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 The integration of distributed energy resources has ushered in a host of complex challenges, 
significantly impacting power quality in distribution networks. This work studies these 
challenges, exploring issues such as voltage fluctuations and escalating power losses 
caused by the integration of solar systems and electric vehicle (EV) chargers. We present a 
robust methodology focused on mitigating voltage deviations and power losses, 
emphasizing the allocation of a Permitted Percentage (PP) of battery-based solar systems 
within residential areas endowed with storage capabilities. 
A key facet of this research lies in its adaptability to the changing landscape of electric 
transportation. With the rapid increase of electric trucks on the horizon, our proposed 
model gains relevance. By tactically deploying PP to oversee the charging and discharging 
of batteries within residential solar systems, utilities are poised not only to assist with grid 
resilience but also to cater to the upcoming demands spurred by the advent of new EVs, 
notably trucks. 
To validate the efficacy of our proposed model, rigorous simulations were conducted using 
the IEEE 33-bus distribution network as a designed testbed. Leveraging advanced Particle 
Swarm Optimization techniques, we have deciphered the optimal charging and discharging 
commands issued by utilities to energy storage systems. The outcomes of these simulations 
help us understand the transformative potential of various PP allocations, shedding light 
on the balance between non-battery-based and battery-based solar residences. This 
research underscores the need for carefully crafted approaches in navigating the 
complexities of modern grid dynamics amid the anticipated increase in electric vehicles. 
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1. Introduction   

      High penetration of distributed energy resources (DER), such 
as solar systems could result in power quality issues on the 
distribution network [1,2]. This will be impacted more severely as 
the number of Electric Vehicles (EVs) grows [3]. 

      Moreover, the emergence of electric trucks introduces distinct 
challenges and prospects for the distribution network. As 
highlighted in [4,5], if utilities neglect the increasing prevalence of 
electric trucks, the distribution network experiences notable 
voltage fluctuations. They suggested that with an increase in 
charging loads, there's a heightened probability for upgrades 
needed for the distribution lines offering an expensive and time-
consuming solution with extensive planning to implement [4]. 

However, strategies for utilities to bear the costs remains an open-
ended important question. Furthermore, a high penetration of Non-
Battery-Based Solar Residence (NBBSR) elevates the likelihood 
of voltage fluctuations on distribution lines, particularly when a 
significant amount of solar power is injected into the feeders 

     In accordance with FERC Order 2222, regulatory bodies in the 
United States have been actively promoting the integration and 
adoption of various Distributed Energy Resources (DERs). This 
regulatory framework also facilitates the development of models 
for aggregated resource participation, enabling Behind-the-Meter 
(BTM) assets such as BTM Battery Energy Storage Systems 
(BESS) to provide a comprehensive range of power system 
services for which they possess the technical qualifications [6]. 
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      Moreover, in the context of bring-your-own-device business 
models, utility customers who are also energy producers, such as 
residential households, are increasingly investing in Battery-Based 
Solar Residence (BBSR) systems. These prosumers often utilize 
only a fraction of their storage capacity. In such scenarios, 
prosumers may consider sharing their unused storage capacity with 
third parties [7,8]. Additionally, through Energy-Storage-as-a-
Service Arrangements, developers or utilities assume the initial 
costs associated with BBSR systems and subsequently own and 
manage these systems in return for a fee [9,10]. Both of these 
aforementioned business models enable utilities to expand the 
adoption of BBSR systems and exercise varying degrees of 
ownership and management as needed. For instance, New York 
ISO has designed a model that will let DERs such as BBSRs 
provide services to consumers, utilities, and the wholesale energy 
market to mainly ensure bulk power reliability and accessibility to 
all grid parties. However, they have not prioritized the power 
quality problems relating to the high penetration of NBBSR and 
EVs [11]. To mitigate the power quality challenges caused by 
DERs including EVs and solar systems, [12,13] provide more in-
depth discussion. They suggested that utilizing storage systems 
could be potentially more cost-effective and merit more 
investigation for power quality and voltage deviation issues. 

