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 This paper extends some of our research results disseminated in the most recent awarded 
international conference paper concerning the implementation in real time of a sliding 
mode observer state estimator. For the same case study developed in the conference paper, 
more precisely a DC servomotor angular speed control system, we extend the proposed 
concept of sliding mode observer state estimator  to a fuzzy sliding mode observer version, 
more suitable in control applications field such as fault detection of  the possible faults that 
might take place inside the actuators and sensors. The hybrid architecture implemented in 
a real time MATLAB/SIMULINK simulation environment consists of an integrated control 
loop structure with a switching bench of two sliding mode observers, one built by using a 
new approach that improves slightly the proposed sliding mode observer for the conference 
paper, and second one is an improved intelligent fuzzy version sliding mode observer 
estimator. The both estimators are implemented in SIMULINK to work independently by 
using a manual switch.  The simulation results for the experimental setup show the 
effectiveness of the improved fuzzy version of sliding mode observer compared to the 
standard one, as well as its high accuracy and robustness.   
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1. Introduction  

This paper is an extension of the results disseminated in the 
most recent international conference paper relating to the real time 
implementation of a sliding mode observer (SMO) state estimator, 
integrated in a direct current (DC)  servomotor angular speed 
control system [1]. The main goal of the extended version paper is 
to investigate new directions for improving the SMO state 
estimator performance in terms of state estimation accuracy and 
robustness to the changes in the noise levels, initial conditions 
values of the estimates, input disturbance and modeling errors 
uncertainties. The improved version of the SMO estimator is a 
fuzzy version of SMO (FSMO), a real helpful tool for our future 
developments in the real time control applications field, namely 
several real time fault detection and isolation (FDI) control 
strategies based on various estimation techniques. The purpose of 

these FDI strategies is to detect and isolate the possible 
malfunction components inside the actuators and/or faulty sensors 
as vital control system components frequently prone to errors. The 
real-time simulations are carried out on the 
MATLAB/SIMULINK platform, that has special real time 
implementation features provided by its extensions Real-Time 
Workshop (RTW) and the Real-Time Windows Target (RTWT). 
Furthermore, the real-time dc servomotor angular speed control 
proposed in our case study can be easily interfaced with 
MATLAB/SIMULINK or AnyLogic multi-paradigms hybrid 
simulator in the case of Real-Time Unified Modeling Language 
(UML-RT) implementations with a fast response [2]-[4].  

2. Fault Detection and Isolation Schemes Using Real Time 
State Estimators   

The DC servomotor is mostly used as an actuator in feedback 
closed-loop control systems, but in this research for simulation 
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purposes it is considered in the same time as a controlled plant, 
similar with the one shown in Figure 1 [2]-[4]. One of the main 
goals of this closed-loop structure might be to control its angular 
speed or its position either or both. Nowadays, the DC servomotors 
are extensively used in the common control applications due to 
their high start torque characteristics, high response performance, 
and their speed much easier to be controlled by varying the input 
voltage, compared to those that need expensive frequency drivers 
[1]. 
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Figure 1: The schematic diagram of the closed-loop control system of the dc 

servomotor angular speed (Reproduced from [4]). 

The components of the DC servomotor actuators during 
operation experience several possible critical failures that could 
compromise its performance and cause severe gear damage, such 
as, armature coil opening, brushes failures, field coil opening, 
armature static converter short circuit, field static converter short 
circuit, armature coil short circuit, field coil short circuit, cooling 
system failure, lack of bearings and bushing lubrication, armature 
current sensor failure, field current sensor failure, offset on 
supplied voltage or  speed sensor failure  [5]. 

Whenever these critical situations come out the control systems 
could lose the control, require much more energy, and could 
operate harmfully. Therefore to operate in real-time at high energy 
efficiency and to guarantee the equipment safety and reliability it 
is important to develop suitable FDI strategies capable to detect and 
diagnose any time every faulty control system components and 
consequently corrective and reconfiguration actions should be 
initiated promptly [1]. Fault detection and isolation schemes are 
implemented as real-time algorithms based on various state 
estimation techniques that require the input-output measurements 
data set of the control plant. They are basically used firstly for fault 
detection to decide whether the plant is in a normal operating 
condition or in a faulty one, and secondly for fault isolation to point 
out and identify the kind of the fault, if it is present, among a given 
faults covering set [1], [5].  Effectively the existing methods to 
identify and to adjust the equipment failures are mostly labor-
intensive task, and consequently sustained, rhythmic and error-
prone [1]. In the most of these situations the windings currents are 
recorded to determine the health of the DC servomotors currents 
compared to statistical evaluation that necessitates considerable 
human knowledge, hence error-prone that could generate severely 
equipment operation [1]-[6].  In these conditions the problem of 
control systems monitoring and fault diagnosis becomes a critical 
issue, of high complexity that need to be implemented in real-time 
environment by using more sophisticated control systems and 

artificial intelligence estimation strategies [1]. Usually, the control 
systems design must include FDI issues at their very early design 
stage with the ultimate goal to reach a fault-tolerant control (FTC) 
environment [5], [7]. Following the FDI diagnosis, on-line 
procedures are usually needed for FTC purpose, while off-line 
procedures could be used for maintenance purpose [5], [7]. To see 
the strong link between the FDI real time algorithms and the state 
estimation techniques is worth to know that a FDI strategy is 
implemented as a two-steps procedure based on the plant data set 
of input-output measurements. In the first real time procedure step 
is implemented the fault detection or is generated an alarm to 
decide whether the system is in a normal operating condition or not 
using an estimation algorithm, such as Kalman filters estimators 
[6], [8]-[9]  or Luenberger linear and nonlinear  sliding mode 
observers [10]-[16].  In our approach we develop a hybrid structure 
for state estimation, namely a fuzzy version of sliding mode 
observer nonlinear estimator, FSMO similar to the approach 
developed in [17]-[18]. In the second procedure step the isolation 
tasks or alarms interpretation are required for right decision about 
which faults chosen from a pre-defined set of faults that cover 
almost all the possible situations (fault isolation) [5], and therefore 
to find the faults locations based on an implemented logic, as in 
our future extension approach (second part of this research paper) 
that will develop for this purpose an intelligent fuzzy logic 
classifier [10]. The set of output measurements along with a 
previously obtained knowledge of the system constitute the 
algorithm inputs while a set of generated alarms are the algorithm 
outputs [5]. It is also worth to say that accuracy and the robustness 
of these estimation techniques are crucial for successful real time 
implementation of all FDI strategies. Furthermore, these 
estimation techniques are useful to establish the fault 
characteristics such as occurrence time, its severity, and the 
recovery time. The FDI estimation algorithms performance is the 
ultimate analysis issue that must consider also the accumulate 
evaluation errors included at every step of the FDI problem 
solution. This research work is based on our previous experience 
in control systems implementation, very useful to prove the 
effectiveness of the improved version of real-time SMO estimator 
implementation, a simple fuzzy version, FSMO.  It will be a new 
practical approach to build a hybrid control structure that integrates 
in the same control loop the FDI control strategy together with a 
FSMO estimator and a fuzzy logic classifier (FLC). Summarizing, 
the main objective of this research is to improve the performance 
of the real time SMO estimator developed in the most recent paper 
conference [1] using a new approach.  The new SMO estimator 
design is an improved fuzzy version of SMO estimator, very 
simple to be implemented in real-time, more efficient, accurate, 
robust and consistent. The improved FSMO estimator is a useful 
tool capable to be applied in our future developments in control 
applications field, as an extension of these research results to find 
solutions for different control applications, such as for example  
the most attractive FDI control strategies.  

