

www.astesj.com 147

Coordination between Heterogeneous Models Using a Meta-model Composition Approach

Naima Essadi*, Adil Anwar

SIWEB, E3S, EMI, Mohammed V University in Rabat, Rabat, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 17 September, 2019
Accepted: 26 October, 2019
Online: 25 November, 2019

 The technological advance as well as needs of human beings made that systems became
more and more complex. In contrast, the use and creation of new modelling languages
became simple and no more reserved for a handful of language experts. Consequently,
many new practices of systems implementation emerged, among them, the use of different
domain specific modelling languages (DSMLs) to represent the same system. Indeed,
complex systems are composed by many components sometimes belonging to various
domains. Thus, many teams of experts collaborate to develop such systems. Moreover,
teams tend to use different DSMLs to design their concerns. This new practice generates
an accidental heterogeneity due to production of various heterogeneous models
representing a same system. However, those heterogeneous models need absolutely to be
coordinated to facilitate communication between stakeholders and of course to ease
implementation and validation of systems. This paper proposes a composition interface–
based approach to coordinate and integrate heterogeneous DSMLs in order to coordinate
their models. The proposed composition interface is defined according to Bridge Design
Pattern. To illustrate this approach two DSMLs are used: An Indoor Service Transport
Modelling Language and an Internet of Things Modelling Language.

Keywords:
Coordination
Transformation
Composition
DSML
Heterogeneity
Model
Meta-model
Offered Interface
Required Interface
Realization
Referencing
Relationship
Bridge Pattern

1. Introduction

Model Driven Engineering (MDE) has as main goal a deep
separation between business and technological concerns. It makes
models in center of software and systems engineering. Hence, it
provides concepts and tools assuring to bridge the gap between
problem-level abstractions and implementation-level concepts.

However, the emergence complexity of nowadays systems
raises numerous new conception and implementation challenges.
Indeed, these systems involve many different domains.
Consequently, many teams of experts contribute to implement a
same system.

Moreover, the need and the large use of MDE as well as the
popularization of software language engineering (SLE) induce the
new practice of using specific hand maid modelling languages
baptized Domain Specific Modelling Languages (DSMLs)

Recently, the use of DSMLs rather than Unified Modelling
ones increases due to many reasons. Actually, Domain Specific
Modeling languages are expressive and allow a concise and
accurate specification in addition of a high level of abstraction [1,
2]. These highlights have a direct influence upon productivity and
costs. Indeed, the use of domains vocabulary means less time and
effort in modelling phase. It also means a high quality of
communication between stakeholders thereby decreasing error rate
and modelling iterations.

Actually, every domain has specific vocabulary, concepts and
paradigm. This difference implies the use of a different DSML for
every different domain involved in the same system.

Consequently, the use of multiple DSMLs to design systems
induces an accidental heterogeneity. Actually, as result we get
many heterogeneous models for a same system as illustrated by
Figure 1. The diagram of Figure 2 summarises problematic causes
and effect.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Naima Essadi, SIWEB, E3S, EMI, Mohammed V
University in Rabat, Rabat, Morocco, Email: naimaessadi@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj040618

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040618

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 148

Figure 1: Heterogeneous Models for a same system

These models need inevitably to be coordinated and integrated
to get a whole view of systems and, by the way to ease
implementation and validation. Coordination between these
models is also motivated by the need of getting relevant
information scattered in different models as well as the concern to
maintain the consistency of systems in case of evolution.

Many leads had been explored by current researches to resolve
this issue [2, 3, 4, 5]. Specifically, this work fits in researches
operating at meta-level [6, 7, 8, 9]. Actually, we choose to
coordinate DSMLs used to elaborate heterogeneous models rather
than coordinating models themselves. The need of a generic,
reused and less error prone approach motivated this choice.

Figure 2: Causes effects diagram of current problematic

Adopting interface concept to coordinate the use of multiple
DSMLs has been proposed by few interesting works [10, 11, 8, 12,
13]. Some of this works didn’t give clear specification of how to
define interfaces for languages, others didn’t give any concreate
process or tool to fulfil the proposed approach. Furthermore, those
approaches didn’t explain how to deal with pre-existent models.

Therefore, in this paper, we introduce a composition interface-
based approach to coordinate heterogeneous DSMLs. This
approach involves the application of a process in two steps:
Coordination Meta-Model (CMM) elaboration and Models
coordination. While, the first step aims to define interfaces for
involved DSMLs and their composition to get a coordination meta-
model (CMM), the second one involves the import of
heterogeneous models in a model conforming to CMM. This
import enables coordination between pre-elaborated
heterogeneous models.

Our approach is in fact a structural interface-based
composition of pre-elaborated models. It first gives a global view
of system on hand and secondly affords the possibility to exchange
important information between heterogeneous models as well as
insuring their interoperability.