To underscore the importance of this study, a unique optimization 
approach is introduced and assessed within the context of the IEEE 
33-bus system. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 This approach aims to enhance the power quality of the grid, 
specifically focusing on mitigating active power losses and voltage 
deviations, all without the need for additional infrastructure 
upgrades such as storage systems, and the incorporation of new 
energy resources. To reduce the number of deciding factors 
without sacrificing its general applicability, the IEEE 33-bus 
system is divided into seven distinct sectors. Within each sector, 
there are multiple instances of two types of solar systems: BBSR 
and NBBSR. Notably, only NBBSR is authorized to supply solar 
energy to the grid, but a designated Permitted Percentage (PP) of 
the BBSR capacity is allocated to enable the utility to access it 
through charging and discharging commands as needed. Through 
exploration of various combinations of BBSR battery PPs  and 
different ratios of NBBSR and BBSR at each bus, the study 
identifies the optimal charging and discharging commands from 
the grid for the existing storage capacity within each sector. This 
approach empowers utilities to determine the necessary PP levels 
by engaging in negotiations with BBSRs, taking into account the 
actual NBBSR and BBSR ratio and their desired power quality 
standards. 

      The remainder of this paper is categorized into four sections. 
In Section 2, details of the proposed methodology is investigated. 
A multi-objective optimization model is formulated in Section 3. 
The whole optimization flowchart is also introduced in this 
Section. The test case is analyzed in Section 4, and the results are 
demonstrated. Finally, the major contributions of the present work  
discussed in Section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A typical structure of the Bus arrangement used in this study 

Figure 2: UCLA Smart Grid Energy Research Center charger network architecture 
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Figure 4: Flowchart of overall proposed optimization procedure 

2. System Model 

EV energy usage data was gathered from UCLA Smart Grid 
Energy Research Center charging station as illustrated in Figure 2. 
The parking structure has different level 1 and 2 chargers. The 
level 1 chargers talk among themselves and the gateway via 
ZigBee, and level 2 chargers talk to the gateway via OCPP. 

The primary objective of this study is to address the challenges 
posed by the increasing adoption of EV chargers and solar systems 
within distribution networks, specifically targeting power losses 
and deviations in bus voltage. To achieve this goal, the proposed 
model has been developed in accordance with the IEEE-33 bus 
radial distribution standard based on [14]. It is assumed throughout 
this study that every residential dwelling connected to each bus 
incorporates a solar power generation system. Figure 1 presents an 
overview of the distribution system encompassing all buses 
adhering to the IEEE-33 [15] bus standard, encompassing EV 
chargers, two types of solar systems (BBSR and NBBSR), as well 
as residential load. Additionally, we introduce the concept of "PP," 
denoting a percentage of BBSR's capacity that utilities can employ 
to issue charging and discharging commands to/from the grid as 
needed. 

Figure 3: Distribution of the charging start hour for weekdays 

Figure 3 shows our assumption on the average distribution of a 
charging start hour during weekdays, derived from [16]. 

      Batteries serve as short-term energy storage devices and are 
commonly utilized in conjunction with solar systems, referred to 
as BBSR [17]. Furthermore, the energy available for each bus can 
be determined using the following calculation [17]: 

EBT,max = β×NUser×EBT,user (1) 

where β, NUser, and EBT,user represent the PP of BBSR’s capacity, 
number of residential houses per each bus, nominal storage 
capacity of each BBSR (kWh), respectively. Additionally, for 
each time interval, the calculation of available energy per bus is 
as follows [17]: 

EBT,i(t)=EBT,i (t − 1) + �PBT(t).Δ(t)
T

t=1

 
(2) 

where T, EBT,i (kWh) and PBT,i (kW) are number of hours of 
operation, the stored energy, and the dispatched power from the 

utility determined by the optimization algorithm at time interval t 
for bus i. Finally, the state of charge of BBSR’s batteries   (SOCBT) 
calculated as [17]: 

SOCBT,i(t)=100×
EBT,i(t)
EBT,max

 
(3) 

3. Proposed Methodology 

The proposed approach is designed to reduce the total active 
power loss and voltage deviations over a 24-hour operational 
period, enabling the utility to implement optimal charging and 
discharging commands through Particle Swarm Optimization 
(PSO). Figure 4 illustrates the flowchart outlining this 
methodology [14]. 

 
 

 

3.1. Cost Function 

      The cost function in this study can be expressed as the 
weighted combination of both active power loss and voltage 
deviation. Active power loss represents the amount of energy 
dissipated as heat in the distribution network, while voltage 
deviation measures the deviation of bus voltages from their 
nominal values. Voltage deviation exceeding a limit can affect 
electric equipment's lifetime and trigger the protection relays. They 
can be represented as follows [15]: 

 Ploss = �� It,k2 Rt,k

N

k=1

T

t=1

 
 

(4) 

Vdev=�� |Vrated-Vt,k|
N

k=1

T

t=1

 
 

(5) 
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Cost Function = min (w1. Ploss + w2. Vdev) (6) 

where Vrated, VK , Vdev, IK , RK , PLoss , T and N are rated voltage, 
the voltage of each bus, sum of all buses’ voltage deviation, feeder 
current loading, line resistance, total active power loss, the total 
number of hours of operation and the total number of lines in the 
radial distribution network, respectively. 