3. Dynamics Model of Dc Servomotor 

For simulations purpose to implement our proposed real time 
FDI strategy of actuator (input) and sensor (output) faults we 
consider the same permanently excited DC servomotor with a rated 
power of P =  550 W at rated speed n  = 2500 rpm, described in 
detail in [7]. It consists of two-pair brush commutation, two pole 
pairs, and an analog tachometer for speed measurement and 
operates against a hysteresis brake as load, as shown in Figure 2 
[7].    
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Figure 2: The Dc servomotor test bench with hysteresis brake 

a) The experiment set-up b) The equipment block scheme (screenshot from [7]) 

The measured signals of the angular speed control system are 
the armature voltage  𝑉𝑉[𝑉𝑉] , the armature current 𝐼𝐼𝑎𝑎[𝐴𝐴]  and the 
angular speed  𝜔𝜔 [𝑟𝑟𝑎𝑎𝑟𝑟

𝑠𝑠
] . The closed-loop equipment includes in 

forward path an analog proportional servo amplifier and the dc 
servomotor actuator as a controlled plant. In the feedback path is 
integrated an analog tachometer transducer, three anti-aliasing 
filters (AFs), three Analog to Digital converters (ADC) as an 
interface between an input personal computer (PC) and the AF 
block, a second analog servo amplifier with pulse-width-
modulated (PWM) armature voltage as output and speed and 
armature current as feedback that allows to be built a cascaded 
speed control system [7]. In Figure 2(b) is shown the flow diagram 
of the three measured signals that first pass through analog anti-
aliasing filters and after they are processed by a digital signal 
processor (e.g. TXP 32 CP, 32-bits, 50 MHz) and a desktop Intel 
Pentium host PC [7]. Also the hysteresis brake is controlled by a 
pulse-width servo amplifier. Typically such dc servomotors can be 
described by linear dynamic models [1], [7], [20]. 

 However, the simulation results of the experiments carried out 
have shown that these linear models with constant parameters do 
not match the process in the entire operational range [7]. For that 
reason, the block scheme of dc servomotor represented in complex 
domain (𝑠𝑠 ∈ 𝐶𝐶) must include two nonlinearities such that the 
dynamic model is capable to capture all the process dynamics, as 
is shown in Figure 3 [7]. The dynamics of the dc servomotor 
actuator is described by the following input-state-output equations 
[1], [20]: 

   𝐽𝐽 𝑟𝑟
2𝜃𝜃
𝑟𝑟𝑡𝑡2

+ 𝑏𝑏 𝑟𝑟𝜃𝜃
𝑟𝑟𝑡𝑡

= 𝑘𝑘𝑡𝑡 × 𝐼𝐼𝑎𝑎 − 𝑇𝑇𝐿𝐿                                      (1)  

               𝐿𝐿𝑎𝑎
𝑟𝑟𝐼𝐼𝑎𝑎
𝑟𝑟𝑡𝑡

+ 𝑅𝑅𝑎𝑎𝐼𝐼𝑎𝑎 = 𝑢𝑢𝐴𝐴 − 𝑒𝑒                                                (2)                                                                                     

where 𝑇𝑇𝑒𝑒 = 𝑇𝑇 = 𝑘𝑘𝑡𝑡𝐼𝐼𝑎𝑎 is the dc servomotor torque developed on 
the shaft,  𝑇𝑇𝐿𝐿 = 𝑀𝑀𝐿𝐿 = 𝑀𝑀𝐹𝐹0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 ) is the load torque, Ψ is the 
magnetic flux, as  is shown in Figure 3 and Table 2 [7]. In addition 
by defining the armature voltage as𝑢𝑢𝐴𝐴 =  𝑈𝑈𝐴𝐴∗ − 𝐾𝐾𝐵𝐵| 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 |𝐼𝐼𝑎𝑎, as is 

shown in Figure 3, and the DC servomotor counter electromotive 
force, e by: 
   𝑒𝑒 = 𝜓𝜓 × 𝑟𝑟𝜃𝜃

𝑟𝑟𝑡𝑡
= 𝑘𝑘𝑒𝑒 × 𝜔𝜔                                  (3) 

leads to a linear description of its dynamics given in (1), (2) [7]. 

Furthermore, in a state-space representation the DC 
servomotor actuator dynamics is described by following equations:  

(i) State Equation [1],[7], [20]: 

  �
𝑟𝑟𝑥𝑥1
𝑟𝑟𝑡𝑡
𝑟𝑟𝑥𝑥2
𝑟𝑟𝑡𝑡

� = �
− 𝑏𝑏

𝐽𝐽
𝑘𝑘𝑡𝑡
𝐽𝐽

− 𝑘𝑘𝑒𝑒
𝐿𝐿𝑎𝑎

− 𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

� �
𝑥𝑥1
𝑥𝑥2� + �

0
 1
𝐿𝐿𝑎𝑎

 � 𝑢𝑢 + ⋯                    

+�−
𝑀𝑀𝐹𝐹0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡 �

𝐽𝐽
0

0 0
� �
𝑤𝑤1
𝑤𝑤2�                                           (4) 

𝑥𝑥1 = 𝜔𝜔, 𝑥𝑥2 = 𝐼𝐼𝑎𝑎 ,𝑢𝑢 = 𝑢𝑢𝐴𝐴, 𝑥𝑥1(0) = 1 �𝑟𝑟𝑎𝑎𝑟𝑟
𝑠𝑠
� , 𝑥𝑥2(0) = 0[𝐴𝐴 ]         (5) 

where 𝑤𝑤 = �
𝑤𝑤1
𝑤𝑤2� represents a two-norm bounded noise vector 

which stands for the uncertainties and the unknown inputs 
affecting a practical DC servomotor [7]. 