 The remainder of this paper is organized as follows: we begin
by giving an overview for DSMLs specification as well as
heterogeneity in section 2. In Section 3, a motivating example is
presented to advocate the need of resolution. Then, in following
section, we introduce interface-oriented design basics for
languages as well as Bridge Pattern Design. Section 5 illustrates
the applicability of the approach using the motivating example
where heterogeneous models are coordinated. Section 6 presents
related works and finally, section 7 concludes this paper.

2. Heterogeneous DSMLs

2.1. DSMLs Overview

 Domain Specific Modeling Languages aims to abstract
problems and solution using domains vocabularies and concepts
instead of generic and unified objects and shapes.

 Contrary to a General-Purpose Modeling Language like
UML, a DSML is tailored to a specific specialized domain. It
allows stakeholders to contribute in modeling using notations close
to their knowledge of respective domains [1]. DSMLs could be
visual such as SDL, IFML, BPMN or textual like Data Modeling
Languages: Abstract Syntax Notation (ASN.1) [14, 15], YANG
[16, 17] and others.

 DSMLs are first of all languages and consequently adhere to
languages norms. Commonly, languages are specified using
grammars with the famous Context-Free Grammars EBNF
(extended Backus-Naur Form) [18]. Indeed, many other forms of
specification exist [10] such as: Attribute Grammars [19], Graph
Grammars [20], UML Profiles [21] and Meta-modeling [22].
Specifically, this work emphasizes meta-modeling specification.

2.2. DSMLs Specification

DSMLs are defined by two manners: white box specification
and black box specification. The white box provides all necessary
information about the language: the exhaustive list of including
concepts with their allowed inter-relations as well as their concrete
representation and optionally semantics giving the related
meaning.

A white box classical specification reflects the language
complexity. It is for example used to elaborate a compiler for the
language or either to integrate languages to improve their
expressiveness. Many recent researches use this specification to
reuse existing DSMLs. Table 1 summarizes elements of white box
specification.

However, a DSML black box specification is optional and aims
to hide complexity and irrelevant information about a language. It
could be defined by providing offered and required interfaces for
a language. Table 2 describes offered and required interfaces.

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 149

Table 1: DSML White Box Specification

Parts Relevance Description
Abstract
Syntax

Required Provides concepts of a language
with their exact rules of
combinations [23].

Concrete
Syntax

Required Provides textual or graphical
notation and symbols of language
concepts [10]. A language could
have one or more concrete syntax
[23].

Semantics Optional Provides meaning and subjective
understanding of a language
expressions and concepts
combination [10, 23]. Many types
of semantics exist: Translational,
Operational Semantic,
Denotational and Extensional [23].

Semantics
Mapping

Optional Provides correspondences and
relations between Semantic and
Abstract syntax elements [23].

Syntactic
Mapping

Optional Assigns syntactic constructs to the
abstract syntax [24]

The definition of interfaces for a DSML allows dealing with
the language without knowing all detailed information and
specification about it. The black box specification gives just
restricted and needed elements. Actually, the definition of a DSML
as a black box exposing specific interfaces allows language reuse
in different contexts. Hence, a language could be substituted by
another as long as it respects the same interface contract.

Table 2: DSML Black Box Specification

Parts Relevance Description
Offered
Interface

Optional Exposes elements to be used or
referenced by other languages.

Required
Interface

Optional Represents elements and
references needed by the language
from other languages.

2.3. Heterogeneous DSMLs

We qualify, as heterogeneous, elements with different nature.
In MDE, the heterogeneity of models is usual due to various
domains, tools, concepts and paradigms of modelling. Many types
of heterogeneity have been identified [2, 3, 25]. Nevertheless, we
notice three levels of heterogeneity between models:

• Heterogeneity of points of views: includes models with
different purposes and scopes. For example a model
representing static point of view is considered as
heterogeneous with a model describing a dynamic point of
view or a requirements model.

• Heterogeneity of meta-model (language): means that
models are elaborated with different DSMLs. We can also
say that they are conform to different meta-models, e.g.,
language heterogeneity between a BPMN model and an
SDL model.

• Heterogeneity of meta-meta-model means that models are
elaborated with different DSMLs, and those DSMLs
themselves are specified using different meta-models. An
example of that form of heterogeneity could be a CPL
model elaborated using CPL DSML conforming to
GOPPRR [26] meta-meta-model, the second model could
be an SDL model elaborated using SDL DSML which is
specified with Ecore meta-model.

In this work we are concerned by heterogeneity of DSML
which is the second level of heterogeneity. The first and third
levels of heterogeneity are beyond the scope of this paper.

