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 The For the last three decades, end-to-end computing paradigms, such as MPI (Message 
Passing Interface), RPC (Remote Procedure Call) and RMI (Remote Method Invocation), 
have been the de facto paradigms for distributed and parallel programming. Despite of the 
successes, applications built using these paradigms suffer due to the proportionality factor 
of crash in the application with its size. Checkpoint/restore and backup/recovery are the 
only means to save otherwise lost critical information. The scalability dilemma is such a 
practical challenge that the probability of the data losses increases as the application scales 
in size. The theoretical significance of this practical challenge is that it undermines the 
fundamental structure of the scientific discovery process and mission critical services in 
production today. 
In 1997, the direct use of end-to-end reference model in distributed programming was 
recognized as a fallacy. The scalability dilemma was predicted. However, this voice was 
overrun by the passage of time. Today, the rapidly growing digitized data demands solving 
the increasingly critical scalability challenges. Computing architecture scalability, 
although loosely defined, is now the front and center of large-scale computing efforts. 
Constrained only by the economic law of diminishing returns, this paper proposes a narrow 
definition of a Scalable Computing Service (SCS). Three scalability tests are also proposed 
in order to distinguish service architecture flaws from poor application programming. 
Scalable data intensive service requires additional treatments. Thus, the data storage is 
assumed reliable in this paper. A single-sided Statistic Multiplexed Computing (SMC) 
paradigm is proposed. A UVR (Unidirectional Virtual Ring) SMC architecture is examined 
under SCS tests. SMC was designed to circumvent the well-known impossibility of end-to-
end paradigms. It relies on the proven statistic multiplexing principle to deliver reliable 
service using faulty components as the infrastructure expands or contracts. 
To demonstrate the feasibility of such a theoretical SCS, an organized suite of experiments 
were conducted comparing two SMC prototypes against MPI (Message Passing Interface) 
using a naive dense matrix multiplication application. Consistently better SMC 
performance results are reported. 
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1. Introduction 

For the last three decades, end-to-end computing has been the 
de facto paradigm for distributed and parallel programming. MPI 
(Message Passing Interface), RPC (Remote Procedure Call), 
OpenMP (share memory) and RMI (Remote Method Invocation) 
are all end-to-end programming paradigms. A myth persisted 
since the 1990’s that while the data communication community is 
well served by the end-to-end paradigm, in 1997, direct use of the 
end-to-end protocol in distributed computing was cited as a 
fallacy [1]. The computing service scalability dilemma was 
predicted. 

A reexamination of the 1993 proof of the impossibility of 
implementing reliable communication in the face of crashes [2] 
exposed the root cause of the alleged fallacy: the robust 
communication protocols are ineffective when either the sender 
or the receiver in the end-to-end communication could crash 
arbitrarily. No error detection and recovery methods can reverse 
this impossibility. 

Direct use of end-to-end reference model in computing 
applications leaves massively many potential end-point crashes 
when the application runs (Figure 1). Although the probability of 
each end-point crash is very small, the growth in application size 
(thus the processing infrastructure) is guaranteed to increase the 
planned and unplanned service down times and data loss 
probabilities. The reproducibility of a large scale application 
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(service) becomes increasingly more difficult [3]. These risks are 
tolerable when the computing clusters are small. They have 
become increasingly unbearable as the computing services facing 
increasingly expanding loads. 

Incidentally, reliable communication is possible using faulty 
components. This was also proved in early 1980’s [4]. There are 
three assumptions in the proof: a) all data packets must decoupled 
from transmission devices, b) both the sender and the receiver 
must be reliable, and c) there are infinite supplies of resources. In 
literature, this is often called the “best effort" service. 
Theoretically, the best effort communication guarantees 100% 
reliability as long as the infrastructure affords the minimal 
survivable resource set at the time of needs. This was the 
theoretical basis of the OSI (Open System Interconnection) 
reference model [5]. 

It then follows that the “best effort" computing should also 
be possible by removing the reliable receiver assumption in the 
basic program-program communication protocols. In other words, 
while it is reasonable for a data communication application to 
assume reliable sender and receiver at the time of need, it is not 
reasonable to assume reliable receivers in any clustered 
computing services, since the growing service infrastructure will 
make it increasingly unlikely. 

