

www.astesj.com 125

ADOxx Modelling Method Conceptualization Environment

Nesat Efendioglu*, Robert Woitsch, Wilfrid Utz, Damiano Falcioni

BOC Asset Management GmbH, Innovation Group, AT-1040, Austria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 03 March, 2017
Accepted: 07 April, 2017
Online: 18 April, 2017

 The importance of Modelling Methods Engineering is equally rising with the importance of
domain specific languages (DSL) and individual modelling approaches. In order to capture
the relevant semantic primitives for a particular domain, it is necessary to involve both, (a)
domain experts, who identify relevant concepts as well as (b) method engineers who
compose a valid and applicable modelling approach. This process consists of a conceptual
design of formal or semi-formal of modelling method as well as a reliable, migratable,
maintainable and user friendly software development of the resulting modelling tool.
Modelling Method Engineering cycle is often under-estimated as both the conceptual
architecture requires formal verification and the tool implementation requires practical
usability, hence we propose a guideline and corresponding tools to support actors with
different background along this complex engineering process. Based on practical
experience in business, more than twenty research projects within the EU frame
programmes and a number of bilateral research initiatives, this paper introduces the
phases, corresponding a toolbox and lessons learned with the aim to support the
engineering of a modelling method. ''The proposed approach is illustrated and validated
within use cases from three different EU-funded research projects in the fields of
(1) Industry 4.0, (2) e-learning and (3) cloud computing. The paper discusses the approach,
the evaluation results and derived outlooks.

Keywords :
Meta-modelling, Modelling
Method Design, Agile Modelling
Method Engineering
Conceptualization

1. Introduction

This paper is an extension of work originally published in 2016
IEEE 20th International Enterprise Distributed Object Computing
Workshop (EDOCW)[1]

The importance of Modelling Method Engineering is equally
rising with the importance of Domain Specific Conceptual
Modelling Methods and individual modelling approaches. In
addition to existing (de-facto-) standards (e.g. Business Process
Model and Notation (BPMN)[2], Decision Model and Notation
(DMN)[3], Case Management Model and Notation (CMMN)[4]),
a growing number of groups around the world design their
individual modelling-methods (in accordance with the definition
of such a method by [5], [6]for a variety of application domains.).

This is often seen as necessary, when model-based approaches
are transferred in new application domains and hence require
adaptations for modelling methods. A simple sample can

demonstrated using the well-known standard for business process
BPMN. Although BPMN can be used to design a administrative
process, such as sending an invoice, it cannot be used to design a
simple production process like producing a chair. The successor
relation that indicates that one activity follows the other does not
have properties like distance to the station, which is not necessary
when sending an invoice, but is of utmost importance, when
producing a chair. When analysing more complex scenarios like a
car manufacturer shop floor (we faced in projects DISRUPT [60],
GO0DMAN [65]), the adaptation requirements for a modelling
language like BPMN becomes quite complex. Hence, providing
well-known model-based approaches requires the adaptation by
e.g. introducing the concept “distance” between two activities.

Challenging question is, how to support the generation of
modelling tools that can range from a minor adaptation like the one
introduced above, till the complete realisation of totally new
modelling approach like a cyber threat modelling for cloud
computing .

The authors of [8] believe that supporting the automatic
generation of modelling tools can open a new quality in

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Nesat Efendioglu BOC Asset Management GmbH,
Innovation Group, AT-1040, Austria
Email: nesat.efendioglu@boc-eu.com

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com

Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj020317

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020317

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 126

information systems development for engineers and customized
design as well as encourage the use of modelling languages that
are fitting to the custom needs. Often customer needs are defined
by desired features like visualisation, querying, simulation or
configuration and transformation, which are applied onto the
model. Individual solutions enable the generation of light-
weighted solutions with targeted provision of features that reduce
the developers' aversion against overloaded modelling languages
and inflexible or expensive modelling tools.

The engineering of such modelling tools is a result of the so
called “conceptualization process of modelling methods”, which is
disseminated by the world-wide community of OMiLAB[10]. The
complexity lies in the mapping of language artefacts and their
corresponding functionality to concrete implementable and
deployable modelling tools. In addition, knowledge domains are
divided into more refined and specialized subdomains, where each
domain needs to be characterized by its own abstraction and
refinement of concepts from the so-called “real world” objects
from the “subject under study”. Hence, in order to capture the
relevant semantic primitives that address domain specific needs, it
is necessary to involve both the method engineers as well as
domain experts. Today, there are different approaches, guidelines
and practices for the development of modelling tools available that
do not consider the full lifecycle from the design and collaborative
development of a modelling tool, which unavoidably leads to
limitations and inconsistencies in the conceptualization [7]. We,
hence, propose a guideline and corresponding tools supporting
method engineers along the conceptualization process supporting
all phases and ensuring collaboration among involved
stakeholders.

Karagiannis proposes in [6] the Agile Modelling Method
Engineering (AMME) framework. Authors of [9] propose the
Modelling Method Conceptualization Process that based on
AMME and guides the method engineers during
conceptualization. The same authors in [35] propose a toolbox that
supports this process. The work at the hand introduces an extended
version of this toolbox so-called “Modelling Method
Conceptualization Environment” as well as introduces
corresponding services. Hence the paper introduces a product-
service-system proposal for modelling method conceptualisation.
Moreover the paper evaluates this product-service system in three
European Research projects, and one additional in the context of
an in-house research project, and discusses evaluation results.

In this respect, the remainder of the paper is structured as
follows: Section 2 briefly presents results of our state of the art
analysis from [9], revisits AMME, the Modelling Method
Conceptualization Process. Section 3 outlines the toolbox
Modelling Method Conceptualization Environment with an
emphasis on new extension to ADOxx Library Development
Environment, so-called ADOxx-JAVA-MM-DSL. Section 4
presents Modelling Method Conceptualization Services, Section 5
introduces evaluation cases and discusses the evaluation results,
while Section 6 concludes the paper and gives an outlook on future
work.

2. State of the Art in Modelling Method Definition and
Development Approaches

We published the initial version of this state of the art analysis
in [9]. In this paper, we revisit shortly it for completeness reasons.

We analyse modelling standards from five well-known
standardization organizations, which provide intensively used
industry modelling standards in last decade; (1) OASIS
(www.oasis-open.org), (2) OMG (www.omg.org), (3) Open
Group (www.opengroup.org), (4) W3C(www.w3.org) and (5)
WfMC(www.wfmc.org). It is highly possible that each
organization follows same or similar approach and technologies to
specify standards within its organization. Therefore, we assume
that, it would be enough selecting control samples from each
standardization organization in order to understand, which
approach they are following, which tools they are using to define
modelling standards. As the control samples we select UBL [39],
ebXML BPSS [40] and WS-BPEL [53] from OASIS; BPMN [2]
CMMN [4] and DMN [3] from OMG; ArchiMate® [42] from
Open Group; OWL [44], SPARQL [45] and WSDL [46] from
W3C, finally XPDL [47] from WfMC.

