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 Fatigue is broadly divided into two types depending on the content of a task: physical 
fatigue and mental fatigue. Mental fatigue is associated with human error. It is thus 
important to search for indicators that can easily evaluate mental fatigue. The aim of this 
study is to construct a system that can evaluate mental fatigue in a simple manner. To 
achieve this, we investigated the influence of the accuracy of linear discriminant analysis 
in two classes before and after the application of a mental load. In addition, we investigated 
whether the mental fatigue state can be estimated even when the number of trials for 
averaging is small, by combining the electroencephalogram power spectral density 
component and the P300 component. As a result, this combination of the power spectral 
density component with the P300 component resulted in measured waveforms that exhibited 
an accuracy of approximately 97%, even when the number of trials for averaging was as 
small as five trials. 
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1. Introduction 

The technological development of wearable devices in recent 
years has made it easier to measure biological information. In 
addition to devices that can measure heart rate or activity level, 
wearable electroencephalogram (EEG) devices that can measure 
brain waves have emerged, and their use is becoming more 
widespread. In the past, expensive equipment was generally used 
to measure brain waves and it was difficult to continually take 
these measurements during a person's daily life. However, as 
wearable EEG devices have become more widespread, dry 
electrodes that do not require the application of conductive paste 
have emerged. This development is making it more and more 
feasible to collect big data in the field of neuroscience. However, 
the data obtained from wearable devices differ from biological 
information measured by medical devices. As such, these data 
need to be applied appropriately. This paper focuses on the use of 
EEG to evaluate mental fatigue as a method of applying 
measurement data obtained from wearable devices. This paper is 
an extension of work originally presented in IEEE International 
Conference on Systems, Man, and Cybernetics (SMC) 2018 [1]. 

Fatigue is broadly divided into two types depending on the 
content of a task: physical fatigue and mental fatigue. While the in 
vivo mechanisms and processes of physical fatigue have been 

studied, particularly in fields like exercise physiology [2], there is 
no consensus regarding what mechanisms induce mental fatigue or 
how it should be measured, and even recent studies have taken a 
variety of different approaches to researching the subject [3, 4]. In 
the fields of ergonomics and occupational health, the flicker test is 
widely used to evaluate mental fatigue [5, 6]. The flicker test 
evaluates eye fatigue by measuring the frequency or flicker 
interval threshold, also known as the Critical Fusion Frequency 
(CFF), as the frequency of a flickering light is changed. However, 
the CFF is self-reported by subjects and the influence of subjective 
factors cannot be ruled out. Other than the flicker test, attempts 
have also been made to evaluate mental fatigue using salivary 
amylase [7, 8]. A rise in salivary amylase is generally thought to 
indicate an increase in sympathetic nervous activity. However, 
sympathetic nervous activity can arise because of negative 
emotions or mental stimulation. As such, evaluating mental fatigue 
using autonomic nervous activity indicators such as sympathetic 
nervous activity or vagal nervous activity often leads to difficulties 
with interpretation. Meanwhile, EEG waveforms contain both 
components for evaluating autonomic nervous activity and event-
related potential components, which can both be used to evaluate 
cognitive function. This means that it may be possible to estimate 
the decreased attentiveness that accompanies mental fatigue by 
combining these EEG components. This paper focuses on brain 
waves as an indicator for evaluating mental fatigue. 
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In previous studies, there are reports in which α-wave band 
power increases during mental fatigue [9, 10], there are also reports 
showing that it decreases as well [11, 12], and thus, there is no 
consistent trend. P300, an event-related potential, is the positive 
potential change produced 300 ms after exposure to external 
stimuli. Its amplitude is significant in that the amplitude is 
dependent on the amount of processing resources at the perceptual-
central level assigned to the event that caused the positive potential 
change. Prolonged latency and lowered amplitude during mental 
fatigue have been reported [13, 14]. When calculating P300, the 
signal-averaging technique must be used in order to produce a 
clearer potential response to stimuli. Generally, it has been 
confirmed that about 20 trials are required for averaging to produce 
consistent results for P300 [15], but it is difficult to conduct 20 
trials during the performance of actual tasks. As such, for the 
simple measurement of mental fatigue using P300, the evoked 
potential needs to be extracted with averaging over as few trials as 
possible. 