3. Motivating Example

In this paper we illustrate our approach using an Indoor
Transport Service System (ITS). The ITS system is composed by
Robots, Locations and Items as described by diagram in left of
Figure 3. Robots execute tasks within a defined world [27]. It
transports Items from source to target locations. This kind of
systems is of course very useful and is more and more used for
different purposes: In hospitals for providing patient rooms with
medications and medical supplies, in restaurants to deliver ordered
meals to customers, etc.

(a)

(b)

Figure 3: ITS System Main Elements and Features

However, the ITS system needs to be supervised. System users
need to be informed about Robot’s location and activity while
accomplishing their transportation service. They also need to get
informed about item’s location in real time. A good solution for
Robot and Items supervision is to consider them as connected
objects.

This means that we need to compose our ITS system with an
Internet of Things system.

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 150

Figure 4: IoT System Main Elements and Main Features

 An IoT system as described by left part of Figure 4 is
composed by Objet and Sensor. Many kinds of sensors exist:
sensors to detect state change, location or battery thresholds. A
sensor is related to an object to detect events over them. The right
part of Figure 4 exposes object and sensor use cases. Sensor detects
event over object that performs actions. Consequently, in this case
study, we will deal with two heterogeneous domains: ITS domain
and IoT Domain. Subsequently, the composition of these two
systems will involve two experts’ teams: ITS team and IoT team.
Every team needs a dedicated DSML for modelling its concerns,
ITS DSML and IoT DSML for instance.

3.1. ITS DSML

We have elaborated a specific DSML for the ITS System. This
DSML uses domain vocabularies and concepts. In this section, we
will give an excerpt of the white box specification of this language.
The abstract syntax is illustrated in Figure 2 and described by
semantics column of table 3. The graphical representation of
DSML concepts and semantics are given in Table 3.

Figure 5: ITS DSML Abstract Syntax

 As we can see in Figure 5, ITS DSML defines following new
concepts: ITSRobot, ITSTask, ITSGoal, ITSItem and
ITSLocation. ITSRobot has to achieve ITSTasks. Every ITSTask
is composed by two ITSGoals: an ITSGoal to get an ITSItem from
an ITSLocation source and an ITSGoal to put an ITSItem into an
ITSLocation target.

Table 3: ITS DSML Concrete Syntax and Semantics

Abstract
Concepts

Graphical
Representation

Description

ITSRobot

Concept responsible for
indoor transportation.

ITSGoal

Concept describing a
mission to be executed by
robot. It includes an item
as well as two locations
source and target.

ITSTask

Concept regrouping a list
of goals to be executed by
a single robot.

ITSItem

Concept representing
elements transported by
robots.

ITSLocation

Concept representing site
of departure and end
points for robots missions.

Relation
ITSTask-
ITSRobot

 Concept relating an
ITSTask to an ITSRobot

Relation
ITSGoal-
Location

Concept relating a goal to
Location concept.

Relation
ITSGoal-
Item

Concept relating a goal to
Item concept

 We have used Obeo Designer [28] to create and design a new
DSML for ITS domain. Obeo Designer is an eclipse modeling tool
that enables the creation of new DSMLs and their editors. It is
based on the frameworks EMF, GEF [29] and GMF [30].

 Figure 6 illustrates the elaborated ITS language editor. It
illustrates also a model of this DSML produced using the graphical
editor. In this model the instance “Hospital-Robot” of ITSRobot
has the ITSTask “Hospital_Task” as mission to achieve. This task
is composed by two ITSGoals: a goal “Source” to load ITSItem
“oxygenBottle” from ITSLocation “Storage” and a second
ITSGoal “Target” to transport “oxygenBottle” to “PatientRoom”.

 A second model of this DSML is given in Figure 7. This
model concerns food delivery where an “FooDeliveryRobot” has
to accomplish the ITSTask “Pizza Delivery Task” of delivering
ordered food “Pizza” to a specific ITSLocation
“CustomerAddress”.

3.2. IoT DSML

We have also elaborated a second DSML to cover internet of
things domain [25]. This DSML introduces several basic concepts
of IoT domain such as: Object, Sensor, Event and Action
concepts. Sensors are associated to real word objects to detect
events over them. Subsequently, actions are triggered according to
detected events. The abstract syntax of IoT DSML is illustrated in
Figure 8.

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 151

Figure 6: ITS Model for Hospital Use

Figure 7: ITS Model for Food Delivery

Figure 8: IoT DSML Abstract Syntax

 The graphical representation and semantics of this DSML are
described in Table 4.

 An IoT model is illustrated in Figure 9. In this example,
the instance of Object “Device” has two sensors
“SpeedSensor” and “LocationSensor”. The “SpeedSensor”
detects event “Moving” over “Device” which trigger the
action “SendSms”. However, the sensor “BatterySensor” detects
the event “LowBattery” and then triggers the action “SendSms”.