3.2. Particle Swarm Optimization 

      PSO is an optimization technique that was created by Kennedy 
and Eberhart [15]. It is inspired by the behavior of bird flocking 
and fish schooling. PSO is composed of a set of particles that make 
up a group. Each particle searches its local space to find the local 
minimum or maximum. The velocity and position of each particle 
can be updated according to its best experience and the best 
experience of its neighbors [15]. The variables of each PSO’s 
particle are important factors to guarantee the optimal solution 
[16]. Using a revolutionary optimization algorithm for a high 
number of variables can entail significant drawbacks, including the 
potential for high computational costs and the curse of 
dimensionality, where the exponential growth in search space 
makes efficient exploration challenging. Additionally, 
understanding algorithm behavior and diagnosing issues can be 
harder, leading to overfitting, generalization problems, and 
difficulty in visualizing the optimization landscape. Finally, there's 
an increased risk of premature convergence to suboptimal 
solutions, making optimization in high-dimensional spaces 
particularly challenging. 

The application of PSO in this study involves optimizing 
the charging and discharging commands of residential battery 
storage systems within the distribution network. PSO is employed 
to find the optimal values for parameters that govern the charging 
and discharging process, ensuring the reduction of active power 
losses and voltage deviations. Specifically, the PSO algorithm 
iteratively refines the charging and discharging commands based 
on the performance metrics defined by the cost function, 
converging towards an optimal solution that minimizes power 
losses and maintains grid voltage stability. 

In  distribution systems, the number of buses can be relatively high, 
which leads to weak optimization results. In this study, the IEEE-
33 bus has been subdivided into seven sectors, as depicted in 
Figure 5, to effectively address the challenge posed by a high 
number of variables. This partitioning of the area is based on 
presumed demographic conditions and charging demands. 
Therefore, the charging/discharging command can be strategically 
allocated to each of these sectors to reduce the number of decision 
variables for the optimization algorithm (see Figure 5). 

3.3. Load Flow 

      The backward/forward sweep method is used for load flow. 
The backward/forward sweep is an iterative method in which, at 
each iteration two computational stages are performed. It is one of 
the most effective methods for load flow of radial distribution 
systems [18]. The backward/forward sweep method was chosen 

for its effectiveness in analyzing radial distribution systems. This 
method allows for an iterative calculation of currents and voltages, 
starting from the load buses and moving towards the substation and 
vice versa. Its suitability for radial systems simplifies the load flow 
analysis, and its step-by-step approach facilitates understanding. 

Below's a brief overview of how the backward/forward sweep load 
flow method works: 

Backward Sweep: 

• Start from the load buses (the farthest points from the 
substation) and work your way back toward the substation. 

• At each load bus, calculate the current injected into the bus by 
the load. 

• Use Kirchhoff's Current Law to calculate the current leaving 
the bus toward the substation. 

Forward Sweep: 

• Start from the substation and move outward to the load buses. 
• At each bus (except the substation), calculate the current 

entering the bus based on the current calculated in the 
backward sweep. 

• Use Ohm's Law to calculate the voltage at each bus based on 
the current and the impedance (resistance and reactance) of 
the transmission lines and transformers. 

Active power consumption per bus is the variable for this 
method in each iteration, which is obtained from the following 
equations 

 

 

PLoad,i(t) = PT,Solar,i(t) + PEV,i(t) + PRes,i(t) (7) 

PT,Solar,i(t) = α × NB,i × PSolar,i(t) (8) 

α =
NNBBSR

NNBBSR + NBBSR
 (9) 

where PLoad,i, PT,Solar,i, PSolar,i, PEV,i, PRes,i, α, NB,i, NNBBSR, and NBBSR 
are load, total generated solar energy by NBBSR, generated solar 
per NBBSR unit, EV load, residential load, proportion coefficient, 
number of residences, number of NBBSR, and the number of 
BBSR at bus i, respectively.  