This has led to the design of a single-sided parallel computing 
paradigm. The new paradigm must multiplex all resources or the 
application fault tolerance is not attainable (Figure 2). This 
framework is called Statistic Multiplexed Computing (SMC) or 
Stateless Parallel Processing. Today, as the single processor speed 
approaches to a plateau, it seems that unconstrained clustered 
computing is the only likely future computing architecture. No 
single big-CPU machine, even if quantum class machines, would 
be able to meet the exponentially growing data processing needs. 

This paper is organized as follows. Section 2 introduces the 
assumptions and a narrow definition of a Scalable Computing 
Service (SCS). It also includes three “Reproducible Architecture 
Tests” as the necessary and sufficient conditions for SCS. In this 
paper, the data storage is considered stable and lossless. Data 
intensive SCS will need additional requirements. A single-sided 
Statistic Multiplexed Computing (SMC) architecture is presented. 
Section 3 provides a high level examination of the single-sided 
SMC or Stateless Parallel Processing (SPP) paradigm using the 
proposed scalability tests.  Section 4 illustrates the need for 
granularity tuning for optimal parallel processing. Section 5 
evaluates MPI, Hadoop, Spark and two SMC prototypes: Synergy 
(SPP) and AnkaCom (SMC) using the scalability tests. Section 6 
documents the experiment design and objectives. Section 7 
reports the computational results. Section 8 contains the summary. 

2. Assumption, Definition and Tests 

Scalability is the capability of a system to handle a growing 
amount of work. It is well understood in an economic context, 
where a company's scalability undermines the potentials economic 
growth of the company. Since the future societal economic growth 
depends on all available computing services, the importance of the 
computing service scalability is self-evident. 

The economic law of diminishing returns states that in all 
productive processes, adding more of one factor of production, 
while holding all others constant, will at some point yield lower 
incremental per-unit returns. Parallel computing using multiple 
processors and networks obey the same law. 

There are many possible dimensions in scalability measures. 
For compute intensive services, assuming infinite supplies of 
processors and networks, the scalable computing research 
challenge is to devise a computing service architecture that can 
scale indefinitely in order to meet the growing demands. The 
Internet and SMP (Symmetric Multiprocessing) systems are such 
service architectures. Delivering robust service for growing 
demands, however, has met the seemingly insurmountable 
challenge of the scalability dilemma. The infinite resource 
assumption was rooted in practice. This assumption also makes the 
theoretical discussions possible. 

The dependency on reliable processors and networks for 
delivering reliable service is the root cause of the scalability 
dilemma. Since electronic components can suffer random failures, 
a robust computing architecture must be able to exploit all useable 
components at the time of need. Thus the infinite resource 
assumption can be translated into the minimal survivable resource 
set assumption in practice. That is, all discussions on scalable 
performance, reliability and service quality are based on the 
assumption that the processing architecture affords the ``minimal 
survivable resource set" at the time of need. The architecture 
design challenge is to build a mechanical structure capable of 
leveraging all available resources at the time of need without 
reprogramming the application. 

In this paper, we also assume that the storage is reliable. Data 
intensive SCS requires additional treatments following the same 
principles [6]. 

Definition: A Scalable Computing Service (SCS) is a 
computing service that allows unlimited infrastructure expansion 
without reliability and service quality degradation. Application 
performance should subject to the same definition until the law of 
diminishing returns applies. 

Parallel applications are the integral parts of the scientific 
discovery processes. It is thus important to ensure that extreme 

http://www.astesj.com/


J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017) 

www.astesj.com     1455 

scale service architecture does not hinder the scientific discovery 
process. The service reproducibility requirement is implied. 
Further, it would be difficult to distinguish a computing 
architecture design flaw from a poorly composed non-scalable 
application (crossing the point of diminishing returns 
prematurely), the following reproducible SCS tests are proposed: 

a. Share-nothing Test. No processors or networks can 
be assumed reliable while still delivering full range of 
services. Not passing this test breaks the scalable 
reliability definition. 

b. Sublinear Cost Test. The runtime management 
overhead should be bound within a sublinear factor 
with regard to the infrastructure size. Failing this test 
means diminishing benefits when the application up-
scales. It breaks the scalable performance definition. 

c. Reproducible Node Test. Each node in the 
architecture must be able to reproduce identical 
semantically acceptable results given identical inputs. 
These include both deterministic and non-
deterministic programs. Failing this test will break the 
service quality definition. 

Test (a) requires a single-sided programming paradigm (such 
as Figure 2) and a multiplexing runtime architecture. Tests (a) and 
(b) are the necessary and sufficient conditions for SCS. Tests (a), 
(b) and (c) are the necessary and sufficient conditions for a 
reproducible SCS, since the infrastructure ensures reliable services 
in any scale using faulty components. 