Output equation: 

                   𝑦𝑦 = �1     0
0     1� �

𝑥𝑥1
𝑥𝑥2�                                     (6)      

The measurement vector, 𝑦𝑦(𝑡𝑡) is assumed to be completely 
known and measurable at each sample time, t. The unknown 
disturbance, 𝑇𝑇𝐿𝐿is bounded, i.e. there exists a positive real value, 
such that the symbols ||.|| and 𝑇𝑇𝐿𝐿�  stand for the two-norm of noise 
vector and the upper bound value of 𝑇𝑇𝐿𝐿 , respectively. 

  
Figure 3: The block scheme of the Dc servomotor in complex domain 

(screenshot from [7]) 

3.1. Abbreviations and Acronyms and measure units 

To simplify the presentation we include in this subsection the 
list of all the abbreviations and the acronyms used in the paper text, 
as is shown in Table 1.  

Also in the text we use only the international standard (SI) as 
primary units, as is shown in Table 2 
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Table 1: The list with the abbreviations and the acronyms used in text 

Item Acronyms/ 
Abbreviations 

Significance 

1 FDI Fault Detection and Isolation 
2 FTC Fault Tolerant Control 
3 PC Personal Computer 
4 PWM Pulse-Width-Modulation 
5 AF Anti-aliasing Filter 
6 ADC Analog to Digital Converter 
7 SMO  Sliding Mode Observer 
8 FSMO Fuzzy Sliding Mode Observer 
9 FIS Fuzzy Inference System 
10 FLC Fuzzy Logic  Classifier 
11 KF Kalman Filter 
12 RTW Real Time Workshop 
13 RTWT Real-Time Windows Target 
14 UML-RT Real Time Unified Modeling 

Language 
15 SI International System of Units  
16 DC Direct Current 

Table 2: The list with the SI units abbreviations used in the text 

Name  Symbol SI 
base 
Unit 

Expressed 
in other SI 
units 

Name of 
SI unit 

Current I A - ampere 
Voltage V V - volt 
Time t s - second 
Magnetic flux ψ Wb      𝑉𝑉𝑠𝑠 weber 
Viscous friction 
coefficient 
(Damping ratio of 
the mechanical 
system) 

𝑀𝑀𝐹𝐹1(𝑏𝑏)     - 𝑁𝑁𝑁𝑁 × 𝑠𝑠 - 

Moment of rotor 
inertia 

𝐽𝐽 - 𝑘𝑘𝑠𝑠𝑁𝑁2 - 

Dry friction 
coefficient 

 
𝑀𝑀𝐹𝐹0  

 
- 

 
𝑁𝑁𝑁𝑁 

 
- 

Counter 
electromotive 
force coefficient 

 
ke 
ψ 

 
- 

 
Nm/A 

 
- 

 
Electromotive 
force 

 
e 

 
V 

 
- 

 
volt 

Proportional 
coefficient of the 
motor torque 

kt 
ψ 

 Nm/A - 

Electric resistance 
of the armature  

𝑅𝑅𝑎𝑎 Ω 𝑉𝑉
𝐴𝐴�  Ohm 

Electric 
inductance of the 
armature 

𝐿𝐿𝑎𝑎  H   Ω×s   Henry 

Angular speed 𝜔𝜔 - 𝑟𝑟𝑎𝑎𝑑𝑑 𝑠𝑠�  -  
Load torque 𝑇𝑇𝐿𝐿  - 𝑁𝑁𝑁𝑁 -  
Motor torque 𝑇𝑇𝑀𝑀  𝑁𝑁𝑁𝑁 -  
Electric Power 𝑃𝑃 W V × 𝐴𝐴 watt 

The nominal values of the DC servomotor model coefficients 
have the same values as in [7], as are given in Table 3.   

Table 3: The nominal values of the dc servomotor dynamic model 

Parameter Name Symbol Value Measure 
Unit 

Electric resistance 
of the armature  

𝑅𝑅𝑎𝑎 1.52 Ω 

Electric inductance 
of armature 

𝐿𝐿𝑎𝑎 6.82 × 10−3 H 

( Ω×s) 

Magnetic flux      ψ 0.33 Wb 

(𝑉𝑉 × s) 

Voltage drop factor KB 2.21 × 10−3 𝑉𝑉 × s
𝐴𝐴�  

Moment of rotor 
inertia  

𝐽𝐽 1.92 × 10−3 𝑘𝑘𝑠𝑠𝑁𝑁2 

Viscous friction 
coefficient 

𝑀𝑀𝐹𝐹1(𝑏𝑏) 0.36 × 10−3 𝑁𝑁𝑁𝑁 × 𝑠𝑠 

Viscous dry 
friction 

𝑀𝑀𝐹𝐹0  0.11 𝑁𝑁𝑁𝑁 

Replacing the values given in Table 3 in the dc servomotor 
dynamic model represented by (4)-(6) we get the nominal system 
equations of the dc servomotor dynamics in a state space 
representation of the following form: 

(i) State Equation [8],[13], [19]: 

     �
𝑟𝑟𝑥𝑥1
𝑟𝑟𝑡𝑡
𝑟𝑟𝑥𝑥2
𝑟𝑟𝑡𝑡

� = �
−𝑀𝑀𝐹𝐹1

𝐽𝐽
𝜓𝜓
𝐽𝐽

− 𝜓𝜓
𝐿𝐿𝑎𝑎

− 𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

� �
𝑥𝑥1
𝑥𝑥2� + �

 0
 1
𝐿𝐿𝑎𝑎

 � 𝑢𝑢 + 𝐺𝐺(𝑥𝑥1) �
𝑤𝑤1
𝑤𝑤2�          (7) 