Table 4: IoT DSML Concrete Syntax and Semantics

Abstract
Concepts

Graphical
Representation

Description

Object

Concept representing
connected objects.

Sensor

Concept sensor responsible
of detecting events over
connected objects.

Event

Concept event detected by
sensors over objects.

Action

Concept describing action
done when a sensor detects
an event or an environment
change.

Relation
Event-
Action

 Concept relating an Event to
a triggered Action.

Relation
Sensor-
Event

 Concept relating a Sensor to
detected Event.

Figure 9: IoT DSML Model and Editor

A second model for IoT is given by Figure 10. The instance
“Building” has “PositionSensor” as sensor. The action “SendSms”
is triggered when the event “PositionChanged” is detected on
“Building” Object.

Figure 10: IoT DSML Second Model

3.3. ITS and IoT DSMLs Coordination Motivations

Both models given in Figure 6 and Figure 7 need to be related
to model in Figure 9 for the following purposes: (i) To get activity
and position information of “Hospital_Robot” and
“FooDeliveryRobot”. (ii) To get items’ position and situation of
orders. However, coordinating ITS and IoT DSMLs is more

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 152

beneficial than coordinating their models. As, the coordination at
language level holds to all its models [10]. It actually guarantees
less elaboration time, less effort and less error prone. The
coordination is done once instead of for every model.

Moreover, this operation is validated once for all which
decreases bugs occurrences and coordination iterations. However,
to achieve coordination we need to answer the following questions:

How can we coordinate the two DSMLs to get a global view of
this system?

How can we coordinate the two DSMLs to achieve the whole
system goals described by (i) and (ii)?

How can we represent and describe coordination between the
two DSMLs?

4. DMLs Coordination

The recent design practices, for instance the use of different
DSMLs to describe domains concerns, induce an accidental
heterogeneity. Indeed, system designers from different teams
produce heterogeneous models to describe a single system. These
models are heterogeneous as they are expressed in different
DSMLs. Consequently, coordination between involved DSMLs is
needed to facilitate systems elaboration.

 Actually, coordination could be seen as a combination
between languages [10] to work together. It aims to join DSMLs’s
separate concepts to achieve a common goal. This join could
however be structural to get hole static and global view of systems
and either to get needed information and data among systems. On
the other hand, the join could also be behavioral to achieve
simulation to validate systems features and execution in early
implementation stages.

 Furthermore, coordination is considered as a less invasive
form of integration [31]. It is done posteriori to get global analysis
or global simulation of a system [32]. For same purposes, many
interesting works [33, 6, 7] invoked instead globalization concept.
This term is used as analogy with world globalization
relationships between countries to regulate interchange,
interaction and communication [6].

4.1. Interface-Based Coordination Approach

We propose to consider heterogeneous meta-models as
component Figure 11. We relate them using interfaces considered
as coordination points. Interfaces must be defined and related
internally to their own meta-models and externally to other
heterogeneous meta-models using coordination relationships.

4.2. Interface Description

DSMLs interfaces are part of black box modeling languages
specification. It aims to define concepts exposing possible
coordination join points and relationships to be established
between languages.

Indeed, the use of an offered interface of a DSML1 by a DSML2
supposes that DSML1 exposes an offered interface and in the other
side the DSML2 in its turn exposes a required interface.

Figure 11: Heterogeneous DSMLs Coordination Overview

Our idea is described in Figure 11, where we define interfaces
over DSMLs abstract syntax (meta-model). These interfaces are
exposing concepts to other DSMLs and hiding details about exact
structures and implementations.

In coordination, a DSML could be passive or active. The active
DSML is the one exposing a required interface and thus uses
interfaces offered by other DSMLs qualified as passive.

In this paper we consider external coordination between
involved DSMLs. The external coordination has been defined in
our previous work. It is done externally and is assured by a specific
framework or workbench.

 Many recent works [11, 8] discussed definition of DSMLs
interfaces for various needs. However, they gave different
proposition for defining it. In this work, we propose to create
interfaces according to the Bridge Design Pattern [34].

4.3. Bridge Design Pattern Overview

 Bridge Design Pattern has been first introduced by E.Gamma
et al [34]. This design pattern aims to decouple an abstraction
from its implementation so that the two can vary independently
[34].

Figure 12: Bridge Design Pattern Concept [34]

The main idea of this design pattern illustrated in Figure 12
consists in the definition of an abstract class in the first part
(“Abstraction” of Figure 12). This abstract class is inherited by
the class requiring a specific implementation
(“RefinedAbstraction” of Figure 12).