All modern computers running reasonable software can pass 
the Reproducible Node Test. The Share-nothing and Sublinear 
Cost Tests are more difficult. 

Services built using the end-to-end reference model fail the 
Share-nothing Test. The end-to-end reference model requires 
explicit receiver addresses in an IP-addressable network. This 
seemingly innocent requirement causes the entire application to 
depend on the reliability of all processors and networks. This is the 
root cause of the scalability dilemma [1]. 

The following computing systems can pass the Share-nothing 
Test: a)  Dataflow machines [7], b) Tuple Space machines  [8], and 
c) services by Content Addressable Networks [9]. Similarly, the 
search engines and SMP (Symmetric Multiprocessing) systems 
also qualify. These systems have two common features: a) API 
(Application Programming Interface) has no fixed destination 
(single-sided), and b) every task can be processed by any 
processing elements. 

Dataflow and Tuple Space machines are elegant automated 
parallel systems but suffer the poor performance stigma. Content 
Addressable Networks are designed for the next-generation 
Internet services. It is not typically used for parallel computing. 
Search engines and SMP systems are designed to service multiple 
clients effectively. They are ineffective for solving the single 
application's scalability dilemma. 

However, putting these systems together brought a unique 
opportunity: Stateless Parallel Processing (SPP) or Statistic 
Multiplexed Computing (SMC) [10]-[15]. Specifically, it is 
possible to build a “Service Content Addressable Network” using 
the Tuple Space semantics and dataflow principle thus making the 
“best effort computing"  practical. 

Figure 3 illustrates such a multiplexing computing service 
under a UVR (Unidirectional Virtual Ring) architecture. 

3. Single-sided Statistic Multiplexing 

Passing the Share-nothing Test for a computing architecture 
requires the absence of all component reliability assumptions 
(except for the storage for this paper). The service communication 
architecture must be capable of exploiting all possible network 
topologies. In  Figure  3, SW is a collection of network switches in 
any topology. Each node is a standalone computer with any 
number of cores, local memory, storage and multiple network 
interfaces. UVR (Unidirectional Virtual Ring) implements a 
Service Content Addressable Network (or Tuple Switching 
Network (TSN) [16]) using all available processing and 
networking components. This allows zero single point failures 
regardless the number of networks and processors for a given 
application. 

The UVR architecture ensures that except for the Master (the 
client of the parallel computing service), there is no need for 
explicit IP addresses for data exchanges. 

Unlike traditional parallel Masters, the SMC Master is part of 
UVR architecture in that it is responsible for tuple retransmission 
discipline and redundancy handling. Actual data exchanges are 
implemented using all available network links directly.  Services 
built using the TSN do not subject to the end-to-end impossibility. 
The high level UVR computing concept passes the Share-nothing 
Test. The “best effort computing" idea could become feasible, if 
the implementation also passes the same test. 

Once the application runs, the dataflow semantics allow the 
computing infrastructure to automatically form SIMD (Single 
Instruction Multiple Data), MIMD (Multiple Instruction Multiple 
Data) and pipeline clusters at runtime. These effects are identical 
to early dataflow machines [7]. 

However, passing the Sublinear Cost Test needs more work. 
On the surface, it seems impossible to traverse P nodes paying less 
than linear traversal cost. However, k-order multicast can cut the 
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UVR traversal complexity to O(lgkP) [17]. Further, once a tuple is 
matched against its processor, actual data exchange will be done 
directly. Imposing an order on the tuple values can further force 
the tuple matching overheads to O(1) using the ideas from 
Consistent Hashing [18]. For practical applications, the one-time 
O(lgkP) traversal cost seems reasonable for deploying millions of 
nodes. 

4. Single-sided Statistic Multiplexing 

All compute intensive applications are typically partitioned 
into parallel tasks that can be processed using SIMD, MIMD and 
pipeline parallelisms. Since data exchange costs time, the partition 
size or processing granularity determines the ultimately 
deliverable performance by the service architecture. The best 
performance is delivered when all tasks terminate at the exactly the 
same time. A small granularity allows for higher concurrency but 
at the expense of higher data exchange costs. A bigger granularity 
risks lower concurrency and longer synchronization times due to 
differences in processing capabilities. The optimal granularity 
delivers the best possible parallel performance for the application 
running on a given processing environment. 