This paper presents work that combined EEG frequency 
components and P300 components to perform linear discriminant 
analysis on EEG waveforms. Analysis was performed before and 
after a task that involved a mental load in order to study the number 
of trials required for averaging and the resulting discriminant 
accuracy. Furthermore, in order to confirm that the task had caused 
sufficient mental fatigue, subjective questionnaire surveys and 
studies of autonomic nervous activity indicators using 
electrocardiogram (EKG) analysis were also conducted at the same 
time. 

2. Experimental method 

The subjects were 10 young, healthy males (mean ± standard 
deviation: 21.7 ± 0.9 years) with no history of nervous system 
disorders. The experiment was thoroughly explained to subjects 
beforehand and their consent to participate was obtained. The 
experiment was approved (4/2017) by the ethics committee of 
Toyama Prefectural University.  

With subjects seated, the experiment measured mental fatigue 
with EEG, electrooculogram (EOG), and EKG analyses as well as 
a subjective questionnaire survey using the Visual Analogue Scale 
(VAS). The VAS evaluation axis in this study placed "optimal 
sensation with no fatigue at all" (0%) at the left end and "lowest 
level of sensation with so much fatigue that I cannot do anything 
at all" (100%) at the right end [16]. The distance from the point 
marked by the subject on the evaluation axis to the 0% point on the 
left end was measured with a ruler, and the value was expressed as 
a percentage. Biosignals were recorded with a g.USBamp system 
(g.tec Medical Engineering GmbH, Austria). The time resolution 
was set to 1 kHz for the EKG and 512 Hz for the EEG and EOG. 
Based on the extended 10–20 system, electrodes were positioned 
at Cz and Pz with the GND at AFz and the reference electrode on 
the left ear lobe. Additionally, EOG electrodes were positioned 
above and below the left eye, while EKG measurements were 
taken with lead III positioned between the left leg and left hand. 

The experimental protocol was as follows: after applying a 
mental load for 15 minutes, all signals to be measured were 
recorded continuously for 10 minutes. One of these trials 
constituted one set, and a total of 8 sets were performed (Figure 1). 

Below, results prior to measurements in the 1st set are labeled 
"Pre" and measurements in the 8th set are labeled "Post." In this 
experiment, mental load was created with mental arithmetic 
problems. In these mental arithmetic problems, a pair of two-digit 
integers was shown on a display placed 0.8 m in front of the 
subject's eye (Figure 2). The subject mentally calculated the sum 
of the first and second digit in each integer (in Figure 2, the results 
were 12 on the left and 8 on the right), then mentally calculated the 
units digit of the product of the two integers obtained in the 
previous step (in Figure 2, the answer was 6). The mental 
arithmetic problem involved the task of entering the resulting 
number with a keyboard, and this problem produced mental fatigue 
in the subject. 

For bio signal recording, we conducted an oddball paradigm 
using visual stimuli and recorded EEG, EOG, and EKG data 
during that time. When the oddball paradigm in each set was 
complete, we also conducted a subjective questionnaire survey on 
fatigue using the VAS. In the oddball paradigms using visual 
stimuli, an "×" image was used as the infrequent stimulus and an 
"○" image as the frequent stimulus, with the images set to appear 
30 times and 90 times, respectively. Both visual stimuli were 
displayed for 1 second at a time, and the display order was random. 
In experiments that use oddball paradigms, P300 detection 
accuracy is often increased by giving subjects prior instructions to 
calculate the number of times the infrequent stimulus appears. In 
this experiment, we instructed subjects to "Quickly press the Enter 
key when the infrequent stimulus is displayed". To synchronize 
biosignals with the presentation of stimuli during the oddball 
paradigm, we synchronized biosignals with trigger signals by 
installing a photoresistor circuit in the stimulus display and 
sending external inputs to a biological amplifier. 

 
Figure 1: Experimental protocol. 