We investigate, how the modelling language of modelling
standards has been specified. We focus on four aspects
specification of (1) abstract syntax-, (2) semantic- and (3) notation
(concrete syntax) of the modelling languages as well as (4) samples
provided to ease to understand modelling language specification
and its usage.

The results of the analysis are presented in Table 1. In respect
of abstract syntax specification organization used (1) graphical
approaches and/or, (2) formal textual approaches and/or textual
informal approaches. All of organizations utilize UML-Class
Diagram [41] to specify abstract syntax of most of their modelling
languages. In addition to UML-Class Diagram all standardization
institute use natural language to specify the abstract syntax.
Additionally, in order to ensure interoperability between systems
using the given modelling standard and collaboration among
parties utilizing the standard, most of the organizations attach
importance to formal textual specification of abstract syntax either
using with BNF [48] or XSD [49].

It seems that, regarding to specification of semantics there is
no standard/approach used commonly by all organization. W3C
uses formal languages such as RDF [50], Z Notation [54] [51] and
standard mathematical notation. However, most of the
organizations utilize semi-formal keywords defined in
RFC-2119 [52] in order to define requirement level and
constraints. Additions to these, all organizations use natural
language to specify semantics of all modelling standards.

Regarding to specification of notation (concrete syntax),
obviously the modelling standards, which have been developed
preferentially in the first place for human interpretation, precise
has concrete syntax that is illustrated with images and described
with natural language. On the other side, the standards, which have
been developed for machine interpretation, have concrete syntax
specified with formal textual approaches. Mostly, XSD is utilized
for specification of concrete syntax of these standards. Finally, all
the organizations choose to introduce features of their modelling
standards with samples. The samples can be found in either in form
of graphical or textual models.

According to analysis results, for the specification of selected
modelling standards, the UML (UML Class Diagram) has been
mostly utilized to specify the meta-model of the modelling
language.

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 127

Sample

Graphical
Textual
(formal)

Textual
informal)

Formal
Languages

Semi-
formal

Languages

textual
(informal) Graphical

textual
(formal)

textual
(informal)

Universal Business Language (UBL) UML-Class
Diagram

BNF Natural
Language

Natural
Language

XSD Natural
Language

Sample
Graphical

Models

The eBusiness eXtensible Markup
Language (ebXML) Business Process
Specification Schema (BPSS)

XSD Natural
Langauge

RFC-2119 XSD Natural
Language

Sample
Textual
Models

Web Services Business Process
Execution Language (WS-BPEL)

UML-Class
Diagram

XSD Natural
Language

RFC-2119 XSD Natural
Language

Sample
Graphical

Models

Business Process Model and
Notation (BPMN)

UML-Class
Diagram

XSD Natural
Language

RFC-2119;
WS-BPEL

Natural
Language

Image XSD Natural
Language

Sample
Graphical

Models

Case Management Model and
Notation (CMMN)

UML-Class
Diagram

XSD Natural
Language

RFC-2119 Natural
Language

Image Natural
Language

Sample
Graphical

Models

Decision Model and Notation
(DMN)

UML-Class
Diagram

XSD; BNF Natural
Language

Natural
Language

Image Natural
Language

Sample
Graphical

Models

O
pe

n
G

ro
up ArchiMate UML-Class

Diagram
Natural

Langauge
Natural

Language
Image Natural

Language

Sample
Graphical

Models

Web Ontology Language (OWL) UML-Class
Diagram

BNF Natural
Langauge

RDF RFC-2119 XSD ;BNF;
RDF

Natural
Language

Sample
Textual
Models

SPARQL Protocol and RDF Query
Language (SPARQL)

BNF Natural
Langauge

Standard
mathematic
al notation

Natural
Language

BNF;RFC-
3986; RFC-

3987

Natural
Language

Sample
Textual
Models

Web Services Description Language
(WSDL)

XSD; BNF Z Notation RFC-2119 Natural
Language

XSD Natural
Language

Sample
Textual
Models

W
fM

C XML Process Definition Language
(XPDL)

UML-Class
Diagram

XSD Natural
Langauge

Natural
Language

XSD Natural
Language

Sample
Textual
Models

O
AS

IS
O

M
G

W
3C

Abstract Syntax Semantics Notation

Table 1 Figure 1 Approach, standards and artifacts used to specify modelling languages in control samples

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 128

2.1. UML as a Modelling Method Design Approach

As UML is utilized for specification of most of modelling
standards in our set, we extend our literature research to analyze
UML as a prominent modelling method, which is used during
create and design phases of the conceptualization process. The
pragmatic objective of this analysis is to understand if UML - in
the context of modelling method design - covers all requirements
for creating and designing a modelling method, or if there are any
shortcomings that we have to consider during the development of
our approach.

Glinz evaluates UML in [56] as a requirement specification
language. He states that definition of requirements with UML Use
Case Diagrams is possible but Use-Case-Diagrams alone are not
sufficient. Definitions of concrete functional and non-functional
requirements as well as definition of relation between the concepts
in domain specific modelling method and requirements are not
possible. The authors of [58] indicate the same problem and
propose again a UML-based solution to define non-functional
requirements and relation between the components in system by
combining constructs from UML Class Diagram and UML
Component Diagram. Hence the first shortcoming needs to be
considered in our approach is;

1. Definition of functional and non-functional
requirements and their relation between the concepts in
modelling methods.

According to Selic [59] the domain specific modelling
languages specify different viewpoints of a complex system.
Hence, the complex system should be represented from different
viewpoints and some features will be presented in several
viewpoints. Moreover the language, presumably, will support
multiple viewpoints for different sub-domains, which means
language should allow use of different abstract and concrete
syntax. With UML Class Diagrams the whole meta-model
(abstract syntax) of language can be fragmented. But depicting all
alternatives of abstract syntax together can make the class diagram
very complex and hard to read. To the best of our knowledge the
UML does not offer definitions of different concrete syntax for
same concept of modelling language. Hence the next shortcomings
are

2. Fragmenting whole meta-model into individual meta-
models composing concepts for different sub-domains
and still be able to define link between concepts in
different individual meta-models

3. Having another abstraction layer to represent modules
and layers of modelling language as well as relation
among them without representing complexity of abstract
and concrete syntax

4. Assigning different concrete syntax to the concepts in
modelling language.

According to authors of [55], nowadays, models are used to
elaborate design decisions, sort out different concepts and
exchange the ideas in mainstream software development. They
state the importance of traceability during the transformation of
information, communication of decisions etc. from design into
implementation and vice versa. They indicate that in order to

establish the traceability the support of modelling environment is
as essential as the approach itself. To the best of our knowledge
UML itself does not support such traceability. Then the next
shortcoming is:

5. Traceability of information (e.g design decisions,
changes, suggestions etc.) during the knowledge
exchange among experts within design phase and also
from design to implementation vice versa.