The optimal processing granularity (G) of an application 
defines the Termination Time Equilibrium [19], [20] for that 
application. Finding the optimal G will allow the SMC 
applications to overcome the poor performance stigma of earlier 
dataflow and Tuple Space machines. 

The principle of finding the optimal G is analogous to the use 
of Snell's Law for solving the  Brachistochrone problem in physics 
and mathematics [21]. Figure 4 illustrates that the solution to the 
fastest descent under the influence of uniform gravitational field 

and friction-less surfaces is not the straight line that connects the 
source and the destination, but the Brachistochrone curve that 
optimizes the gravitational and normal forces. It is a cycloid. Using 
fixed application partitioning is like the straight line (which 
happened to be the slowest descent).  The astonishing feature of 
the Brachistochrone curve is that it is also called “Tautochrone" 
that regardless where you start on the curve, all will reach the 
destination at the same time. In parallel processing, the 
Brachistochrone curve represents the optimal G's where the overall 
computing time equals to the overall data exchange time. As will 
be shown, if we tune G carefully, there are indeed multiple optimal 
G’s (modulated under a communication overhead curve) for every 
compute intensive kernel [19]. 

Further, the optimal G is only discoverable without 
reprogramming under the single-sided paradigms. For end-to-end 
computing programs, unless the task distribution is pooled [22] or 

using the single-sided “scatter_v” call in MPI, once compiled, 
changing processing granularity requires reprogramming. 

Other single-sided systems include Hadoop [23] and Spark 
[24]. They have demonstrated substantially better reliability and 
performance than similar end-to-end distributed computing 
systems. But performance against bare metal HPC  programs have 
not being rigorously investigated. 

The remaining of this paper reports computation experiments 
comparing two SMC prototypes: Synergy and AnkaCom against 
MPI (Message Passing Interface). The Brachistochrone effects are 
also demonstrated. 

5. Computing Service Architectures and Scalability Tests 

The MPI parallel processing architecture is embedded in its 
application programs. The (node) operating systems are 
responsible for the basic data communication and task execution 
functions, the programmer has explicit controls of the parallel 
machines. The explicit end-point requirement makes it impossible 
to pass the share-nothing test. Even with a “task pool" 
implementation, unless the implementation is completely 
distributed, thus forming a “application content addressable 
network", passing the share-nothing test remains negative. 

The Hadoop system uses the single-sided <key, value> API 
(Application Programming Interface) for reliable large scale 
distributed processing. It can pass the share-nothing test at the 
concept level. Unfortunately, it fails the same test at the 
implementation level due to the use of the RPC (Remote Procedure 
Call) protocol. This results in the “single namenode 
architecture”. The “namenode” is the single-point failure of the 
entire system. However, even though Hadoop cannot pass the 
Share-nothing Test, its single-sided API allowed much better 
runtime fault tolerance than other systems. Many very large scale 
successful experiments are completed within the 100M file design 
limitation. 

The Spark system relies on the Hadoop File System (HDFS) 
but leverages high speed in-memory processing. It's scalability test 
is identical to Hadoop. 

The Ethereum project [25] is a decentralized distributed 
computing platform that runs smart contracts: applications that run 
exactly as programmed without any possibility of downtime, 
censorship, fraud or third party interference. It can pass the share-
nothing test easily. These applications run on a custom built 
blockchain, a shared global infrastructure that can move value 
around and represent the ownership of property. This enables 
developers to create markets, store registries of debts or promises, 
move funds in accordance with instructions given long in the past 
(like a will or a futures contract) and many other things that have 
not been invented yet, all without a middle man or counterparty 
risk. However, its Blockchain implementation cannot pass the 
Sublinear Cost Test due to linear overhead increases when the 
chain expands. 

The Synergy system is also a distributed parallel computing 
system that uses named Tuple Space Servers to simulate the TSN. 
Although it can pass the Share-noting Test at the concept level, the 
actual implementation fails the test due to the use of the named 
Tuple Space Servers with fixed IP addresses [9]. 

The AnkaCom system [26] is a fully distributed peer-to-peer 
TSN implementation. It can pass the share-nothing test at the 
concept level and the implementation level. The fundamental 
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departure point of the AnkaCom implementation from others is the 
absence of the single-ACK/NAK assumption as compared to the 
RPC protocol. It can also pass the Sublinear cost test by 
implementing the one-time O(lgkP) UVR traversal protocol.  