𝑥𝑥1 = 𝜔𝜔, 𝑥𝑥2 = 𝐼𝐼𝑎𝑎 ,𝑢𝑢 = 𝑢𝑢𝐴𝐴, 𝑥𝑥1(0) = 1 �𝑟𝑟𝑎𝑎𝑟𝑟
𝑠𝑠
� , 𝑥𝑥2(0) = 0[𝐴𝐴]          (8) 

(ii) Output equation: 

                    𝑦𝑦 = �1     0
0     1� �

𝑥𝑥1
𝑥𝑥2� = �

𝜔𝜔
𝐼𝐼𝑎𝑎�                                    (9) 

Or, more compact: 

      �
𝑟𝑟𝑥𝑥1
𝑟𝑟𝑡𝑡
𝑟𝑟𝑥𝑥2
𝑟𝑟𝑡𝑡

� = 𝐴𝐴𝑠𝑠×𝑠𝑠 �
𝑥𝑥1
𝑥𝑥2� + 𝐵𝐵𝑠𝑠×𝑝𝑝𝑢𝑢 + 𝐺𝐺𝑠𝑠×𝑠𝑠(𝑥𝑥1) �

𝑤𝑤1
𝑤𝑤2�            (10) 

𝑦𝑦 = 𝐶𝐶𝑚𝑚×𝑠𝑠 �
𝑥𝑥1
𝑥𝑥2�                                                               (11)                                                            

where n represents the  system state dimension, n  = 2, p is the 
number of inputs, p = 1,and m is the number of outputs, m = 2. The 
load torque  𝑇𝑇𝐿𝐿  is considered as a bounded input uncertainty 
included in the last term, 𝐺𝐺(𝑥𝑥1) �

𝑤𝑤1
𝑤𝑤2� = 𝑀𝑀𝐹𝐹0𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥1(𝑡𝑡)) �

𝑤𝑤1
𝑤𝑤2� of 

(7). The noise vector components 𝑤𝑤 = �
𝑤𝑤1
𝑤𝑤2�  are generated by a 

SIMULINK “Band-Limited White Noise” block that generates 
normally distributed random numbers that are suitable for use in 
continuous or hybrid systems of different spectral density powers, 
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e.g., 1 and 0.1 to analyze also the robustness of the hybrid structure 
SMO - FMSO estimators to the different noise levels.   

The matrices triplet (𝐴𝐴𝑠𝑠×𝑠𝑠, 𝐵𝐵𝑠𝑠×𝑝𝑝𝐶𝐶𝑚𝑚×𝑠𝑠) is defined by: 

𝐴𝐴2×2 = �
−𝑀𝑀𝐹𝐹1

𝐽𝐽
𝜓𝜓
𝐽𝐽

− 𝜓𝜓
𝐿𝐿𝑎𝑎

− 𝑅𝑅𝑎𝑎
𝐿𝐿𝑎𝑎

� = � −0.1875 171.8750
 −48.3871 −222.8739�, 

𝐵𝐵2×1 = �
0
1
𝐿𝐿𝑎𝑎
� = � 0

146.6276� , 𝐶𝐶1×2 = [1    0],   

𝐺𝐺2×2(𝑥𝑥1) = �−57.2917𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑟𝑟𝜃𝜃(𝑡𝑡)
𝑟𝑟𝑡𝑡

� 0
0 0

�   

 An observability test reveals that both outputs (𝜔𝜔 and 𝐼𝐼𝑎𝑎) can 
also observe each other, i.e., 

  rank(Q) = rank ([𝐶𝐶1×2  𝐶𝐶1×2𝐴𝐴2×2] 𝑇𝑇) = 2                           (12) 

where Q is the observability matrix of full rank. The matrix 𝐴𝐴2×2is 
a stable matrix, i.e. a strictly Hurwitz matrix with its eigenvalues 
placed to  𝜒𝜒1 =  −47.6497  and 𝜒𝜒2 = −175.4117.  

4. Sliding Mode Observer for Linear DC Servomotor with 
Model and Disturbances Uncertainties  

Basically the design of any SMO estimator for a nonlinear 
uncertain system can be simplified by considering its linearized 
model, similar to those described by (10)-(11), proposed for sate 
estimation and written in the following most general form [7]:   

𝑟𝑟𝑥𝑥�
𝑟𝑟𝑡𝑡

= 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝑢𝑢 + 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) + 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�)                    (13) 

𝑦𝑦� = 𝐶𝐶𝑥𝑥�                                                                               (14) 

where, the estimated state vector is denoted by 𝑥𝑥� , and  (𝑦𝑦 − 𝑦𝑦�)  
is the residual of the output signal of the control system. L 
represents an appropriate designed linear gain matrix, similar to 
Luenberger Observer gain matrix for linear systems [11], [13] [18] 
and M is an appropriate designed nonlinear gain matrix that 
multiplies the common sign function, as in [1] and [16], [18]. In 
reality they represent two key tuning parameters to control the 
SMO performance. In Equation (13) its last  𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�) term 
is added to compensate the effects of disturbance input (load 
torque) and modeling uncertainty of the system (10). Therefore, 
the states of the system can be estimated using data given by the 
measured input-output data set, (𝑢𝑢(𝑡𝑡),𝑦𝑦(𝑡𝑡)) of the control system. 
Several design methods have been used to determine the observer 
linear gain L, ensuring the stability of the proposed SMO 
estimator [18]. Among these design methods in [18] is mentioned  
the most popular Kalman Filter (KF) algorithm that can be applied 
to find the estimation gain 𝐾𝐾𝐿𝐿 as a good approximation of the gain 
matrix L for the designed SMO linear estimator (13). Closing, the 
proposed SMO linear estimator (13) includes two key terms:  one 
of them is the Kalman filter term 𝐾𝐾𝐿𝐿(𝑦𝑦 − 𝑦𝑦�)  as a suitable 
approximation of the Luenberger observer term, 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) , and 
the other one is the discontinuous sign term, 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�)  , 
where their corresponding gains 𝐾𝐾𝐿𝐿  and 𝑀𝑀  are designed 
separately [18]. Therefore, the proposed observer design (6) 
becomes the mixed Kalman Filter - SMO estimator (KF-SMO), 
whose dynamics is described by the following single input-single 
output (SISO) output equation: 

    𝑟𝑟𝑥𝑥�
   𝑟𝑟𝑡𝑡

= 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝑢𝑢 + 𝐾𝐾𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) + 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�)                   (15) 

𝑦𝑦� = 𝐶𝐶𝑥𝑥� = 𝑥𝑥1 = 𝜔𝜔 

By some manipulations of the matrices  𝐴𝐴,𝐵𝐵,𝐶𝐶 we can easily 
find that 𝐵𝐵,𝐶𝐶 have a full rank, and also the pair (𝐴𝐴,𝐶𝐶) we found in 
section 2 that is observable, as main requirements assumed in [14]-
[16], [18].   