Karagiannis and Kühn in[5][57] argue that modelling methods
have three major components (1) Modelling Language, (2)
Modelling Procedure and (3) Mechanisms & Algorithms. Hence
besides the modelling language of domain specific modelling
method, we have to consider also designing modeling procedure
and mechanisms & algorithms during the design of a modelling
method. The design of modelling procedure and mechanisms &
algorithms can be possible with using UML (e.g UML Activity
diagram for design of the modelling procedure and if we consider
description of mechanism and algorithms as sequence of object
interactions and message exchange, the UML Sequence diagram
can be used for description of mechanism and algorithms). Hence
we would not see any shortcoming in UML for this issue. But in
order to emphasize requirement of ability to design modelling
procedure and mechanisms & algorithms besides the modelling
language of a domain specific modelling method and requirement,
and requirement of having corresponding supportive modelling
environment, we would list this issue here rather as a general
requirement than shortcoming of UML that we have to consider in
our approach. Hence last but not least;

6. Possibility to design modelling procedure and
mechanisms & algorithms of a domain specific
modelling language.

2.2. Agile Modelling Method Engineering and
Conceptualization Process

Having roots in software engineering, as it is in agile software
development, during the modelling method engineering, involved
stakeholders need procedures, structures and supportive tools
allows high iterative process with as less as possible bureaucracy,
and offers agile value and follows principles in Agile Manifesto
[37]

AMME is proposed in [6] to support modelling method
engineering during propagation and evolution of modelling
requirements. The OMiLab Lifecycle [10] instantiates AMME and
defines the internal cycle of a modelling method conceptualization
with five phases; (1) “Create” as a mix of goal definition,
knowledge acquisition and requirements elicitation activities that
capture and represent the modelling requirements; (2) “Design”
specifies the meta-model, language grammar, notation and
functionality as model processing mechanisms and algorithms; (3)
“Formalize” aims to describe the outcome of the previous phase in
non-ambiguous, formal representations with the purpose of
sharing results within a scientific community; (4) “Develop”
produces concrete modelling prototypes and finally (5)
“Deploy/Validate” involves the stakeholders in hands-on
experience and the evaluation process as input for upcoming
iterations.

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 129

Due to the involvement of several stakeholders with varying
knowledge backgrounds, perspectives and different objectives, in
the conceptualization of a modelling method, the authors of [9]
propose so-called Modelling Method Conceptualization Process
(as depicted inFigure 1) by adding additional feedback channels
into the OMiLab Lifecycle between: (1) Create and Design, to
prove, if the designed modelling language covers the identified
application scenarios and considers the identified requirements; (2)
Design and Formalize to ensure formal approval of modelling
language, as well as (3) Design and Develop - to improve
modelling language in earlier stages before it is released and
deployed.

3. Modelling Method Conceptualization Environment

The work at hand introduces the “Modelling Method
Conceptualization Environment from ADOxx.org. A toolbox (as
its high-level architecture depicted in Figure 2) that initially has
been introduced in [35] and that instantiates the above-mentioned
conceptualization process and supports method engineers during
each phase. The only exception is that of the “Create” phase, as
this part is regarded as the most creative phase and standard tools
and methods (also in some cases pen and paper can be the most
appropriate tools) shall be freely selected. Modelling Method
Conceptualization Environment proposes a combination of tools
in sense of Integrated Development Environment (IDE), such as
the Modelling Method Design Environment (MMDE, available to
download and install at [11]) for the Design, the ADOxx Library
Development Environment (ALDE) for Formalize and Develop,
Adoxx.org Build, Test and Deployment Services (available at
[22]) for Deploy/Validate Phases.

As depicted in Figure 3, typical application scenario would be;
during the create phase domain experts and method engineers
come together, define goal of modelling method, acquire and elicit
requirements, in design phase method engineers with tight
collaboration of domain experts specifies the meta-model,
language grammar, notation and processing functions on MMDE,
as method engineers formalize design of modelling method
collaboratively and commit on ALDE, developer(s) based on that
formalization implements concrete modelling toolkit prototype
within ALDE and ADOxx Development Toolkit. Developer(s)
uploads the prototype into ADOxx.org build server, semi-
automatic service behind starts with completeness check, building
installation package, testing of installation package and optionally
deploy it on selected developer’s space to allow to download the
toolkit, to be tested and validated by community members, so to
get feedback from them or the build services simply sends a link
to corresponding owner to download and/or share the modelling
toolkit.

It is worth to mention that one of the objectives is to provide
loosely coupled tools, so involved actors have the flexibility to
decide to use one, a combination of tools from the toolbox or even
use other appropriate tools of their choice, (e.g. method engineer
uses MMDE during the Design Phase, but formalize the modelling

Create Design Formalize Develop Deploy/
Validate

Ag
ile

 D
ev

elo
pe

m
nt

Li
fe

cy
cle

ID
E

SO
UR

CE

FOCUS

Model
Structure
Repositor

y

M&A
Repositor

y

Modelling Method
Design Environment

ADOxx Library
Development
Environment

ADOxx.org Build,
Test and Deployment

Services

MMDE
Developer

Community
Services

ALDE

UML++ FDMM RDF

MM-DSL

Wrapping
API

ADOxx-
JAVA-

MM-DSL

Create Design Formalize Develop Deploy/Validate

ADOxx
Development

Tool

Modelling
Method src
Repository

ABL

Installation Package of
Modelling Tool

Tooling

Modelling Method
Design Environment

ADOxx Library Development Environment

University,
Consultant, End

User

Project
Members

ADOxx.org
Community

ADOxx.org Tool Packaging Services and
Developer Spaces

Figure 3 Life-cycle within Modelling Method Conceptualization Environment from Users’ Perspective

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 130

method design with mathematical models or use another
development tool during the Develop Phase and deploys them at
the Developer Spaces and enable validation).

In the following sub-sections current abilities of the tools from
the environment are shortly presented.

3.1. Modelling Method Design Environment

The Modelling Method Design Environment (MMDE) is itself
a modelling tool to design other modelling methods. MMDE has
been implemented based on lessons learned from results of the
state of the analysis, which is discussed in pervious chapter, and
from the experience of the authors, who have been involved in
more than 20 modelling method/tool development projects for
varying domains. Based on these lessons learned, UML [12] has
been identified as a starting point. Hence, the MMDE takes a
subset of UML and extends it with required concepts and
functionalities in order to overcome the following challenges (Ch),
which are introduced after the state of the art analysis: Ch1-
Definition of functional and non-functional requirements and their
relation between the concepts in modelling methods; Ch2-
Fragmenting the whole meta-model into individual meta-models
composing concepts for different sub-domains and still be able to
define links between concepts in different individual meta-models;
Ch3-Having another abstraction layer to represent modules and
layers of modelling language as well as relation among them
without representing the complexity of abstract and concrete
syntax; Ch4-Assigning different concrete syntax to the concepts in
modelling language; Ch5-Possibility to design modelling
procedure and mechanisms & algorithms of a domain specific
modelling language.