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 153

The defined Abstract class (“Abstraction”) references an interface
defined in the other side (see “Implementor” in Figure 12) which
is implemented by classes of this same side (see
“ConcreteImplementorA”, “ConcreteImplementorB” in Figure
12). In case of DSMLs, we propose to define interfaces according
to the Bridge Design Pattern.

 Consequently, the abstraction part of the Bridge is the required
interface and is defined by the first DSML while the second DSML
defines the second part of the Bridge which is the interface to be
referenced. This interface is exactly the offered interface of the
second DSML. This means that an abstract meta-class must be
defined in the first DSML. This meta-class is the super meta-class
for meta-classes requiring coordination. While this meta-class
represents a required interface for the first DSML, an interface is
defined in the second DSML to represent its offered interface. This
interface is implemented by elements of the second DSML.

 The use of this pattern gives a generalized nature to
coordination. Indeed, one of the two coordinated DSML could be
easily replaced by another DSML as well as interfaces contracts
are respected. In the proposed coordination process, a DSML could
be coordinated to as many as needed DSMLs. It can be active or
passive or the two at the same time.

4.4. Coordination Process Description

 We introduced in Figure 11 a high-level overview of our
approach. In this paragraph we propose to use this approach as a
part of a coordination process composed by two main steps: CMM
Elaboration and Models Coordination Figure 13.

 “CMM Elaboration”, represented by Fig. 13 and Fig. 14, is
done at DSML level. This step is done in three stages. We begin
by adding interfaces to involved DSMLs’s meta-models and then
we compose them to be able to define coordination relationships
between their interfaces.

Interfaces are added using a transformation, while composition
is done by creating a new element to be the root element of the
CMM. The composition consists in including DSMLs’s meta-
models root elements in this new element.

We assume that in a meta-model every meta-class must have at
most a parent. At least one meta-class doesn’t have a parent. This
meta-class is considered as the root element of a meta-model.

 Subsequently, the result of this first step is coordination meta-
model (CMM) that has a root element and coordinated meta-
models as leaves

The second and final step is “Models coordination” illustrated
by Figure 13 and Figure 15. The second step in this process
enables us to achieve coordination.

We start by creating a new model MCMM conforms to CMM.
The former will be composed by all input models and their mutual
relationships. We first import input heterogeneous models then
we relate input models interfaces using relationships defined in
step 1.

The import operation is in fact a transformation that aims to
transform input models to models that are conform to CMM. The
result of this step is a model representing a global view of the
whole system as well as its inter-relationships.

5. Application: Connected Indoor Transport Service
System

To demonstrate the applicability of the proposed approach, we
use the motivating example described in section 3. Actually, in
this example we have two heterogeneous DSMLs to coordinate in
order to get activity, position and battery threshold of ITSRobot.
This coordination aims also to get position of Item and Room
elements.

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 154

Figure 14: Step1: Coordination Meta-model (CMM) Elaboration

Figure 15: Step2: Models Coordination

5.1. ITS DSML Required Interface

The main feature of ITS DSML is the modeling of an Indoor
Transport Service.

However, ITS team needs to get a real time activity of ITSRobot
as well as position and battery thresholds. They also need to get
location of Item and Room concepts. As said earlier, needs of a
DSML are translated to required interface, for that we propose to
define a required interface for ITS DSML. This interface is
represented by the abstract meta-class named
“ConnectedElement” see Figure 16.

According to Bridge Design Pattern, this meta-class is
considered as super class of ITSRobot, Item and Room concepts.
Moreover, this meta-class must use an element that provides its
needs. The used element must be defined by another DSML
offered interface. In the current example, the IoT DSML represents
the other language.

5.2. IoT DSML Offered Interface

 The IoT DSML offers connecting ability to objects by relating
them to sensors able to detect events upon them. Subsequently and
according to Bridge Pattern design, we propose to define the

interface “IObject” as offered interface see Figure 17. This
interface is implemented by Object concept. Actually, referencing
“IObject” enables connection to sensors.

5.3. CMM Elaboration

The coordination meta-model (CMM) of ITS and IoT DSMLs
assures the composition of the two languages (Figure 18).
 It has as root “ITS_IOT” element that contains involved
languages root elements “ITS” and “IOT” for instance.

According to proposed approach, the coordination between the two
languages must be done by defining coordination relationships
between both required interface of ITS and offered interface of
IoT, described in earlier paragraph. Subsequently,
‘ConnectableElement’ the super class of both ‘ITSRobot’, ‘Item’
and ‘Room’ must reference the interface ‘IObject’ of IoT DSML.
This later is implemented by ‘Object’ meta-class belonging to IoT
DSML.

 While coordination elaborated between ITS and IoT DSMLs is
qualified as external [25], we notice that relationship used between
those languages interfaces is a composition relationship and more
specifically a referencing relationship [25]: “ConnectedElement”
references “Iobject”.