By replacing (16) in (15), the dynamics of SMO observer is 
described by the following equation [18]: 
𝑟𝑟𝑥𝑥�

   𝑟𝑟𝑡𝑡
= (𝐴𝐴 − 𝐾𝐾𝐿𝐿𝐶𝐶)𝑥𝑥� + 𝐵𝐵𝑢𝑢 + 𝐾𝐾𝐿𝐿𝑦𝑦 + 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�)                 (16) 

where the matrix  𝐴𝐴0 = 𝐴𝐴 − 𝐾𝐾𝐿𝐿𝐶𝐶  concentrates all the dynamics of 
SMO estimator, so it has to be stable (strictly Hurwitz)  such that 
the state estimate, 𝑥𝑥� to converge to a finite value in a finite time 
[14]-[16], [18]. The matrix 𝐴𝐴0  is strictly Hurwitz if all its 
eigenvalues are situated strictly in the half left complex plane, 𝜆𝜆𝑠𝑠 ∈
∁−| ∀𝑠𝑠 ∈ 𝑍𝑍+. The dynamics of the SMO estimator (15) is described 
by the following first order differential equations: 
𝑟𝑟 𝑥𝑥�1(𝑡𝑡)
𝑟𝑟𝑡𝑡

= 𝐴𝐴11𝑥𝑥�1(𝑡𝑡) + 𝐴𝐴12𝑥𝑥�2(𝑡𝑡) +  𝐵𝐵11𝑢𝑢(𝑡𝑡) +  𝐾𝐾𝐿𝐿1𝑒𝑒𝑦𝑦(𝑡𝑡) + ⋯                                          

                +𝑀𝑀1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑒𝑒𝑦𝑦(𝑡𝑡)�                                                      (17) 

𝑟𝑟𝑥𝑥�2(𝑡𝑡)
𝑟𝑟𝑡𝑡

= 𝐴𝐴21𝑥𝑥�1(𝑡𝑡) + 𝐴𝐴22𝑥𝑥�2(𝑡𝑡) +  𝐵𝐵21𝑢𝑢(𝑡𝑡) + 𝐾𝐾𝐿𝐿2𝑒𝑒𝑦𝑦(𝑡𝑡) + ⋯  

               +𝑀𝑀2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑒𝑒𝑦𝑦(𝑡𝑡)�                                                         (18) 

where 

𝑒𝑒𝑦𝑦(𝑡𝑡) = 𝑒𝑒1(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) − 𝑥𝑥�1(𝑡𝑡), 𝑒𝑒2(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) − 𝑥𝑥�2(𝑡𝑡)          (19) 

represent the states residuals of the DC servomotor. The observer 
linear gain matrix KL is chosen in order to make the spectrum of 
the matrix ( A − KLC) to lie in ∁− [14]-[16], [18]. In simulations 
we consider two cases, one case for eigenvalues close to origin of 
the complex plan, for a slow transient, and second case for 
eigenvalues far from origin of the complex plan, for fast transient, 
very important in fault detection.  Without to lose the generality 
we can select for the sliding mode observer the following linear 
gain matrices, setting the matrix components as 𝐾𝐾𝐿𝐿(2) =
48.371, and for 𝐾𝐾𝐿𝐿(1)  any value greater than -0.1875 that 
guarantees the stability of the matrix ( A − KLC), e.g., 

𝐾𝐾𝐿𝐿 = � 1
48.371�, and 𝐾𝐾𝐿𝐿 = � 100

48.371�. 

We analyze in this case the accuracy of the hybrid structure SMO-
FSMO estimators corresponding two different poles locations of 
control system, given as the eigenvalues of the matrix 𝐴𝐴0 = 𝐴𝐴 −
𝐾𝐾𝐿𝐿𝐶𝐶 . The main goal remains now to design the nonlinear gain 
matrix M such that the discontinuous term, 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�) 
overcomes the parametric uncertainties assuring a stable dynamics 
of SMO estimator error. The observer nonlinear gain matrix 𝑀𝑀 =
�𝑀𝑀1
𝑀𝑀2
� has to guarantee a bounded error dynamic for the output 

residuals (19) satisfying the following gain condition [18]: 

𝑀𝑀� ≥  �̅�𝐺 𝑤𝑤�                                         (20) 

Also the gain condition (20) assures that the SMO residuals 
𝑒𝑒1, 𝑒𝑒2 converge to zero. More precisely, the two-norms of the 
known term G(x) and the SMO gain matrix M are bounded to 
corresponding upper bounds, �̅�𝐺  and  𝑀𝑀�  respectively [18]. 
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According to (20) taking into account the noise levels for gain 
matrix M we will consider in our simulations the following values 
𝑀𝑀 = �11�, and 𝑀𝑀 = �10

10� respectively.  

𝑟𝑟 𝑥𝑥�1(𝑡𝑡)
𝑟𝑟𝑡𝑡

= 𝐴𝐴11𝑥𝑥�1(𝑡𝑡) + 𝐴𝐴12𝑥𝑥�2(𝑡𝑡) +  𝐵𝐵11𝑢𝑢(𝑡𝑡) +  𝐾𝐾𝐿𝐿1𝑒𝑒𝑦𝑦(𝑡𝑡) + ⋯                                          

             + 𝑀𝑀�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑒𝑒𝑦𝑦(𝑡𝑡)�                                                          (21) 

𝑟𝑟𝑥𝑥�2(𝑡𝑡)
𝑟𝑟𝑡𝑡

= 𝐴𝐴21𝑥𝑥�1(𝑡𝑡) + 𝐴𝐴22𝑥𝑥�2(𝑡𝑡) +  𝐵𝐵21𝑢𝑢(𝑡𝑡) + 𝐾𝐾𝐿𝐿2𝑒𝑒𝑦𝑦(𝑡𝑡) + ⋯  

               +𝑀𝑀�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑒𝑒𝑦𝑦(𝑡𝑡)�                                                          (22) 

4.1. Sliding Mode Observer Simulation Results 

For simulation results purpose in the experimental set-up the 
input voltage profile is set to 𝑢𝑢(𝑡𝑡) = 84 [𝑉𝑉] in the first 0.5 seconds 
and to 𝑢𝑢(𝑡𝑡) = 24 [𝑉𝑉] on the last 0.4 seconds. Also the spectral 
density power values of the noise will be set in first case to 1 and 
for second case will be chosen ten times smaller to 0.1 in order to 
be able to see the accuracy of the both estimators SMO, and FSMO,   
The problem design of the sliding mode observer is solved by 
using one of the most powerful tools, such as 
MATLAB/SIMULINK software package.  

