, this 
2D visualization is better suited to display the overall, or global, 
structure of the data. While PCA is very effective at illustrating 
these global trends and differences, it's worth noting that it may not 
accurately portray the more nuanced, local structures within the 
data set. These may become obscured or lost during the 
dimensionality reduction process. Thus, while PCA is an 
invaluable tool for examining broad trends in a data set, it may not 
fully capture the complexity of the data if there are intricate local 
patterns or clusters. 

 
Figure 4: 2D visualization using PCA. Acquire the maximum 2D after PCA and 
convert it to 2D. Macaca fascicularis is circled in red. It can be seen that there are 
human samples in the vicinity and it is difficult to distinguish them. Local structure 
in the cluster is not clear. 

4.2. 2D visualization using t-SNE 

Figure 5 represents the data's compression into two dimensions 
using t-SNE (t-Distributed Stochastic Neighbor Embedding). Like 
in the case of Figure 4, this 2D visualization method emphasizes 
the preservation of local structures and similarities between data 
points. Therefore, it provides a more detailed view of the internal 
structure within each cluster, often producing a more intuitive 
representation than PCA. 

la b e l, e le ctro-ca rd iogra m
Hum a n infa nts , 
Ma ca ca , 
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This 2D visualization helps reveal four discernible clusters, 
with data from Macaca fascicularis appearing within one of these 
clusters. However, as previously mentioned, t-SNE may not 
necessarily preserve the global structure of the data. When 
comparing this t-SNE visualization with the PCA representation, 
this limitation becomes evident. 

 
Figure 5: 2D visualization using t-SNE. It can be seen that there are three or four 
clusters but local structure of the clusters are punctuated. Macaca fascicularis is 
circled in red. It is difficult to distinguish Macaca fascicularis. 

It's important to note that while t-SNE generally requires higher 
computational resources compared to PCA, in this case, due to the 
relatively small size of the dataset, this computational cost is not a 
significant concern. 

4.3. 2D visualization using UMAP 

Figure 6 illustrates a two-dimensional visualization using the 
UMAP (Uniform Manifold Approximation and Projection) 
method. UMAP is particularly adept at preserving both local and 
global structures in data, leading to robust and informative 
visualizations. 

In this figure, UMAP outperforms t-SNE by capturing intricate 
local cluster structures in a more comprehensible manner. While t-
SNE may cause some clusters to collapse, UMAP is able to 
differentiate within-cluster data points and maintain clearer 
demarcations. 

 
Figure 6: 2D visualization using UMAP. It can be seen that three are three or four 
clusters and the local structure of those are also visible. Macaca fascicularis is 
circled in red. It can be seen that it is in one of the clusters and there are human 
samples in the all-around it and it is difficult to distinguish from them. 

Moreover, data points that were dispersed across separate 
clusters in the t-SNE visualization appear more integrated in this 

UMAP visualization. Consequently, it's easier to discern three or 
four distinct clusters. The data points for Macaca fascicularis are 
situated within one of these clusters, showcasing a fairly even 
distribution. 

Since, UMAP is less sensitive to variations in parameters, 
allowing the global structure of the visualization to better represent 
the actual distribution of data in the high-dimensional space, global 
structure is best visualized in this figure. 

5. PCA after UMAP 

Figure 7 shows a 2D visualization of UMAP (Uniform 
Manifold Approximation and Projection) followed by PCA. 
UMAP is particularly good at preserving both local and global 
structure in your data, resulting in robust and informative 
visualizations. PCA can derive the principal factors by linear 
transformation of the obtained dimensions. By combining these, 
you can see the structure visualized by UMAP on the space where 
the factors of the overall structure are orthogonalized in this figure. 

 
Figure 7: 2D visualization using UMAP (Uniform Manifold Approximation and 
Projection) followed by PCA. UMAP is preserving local and global structure in 
data, resulting in robust and informative visualizations. PCA can derive the 
principal factors by linear transformation of the obtained dimensions. 