While coordination elaborated between ITS and IoT DSMLs
is qualified as external [25], we notice that relationship used
between those languages interfaces is a composition relationship

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 155

and more specifically a referencing relationship [25]:
“ConnectedElement” references “Iobject”.

Figure 16: ITS Required Interface

The last step of the coordination process is the coordination
between respective Models.

 Figure 19 illustrates an ITS Model of a hospital robot
transporting medical items from storage to patient rooms. This
model has been linked to two IoT models.

The ‘Hospital-Robot’ has the ability to reference an Object due to
the previous elaborated coordination. Hence, we associate it to a
device Object having two sensors: Speed sensor to get activity and
state of the ‘Hospital-Robot and the Battery sensor to monitor
battery thresholds of the ’Hospital-Robot.

 On the other side, The ‘PatientRoom’ and ‘Storage” have
also the ability to be related to an Object element. Thereby, it has
been associated to ‘Building’ object.

 These associations provide connection to a Location sensor
that gives information about Patient rooms and storage
localization.

 The coordination done at language level is also valuable for
all conformed models. Thus, the same CMM could be used to
coordinate models belonging to coordinated DSMLs.
Consequently, to supervise elements of the second model
illustrated in Figure 6 and Figure 7, we use the same CMM.
Thereby, in Figure 20 ‘FoodDeliveryRobot’ and
‘CustomerAddress’ have both the possibility to reference an
‘Object’ element of IoT DSML.

Figure 17: IoT Offered Interface

6. Related Works

Coordination between heterogeneous DSMLs is an active
research topic. Although, many research papers discussed this
subject, their objectives and motivations are different. Most of
them emphasize reutilization and development of DSMLs.

Figure 18: IoT Offered Interface

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 156

Figure 19: ITS and IoT Models Coordination

This coordination aims to help teams to cooperate with each
other in different phases of systems implementation: specification,
development, test, maintenance and evolution.

Modularization and interface-based techniques to compose and
integrate DSMLs has been proposed by recent papers. A.Klepee
[10] discussed the idea of language interfaces to combine
languages and like this paper the author gave also a way to define
a language interface using attributes and methods. However, our
proposition is more explicit. Either, in [8] authors introduced an
interface-based approach to define modular meta-models. The
approach advises the use of a black-box meta-model definition
based on interfaces and corresponding composition operators. This
is done using an abstract meta-modeling language enabling the
applicability of the approach for various meta-modeling
languages. In the same line, our work proposes a composition
technique based on offered and required interfaces.

In accordance with this work, Paper [11] advocates the
definition of provided and required interfaces for languages as well
as their syntactical and semantical composition operators to
support DSLs modularity. However, author doesn’t talk about how
interfaces must be defined. In contrast, in [35] author proposes
“Model Types” as example of DSLs interfaces defined on the
abstract syntax of languages. Here, models are linked to Model
Types using a typing relationship, while Model Types are related
to each other with a subtyping relationship.

In [9], author proposes to coordinate heterogeneous behavioral
models by specifying coordination patterns between languages.
This is done using language behavioral interfaces as well as
correspondence and coordination rules. Language behavioral
interface in this approach is a set of Domain Specific Events
(DSEs) defined in the context of language syntax meta-classes.
DSEs are used as coordination points allowing both observation
and control of models execution. Actually, coordination is enrolled
using BCool the coordination language. That language enables the
definition of operators containing matching and coordination rules

over DSEs. This proposition is similar to ours as language interface
is defined on top of language’s abstract syntax even if author didn’t
give a precise design for interface specification.

In [36] Marco Di Natal et al. use a mapping language to integrate
a functional language and a platform language. For that, a set of
connectors are used to specify the mapping between the two
languages. Once the mapping model is elaborated, communication
code between functional model and platform model is generated.
We can say that there are some similarities between this
proposition and ours. Connectors and mapping model play
respectively the same role of interface and coordination model in
our proposition.

Finally, in [37] authors define composition interface for model
fragments as a set of ports representing reference and variation
points of a language. Reference points are root nodes for model
fragments, where variation points are nodes that may be replaced
during composition. Ports have unique names and map to one or
more elements of the fragment. This work is interesting as we ca
consider model fragments as separate models that authors
coordinate using ports.

7. Conclusion and Future Works

 The use of divers DSMLs for modeling a same complex system
becomes a common practice. Indeed, systems are more and more
complex inciting experts to use their own specific modeling
languages.

Albeit, while many language workbenches exist and allow an easy
creation of DSMLs, the coordination and integration between them
is not proposed or poorly provided.

Subsequently, many recent researches discussed this issue. In
the same line, this paper introduces an approach based on both
composition and interface concepts to coordinate heterogeneous
DSMLs.