To overcome Ch1, “Requirements” model type (as depicted in
Figure 4) is implemented that allows the elicitation of
requirements, specifying their status as well as dependencies
among them. The described requirements in this model type can
be referenced to (a) all the modelling classes modelled in the
related model type “Meta-Model” classes, (b) graphical notation
(concrete syntax) definitions modelled in the “Graphical Notation”
model type, (c) the “Modelling Stack” definition and (d) to the
functionalities modelled in “Mechanisms & Algorithms” models.

Figure 4 . Example: Requirement Model before and after Updating the Status
of Requirements

For Ch2 and Ch3, we extend the class diagram from UML (as
depicted in Figure 5) with concepts, so method engineers can
differentiate between class and relation class as well as relate
different meta-models (-fragments) with each other using
“Weaving” techniques as they are introduced in [8] [9].

Figure 5 A sample meta-model showing usage of weaving concept

The modularization and layering of modelling language is
essential to avoid complexities during the design of domain
specific modelling methods [15][16] Hence, we propose
representation of the Modelling Stack as the “Meta-models Stack
model type (as depicted in Figure 6) allowing method engineers
to differentiate meta-models in sense of different model types that
target different fragments of the system.

Figure 6 A Sample Meta-model Stack Model

In order to target Ch4 and specify a proper graphical representation
(concrete syntax) of each concept in a meta-model, we introduce another
model type called “Graphical Notation” model type (as depicted in

Figure 7) allows definition of concrete syntax of model types with
specifying graphical representations for each constructs in meta-
models. This model type allows the description of graphical
representations with the assignment of concrete images in PNG,
JPG or Bitmap format including a description of the
functionalities in the notation (e.g. attribute-value dependent
visualization, context related views)

Weaving object referencing to a concept
defined in another meta-model

Weaving object referencing to a meta-
model (in that case it is recursive)

Sample Meta-Model Stack

Each Bar in the Meta-Model
Stack represents a different

Meta-model (-fragment)

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 131

Figure 7 Sample Graphical Notation Model

In order to target Ch5 to define the applicable modelling technique as steps
and corresponding results we propose a model type called “Modelling
Procedure” model type”. The Modelling Procedure Model Type (as depicted
in

Figure 8) allows method engineers to define the steps with their
required inputs and produced outputs, as well as the sequence of
steps based on the input – output relationships, in order to
introduce case specific proper usage of their modelling method.

Figure 8 A Sample Modelling Procedure Model

Based on this procedural view, concrete Mechanisms and
Algorithms, can be derived and depicted as Sequence and
Component Diagrams from UML (therefore these diagram types
has been implemented as model types in MMDE). Further details
about MMDE can be found in [9]

3.2. ADOxx Library Development Environment

The ADOxx Library Development Environment (ALDE) aims
to enable parallel development of modelling tools libraries based
on the designs deriving from Design Phase, merging different
libraries and ensuring maintainability. As an experimental
prototype ALDE is uses the Resource Description Framework
(RDF) as a format for data interchange [17]

Figure 9 Architecture of ADOxx Library Development Environment (ALDE)

The Figure 9 depicts the architecture of ALDE. It is a
development environment based on the Eclipse IDE [18] and
includes a meta-meta-model defined in RDFS, the ALDE
vocabulary. Having the vocabulary and utilizing
Apache Ant® [19] as a build mechanism, the environment enables
the definition of the transformation processes from ADOxx
Library Languages to RDF and vice versa. Moreover ALDE
serializes libraries in an arbitrary RDF format; for the prototypical
realization RDF Turtle [20] has been used (the Figure 10 depicts
code snippets produced by the environment) and includes the RDF
XTurtle Editor developed by [21]. Having libraries in RDF Turtle
format and a RDF Turtle Editor available, method engineers can
adapt declaratively and script libraries collaboratively using
standard functionalities of source-code management systems.
Merging several libraries or integration of parts of libraries in each
other becomes possible. On the other hand, ALDE includes
verification services to ensure that the newly developed, edited or
merged libraries are consistent with ADOxx platform
requirements.

Figure 10 Snipper of Class and Model Type Definitions in ALDE in RDF

The new extension to ALDE is a new DSL based on Java,
which has a working title of “ADOxx-JAVA-MM-DSL”. The
ADOxx-JAVA-MM-DSL is developed according to feedback on

APACHE ANT

Transformation ABL to RDF

ABL

valdidation.txt

graph.pdf

Xturtle 1.0

Transformation RDF to ABL

ABL

AD
Ox

x®

XSLT 1.0

XSLT 1.0

Raptor +Graphviz

Raptor

Linux Server

Raptor RDF
Syntax Library

Rasqal RDF
Query Utility

dot - graphviz

Remote Services

TTL

RDF 1.1
Turtle File

Raptor+Rasqal

remote

IDE

ToABL

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 132

previous version of toolbox, which are presented and discussed in
[35].

The ADOxx-JAVA-MM-DSL is a framework that creates
several abstraction layers over the ADOxx Library Language
(ALL) format, the ADOxx internal language that describes a meta-
model [64]. Each layer simplifies and adds features to the bottom
one. The framework gives, the possibility to operate and easily
perform modification on a meta-model without dealing with its
complexity. In order to assure that, an internal structure is managed
that represents the ALL structure. This internal structure can be
imported from an existing ALL meta-model.

All the constraints and rules present in the ALL syntax are
managed, so the framework can guarantee that only syntactically
valid ALL conform meta-models can be loaded and generated. The
whole internal structure is an instance of java classes, so operations
and definitions on the meta-model's concepts can be done using
the java features. Parallel to that, additional utilities are integrated
in order to bridge the gap between the development phases:

• The compilation to the ALL meta-model to its binary
format ABL: The ALL is a text based language used to
describe a meta-model, in order to be imported and be
usable in ADOxx it need to be compiled in its binary
format ABL. A conversion engine is integrated into the
framework. In such a way it is possible to automatize a
previously manual step, required in order to create an
automatized flow between formalization and
development phase.

• The importing and deployment of the compiled meta-
model in the form of ABL file, into a ADOxx Database:
In order to create the respective modelling environment
based on the created meta-model, is required to import
the ABL compiled meta-model into the Database used by
ADOxx. After this step the modelling environment
relative to that meta-model can be executed and opened
simply specifying at the launch time, the newly created
database. The framework contains a feature that
automatizes such a process, generating the Database and
launching the modelling environment relative to the
created meta-model. This step bridges the gap between
formalization and development phase.

As depicted in Figure 11, the framework can be divided into
three abstraction layers and two transversal layers of primitives
and general features:

Figure 11 Layers of ADOxx-JAVA-MM-DSL

The first abstraction layer is a package of java classes that
exactly reflect the structure of the ALL syntax. This layer is
responsible for converting each class in its ALL representation and
applies syntax rules. Due to its closeness to the ALL syntax,
working directly with this layer is difficult. The advanced of
creating a meta-model using this layer instead using directly the
ALL syntax is that all possible errors derived from miss-spelling

and unhallowed sequences will be avoided, but the complexity in
the definition of the meta-model remain the same as the ALL.