 
Figure 2: The typical content used in mental arithmetic problems 

3. Analytical method 

3.1. EKG analytical method 

The R-R interval was extracted from the measured EKG time 
series data and an analysis was conducted using heart rate 
variability (HRV) [17]. With  HRV,  analyzing   the  R-R interval 
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(heart rate) from the time domain/frequency domain makes it 
possible to quantify sympathetic and parasympathetic nervous 
system indicators. The extracted R-R interval time series was 
resampled from a 256-point time series and a fast Fourier 
transform (FFT) was used to estimate the power spectral density 
(PSD). Using the PSDs of a low frequency component (LF) with a 
range of 0.04–0.15 Hz and a high-frequency component (HF) with 
a range of 0.15–0.4 Hz, this study calculated an LF/HF component 
and an HF component, which are considered indicators of 
sympathetic and vagal nervous activity, respectively. 

3.2. EEG analytical method 

Time series of 5 seconds before and after low-frequency 
stimulus presentation (a total of 10 seconds) were extracted from 
the measured EEG time series. After applying a 4–30 Hz bandpass 
filter to the extracted time series, eye blink artifacts were removed 
with the FastICA algorithm [18]. Then, data from 2.5 seconds 
before and after low-frequency stimulus presentation (a total of 5 
seconds) were extracted from these time series and put through 
FFT processing. The PSD of the α bandwidth (8–13 Hz) in each 
time series and the average values from Cz and Pz were calculated 
to produce representative values for the sets. 

Next, we will demonstrate how P300 was derived. Time series 
of 5 seconds before and after low-frequency stimulus presentation 

(a total of 10 seconds) were extracted. After applying a 1–5 Hz 
bandpass to the extracted time series, eye blink artifacts were 
removed with the FastICA algorithm. P300 was derived by first 
correcting the baseline using the average value from 0.25 seconds 
before and after low-frequency stimulus presentation in the time 
series and then averaging the waveforms after low-frequency 
stimulus presentation in each subject. Additionally, this study 
identified the positive peak that appeared at 280–500 ms as P300 
and calculated its latency and amplitude. The average values for 
P300 latency and amplitude were calculated from both Cz and Pz, 
and the results were used as the representative values of the sets. 

3.3. Linear discriminant analysis 

Linear discriminant analysis was performed using the 
frequency component of the α bandwidth before and after a mental 
load task and the P300 component of the time series [19]. For the 
frequency component and P300 component, principal component 
analysis was used to perform dimensionality reduction, and feature 
points were extracted [20]. To prevent overfitting, we calculated 
all levels of accuracy when the number of components in the 
principal component analysis was changed in the range of 1–15, 
and the accuracy level in the scenario that reached the local 
maximum was set as the final discriminant accuracy. 

 

 

Figure 3: Results of measurement items (Average ± SD) 
(a) VAS scores, (b) HF and LF/HF components, (c) PSD of the α wave, (d) The latency and amplitude of the P300 component. 

http://www.astesj.com/


K. Fujita et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 108-114 (2019) 

www.astesj.com     111 

 

 

 
 

4. Results 

Before performing a discriminant, analysis using EEG time 
series, a subjective questionnaire survey and a study of autonomic 

0 times 0.74 ± 0.10 0.71 ± 0.09 0.67 ± 0.06 0.68 ± 0.06 0.79 ± 0.08 0.78 ± 0.08

2 times 0.79 ± 0.11 0.77 ± 0.12 0.77 ± 0.09 0.77 ± 0.09 0.85 ± 0.11 0.85 ± 0.09

5 times 0.83 ± 0.15 0.82 ± 0.15 0.96 ± 0.06 0.97 ± 0.04 0.97 ± 0.04 0.97 ± 0.03

Power spectrum component P300 component
Power spectrum component

and P300 component

Averaging
Times Pre Pre PrePost Post Post

Table 1: Results of Linear Discriminant Analysis (F Value, Average ± SD) 
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nervous analysis indicators using EKG analysis were also 
conducted in this experiment to confirm that enough mental fatigue 
had been produced. Figure 3 shows the changes over time in each 
measurement item. In the subjective questionnaire survey using the 
VAS, performing mental arithmetic increased the fatigue score 
(Figure 3a). As it was a subjective questionnaire survey, there was 
large variation in VAS scores between the subjects. While the 
average VAS score was about 20% in the Pre stage, it increased up 
to about 80% in the Post stage. The Pre results and subsequent 
measurement set results were compared using the Wilcoxon-
signed rank sum test. The results showed that the average VAS 
score increased significantly in the subsequent measurement sets 
compared to the score in the Pre stage (p<0.05). 