Actually, a detailed process composed by two main steps has
been proposed. The first step consists in composing involved
DSMLs and adds an interface layer to them. This layer is defined
according to Bridge Pattern Design.

http://www.astesj.com/

N. Essadi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 147-157 (2019)

www.astesj.com 157

The proposed approach has been applied to a connected Indoor
Transport Service system. The former involves two heterogeneous
DSMLs.

For our future works, we plan to explore more relevant cases
involving various coordination relationships. Hence, further case
studies will help us to improve our coordination process. We also
plan to provide a wizard enabling the use of proposed approach
and assisting integrators to achieve coordination.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

Acknowledge your institute/ funder.

References

[1] M. Fowler, R. Parsons, Domain Specific Languages, Addison-Wesley
Professional, 2010.

[2] C. Hardebolle, “ Composition de modèles pour la modélisation multi-
paradigme du comportement des systems,” Ph.D Thesis, Université Paris-Sud
XI Orsay, 2008.

[3] D. Simon-Zayas, “A framework for the management of heterogeneous
models in Systems Engineering,”, Ph.D Thesis, Ecole Nationale Supérieure
de Mécanique et d’Aérotechnique, 2012.

[4] M. El hamlaoui, “Mise en correspondence et gestion de la cohérence de
modèles hétérogènes évolutifs,” Ph.D Thesis, Université Toulouse-Jean-
jaurès, 2015.

[5] M. Chechik, S.Nejati, M.Sabetzadeh, “A Relationship-Based Approch to
Model Integration” Innovations in Systems and Software Engineering, 8(1),
3-18, 2012. https://doi.org/10.1007/s11334-011-0155-2

[6] B. Combemale, J. Deantoni, B. Baudry, J. Jézéquel and J. Gray, “Globalizing
Modelling Languages” Computer 47.6:68-71, 2014. https://doi.org/
10.1109/MC.2014.147

[7] J. Deantoni, C. Brun, B. Caillaud, R.B. France, G. Karsai, O. Nierstrasz and
E. Syriani, “Domain globalization: using languages to support technical and
social coordination”, Globalizing Domain-Specific Languages (pp. 70-87).
Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-26172-0_5

[8] S. Živković and D. Karagiannis, “Towards metamodelling-in-the-large:
Interface-Based composition for modular metamodel development” in
Enterprise, Business-Process and Information Systems Modeling. Springer,
Cham, 2015. https://doi.org/10.1007/978-3-319-19237-6_26

[9] M.E.V Larsen, J. Deantoni, B. Combemale and F. Mallet, ”A Behavioral
Coordination Operator Language (BCOol)” in Model Driven Engineering
Languages and Systems (MODELS), ACM/IEEE 18th International
Conference, 2015. https://doi.org/10.1109/MODELS.2015.7338249

[10] A. Klepee, Software language engineering, Addison-Wesley Professional,
2008.

[11] T. Degueule, “Towards Language Intefaces for DSLs Integration”, 2015.
https://hal.inria.fr/hal-01138017

[12] D. Strüber, G. Taentzer, S. Jurack & T. Schäfer. “Towards a distributed
modeling process based on composite models” in International Conference on
Fundamental Approaches to Software Engineering. Springer, Berlin,
Heidelberg, 2013. https://doi.org/10.1007/978-3-642-37057-1_2

[13] D. Strüber, S. Jurack,, T. Schäfer, S. Schulz & G. Taentzer. "Managing Model
and Meta-Model Components with Export and Import Interfaces." in
Big- MDE Workshop on Scalability in Model Driven Engineering. p. 31-36,
2016

[14] ITU-T Recommendation X.208, “Specification of Abstract Syntax Notation
One (ASN.1)”, 1988.

[15] ITU-T Recommendation X.209, “Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1)”, 1988.

[16] M.Bjorklund, “YANG a data modeling language for the network
configuration protocol (NETCONF)” (No. RFC 6020), 2010.

[17] M. Bjorklund, “The YANG 1.1 Data Modeling Language (No. RFC 7950)”,
2016.

[18] ISO/IEC, “Standard EBNF Syntaxt Specification”. Ebnf: Iso/iec 14977, 1996
(e). URL http://www. cl. cam. ac. uk/mgk25/iso-14977. pdf, 1996, vol. 70.

[19] J. Paakki. Attribute grammar paradigms—a high-level methodology in
language implementation. ACM Computing Surveys (CSUR), vol. 27, no 2,
p. 196-255, 1995.

[20] G. Rozenberg. “Handbook of Graph Grammars and Comp”, World scientific,
1997.

[21] L. Fuentes-Fernández & A. Vallecillo-Moreno, “An introduction to UML
profiles”. UML and Model Engineering, vol. 2, p. 6-13, 2004.