The SIMULINK model of the nominal system is shown in 
Figure 4, and the evolution of the DC servomotor states, i.e. 
angular speed (𝑥𝑥1) and armature current (𝑥𝑥2)  are shown in Figure 
5 and Figure 6. The input profile voltage is shown in Figure 7.  In 
Figure 8 is presented in detail the DC servomotor subsystem 
nominal model. In Figure 9 is shown the overall view of the SMO 
SIMULINK diagram of the state estimator. The Figure 10 and 
Figure 11 show the dynamic evolution of the SMO armature 
current residual and on the same graph the both model and SMO 
armature current estimate. Similar for SMO angular speed is 
shown in Figure 12 and Figure 13.   In Figure 14 is shown the 
switch control function on the sliding surface, to analyze the 
chattering effects of the sliding mode on the control system efforts 
to keep the evolution of the states on the trajectory.  

 
Figure 4: The overall SIMULINK diagram of DC servomotor nominal model  

 
Figure 5: The MATLAB simulations of the evolution of nominal DC Servomotor 

angular speed 

 
Figure 6: The MATLAB simulations of the evolution of nominal DC Servomotor 

armature current 

 
Figure 7: The input Voltage profile in SIMULINK for the DC Servomotor 

nominal model 
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Figure 8: The detailed subsystem SIMULINK diagram of the DC servomotor 

nominal model  

 
Figure 9: The overall SMO SIMULINK diagram of the DC servomotor model 

 
Figure 10: The SMO MATLAB simulations of armature current residual 

 
Figure 11: The SMO MATLAB simulations of armature current estimate versus 

true value 

 
Figure 12: The SMO MATLAB simulations of angular speed residual   

 
Figure 13: The SMO MATLAB   simulations of angular speed estimate versus 

true value 
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Figure 14: The SMO MATLAB simulations of SMO chattering evolution around 

the sliding surface   

5. Fuzzy Sliding Mode Observer 

5.1.  The Dynamic Model of Fuzzy Sliding Mode Observer 

In the most of practical situations the sliding mode systems 
experience several difficulties due to the chattering effects; 
therefore this inconvenient represents one of their main 
drawbacks [18]. The chattering phenomenon is well visible in 
Figure 14 that is undesirable because it involves high control 
activity and furthermore may excite high frequency unmodeled 
dynamics. The chattering effects induced by SMO estimator 
design with a high impact on the overall dynamics of the control 
system may be attenuated using different improvements into the 
original observer design.  

The second method that is a fuzzy SMO approach is 
mentioned also in [18]. The basic idea is a new interpretation of 
the chattering effects seen as free estimations that may be 
achieved using linguistic variables instead of fixed numerical 
values. Thus, to improve the performance of the standard SMO 
developed in previous section is required some knowledge 
provided by an expert, so a new design approach known as Fuzzy 
logic SMO is developed [18]. The new intelligent FSMO 
estimation approach has the capability to maintain the robustness 
property of the clean standard SMO while the chattering 
phenomenon is significantly decreased.  The dynamics of the 
fuzzy sliding mode observer is described by a similar equation (16) 
with slight changes by replacing the sign term 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�) by a 
linguistic variable, so a fuzzy term 𝐹𝐹𝐿𝐿 [18]: 

                   𝑟𝑟𝑥𝑥�
𝑟𝑟𝑡𝑡

= 𝐴𝐴𝑥𝑥� + 𝐵𝐵𝑢𝑢 + 𝐾𝐾𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) + 𝑀𝑀𝐹𝐹𝐿𝐿                      (23) 

where the crisp output of the FSMO, 𝐹𝐹𝐿𝐿 is computed through the 
designed if - then rule-base considering the tracking errors: 

                                𝑒𝑒𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦�                                                (24)           

                               𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

= 𝑟𝑟𝑦𝑦
𝑟𝑟𝑡𝑡
− 𝑟𝑟𝑦𝑦�

𝑟𝑟𝑡𝑡
                                             (25) 

 as input variables for  fuzzy inference system (FIS) [18]. 

Compared to KF-SMO estimator the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�) term of the 
observer (16) is replaced by a fuzzy output variable 𝐹𝐹𝐿𝐿of the FIS 
to construct the fuzzy estimator FSMO (23). The hybrid structure 

of the SMO and FSMO estimators is build in SIMULINK and 
shown in Figure 15, with the main blocks detailed in the Figure 
16 to Figure 19. Since the if-then rules of the fuzzy system are 
generated according to the properties of sign term, the FSMO is 
expected to be a robust observer [18]-[19]. The fuzzy if-then rules 
perform a nonlinear mapping from the input linguistic variables 
𝑒𝑒𝑦𝑦 and 𝑟𝑟𝑒𝑒𝑦𝑦

𝑟𝑟𝑡𝑡
 to the output linguistic variable, 𝐹𝐹𝐿𝐿 as:  

                          𝐹𝐹𝐿𝐿 = 𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹(𝑒𝑒𝑦𝑦 , 𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

)                                (26) 

5.2. Fuzzy Logic and Inference System Description Block  

Fuzzy Logic (FL) is a computational paradigm that is based 
on the expert knowledge. Fuzzy Logic looks at the world in vague 
terms, almost in the same way that our brain takes in information 
(e.g. pressure is high, speed is slow, concentration is small, 
temperature is freezing), then responds with precise actions [19]. 
According to the same reference document… “the human brain 
can reason with uncertainties, vagueness, and judgments, and the 
computers can only manipulate precise valuations; therefore, 
fuzzy logic is an attempt to combine these two techniques”. 
Closing, unlike the false perception that “fuzzy” is a misnomer 
that has resulted in the mistaken suspicion that fuzzy logic is 
somehow less exacting than traditional logic however the practice 
reality has proved that the FL is in fact, a precise problem-solving 
methodology [19].  It is able also to simultaneously handle 
numerical data and linguistic knowledge.  Fuzzy logic is a 
technique that facilitates the control of a complicated system 
without knowledge of its mathematical description, making the 
development and implementation of the control systems much 
simpler [19]. It requires no complicated mathematical models, 
only a practical understanding of the overall system behavior.  