6. Discussion  

Throughout the conducted analyses, our findings consistently 
validate that the Macaca fascicularis dataset exhibits a distribution 
pattern that closely aligns with that of the human data, posing 
difficulties in effectively distinguishing the Macaca fascicularis 
data. Furthermore, the cynomolgus dataset demonstrates 
integration within this structure, upon the cluster structure 
observed in the human data. 

Therefore, the findings of this study indicate that 
straightforward visual features and dimensionality reduction 
techniques may not be sufficient to differentiate between the heart 
rate variability indices of Macaca fascicularis and humans when 
their heart rates are similar. This implies that when the mechanical 
pulsation mechanism (the mechanical model) of the heart is 
consistent, the heart rate variability index exhibits analogous 
characteristics, making it challenging to distinguish between 
Macaca fascicularis and humans using conventional methods. 

These results provide an intriguing insight into the similar 
physiological patterns shared between certain primates and 
humans when observed through the specific lens of heart rate 
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variability indices. Furthermore, they also underscore the need for 
more nuanced or advanced methods for distinguishing between 
such closely aligned data sets. 

This study might have significant implications for a range of 
applications where such differentiation could be crucial. For 
instance, in medical research involving primate models, or in the 
development of biometric identification systems that rely on heart 
rate variability as a distinguishing factor. Further research is 
needed to identify and develop more sophisticated techniques that 
can make this crucial differentiation more accurately and 
efficiently. 

A clear limitation of this study is the scant amount of data for 
both Macaca fascicularis and humans. However, the ultimate aim 
of this research is to utilize Macaca fascicularis data to verify the 
individuality of human heartbeats. For this purpose, it is not strictly 
necessary to establish whether there is discrimination between 
humans and Macaca fascicularis; it is sufficient to demonstrate that 
the level of discrimination between humans and Macaca 
fascicularis is considerably low. 

If Macaca fascicularis possess traits that humans do not, it's 
assumed that it would be particularly easy to identify individuals 
in human heartbeat data. Therefore, it could actually be beneficial 
for the experiments on individual identification and 
anonymization. This opens up opportunities for future research and 
experimentation with larger datasets, more sophisticated analytical 
techniques, and alternative data sources. 

To bolster the reliability of these results, future research will 
need to gather a larger sample size and consider an approach that 
incorporates a variety of feature values. Techniques such as data 
co-mingling and masking are commonly employed to safeguard 
personally identifiable information, and it's imperative that 
datasets remain devoid of any personally identifiable information 
or personal identifiers. 

Additionally, integrating different types of machine learning 
and statistical techniques may also improve the ability to 
differentiate between the two species. Involving more complex 
techniques, such as deep learning or support vector machines, 
could also be considered to help refine the model. Overall, this 
research provides an interesting starting point, but more extensive 
work is required to validate these results and to explore the 
potential implications further. 

To bolster the reliability of these findings, our future work will 
encompass the collection of additional data samples and 
exploration of a methodology that integrates a variety of feature 
values. It is crucial to highlight that in the handling of such data, 
methods such as data commingling and masking are often 
employed to safeguard personally identifiable information. This 
ensures that the datasets remain void of personal identifiers and 
any information that can be traced back to individuals. 

In summary, the objective of this experiment was that 
cynomolgus monkeys are highly similar to humans, and a highly 
reliable answer was obtained through a multifaceted investigation. 
In the future, as we acquire more data, we will be able to use these 
results to advance research toward the broader goal of identifying 
individual heartbeats. 

7. Conclusion  

 This research substantiated the claim that the cardiac data of 
Macaca fascicularis are substantially analogous to human heart 
rhythms and thus can be aptly employed to validate various 
method intended to prevent personal identification of cardiac data.  
This research provided highly reliable answer, derived through a 
multifaceted investigation. The deployment of Macaca fascicularis 
cardiac rhythm data as a test set for such validation is expected to 
enable research on more secure processing of cardiac rhythm data. 
And once the privacy preservation technique for heart rhythm data 
is possible to be provided, large and efficient use of large-scale 
shared heart rhythm data repositories will be possible. Clear 
limitation of this study is the small number of Macaca fascicularis 
and we need to address this limitation in future research. Even 
current result is possible to support such result, still it is possible 
to improve precision and reliability of result by extending data size 
and analysis method. 
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