The second abstraction layer abstracts all the concepts of the
First layer to a more design friendly way, providing the possibility
to work directly with the concepts of Libraries, Classes, Relations
and Attributes. These concepts are more familiar to method
engineers that are familiar with the interactive development
approach directly in the ADOxx Development Toolkit. This
abstraction layer defines also some semantic rules over the
syntactic rules provided by the first layer. The entire concepts
created at this level will be mapped to the relative concepts at the
first layer in order to reflect the ALL syntax. At this level, certain
helpful features are also implemented, such as the possibility to
merge two or more libraries or to import one or several classes
from a library to another.

The third abstraction layer is a factory layer and contains
predefined methods that generate empty libraries as a starting point
for the definition of specific meta-models with classes and
relations. The main entry point of the framework is also at this
layer with the possibility to explore all the features of the
development environment.

The transversal primitives layer gives a formal
representation of all the primitives allowed in the ALL syntax. The
primitives are used at every level in order to define data such as
Identifiers or Attribute Values;

The transversal features layer contains functions used at
every level and the ALL parser. The parser is the component that
allows an ALL to be read from a file and being instantiated and
loaded into the framework in order to be extended or modified.

The ADOxx-JAVA-MM-DSL supports following three
scenarios:

Definition of a meta-model from scratch: Using the third
abstraction layer, it is possible to generate an empty ADOxx
library that is the best starting point to create own specific meta-
model. Starting from that object the method engineer can add
Classes and Relations and their respective Attributes to the meta-
model by writing pure java code. Once the java code is executed,
it generates the ALL file and/or compile it in the ABL file and/or
directly create the ADOxx Database and execute the prototype of
newly developed modelling toolkit based on defined meta-model.

Extension or modification of an existing meta-model: Using
the parsing module of the transversal layer, it is possible to load an
ALL file into an instance of the java classes present in the second
and First layer of the developer environment. After the ALL have
been loaded is possible to extend, modify or manage it in the same
way as creating from scratch. Certain methods to find specific
Libraries, Classes, Relations and Attributes that the method
engineer wants to work with are available. As in the previous
scenario, after the java code is executed generates the ALL file
and/or compile it in the ABL file and/or directly create the ADOxx
Database and execute the prototype of newly developed modelling
toolkit based on defined meta-model

Merging of two or more meta-model in one: This scenario is
a particular case of the first two. In particular, with using the
framework, it is possible to merge two or more meta-model. As it
is in a sample snippet depicted in

Figure 12, thanks to the features present in the second layer is
possible to import the whole concepts from a meta-model to

First Layer

Second Layer

Third Layer Prim
itives

Features

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 133

another or do a fine-grained import of specific concepts from each
meta-model to another one. It is possible to import a class from a
meta-model to another managing automatically all its
dependencies like the presence of Super Classes. The merging
scenario is supported in order to minimize the conflict that may
rise in the merging of two incompatible meta-models, providing
useful information to method engineer regarding how to correct
occurred conflicts.

Figure 12 Snippet of a Selective Merge of two Meta-models

3.3. Adoxx.org Build, Test and Deployment Services.

Adoxx.org Build, Test and Deployment Services [38] are web-
based services that allow method engineers of the ADOxx
community to build verified, professional and installable
distribution packages that can be distribute to interested
stakeholders. The service combines and validates all available
inputs, integrates all elements, compiles the necessary artefacts and
signs the outcomes and creates the actual installer as a download
archive.

As a collaboration space for the development and deployment
phases, the concept of “Developer Spaces” has been introduced in
ADOxx.org [23]. These spaces enable sharing of
intermediate/release results, discussing development resources
from all pre/past phases in the form of source code, snippet,
examples and distribution packages with the community.

4. Modelling Method Conceptualization Services

In addition to the development tools described in the previous
chapter, an appropriate service support is foreseen to support the
modelling method engineers. The services are provided on the
ADOxx.org portal, supporting a community of more than 1.300
modelling method engineers world-wide.

1. Download: For the download, ADOxx.org provides the
Meta Modelling Platform ADOxx in combination,
Installation Instructions, Frequently Asked Questions,
Startup-Package as well as a set of more than 30 available
application libraries, which can be used to start with.

2. Get Started: For getting started, ADOxx.org provides
important readings, provides a Forum that is structured
according active communities, lists tutorial and training
events that are offered free of charge, provides tutorial
material for both the students – in form of guide samples
and slides – as well as for the trainer – in form of a trainer
handbook and offers tutorial videos and webinars.

3. Development and Support: For the development,
ADOxx.org provides aforementioned tools and additional
developer utilities, 3rd parties add on like but not limited to
simulation, documentation, dashboards or Web-APIs. A
collection of 200 graphical representations that introduce
the major elements conclude the development support.

4. Community: For collaborative development within the
ADOxx.org community a map is provided indicating the
ten laboratories – nine in Europe, one in Asia, indicating
the hot spots of developers, the participating research
institutes, a set of 24 modelling tools as a result of [66],
and development spaces that enable a collaborative
development and enable the use from solutions and tools
from other projects.

5. Documentation: A complete specification and
documentation is offered, where each relevant element of
the modelling method is (a) explained based on the
corresponding theory, (b) introduced with hand-on
samples, (c) demonstrated with real-world scenarios, (d)
mapped to forum entries of the community and finally (e)
supported with tools where possible.

The operation of this service centre is provided via the portal,
social media like Twitter, Facebook and LinkedIn, or via email. In
justified cases an onsite support is possible, where either the
method engineer is trained, supported or critical implementation
steps are performed by the ADOxx.org service centre.

5. Evaluation

Given that usually each modelling method engineering case
differs from each other in sense of complexity of domain, variety
of aspects to be targeted, number of involved actors, to calculate
quantified evaluation means is difficult, and – to best of our
knowledge - there is no similar conceptualization environment,
hence, it is difficult to bench-mark our proposal and quantify the

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 134

evaluation and provide statistically objective results. On the other
hand, the most important tangible and objective evaluation result
would be deployed and ready to use modelling toolkits,
specification of modelling methods and communication of
community members as proofs of concept. Those proofs of
concepts for each are online and freely accessible (with exception
of in-house project case). The links to access those proofs of
concepts for each case are provided under regarding sub-section
below.

The conceptualization environment introduced above has been
applied in four different cases for evaluation: three EU-funded
research projects in the domain of multi-stage manufacturing,
eLearning and cloud computing and additionally in an in-house
development project, in the area of decision modelling extensions.
These cases have been selected since the involved partners have
varying profiles and expertise in given domains, in development
and in modelling method engineering. In the following sub-section
we introduce the cases and their requirements in method
engineering manner.