Figure 5: Modified IEEE-33 bus with 7 sectors 
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4. Results 

      The IEEE-33 bus radial distribution system has been 
meticulously implemented as the test case using MATLAB 2022b, 
comprising 33 buses and an intricate network of 32 distribution 
lines. These lines exhibit varying current-carrying capabilities, 
with lines connecting node-1 to node-9 accommodating robust 
capacities of 400 A, while the remaining lines exhibit 200 A 
capacity. In this meticulously crafted system, the combined losses 
in active and reactive power are quantified at 281.58 kW and 
187.95 kVAR, respectively. It's imperative to note that the baseline 
voltage is standardized at 11 KV. 

      The empirical foundation for this research derives from real-
world data collected from the UCLA charging station, particularly 
focusing on EV charging behaviors. Furthermore, solar energy 
generation patterns for each NBBSR have been meticulously 
modeled, drawing inspiration from the empirical distributions 
captured in Figure 6. This data stems from the UCLA 35 kW solar 
plant, albeit downscaled to a maximum of 10 kWs to align with the 
research’s temporal requirements. Complementing this, the EV 
load distribution per individual bus is aptly visualized in Figure 7, 
providing a granular perspective on energy consumption patterns. 

      The implementation of seven distinct control sectors is a 
pivotal aspect of this study. Remarkably, this strategic 
segmentation substantially reduces the number of optimization 
variables from an initial count of 768 (32 buses × 24 hours) down 
to 168 (7 sectors × 24 hours). It is essential to note that the number 
of residences for every bus is the same and equal to 92. 

Through the deployment of the PSO algorithm, a 
comprehensive exploration of various combinations of the 
optimization parameters α and β is undertaken. The outcomes of 
this rigorous experimentation are shown in Figure 8, where it is 
observed that that an insightful pattern emerges. Voltage 
deviations from the nominal values and power losses exhibit 
decreasing trends with the progressive augmentation of β for each 
α. Moreover, the cost function showcases a dynamic response, 
reducing as α escalates from 0% to 80% and then increasing as α 
surpasses the 80%. Also, figure 8 indicates that the lowest cost 
function happens where α equals 70% and β equals 30%. 

      The numerical values for 77 evaluated combinations of α and 
β are summarized in Table 1. To show the significance of these 
findings, it should be noted that the cost function for an 
unoptimized network is 80. Notably, the achieved cost functions 
marked improvements in voltage stability and substantial 
reductions in power loss across the distribution network. 

      In alignment with the study's objectives, voltage limits within 
an acceptable range are strategically set at ±10% of the nominal 
voltage, as articulated in [19].  

In radial distribution networks, the end bus of each branch 
usually faces the highest voltage drop. To evaluate the proposed 
methodology's efficacy, the voltage profiles of buses 18 and 33, 
which are the end bus of their own branches are analyzed. Figure 

9 illustrates the voltage profiles of buses 18, representing the end 
buses of their branches. The profiles correspond to the 
configuration where α equals 70% and β equals 30%, achieving 
the lowest cost function as highlighted in Table 1. As seen in 
Figure 9, the proposed methodology consistently meets the 
specified voltage limits, showcasing its effectiveness in 
maintaining grid stability. While in other scenarios the voltage 
profile violates the 10% deviation. A similar pattern is observed in 
Figure 10 for the voltage profiles of bus 33, reinforcing the 
robustness of our approach in different scenarios. 
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Table 1 provides numerical values of Figure 8 for various 
combinations of α and β, showcasing the impact of these 
parameters on voltage stability, power losses, and the overall cost 
function. Table 2 further compares the proposed methodology with 
alternative scenarios. It provides a comprehensive comparative 
analysis among the proposed methodology with α set at 70% and 
β at 30% and alternative scenarios, considering key metrics such 
as total active power loss, average voltage deviation across all 33 
buses, and cost function values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The outcomes of our analysis reveal remarkable 
improvements in various performance metrics. Specifically, we 
observe a substantial 47.8% reduction in active power losses when 
compared to Grid without extra loads. Furthermore, the reduction 
in active power loss is a notable 53.2% compared with the 
Grid+EV scenario. Also, the proposed methodology registers a 
commendable 33.6% decrease in active power losses in 
comparison with GRID+EV+NBBSR scenario. These findings 
underscore the remarkable efficacy of our proposed methodology 
in enhancing the overall efficiency of the distribution network. 
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  0% 5% 10% 15% 20% 25% 30%  
 
 
 
 
 