 
Figure 15: The SIMULINK hybrid structure of SMO and FSMO estimators’ 

models   

Fuzzy logic differs from classical logic where an object takes 
on a value of either zero or one. In fuzzy logic, a statement can 
assume any real value between 0 and 1, representing the degree to 
which an element belongs to a given set [19]. Fuzzy Logic 
mechanisms can also lead to higher accuracy and smoother 
control, dealing with degrees of truth and degrees of membership. 
Most things in nature cannot be characterized with simple or 
convenient shapes or distributions. Membership functions 
characterize the fuzziness in a fuzzy set, whether the elements in 
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the set are discrete or continuous, in a graphical form for eventual 
use in the mathematical formalisms of fuzzy set theory [19]. They 
can be of different shapes such as triangular, trapezoidal, 
singleton, sigmoidal function, Gaussian distribution, Wavelet 
functions, etc. The detailed hybrid structure SMO and FSMO –
Fuzzy SIMULINK Block model   is shown in Figure 16, including 
the manual switch from one structure to another one, all other 
blocks remaining common for the both structures.  

 
Figure 16: The SIMULINK hybrid structure SMO and FSMO –Fuzzy logic 

block model 

 
Figure 17: The SIMULINK hybrid structure SMO and FSMO –The gain matrix 

sign term Block 

 
Figure 18: The SIMULINK hybrid structure SMO and FSMO –Linear gain 

matrix term block 

In [18] to design  the proposed FSMO estimator is chosen 
three membership functions of triangular shape corresponding to 
the input and output fuzzy sets of 𝑒𝑒𝑦𝑦, 𝑟𝑟𝑒𝑒𝑦𝑦

𝑟𝑟𝑡𝑡
 and 𝐹𝐹𝐿𝐿  as is shown in 

Figure 20. The linguistic labels used such as P, N, ZE, S, M and L 
stand for positive, negative, zero, small, medium and large, 
respectively. All seven possible combinations of two labels 
represent the input-output fuzzy set Σ𝐹𝐹 =
{𝑁𝑁𝐵𝐵,𝑁𝑁𝐹𝐹,𝑁𝑁𝑀𝑀,𝑍𝑍𝑍𝑍,𝑃𝑃𝐹𝐹,𝑃𝑃𝑀𝑀,𝑃𝑃𝐵𝐵}  attached to each membership 
function and denote a negative-big, negative-small, negative-
medium, zero, positive-small, positive-medium, and positive-big. 

 

 
Figure 19: The SIMULINK hybrid structure SMO and FSMO –SMO Estimators 

Block 

 

Figure 20: MATLAB Membership functions of input/output fuzzy sets 𝑒𝑒𝑦𝑦 , 𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

 
and 𝐹𝐹𝐿𝐿 [18] 

Three main steps are involved to create a Fuzzy Inference 
System:  

• Fuzzification that translates inputs into truth values 

• Rule evaluation to compute output truth values 

• Defuzzyfication that transfers truth values into output 

In fuzzyfication step the inputs from a set of sensors (or 
features of those sensors) are mapped to values from 0 to 1 using 
a set of input membership functions, more precisely  all the input 
variables are assigned degrees of membership in various classes 
[18]-[19]. In the rule evaluation step these inputs are applied to a 
set of if-then control rules. For example, to design the proposed 
FSMO estimator (23) a simple fuzzy rule Table 4 is constructed 
considering the following reaching and stability requirements [18]: 

1. The output fuzzy set,    𝐹𝐹𝐿𝐿  is normalized in the interval 
[-1,+1], therefore: 

 |𝐹𝐹𝐿𝐿 = 𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹(𝑒𝑒𝑦𝑦 , 𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

)| ≤ 1                                    (27) 

2. Anytime when 𝑒𝑒𝑦𝑦(𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

)   becomes a positive value, the 
membership function of    𝐹𝐹𝐿𝐿 is set in such a way that its 
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sign becomes similar to that of 𝑒𝑒𝑦𝑦  and therefore  
𝑒𝑒𝑦𝑦 ×   𝐹𝐹𝐿𝐿 ≥ 0 

3. While  𝑒𝑒𝑦𝑦(𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

) has a negative value, the reaching 

condition𝑒𝑒𝑦𝑦(𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

) ≤ 0would be satisfied automatically. Therefore, 
for all the seven membership functions attached to each of two 
input variables (𝑒𝑒𝑦𝑦 , 𝑟𝑟𝑒𝑒𝑦𝑦

𝑟𝑟𝑡𝑡
) of the fuzzy rule base, 49 if-then rules in 

Table 4 are obtained using an expert engineering knowledge in 
the electric drives machines  field and satisfying the reaching 
conditions 1, 2 and 3. Fuzzy rules are always written in the 
following form: 

 
 If (input1 is membership function1) and/or  

    (input2 is membership function2) and/or ….  

 Then (output is output membership function). 

Table 4: Rule bases of fuzzy logic sliding mode observer [7] 
𝒆𝒆𝒚𝒚 
𝒅𝒅𝒆𝒆𝒚𝒚
𝒅𝒅𝒅𝒅

 

NB  NM  NS  ZE  PS  PM  PB  

NB  NB  NB  NB  NB  NM  NS  ZE  
NM  NB  NB  NB  NM  NS  ZE  PS  
NS  NB  NB  NM  NS  ZE  PS  PM  
ZE  NB  NM  NS  ZE  PS  PM  PB  
PS  NM  NS  ZE  PS  PM  PB  PB  
PM  NS  ZE  PS  PM  PB  PB  PB  
PB  ZE  PS  PM  PB  PB  PB  PB  

In many instances, it is desired to come up with a single crisp 
output from a FIS. This crisp number is obtained in a process 
known as defuzzification. In defuzzification step the fuzzy 
outputs are combined into discrete values needed to drive the 
control mechanism. There are two common techniques for 
defuzzifying: 

• Center of mass - This technique takes the output 
distribution and finds its center of mass to come up with 
one crisp number, as is shown in [19]. 