Case 1: Conceptualization of a Modelling Method for E-
Learning: The FP7 project Learn PAd [24] proposes a process-
driven-knowledge management approach based on conceptual and
semantic models for transformation of public administration
organizations into learning organizations. Learn PAd proposes a
model-driven collaborative learning environment. In this case, 4
domain experts and method engineers have been involved. In
addition, two developer teams, each consisting of 4 developers
worked on the implementation of the tool. The results of the
conceptualization process of this modelling method can be found
at Learn PAd Developer Space [25], as well as the developed
prototypes [26] can be downloaded and feedback can be given.

Case 2: Conceptualization of Modelling Method for Cloud
Computing: The H2020 project CloudSocket [27] introduces the
idea of Business Processes as a Service (BPaaS), where conceptual
models and semantics are applied to align business processes with
Cloud-deployed workflows [28]. In this case, 6 domain experts and
method engineers have been involved, as well as two developer
teams, one with 5 developers, the other one with 2 members. The
results of the conceptualization process of this modelling method
can be found at CloudSocket Developer Space [29], as well as
developed prototypes [30] can be downloaded and feedback can
be given.

Case 3: Conceptualization of Modelling Method for holistic
Manufacturing System Management:

The H2020 project DISRUPT [60] deals with the integration
of innovative technologies into a holistic manufacturing system
and optimization of production flow. The DISRUPT projects
needs a modelling method to describe manufacturing system from
supply-chain level down to shop-floor level. In this case 2 domain
experts, one requirement engineer and one method engineer have
been involved. Preliminary results can be found on DISRUPT
Developers Space [61].

Case 4: Integration of existing BPMN and DMN Modelling
Methods: The in-house project requires integration of an already
implemented DMN Modelling Method into existing BPMN 2.0
realization as part of a commercial product. In this case, 3 domain
experts and method engineers, and a team of two developers have
been involved.

The evaluation process was enacted in the following steps: (1)
Provisioning: the tools -of the toolbox have been provided to the
stakeholders in the involved cases. (2) Team Formation:
representatives, - of the stakeholders in the project created
development teams consisting of domain experts and method
engineers following the conceptualization process and developing
tools individually. (3) Feedback Phase: individual results have
been consolidated periodically through video conferences and
workshops, constituting the evaluation results.

Feedback on MMDE.

Pro: It is possible to specify requirements and dependencies
among them as well as tracing them; (2) to define modelling
language fragments and modules, (3) layering the modelling
language with navigational constructs; (4) definition of syntax,
semantic and assignment of notation (concrete syntax); (5)
definition of weaving among construct in different meta-models;
(6) assignment of (multiple-) graphical notation (concrete syntax);
(7) explicit definition of modelling procedure;

Contra: It is not possible to define application scenarios and
use cases, and design results can be exchanged solely using
ADOxx specific formats or as static content (image, PDF or
HTML). Hence, double effort in the design and in the
formalisation and or development is currently necessary.

Outlook: The MMDE is currently updated, to offer an XML
export, which then can be transformed into different formats like
the one that is used for the ADOxx-Java-MM-DSL.

In addition, several improvements on the modelling language
are implemented to (a) enable the design of user scenarios, (b)
better describe the features of the modelling method and their
corresponding components as well as (c) enable a more detailed
representation of the method procedure enabling the mapping from
components and the corresponding elements of the modelling
method.

Feedback on ALDE.

Pro: it is possible to transform libraries in a machine as well as
human interpretable format, ability to use reasoning algorithms,
due to standard semantic formats; reduces complexity to edit,
merge and maintain libraries.

Contra: To take over results from Design Phase require
manual steps.; it re-quires different transformation scripts for
different meta-modelling technologies (such as ADOxx, EMF).

Outlook: The semantic-based verification of meta model is
seen as a useful extension of the ADOxx-Java-MM-DSL, hence an
integration will be experimented. However, we see the necessary
skill level for the meta model developer currently as inappropriate
and tend not to follow this path.

Feedback on ADOxx-Java-MM-DSL:

Pro: It is possible to merge libraries and start libraries from
scratch. Furthermore, the code base can be stored and versioned in
a versioning system enabling several developers in parallel to work
on one library. Built scripts enable the automatic generation and
deployment of the tool.

Contra: The current code maturity needs improvement and
documentation, enabling also non specialists to handle the tool.

Outlook: This tool will be further improved and tested in two
EU-H2020 research projects and will consequently be taught at the

http://www.astesj.com/

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 135

ADOxx.org Training Days and Webinars to achieve the required
maturity.

Feedback on ADOxx.org Tool Packing Services and
Developer Spaces.

Pro: It is possible to have an installation package to distribute
to interested stake-holders, building your own community around
the modelling method, and get feed-back from them.

Contra: Setting up and handling issues of a certain Developer
Space involves certain manual steps, such, as the interested
stakeholder has to send an e-mail to the administrator with a
request of an own Developer Space.

Outlook: This tool packaging service will be stepwise opened,
so that the developer can also include own software components,
which are then composed into a single tool package.

6. Conclusion and Outlook

In this paper we introduce a toolbox instantiating the Modelling
Method Conceptualization Process, which supports agile
modelling method engineering. The toolbox has been evaluated
through an analysis of four different cases: three EU research
projects and one in-house project. The evaluation results put
forward that having an approach and a corresponding toolbox
following the idea of model-driven engineering approach is
effective in terms of transferring knowledge from the analysis of
requirements up to the development of solutions. Being three main
tools, MMDE, ALDE and ADOxx-Java-MM-DSL, prototypes that
are at about Technology Readiness Level 5, hence lack of full
integration or automatic data exchange ability, and the need of
manual steps building Developer Spaces came out as major
limitations of the toolbox. As an outlook the following items
derived from the evaluation as future work: (1) currently we are
evaluating development alternatives of DSLs with using Xtend
[62] or RDF; building on existing work [63] in the field and
integrating it into ADOxx-Java-MM-DSL, (2) enabling graphical
modelling method design to transform into machine
understandable format, (3) formalization of modelling method
design using mathematical models such as FDMM [33] or Proof
of Concept prototyping, (4) automatization of tooling services and
deployment onto developer spaces, (5) full integration of tools
within a holistic development environment.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work has been partly supported by European Union’s
Horizon 2020 research and innovation programme within the
projects DISRUPT(www.disrupt-project.eu) under grant
agreement No: 723541 and CloudSocket (www.cloudsocket.eu)
under grand agreement no: 644690.

References

[1] N. Efendioglu, R., Woitsch, “Modelling Method Design: An ADOxx
Realisation” in 20th IEEE International Enterprise Distributed Object
Computing Workshop, EDOC Workshops 2016, Vienna, Austria, 2016

[2] Object Management Group (OMG), "Business Model and Notation Version
2.0," 2011. [Online]. Available: http://www.omg.org/spec/BPMN/2.0/.
[Accessed 15 July 2016].