6. Experiment Design 

Matrix multiplication is frequently used in scientific 
simulations and engineering applications. Dense matrix 
multiplication has high computing and communication 
requirements that can saturate resources quickly. It is selected as 
the benchmark for this study. Matrix multiplication is a “regular" 
parallel applications that fixed application partition seems 
reasonable for using a dedicated cluster of bare metal processors. 
The MPI parallel matrix multiplication program is implemented in 
C. It is optimized for locality for the three nested (i,j,k) loops. The 
Synergy program is also implemented in C and similarly 
optimized. The AnkaCom program is implemented in Java. The 
loop order is also optimized. 

The MPI and Synergy runtime systems are implemented in C. 
The AnkaCom runtime is implemented in Java. 

The computing platforms include the NSF (National Science 
Foundation) Chameleon bare metal cluster [27] at TACC (Texas 
Advanced Computing Center) and the owlsnest.hpc.temple.edu 
traditional bare metal cluster [28] at Temple University. The 
benchmark application is a naive dense square matrix 
multiplication application. The SMC prototypes are Synergy 3.0+ 
and AnkaCom 1.0. OpenMPI versions 1.4.4 and 1.10.0 are used in 
the experiments. 

• Owlsnest cluster has multiple IB (Infiniband) support. 
The Chameleon cluster only has single IB support at 
the time of experiments.} 

• The Chameleon and Owlenest bare metal clusters 
have same number of cores (48) and sufficient 
memory for many-core experiments (256 GB for 
Chameleon) per node and (543GB for Owlsnest).  

The Synergy implementation will only sustain to a small 
number of cores before saturating the single-threaded Tuple Space 
server. Thus, every test using large number of cores is also a sense 
of reliability test of the UVR concept. 

The AnkaCom implementation will sustain to any number of 
nodes and cores due to the implementation of distributed TSN. The 
Java runtime overheads should be much higher than the C-MPI 
combination. For AnkaCom, the IB support comes from the built-
in Java library. The C-MPI implementation has a custom IB driver. 

There are three groups of experiments: 

• Single-Node Single-Core. This group of tests 
examines the runtime’s ability to leverage multiple 
hardware components in parallel by overlapping 
single-core computing, communication and disk 
activities. 

• Single-Node Multiple-Core. This group of tests 
examines the parallel runtime system’s ability to use 
up to 48 cores concurrently in addition to other 
communication and storage components. 

• Multiple-Node Multiple-Core. This group of tests 
examines the parallel runtime system’s ability to 
harness multiple multicore nodes effectively. In this 

study, we used twenty 12 core nodes on Owlsnest with 
dual IB support. 

The single-sided API affords SMC applications a flexible 
parallel task pooling capability that is not supported by direct 
message passing systems such as MPI. The SMC workers can be 
programmed to compute for tasks of different sizes without re-
programming. In contrast, the MPI applications rely on fixed N/P 
partitioning.  

7. Computational Results 

7.1. Single-Node Single-Core Results 

. The Java compiler does not have an optimization option. 

 
The baseline experiment is provided by a sequential C-program 

running on a single core. Figure 6 shows the results in GLOPS on 
Owlenest running matrix of sizes 1000 - 6000. 

The significance of the Figure 5 curve is that it depicts the 
typical “Cache, Memory, Swap and Die" (CMSD) single core 
performance behavior. Understanding this behavior enables 
further quantitative application scalability analysis [19]. 

A partitioned parallel program running on a single node with a 
single core will exhibit different behavior than a sequential 
program running in the same environment. The partitioned 
programs can exploit hidden concurrencies even in the single node 
single core environment. Figure 6 reports the single-core single 
worker tests for both MPI and Synergy against the sequential 
program (in yellow). Due to the restriction of end-to-end 
communication, the MPI (Open MPI 1.4.4) program was not able 
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to compete against the sequential code in different matrix sizes 
(1000-6000) consistently. The Chameleon results are similar.  

7.2. Single-Node Multiple-Core Results 

Single node multi-core is best suited for MPI and Synergy 
architectures since the inter-program data exchanges can be very 
fast. Figure 7 reports the granularity tuning results for MPI and 
Synergy on Chameleon for N=9000, P=45 (factor of 9000). In 
Figure 7, the optimal granularity sizes are: 11, 22, and 33. The 
relationship between these sizes are given by the volatility power 
indices of the 45 cores at their peaks: 303, 409, and 818 [20]. At 
these optimal points, the synchronization overhead is near zero 
(note the Brachistochrone analogy). Further quantitative 
scalability analysis becomes possible using the optimized 
performance and simpler time complexity models [20]. The MPI 
(Open MPI 1.10.0) on Centos 7 delivered consistently worse 
performance than the worst tuned Synergy performance 
(5.1GFLOPS). 