For the HF component, which was extracted using heart rate 
variability and is considered an indicator of vagal nervous activity, 
the average score was about 0.4 in the Pre stage and about 0.3 in 
the Post stage (Figure 3b). The Pre results and subsequent 
measurement set results were compared using the Wilcoxon-
signed rank sum test. The results showed that the average HF 
component score decreased significantly in the Post measurement 
set compared to the score in the Pre stage (p < 0.05). Furthermore, 
for the LF/HF component, which is considered an indicator of 
sympathetic nervous activity, the average score was about 0.9 in 
the Pre stage and about 1.1 in the Post stage (Figure 3b). The Pre 
results and subsequent measurement set results were compared 
using the Wilcoxon-signed rank sum test. Results showed no 
significant difference in LF/HF components between the 
measurement sets. 

For the α bandwidth PDS, the average score was about 15 in 
the Pre stage and about 18 in the Post stage (Figure 3c). The Pre 
results and subsequent measurement set results were compared 
using the Wilcoxon-signed rank sum test. The results showed that 
the average α bandwidth PDS score increased significantly in the 
subsequent measurement sets compared to the score in the Pre 
stage (p<0.05). 

For P300 latency, the average score was about 380 ms in the 
Pre stage and about 400 ms in the Post stage (Figure 3d). The Pre 
results and subsequent measurement set results were compared 
using the Wilcoxon-signed rank sum test. The results showed that 
average P300 latency increased significantly in the Post stage 
compared to the Pre stage (p < 0.05). The average P300 amplitude 
was about 15 μV in both the Pre and Post stages (Figure 3d). The 
Pre results and subsequent measurement set results were compared 
using the Wilcoxon-signed rank sum test. Results showed no 
significant difference in P300 amplitude between any of the 
measurement sets. 

The study presented in this paper performed linear discriminant 
analysis that combined the frequency component and P300 
component to investigate whether mental fatigue can be estimated 
even when averaging is only performed over a small number of 
trials. Figure 4 shows a typical example of the frequency 
component and P300 component before and after a mental load 
task when averaging was performed over five trials. We observed 
that the frequency component on the α bandwidth tended to 
increase after mental fatigue compared to before mental fatigue 
(Figure 4a). Additionally, we observed that the P300 component 

latency tended to lengthen after mental fatigue compared to before 
mental fatigue (Figure 4b). 

Linear discriminant analysis was performed using the 
frequency component of the α bandwidth before (Pre) and after 
(Post) a mental load task and the P300 component of the time 
series. Table 1 shows the accuracy results when averaging was 
performed over 0, 2, and 5 trials. With linear discriminant analysis, 
combining the frequency component and the P300 component 
increased discriminant accuracy for all numbers of trials. When 
averaging was performed for two trials, the discriminant accuracy 
was about 78% for the frequency component alone and 77% for 
the P300 component alone, while combining the frequency 
component and P300 component increased the accuracy to 85%. 
Additionally, when averaging was performed over five trials, the 
discriminant accuracy was about 83% for the frequency 
component alone and 96% for the P300 component alone, while 
combining the frequency component and P300 component 
increased the accuracy to 97%. 

5. Discussion 

The EEG frequency bands recorded when waking are 
categorized in theta waves (4–7 Hz), alpha waves (8–13 Hz), beta 
waves (14–30 Hz) [22]. In addition, frequency drops in the α-
wave band occur during states of decreased alertness elicited 
when falling asleep [23]. However, while there are reports in 
which α-wave band power increases during mental fatigue [9, 10], 
there are also reports showing that it decreases as well [11, 12], 
and thus, there is no consistent trend. While evaluating mental 
fatigue using autonomic nervous activity alone leads to 
difficulties with interpretation, adding the P300 component makes 
it possible to evaluate fatigue based on two indicators: cognitive 
function and autonomic nervous activity. This study performed 
linear discriminant analysis that combined the EEG frequency 
component and the P300 component, an event-related potential, 
to investigate whether mental fatigue can be estimated even when 
averaging is only performed over a small number of trials. The 
results showed that, when the P300 component was averaged for 
five trials, discrimination with 97% accuracy was possible before 
and after a mental load task. Furthermore, even when averaged 
over two trials, combining the frequency component and the P300 
component produced a discriminant accuracy of 85%. We believe 
that the technique proposed by this paper makes it possible to 
estimate mental fatigue even when an event-related potential is 
averaged over a small number of trials. 