α 
 

0% 70.01663 70.01663 70.01663 70.01663 70.01663 70.01663 70.01663  
10% 64.44564 63.98924 63.53546 63.09185 62.60636 62.22017 61.70375  
20% 58.81144 57.91499 57.07909 56.09525 55.22481 54.61636 53.40737  
30% 53.11391 51.76321 50.36399 49.20472 47.59238 46.2408 45.02529  
40% 47.39317 45.58555 43.77159 42.20241 40.14026 38.16705 36.43257  
50% 41.75065 39.50142 37.14781 34.90428 32.78993 30.47759 28.8417  
60% 36.36633 33.71627 30.93126 28.34218 25.45428 23.10252 20.82519  
70% 31.73868 28.55686 25.57219 22.87464 20.36441 18.78012 16.55407  
80% 29.62956 26.71179 23.85455 21.09941 18.96617 17.28412 16.66144  
90% 31.67723 30.07172 28.833 27.30397 25.7509 24.32898 22.90161  
100% 39.96917 38.34332 36.70755 34.89518 32.83336 30.8411 28.44189  

          

 Grid without extra load Grid+EV GRID+EV+NBBSR Proposed methodology 

Active power loss (kW) 6758.1 7541.6 5314.7 3527.4 

Average voltage 
deviation (%) 

6.99 7.41 5.33 4.34 

Cost function 26.5094 28.6454 21.1694 16.55407 

Table 1: Cost Function (equation 6) for different combination of α and β 

Figure 9: Bus 18 voltage for different scenarios during 24 hr of operation 
Figure 10: Bus 33 voltage for different scenarios during 24 hr of operation 

Table 2: Comparison between the proposed methodology and other scenarios for 24 hr of operation 
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Our analysis demonstrates an impressive average voltage 
deviation reduction of 37.9% when contrasted with the Grid 
without extra loads. The Grid+EV scenario also benefits 
significantly, with a 41.4% reduction in average voltage deviation. 
Also, the proposed methodology can achieve 18.6% reduction in 
average voltage deviation of  GRID+EV+NBBSR scenario. These 
results highlight the transformative potential of our approach in 
achieving enhanced grid performance and reliability across various 
scenarios. 

      The results are striking, revealing a substantial 37.55% 
reduction in the cost function when compared to Grid without extra 
loads, a remarkable 42.21% decrease relative to the Grid+EV 
scenario, and a noteworthy 21.8% deduction in comparison with 
the GRID+EV+NBBSR scenario. 

5. Conclusion 

      In this study, we have presented an innovative approach to 
enhance grid power quality without extensive infrastructure 
upgrades. Our focus was on mitigating active power losses and 
reducing voltage deviations, critical for ensuring a reliable and 
stable distribution network. Utilizing the widely recognized IEEE 
33-bus system as our testing ground, we explored various 
scenarios involving PP of BBSR and different ratios of NBBSR to 
BBSR at each bus. Through optimization, we determined efficient 
charging and discharging commands, minimizing the need for 
costly modifications. 

      Our research demonstrated that several combinations 
effectively met voltage drop limitations, highlighting the potential 
for utilities to proactively address challenges posed by DERs. 
Additionally, electric trucks, while environmentally promising, 
pose unique charging infrastructure challenges. Our methodology 
offers a solution by optimizing charging commands, reducing 
strain on local grids, minimizing disruptions, enhancing electric 
truck operations, and ensuring overall grid stability. This adaptable 
approach stands as a strategic tool for utilities and fleet operators, 
fostering efficiency and sustainability in the face of evolving 
energy demands. 

      The outcome of preventing the unnecessary upgrade of the grid 
from this study not only minimizes power losses and stabilizes the 
grid but also plays a pivotal role in reducing carbon emissions, 
particularly in regions where the energy grid relies on a mix of 
fossil fuels. Implementing the proposed methodology encourages 
both BBSRs and NBBSRs to expand their solar capacity. The 
promotion of renewable energy integration, coupled with the 
optimized utilization of resources, underscores the study's 
commitment to sustainable practices.  

      For future works, a notable suggestion involves analyzing the 
integration of heavy-duty electric vehicles into the grid and 
exploring the feasibility of utilizing distributed solar generation to 
meet their charging requirements. This direction addresses the 
evolving landscape of electric transportation, focusing on the 
unique challenges posed by heavy-duty electric vehicles and 

proposing a sustainable approach through the utilization of solar 
energy. 
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