• Mean of maximum - This technique takes the output 
distribution and finds its mean of maxima to come up 
with one crisp number, as is shown in [19]. 

More details about Laypunov’s stability and how to find an 
upper bound for the crisp value of output variable    𝐹𝐹𝐿𝐿  for the 
proposed FSMO (26) are given in [18].  

5.3. Fuzzy Logic Sliding Mode Observer Simulation Results  

We present in this section only the graphs with the evolution 
of the true values of the states and their FSMO estimated values, 
as well as the both residuals needed for developing the future fault 
detection and isolation strategies. The MATLAB simulations of 
armature current FSMO estimate versus the true values and its 
residual are shown in Figure 21 and Figure 24 respectively, and 
for angular speed in Figure 22 and Figure 23. During the 
simulations we didn’t find significant changes when we switch 
the gain matrix M values from M = �11�, and M = �10

10�, the 
simulation results remaining the same. For changes in the noise 
level from 0.1 spectral density powers to 10, so increased 100 
times, we found also that FSMO is very accurate, so very robust 

to these changes, as we can see from the angular speed armature 
current residuals, as is shown in Figure 25 and Figure 26 
respectively.    

 
Figure 21: The SMOF simulations of MATLAB armature current estimation   

 
Figure 22: The SMOF simulations of MATLAB angular speed    

 
Figure 23: The SMOF MATLAB simulations of angular speed residual   
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Figure 24: The SMOF MATLAB simulations of armature current residual   

 
Figure 25: The SMOF MATLAB simulations of angular speed residual 

  Furthermore we tested the impact of changing the initial 
condition values of the estimated angular speed from 1�𝑟𝑟𝑎𝑎𝑟𝑟

𝑠𝑠
�  to -

20 �𝑟𝑟𝑎𝑎𝑟𝑟
𝑠𝑠
�, and for armature current from 0 [𝐴𝐴] to -2.5 [𝐴𝐴] and we 

get the results shown in Figure 26 and Figure 27. We found also 
that FSOM algorithm is very robust to changes in the initial 
conditions values of the estimates.   

Furthermore we tested also the accuracy of FSMO estimator 
for changes in the linear gain matrix coefficients from  KL =
� 1
48.371�, as in all previous figures from this section, to KL =

� 100
48.371� that lead to the results shown in Figure 28 and Figure 29.  

These changes leads also to changes in the estimator dynamics, the 
poles of the estimators change the location   𝑝𝑝1 =  −1.1875 ,  
𝑝𝑝2 = -222.8739 to another location given by   𝑝𝑝1 =  −100.1875 ,  
𝑝𝑝2 = -222.8739. In the new location the FSMO estimator becomes   
more faster.  

 Closing, a high accuracy for FSMO estimator can be obtained 
by a suitable tuning of the gain matrices M and KL . 

Compared the simulation results of the both estimators SMO 
and FSMO it is obviously that FSMO estimator performs better 

than SMO estimator in terms of accuracy and robustness, so FMSO 
is an improved version of SMO.  This improvement is due to the 
fact that the chattering effects are reduced considerably, 
attenuating extremely the effect of the last term of (16), 
𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦 − 𝑦𝑦�).  

 
Figure 26: The SMOF simulations of MATLAB armature current estimation with 
new initial condition for estimated current (Robustness test) 

All these results are encouraging for us to investigate a new 
approach to build more suitable fault detection and isolation 
control strategies in many control applications, using for 
estimation the developed hybrid structure with SMO and its 
improved version, a fuzzy sliding mode observer estimator 
(FSMO). 

 

Figure 27: The SMOF simulations of MATLAB angular speed estimation with 
new initial condition for estimated current (Robustness test) 

5.4. Summary of FSO Steps Design 

To compute the output   𝐹𝐹𝐿𝐿 (26) of the FIS’ FSMO estimator given 
the inputs, one must go through six steps [19]: 

 Step1: Determining a set of fuzzy rules  

 Step2: Fuzzifying the inputs using the input membership 
functions  
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Figure 28: The SMOF simulations of MATLAB armature current estimation by 
changing the linear gain matrix coefficients (Robustness test) 

 

Figure 29: The SMOF simulations of MATLAB angular speed estimation by 
changing the linear gain matrix coefficients (Robustness test) 

 

Figure 30:  SIMULINK surface view of fuzzy sets 𝑒𝑒𝑦𝑦(𝑅𝑅𝑒𝑒𝑠𝑠), 𝑟𝑟𝑒𝑒𝑦𝑦
𝑟𝑟𝑡𝑡

(𝐷𝐷𝑒𝑒𝑟𝑟𝑅𝑅𝑒𝑒𝑠𝑠) 
and 𝐹𝐹𝐿𝐿 [18] 

Step3: Combining the fuzzified inputs according to the fuzzy 
rules to establish rule strength 

Step4: Finding the consequence of the rule by combining the rule 
strength and the output membership function (if it’s a Mamdani 
FIS),  

Step5: Combining the consequences to get an output distribution, 
and  

Step6: Defuzzifying the output distribution (this step applies only 
if a crisp output class) is needed), as is shown in Figure 30. 

6. Conclusions 

In this paper, we developed an improved version of a Sliding 
Mode Observer strategy design with a considerably changes of 
the approach followed in the conference paper [1]   but using the 
same study case, namely a DC  servomotor actuator with 
disturbance uncertainty that is integrated in the same control 
system structure. Encouraged by the results obtained in [1] we 
have investigated a new approach direction to improve the 
performance of the proposed SMO in terms of its accuracy, 
robustness and implementation design. The improved version of 
the SMO that we developed for the same single-input single-
output control system is a fuzzy SMO estimator with a high 
estimation accuracy of the actuator states, and with a strong 
capability to attenuate the chattering effects of the sliding mode 
control design. It is also more robust to the changes in noise levels 
and in initial conditions values (guess values) of the estimates, and 
also to the input disturbance and modeling errors. In addition, its 
implementation design simplicity in real time recommends FSMO 
estimator without doubt as one of the most useful control strategy 
tool to be applied for our future developments in fault detection 
and isolation control applications. The design of new FDI control 
strategies will be an extension of our research in the future work 
based on the preliminary results obtained until now in real 
implementation and control design estimation techniques. 
Implementation in real time a Sliding Mode Observer for a linear 
DC Servomotor actuator with bounded disturbance uncertainty.  
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