In order to confirm that enough mental fatigue had been 
produced by the mental load when estimating fatigue, subjective 
questionnaire surveys and studies of autonomic nervous activity 
indicators using EKG analysis were also conducted in the work 
presented here. The results showed that subjects complained of 
fatigue, and subjective fatigue according to the VAS score also 
increased significantly. Heart rate variability showed a significant 
decrease in the HF component after a mental load task. There are 
reports that fluctuation in the HF component may reflect mental 
load, and the results of this experiment provide more supporting 
evidence that this is the case. Based on this result, we believe that, 
in this experiment, subjects were more affected by mental load 
than physical load. Additionally, this paper presents results that 
confirmed an increase in the α bandwidth power after a mental 
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load task, demonstrating the same patterns in changes to basic 
rhythms during mental fatigue caused by mental arithmetic that 
Trejo et al. reported [24]. In terms of P300, we confirmed 
prolonged latency after a mental load task, demonstrating the 
same trends in changes to P300 during mental fatigue caused by 
a driving simulation reported by Zhao et al. [25]. 

In this experiment, keys on the keyboard were only pressed 
for the low-frequency stimulus in an oddball paradigm where 
P300 was measured. As such, the possible influence of exercise-
related potentials (for example, a decrease in the power of mu-
rhythms around 10 Hz) should be investigated. Generally, C3 and 
C4 are considered the electrode positions most likely to detect 
exercise-related potentials due to hand motion. The electrode 
positions used in this experiment were Cz and Pz, and the key 
pressing was the same throughout all of the trials. Furthermore, 
we applied a 1–5 Hz bandpass filter during P300 signal processing, 
and we believe that hand motion had no effect on the results. 
However, P300 is a signal that tends to be drowned out by 
spontaneous brain waves. As spontaneous brain waves appear 
randomly, it has been proven that they will negate each other 
when averaged, allowing hidden P300 signals to appear. It has 
been confirmed that discriminant accuracy for P300 increases as 
the number of trials used for averaging is increased, meaning that 
the results in this paper are not accidental and can be reliably 
attributed to the appearance of P300. On the other hand, the linear 
discriminant analysis in this paper showed 97% accuracy of 
discriminant using only the P300 component with 5 times 
averaging process. This is a very high accuracy. However, in this 
experiment, it was a case of the accuracy where mental fatigue 
was given sufficiently, so in the future, we will examine the 
discrimination accuracy according to the degree of mental fatigue. 

Lastly, the amplitude of P300 has been shown to depend on 
subjective probability and stimulus meaning in an additive 
manner, and the dimension of information transmission has a 
multiplicative effect on this [26]. As such, teaching data for 
machine learning needs to be recorded in advance, and it would 
take an enormous amount of time to reproduce mental fatigue in 
the manner discussed here. Transfer learning has been proposed 
as a method for shortening the process of securing the required 
teaching data [27]. Transfer learning is a technique in which 
training data from someone else is used for discriminating one’s 
own data. In the future, to improve discriminant accuracy, we will 
propose a supervised spatial filter that uses training data from 
others by assuming a similar spatial distribution in the EEG 
waveforms of different subjects during mental fatigue using 
transfer learning. 

6. Conclusion 

Cognitive deficits brought on by mental fatigue include 
decreased alertness, difficulty solving problems, and lowered 
situational awareness. There are claims that human error is related 
to the cognitive deficits associated with mental fatigue, and it is 
important to search for indicators that can evaluate the decreased 
cognitive function associated with mental fatigue. This paper 
presents a study, which performed linear discriminant analysis 
that combined the EEG frequency component and the P300 
component, an event-related potential, to investigate whether 
mental fatigue can be estimated even when averaging is only 

performed over a small number of trials. Generally, it has been 
confirmed that about 20 trials are required to produce consistent 
results for P300, but the method proposed in this paper was able 
to achieve a discriminant accuracy of 97% before and after mental 
fatigue, even when P300 was only averaged over five trials. 
Moving forward, we will also investigate the detection of mental 
fatigue in real time during driving and actual tasks by using 
wearable EEG devices with dry electrodes that do not require the 
application of conductive paste. 
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