[3] Object Management Group (OMG), "Decision Model and Notation, Version
1.0," 2015. [Online]. Available: http://www.omg.org/spec/DMN/1.0/.
[Accessed 15 July 2016].

[4] Object Management Group (OMG), “Case Management Model and
Notation”, [Online] Available: http://www.omg.org/spec/CMMN [Accessed
22 February 2017]

[5] D. Karagiannis and H. Kühn, "Metamodelling platforms," in In Proceedings
of the 3rd International Conference EC-Web 2002, Dexa 2002, France,
Springer-Verlag, 2002, p. 182.

[6] D. Karagiannis, “Agile Modeling Method Engineering,” in Proceedings of the
19th Panhellenic Conference on Informatics, Athens, Greece, ACM, 2015, pp.
5-10.

[7] V. Hrgovcic, D. Karagiannis and R. Woitsch, "Conceptual Modeling of the
Organisa-tional Aspects for Distributed Applications: The Semantic Lifting
Approach," in COMPSACW, IEEE, 2013.

[8] J. Michael, F. Al Machot, M. C. Heinrich “ADOxx Based Tool Support for a
Behavior Centered Modeling Approach” in Proceedings of the 8th ACM
International Conference on PErvasive Technologies Related, PETRA’15,
Corfu, Greece, 2015

[9] N. Efendioglu, R. Woitsch and D. Karagiannis, “Modelling Method Design:
A Model-Drive Approach,” in IIWAS '15: Proceedings of the 17th
International Conference on Information Integration and Web-based
Applications, Brussels, Belgium, ACM, 2015.

[10] Open Models Laboratory (OMILab), "Idea and Objectives," 2015. [Online].
Available: http://austria.omilab.org/psm/about. [Accessed 15 July 2016].

[11] ADOxx.org, “LearnPAd Developer Space,” 2015. [Online]. Available:
https://www.adoxx.org/live/web/learnpad-developer-space/design-
environment. [Accessed 07 July 2016].

[12] Object Management Group (OMG), “Documents Associated With UML
Version 2.0,” 2005. [Online]. Available:
http://www.omg.org/spec/UML/2.0/. [Accessed 12 July 2015].

[13] H. Kühn, “Methodenintegration im Business Engineering, PhD Thesis (in
German),” University of Vienna, 2004.

[14] R. Woitsch, “Hybrid Modeling: An Instrument for Conceptual
Interoperability,” in Revolutionizing Enterprise Interoperability through
Scientific Foundations , Hershey, 2014, pp. 97-118.

[15] B. Selic, “The Theory and Practice of Modeling Language Design for Model-
Based Software Engineering—A Personal Perspective,” in Generative and
Transformational Techniques in Software Engineering III, Springer Berlin
Heidelberg, 2011, pp. 290-321.

[16] D. Karagiannis, V. Hrgovcic and R. Woitsch, “Model Driven Design for e-
Applications: The Meta Model Approach,” in Proceedings of the 13th
International Conference on Information Integration and Web-based
Applications and Services, iiWAS11, Ho Chi Minh City, Vietnam, ACM,
2011, pp. 451-454.

[17] W3C, "RDF-Resource Description Framework," 2014. [Online]. Available:
https://www.w3.org/RDF/. [Accessed 14 July 2016].

[18] Eclipse Foundation, "Eclipse IDE for Java EE Developers," 2016. [Online].
Available: http://www.eclipse.org/downloads/packages/. [Accessed 14 July
2016].

[19] The Apache Software Foundation, "Apache Ant Download," 2016. [Online].
Available: https://www.apache.org/dist/ant/binaries/. [Accessed 14 July
2016].

[20] W3C, "RDF 1.1 Turtle Terse RDF Triple Language,," 2014. [Online].
Available: https://www.w3.org/TR/2014/REC-turtle-20140225/. [Accessed
14 July 2016].

[21] The Research Group Agile Knowledge Engineering and Semantic Web
(AKSW), University of Leipzig, "Xturtle," 2015. [Online]. Available:
http://aksw.org/Projects/Xturtle.html. [Accessed 15 July 2016].

[22] ADOxx.org, "AutoPDP Tool Packaging Service," 2016. [Online]. Available:
https://www.adoxx.org/live/autopdp-packaging-service. [Accessed 03 March
2017].

[23] ADOxx.org, "ADOxx.org Developer Spaces," 2016. [Online]. Available:
https://www.adoxx.org/live/development-spaces. Accessed 03 March 2017].

http://www.astesj.com/
http://www.omg.org/spec/CMMN

N. Efendioglu et. al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 125-136 (2017)

www.astesj.com 136

[24] Learn PAd Consortium, "The EU Project Learn PAd," 2014. [Online].
Available: http://www.learnpad.eu/. [Accessed 03 March 2017].

[25] LearnPAd Consortium, "LearnPAd Developer Space," 2015. [Online].
Available: https://www.adoxx.org/live/web/learnpad-developer-space.
[Accessed 03 March 2017].

[26] LearnPAd Consortium, "LearnPAd Developer Space - Downloads," 2015.
[Online]. Available: https://www.adoxx.org/live/web/learnpad-developer-
space/downloads. [Accessed 03 March 2017].

[27] CloudSocket Consortium, "CloudSocket Project," 2016. [Online]. Available:
https://www.cloudsocket.eu/. [Accessed 03 March 2017].

[28] R. Woitsch and W. Utz, "Business Process as a Service, Model Based
Business and IT Cloud Alignment as a Cloud Offering," in ES 2015, Third
International Conference on Enterprise Systems, Basel, Switzerland, 2015.

[29] CloudSocket Consortium, "CloudSocket Developer Space," 2015. [Online].
Available: https://www.adoxx.org/live/web/cloudsocket-developer-space/.
[Accessed 15 July 2016].

[30] CloudSocket Consortium, "CloudSocket Developer Space - Downloads,"
2015. [Online]. Available: https://www.adoxx.org/live/web/cloudsocket-
developer-space/downloads. [Accessed 03 March 2017].

[31] Eclipse Fundation, "Xtend," 2015. [Online]. Available:
https://eclipse.org/xtend. [Accessed 15 July 2016].

[32] N. Visic and D. Karagiannis, "Developing Conceptual Modeling Tools Using
a DSL," in Knowledge Science, Engineering and Management, Sibiu,
Romania, Springer, 2014, pp. 162-173.

[33] H.-G. Fill, T. Redmond and D. Karagiannis, "FDMM: A Formalism for
Describing ADOxx Meta Models and Models," in Proceedings of ICEIS
2012, Wroclaw, Poland, Vol. 3, Wroclaw, 2012, pp. 133-144.