Figure 8 reports a broader range of tests for different matrix 
sizes without granularity tuning (G=20 fixed). Synergy still 
outperforms MPI when the matrix size exceeds 3,200. These 
results are consistent with Figure 6: the bigger the problem sizes, 
the better the Synergy performance. 

 

 

 

 

 

 

 

 

 

7.3. Multiple-Node Multiple-Core Results 

 the granularity tuning effects in the 

multi-node multi-core environment. The Brachistochrone effects 
are shown again by the multiple optimal synchronization times at 
specific granularity points. These points are modulated by the 
increasing communication overheads (left to the optimal 
granularity  (70) and increasing synchronization (waiting) time 
(right to the optimal point 70).  

 
Figure 10 reports AnakaCom performances against MPI using 

120 cores. 

AnkaCom implements multi-threaded distributed Tuple Space 
daemons following the UVR architecture. As discussed, this 
effectively decouples application programs and data completely 
from processors and networks. Each distributed Tuple Space 
server can replicate its contents elsewhere (R > 0). In this reported 
experiment, R = 1. This means that each tuple is replicated with 1 
copy elsewhere. This experiment was designed to reveal the effects 
of  “diminishing of return" as well as the power of granularity 
tuning. 
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Each AnkaCom run is optimized by picking the best 
performing granularity through multiple runs. The recorded MPI 
run is the best of three runs with identical task size $N/P$. 

Figure 10 shows consistently better AnkaCom performances 
over MPI. The performance differences grew bigger as the number 
of cores increased. The MPI performance started to trend down at 
P=108 while AnkaCom kept strong for yet another 12 more cores 
until the end where N/P became merely 75 (9000/120). Note that 
the Intel XEON clock cycle is 2.2GHZ. The 75 rows (9000 
columns) of dot-products seems the break-even point for sustained 
performance of this particular application. After this point, both 
MPI and AnkaCom’s communication overheads took over. This 
was a demonstration of the economic law of “diminishing return". 

The C-MPI runs are via the “mpirun –np X -mca btl ib” option 
triggering the use of custom Infiniband driver. The AnkaCom 
Infiniband support is by the standard Java library. 

8. Summary 

Solving the scalability dilemma is of primary importance for 
developing robust computing services. End-to-end computing 
paradigms are suitable for small scale data processing needs. In the 
era of big data, with the Moore’s Law approaching its end, extreme 
scale clustered computing is the only possible path for the future 
internet-scaled computing. The prior large scale HPC experiments  
uncovered the scalability dilemma, energy efficiency and 
reproducibility challenges in delivering robust computing services. 
It is time to eliminate the known fallacy in the making of 
distributed computing services. 

According to the impossibility theory [2] and the possibility of 
delivering reliable service using faulty components [4], addressing 
the scalability challenges requires a paradigm shift: from IP-
addressable programming to content addressable programming. 
This paper reports a single-sided Statistic Multiplexed Computing 
(SMC) paradigm in order to circumvent the impossibility and to 
fully leverage the possibility of statistic multiplexing. A narrow 
Scalable Computing Service definition and three reproducible 
scalable service tests are proposed. MPI, Hadoop, Spark, Synergy 
and AnkaCom are all examined using the same scalability tests. 

In order to gain a sense of deliverable performance and 
reliability of the proposed service architecture in multi-node and 
multi-core environments, computational experiments are 
conducted in three groups: single node and single core, single node 
multiple core and multiple node and multiple core. The single-
node single-core group provides the baseline for performance 
comparisons. 

The computational results revealed the following: 

• Low communication overhead is not a necessary 
condition for the optimized parallel performance. 
Figures 2-9 demonstrated overwhelmingly that 
parallel performance optimization by tuning the 
processing granularity can easily out-perform the low 
overhead MPI implementation.  

• The choice of fixed N/P partition for MPI was 
deliberate. It is possible to build a task-pool layer in 
MPI or use single-sided “scatter_v" to allow dynamic 
granularity tuning without reprogramming. There will 
be significant implementation challenges considering 
passing the Share-nothing and Sublinear Cost Tests. 

However, when the problem size, the number of 
processors and the dynamic runtime load distribution 
happen to hit the “sweat-spot" (the fixed granularity 
is the optimal for the given runtime dynamics), MPI 
program will out-perform Synergy and AnkaCom. 