[22] T. Kühne, “Matters of (meta-) modeling”. Software & Systems Modeling,
vol. 5, no 4, p. 369-385, 2006. https://doi.org/10.1007/s10270-006-0017-9

[23] T. Clark, P. Sammut and J. Willans, Applied metamodeling: a foundation for
language driven development, Middlesex University Research Repository,
2008.

[24] K. Chen, J. Sztipanovits and S. Neema, “Toward a semantic anchoring
infrastructure for domain-specific modeling languages” in the 5th ACM
international conference on Embedded software (pp. 35-43). 2005.
https://doi.org/10.1145/1086228.1086236

[25] M. Klein, “Combining and relating ontologies: an analysis of problems and
solutions”. in Workshop on Ontologies and Information Sharing, IJCAI, 2001

[26] J. P. Tolvanen, R. Pohjonen & S.Kelly. “ Advanced tooling for domain-
specific modeling: MetaEdit+ “ in the 7th OOPSLA Workshop on Domain-
Specific Modeling, Finland, 2007. ISBN: 978-951-39-2915-2

[27] R. Heim, P.M.S Nazari, J.O. Ringert, B. Rumpe and A. Wortmann,
“Modeling robot and world interfaces for reusable tasks” in IEEE Intelligent
Robots and Systems (IROS), IEEE/RSJ International Conference on (pp.
1793-1798), 2015. https://doi.org/10.1109/IROS.2015.7353610

[28] E. Juliot and J. Benois, Viewpoints creation using obeo designer or how to
build eclipse dsm without being an expert developer?, Obeo, Tech. Rep., obeo
designer whitepaper, 2010. http://www.obeo.fr

[29] Graphical Editing Framework (GEF), http://www.eclipse.org/gef/.
[30] Eclipse Community Forums: GMF (Graphical Modeling Framework):

http://www.eclipse.org/forums/eclipse.modeling.gmf.
[31] K. Hölldobler, A. Roth, B. Rumpe and A. Wortmann, “Advances in modeling

Language engineering” in Proc of International Conference on Model and
Data Engineering (pp. 3-17),Springer,2017. https://doi.org/10.1007/978-3-
319-66854-3_1

[32] T. Deguele, “Composition and interoperability for external domain-specific
language engineering”, Ph.D Thesis, Rennes 1,2016.

[33] T. Clark, M. Van den Brand, B. Combemale and B. Rumpe, “Conceptual
model of the globalization for domain-specific languages” in Globalizing
Domain-Specific Languages(pp.7-20). Springer, Cham, 2015.
https://doi.org/10.1007/978-3-319-26172-0_2

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: Elements of
Reusable Object-Oriented Software, Pearson Education India ,1995.

[35] J. Steel, J.M Jézéquel, “On model typing” Software & Systems Modeling
6(4), 401–413, 2007. https://doi.org/10.1007/s10270-006-0036-6

[36] M. Di Natale, F. Chirico, A. Sindico and A. Sangiovanni- Vincentelli, “An
MDA approach for the generation of communication adapters integrating SW
and FW components from Simulink” in International Conference on Model
Driven Engineering Languages and Systems (pp. 353-369), Springer, Cham,
2014. https://doi.org/10.1007/978-3-319-11653-2_22

[37] J. Johannes, R. Samlaus and M. Seifert, “Round-trip support for invasive
software composition systems” in July 2009 Springer, Berlin, Heidelberg,
International Conference on Software Composition (pp. 90-106), 2009.
https://doi.org/10.1007/978-3-642-02655-3_8

http://www.astesj.com/
https://doi.org/10.1109/MC.2014.147
https://doi.org/10.1109/MODELS.2015.7338249
https://scholar.google.com/scholar?hl=fr&as_sdt=0,5&q=BigMAT%40+STAFF.+2016.+p.+31-36
https://doi.org/10.1145/1086228.1086236
https://doi.org/10.1109/IROS.2015.7353610
http://www.eclipse.org/gef/
http://www.eclipse.org/forums/eclipse.modeling.gmf

	2. Heterogeneous DSMLs
	2.1. DSMLs Overview
	2.2. DSMLs Specification
	2.3. Heterogeneous DSMLs

	3. Motivating Example
	3.1. ITS DSML
	3.2. IoT DSML
	3.3. ITS and IoT DSMLs Coordination Motivations

	4. DMLs Coordination
	4.1. Interface-Based Coordination Approach
	4.2. Interface Description
	4.3. Bridge Design Pattern Overview
	4.4. Coordination Process Description

	5. Application: Connected Indoor Transport Service System
	5.1. ITS DSML Required Interface
	5.2. IoT DSML Offered Interface
	5.3. CMM Elaboration
	5.4. Models Coordination

	6. Related Works
	7. Conclusion and Future Works
	Conflict of Interest
	Acknowledgment
	References