[34] ADOxx.org “GraphRep” 2016 [Online. Available
https://www.adoxx.org/live/graphrep [Accessed 31.08.2016]

[35] N. Efendioglu,, R. Woitsch, W. Utz, “A Toolbox Supporting Agile Modelling
Method Engineering: ADOxx.org Modelling Method Conceptualization
Environment”. In J. Horkoff, M. A. Jeusfeld, & A. Persson, The Practice of
Enterprise Modeling (pp. 317-325), 9th IFIP WG 8.1. Working Conference,
PoEM 2016, Skövde, Sweden, November 8-10, 2016, Proceedings, Springer

[36] Principles behind the Agile Manifesto [Online. Available
http://agilemanifesto.org/iso/en/principles.html] [Accessed 24 January.2017]

[37] Cees Van Halen; Carlo Vezzoli; Robert Wimmer (2005). Methodology for
Product Service System Innovation. Assen: Uitgeverij Van Gorcum. p. 21.
ISBN 90-232-4143-6.

[38] ADOxx.org, "Developer Community," 2017. [Online]. Available:
https://www.adoxx.org/live/community. [Accessed 23.January.2017].

[39] OASIS, “Universal Business Language Version 2.1”. 04.November 2013,
OASIS Standard [Online] Available at "http://docs.oasis-open.org/ubl/os-
UBL-2.1/UBL-2.1.html [Accessed 13 July 2015]

[40] OASISI, “ebXML Business Process Specification Schema Technical
Specification v2.0.4” 21 December 2006, OASIS Standard Available at
http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-
en-html/ebxmlbp-v2.0.4-Spec-os-en.htm [Accessed 13.July 2015]

[41] OMG, 2005. Documents Associated With UML Version 2.0. [Online]
Available at: http://www.omg.org/spec/UML/2.0/ [Accessed 12 July 2015]

[42] The Open Group, 2013. ArchiMate® 2.1 Specification, [Online] Available at
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html [Accessed
13 July 2015]

[43] W3C, 2007, Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language [Online] Available at:
http://www.w3.org/TR/wsdl20/wsdl20.pdf [Accessed 13.July 2015]

[44] W3C, 2012 OWL 2 Web Ontology Language Structural Specification and
Functional-Style Syntax (Second Edition) [Online]. Available at
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/ [Accessed 13
July 2015]

[45] W3C, 2012, SPARQL 1.1 Query Language [Online] Available at:
http://www.w3.org/TR/owl2-direct-semantics/ [Accessed 13.July 2015]

[46] Web Services Business Process Execution Language Version 2.0 11 April
2007, OASIS Standard http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html [Accessed 13 July 2015]

[47] WfMC, 2005, Process Definition Interface – XML Process Definition
Language [Online] Available at: http://www.xpdl.org/standards/xpdl-
2.2/XPDL%202.2%20(2012-08-30).pdf [Accessed 13. July 2015]

[48] ISO/IEC 14977:1996, Information technology -- Syntactic metalanguage --
Extended BNF, International Organization for Standardization, 1996
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_
14977_1996(E).zip

[49] W3C, 2012 W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures [Online] Available at: http://www.w3.org/TR/xmlschema11-1/
[Accessed 13.July 2015]

[50] W3C, Resource Description Framework (RDF): Concepts and Abstract
Syntax. Graham Klyne and Jeremy J. Carroll, eds. W3C Recommendation, 10
February2004, [Online]Available at http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/. [Accessed 20 July 2015]

[51] Spivey, J. M., 1992, The Z Notation: A Reference Manual, Second Edition,
Prentice Hall.

[52] Internet Engineering Task IETF, 1997, Key words for use in RFCs to Indicate
Requirement Levels, [Online] Available at
http://www.ietf.org/rfc/rfc2119.txt. [Accesed 20 July 2015]

[53] OASIS, “Web Services Business Process Execution Language Version 2.0
11” April 2007, OASIS Standard [Online] Available at http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html [Accessed 13 July 2015]

[54] ISO/IEC, 2002 Z formal specification notation –Syntax, type system and
semantics First Edition ISO/IEC 13568

[55] Aagedal, J. Ø., Bézivin,J. & Linington, P. F. 2004. Model-Driven
Development (WMDD 2004) in Object-Oriented Technology: (ECOOP)
2004 Workshop Reader, (ECOOP) 2004 Workshops, Oslo, Norway, June 14-
18, 2004, Final Reports pp. 148-157

[56] Glinz, Martin 2000. Problems and Deficiencies of UML as a Requirements
Specification Language in Proceedings of the 10th International Workshop on
Software Specification and Design IWSSD’00 IEEE Computer Society

[57] H. Kühn, “Methodenintegration im Business Engineering”[in German] PhD
Thesis, University of Vienna, April 2004

[58] Saadatmand, M., Cicchetti, A. & Sjödin, M. 2011, UML-Based Modeling of
Non-Functional Requirements in Telecommunication Systems in The Sixth
International Conference on Software Engineering Advances , ICSEA 2011

[59] Selic, B., 2011. The Theory and Practice of Modeling Language Design for
Model-Based Software Engineering—A Personal Perspective. In: Generative
and Transformational Techniques in Software Engineering III. s.l.:Springer
Berlin Heidelberg, pp. 290-321.

[60] DISRUPT Consortium, “Project Overview”, 2017 [Online] Available at
http://disrupt-project.eu/about/overview [Accessed 24 January 2017]

[61] DISRUPT Consortium, “DISRUPT Developers Space” [Online] Available at
https://www.adoxx.org/live/web/disrupt/ [Accessed 24 January 2017]

[62] Eclipse Fundation, "Xtend," 2015. [Online]. Available at
https://eclipse.org/xtend. [Accessed 15 July 2016].

[63] N. Visic and D. Karagiannis, "Developing Conceptual Modeling Tools Using
a DSL," in Knowledge Science, Engineering and Management, Sibiu,
Romania, Springer, 2014, pp. 162-173

[64] ADOxx.org ADOxx Library Language (ALL), [Online] Available at:
https://www.adoxx.org/live/library-language-all/abl, [Accessed 03 March
2017]

[65] GO0D MAN Consortium,, The project “GO0D MAN: Agent Oriented Zero
Defect Multi-Stage Manufacturing” [Online] Available at: http://go0dman-
project.eu/ [Accessed 03 March 2017]

[66] D. Karagiannis, H. C. Mayr, J. Mylopoulos, Domain-Specific Conceptual
Modelling, Springer International Publishing, 2016

[67] D. Karagiannis, H. C. Mayr, J. Mylopoulos, Domain-Specific Conceptual
Modelling, Springer International Publishing, 2016

http://www.astesj.com/
http://agilemanifesto.org/iso/en/principles.html

	1. Introduction
	2. State of the Art in Modelling Method Definition and Development Approaches
	2.1. UML as a Modelling Method Design Approach
	2.2. Agile Modelling Method Engineering and Conceptualization Process

	3. Modelling Method Conceptualization Environment
	3.1. Modelling Method Design Environment
	3.2. ADOxx Library Development Environment
	3.3. Adoxx.org Build, Test and Deployment Services.

	4. Modelling Method Conceptualization Services
	5. Evaluation
	6. Conclusion and Outlook
	Conflict of Interest

	Acknowledgment
	References