• Both Synergy and AknaCom were running with built-
in fault tolerance. Including checkpoints in the MPI 
program will push the performance to be much worse 
than reported. 

The application reliability of the single-sided paradigm was 
also tested. Connection failures did occur during Synergy 48 core 
tests. The prototype SMC protocols worked flawlessly allowing all 
tests to complete without any check pointing. 

The single-sided SMC application demonstrated consistently 
better performance in all experiments. Since SMC applications are 
natively protected by the TSN, the SMC application’s performance 
and reliability have far exceeded the end-to-end computing MPI 
programs. 

The SMC principle is also applicable for transactional and 
storage services [5]. Solving the data intensive SCS problem 
requires a solution to the CAP Theorem [29]. 

This paper tries to convince the reader that the robust service 
scalability dilemma of distributed and parallel computing  is 
indeed solvable. The proposed single-sided SMC paradigm is a 
feasible solution for delivering efficient and robust computing 
services using faulty components. Correct implementation of the 
Statistic Multiplexed Computing principle ensures the reliability 
of large scale distributed services. Extracting the optimal 
processing performance is similar to finding the Brachistochrone 
curve in physics and mathematics. The SMC goal of building non-
stoppable services is similar to the Etherem project [25]. The 
implementation of SMC paradigm, however, can promises high 
information security without linearly increasing overheads. 

In addition to extreme scale parallel computing, the single-
sided SMC service architecture is also suited for mission critical 
applications. It promises true non-stop computing service as long 
as the infrastructure affords the minimal survivable resource set, a 
task that can be automated completely in practice. This 
development will impact all existing mission critical distributed 
and parallel services. These include Enterprise Service Buses 
(ESB), mission critical transaction processes, mission critical 
storage systems, smart grid controllers and software defined 
network (SDN) control plane implementations. Finally, the use of 
service content addressable network for mission critical services 
makes all IP-based cyberattacks, such as DDOS (Distributed 
Denial of Service), ineffective. These developments will redefine 
the state of the Internet. 

About Authors 

The corresponding author is responsible for the scalability 
definition and tests, the UVR architecture design and the first 
prototype implementation Synergy. He is the original proposer of 
the Stateless Parallel Processing concept and the SMC framework. 
Author Yasin Celik is currently a PhD student completing a 
dissertation at Temple University. Yasin is responsible for the 
practical rendition of the SMC framework (AnkaCom) and 
validation tests. His dissertation includes both compute and data 
intensive SMC implementations and scalability studies. 

http://www.astesj.com/


J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017) 

www.astesj.com     1460 

Acknowledgment 

The reported study is supported in part by the 2016 NSF REU 
Program at Temple University Site, NSF MRI Grant 
#CNS0958854 (owlsnest.hpc.temple.edu), and computing 
resource grant #CH-817746 from the NSF Chameleon Computing 
Cloud Testbed. 

The authors thank two NSF REU (Research Experience for 
Undergraduate) program students, Kimberly Kosman (Purdue 
University) and Traves Evans (Louisiana Polytechnique Institute) 
contributed in independent validation of prior performance results 
in the summer of 2016. 

Support from the administrative staff of the 
Owlsnest.hpc.temple.edu and the CIS Department, College of 
Science and Technology are also acknowledged. 

References 

[1] Peter Deutsch. “Eight fallacies of distributed computing”. [online] 
https://blogs.oracle.com/jag/resource/Fallacies.html . 

[2] Alan Fekete, Nancy Lynch, Yishay Mansour, and John Spinelli. “The 
impossibility of implementing reliable communication in the face of 
crashes”. J. ACM, 40:1087–1107, November 1993. 

[3] XSEDE 2014 reproducibility workshop report, “Standing together for 
reproducibility in large-scale computing”. [online] 
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-
2de11113a40f . 

[4] John M. Spinelli. “Reliable data communication in faulty computer 
networks”, June 1989. PhD thesis, MIT. 

[5] OSI Reference Model [online] https://en.wikipedia.org/wiki/OSI_model  
[6] Justin Y. Shi, Yasin Celik, “AnkaStore: A Single-Sided Statistic Multiplexed 

Transactional Distributed Storage System”, unpublished manuscript, 2017. 
[7] R. S. Nikhil Arvind. “Implicit parallel programming in pH”, In Introduction 

to Management Science (10th Ed), Morgan Kaufmann, 2011. 
[8] David Gelernter and Nicholas Carriero. “Coordination languages and their 

significance”. In Communications of ACM. ACM, 1992. 
[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott 

Shenker. “A scalable content-addressable network”. In SIGCOMM 2001, 
San Diego, CA, USA, 2001. ACM. 

[10] Yuan Shi. “Stateless Parallel Processing Prototype: Synergy”, 1996. [online] 
https://github.com/jys673/Synergy30. 

[11] Justin Y. Shi. “System for high-level virtual computer with heterogeneous 
operating systems”. U.S. Patent #5,381,534, 1995. 

[12] Justin Y. Shi. “Multi-computer system and method”. U.S. Patent #5,517,656, 
1996. 

[13] Justin Y. Shi and Suntian Song. “Apparatus and method of optimizing 
database clustering with zero transaction loss”. U.S. Patent Application: 
#2008018969, 2008. 

[14] Justin Y. Shi. “Fault tolerant self-optimizing multiprocessor system and 
method thereof”. U.S. Patent Application #20090019258, 2007. 

[15] Justin Y. Shi. “System and method for fault tolerant scalable computing”. 
U.S. Patent Application #605725, November 2016. 

[16] Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, and Jie Wu. “Tuple 
switching network – when slower maybe better”. International Journal of 
Parallel and Distributed Computing, 72, 2011. 

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari 
Balakrishnan. “Chord: A scalable peer-to-peer lookup service for Internet 
applications”. SIGCOMM Comput. Commun. Rev., 31(4):149–160, August 
2001. 

[18] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew 
Levine, and Daniel Lewin. “Consistent hashing and random trees: 
Distributed caching protocols for relieving hot spots on the worldwide web”. 
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of 
Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM. 

[19] Y. Shi. “A distributed programming model and its applications to 
computation intensive problems for heterogeneous environments”. In 1992 

Earth and Space Science Information Systems, AIP Conference Proceedings, 
Pasadena, CA, 1992. 

[20] Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, Aakash Predeep, and 
Vivek Anthony. “Program scalability analysis for HPC cloud: Applying 
Amdahl’s law to NAS benchmarks”. In International Workshop on 
Sustainable HPC Cloud/Supercomputing Conference 2012. IEEE, 2012. Salt 
Lake City, Utah. 

[21] Brachitoschrone curve. [online] 
https://en.wikipedia.org/wiki/Brachistochrone. 

[22] Judith Hippold and Gudula Runger. “Task pool teams for implementing 
irregular algorithms on clusters of SMPs”. Nice, France, 2003. IEEE Press. 

[23] Apache hadoop. http://hadoop.apache.org. 
[24] Archley Kattt. “Spark – lightning-fast cluster computing”. Berkeley, CA, 

USA, 2011. University of California. 
[25] Ethereum Homestead Documentation – “A Blockchain Application Platform” 

[online] http://www.ethdocs.org/en/latest/ . 
[26] Yasin Celik, Aakash Pradeep, and Justin Y. Shi. Ankacom: “A development 

and experiment for extreme scale computing”. In CIT/IUCC/DASC/PICom, 
pages 2010–2016. IEEE, 2015. 

[27] Chameleon. “A configurable experimental environment for large-scale cloud 
research”. https://www.chameleoncloud.org/ , 2017. 

[28] Temple University HPC Facility: Owlsnest. 
http://www.hpc.temple.edu/owlsnest/OwlsnestUserGuide.html. 

[29] Gilbert and Lynch. “Brewer’s conjecture and the feasibility of consistent, 
available, partition-tolerant web services”. In ACM SIGACT News (2002), 
volume 33(2), page 59. ACM, 2002. 

 

http://www.astesj.com/
https://blogs.oracle.com/jag/resource/Fallacies.html
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f
https://en.wikipedia.org/wiki/OSI_model
https://github.com/jys673/Synergy30
https://en.wikipedia.org/wiki/Brachistochrone
http://www.ethdocs.org/en/latest/
https://www.chameleoncloud.org/
http://www.hpc.temple.edu/owlsnest/OwlsnestUserGuide.html

	1. Introduction
	2. Assumption, Definition and Tests
	3. Single-sided Statistic Multiplexing
	4. Single-sided Statistic Multiplexing
	5. Computing Service Architectures and Scalability Tests
	6. Experiment Design
	7. Computational Results
	7.1. Single-Node Single-Core Results
	7.2. Single-Node Multiple-Core Results
	7.3. Multiple-Node Multiple-Core Results

	8. Summary
	About Authors
	Acknowledgment
	References


