
www.astesj.com 1453

Scalability Dilemma and Statistic Multiplexed Computing -- A Theory and Experiment
Justin Yuan Shi*, Yasin Celik

Department of Computer and Information Sciences, Temple University, Pennsylvania 19122, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 21 May, 2017
Accepted: 20 July, 2017
Online: 10 August, 2017

 The For the last three decades, end-to-end computing paradigms, such as MPI (Message
Passing Interface), RPC (Remote Procedure Call) and RMI (Remote Method Invocation),
have been the de facto paradigms for distributed and parallel programming. Despite of the
successes, applications built using these paradigms suffer due to the proportionality factor
of crash in the application with its size. Checkpoint/restore and backup/recovery are the
only means to save otherwise lost critical information. The scalability dilemma is such a
practical challenge that the probability of the data losses increases as the application scales
in size. The theoretical significance of this practical challenge is that it undermines the
fundamental structure of the scientific discovery process and mission critical services in
production today.
In 1997, the direct use of end-to-end reference model in distributed programming was
recognized as a fallacy. The scalability dilemma was predicted. However, this voice was
overrun by the passage of time. Today, the rapidly growing digitized data demands solving
the increasingly critical scalability challenges. Computing architecture scalability,
although loosely defined, is now the front and center of large-scale computing efforts.
Constrained only by the economic law of diminishing returns, this paper proposes a narrow
definition of a Scalable Computing Service (SCS). Three scalability tests are also proposed
in order to distinguish service architecture flaws from poor application programming.
Scalable data intensive service requires additional treatments. Thus, the data storage is
assumed reliable in this paper. A single-sided Statistic Multiplexed Computing (SMC)
paradigm is proposed. A UVR (Unidirectional Virtual Ring) SMC architecture is examined
under SCS tests. SMC was designed to circumvent the well-known impossibility of end-to-
end paradigms. It relies on the proven statistic multiplexing principle to deliver reliable
service using faulty components as the infrastructure expands or contracts.
To demonstrate the feasibility of such a theoretical SCS, an organized suite of experiments
were conducted comparing two SMC prototypes against MPI (Message Passing Interface)
using a naive dense matrix multiplication application. Consistently better SMC
performance results are reported.

Keywords:
Extreme Scale Computing
Statistic Multiplexed Computing

1. Introduction

For the last three decades, end-to-end computing has been the
de facto paradigm for distributed and parallel programming. MPI
(Message Passing Interface), RPC (Remote Procedure Call),
OpenMP (share memory) and RMI (Remote Method Invocation)
are all end-to-end programming paradigms. A myth persisted
since the 1990’s that while the data communication community is
well served by the end-to-end paradigm, in 1997, direct use of the
end-to-end protocol in distributed computing was cited as a
fallacy [1]. The computing service scalability dilemma was
predicted.

A reexamination of the 1993 proof of the impossibility of
implementing reliable communication in the face of crashes [2]
exposed the root cause of the alleged fallacy: the robust
communication protocols are ineffective when either the sender
or the receiver in the end-to-end communication could crash
arbitrarily. No error detection and recovery methods can reverse
this impossibility.

Direct use of end-to-end reference model in computing
applications leaves massively many potential end-point crashes
when the application runs (Figure 1). Although the probability of
each end-point crash is very small, the growth in application size
(thus the processing infrastructure) is guaranteed to increase the
planned and unplanned service down times and data loss
probabilities. The reproducibility of a large scale application

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Justin Yuan Shi, Science Education Research Center
310, Temple University, +1 205-204-6437, USA | Email: shi@temple.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj0203181

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0203181

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1454

(service) becomes increasingly more difficult [3]. These risks are
tolerable when the computing clusters are small. They have
become increasingly unbearable as the computing services facing
increasingly expanding loads.

Incidentally, reliable communication is possible using faulty
components. This was also proved in early 1980’s [4]. There are
three assumptions in the proof: a) all data packets must decoupled
from transmission devices, b) both the sender and the receiver
must be reliable, and c) there are infinite supplies of resources. In
literature, this is often called the “best effort" service.
Theoretically, the best effort communication guarantees 100%
reliability as long as the infrastructure affords the minimal
survivable resource set at the time of needs. This was the
theoretical basis of the OSI (Open System Interconnection)
reference model [5].

It then follows that the “best effort" computing should also
be possible by removing the reliable receiver assumption in the
basic program-program communication protocols. In other words,
while it is reasonable for a data communication application to
assume reliable sender and receiver at the time of need, it is not
reasonable to assume reliable receivers in any clustered
computing services, since the growing service infrastructure will
make it increasingly unlikely.

This has led to the design of a single-sided parallel computing
paradigm. The new paradigm must multiplex all resources or the
application fault tolerance is not attainable (Figure 2). This
framework is called Statistic Multiplexed Computing (SMC) or
Stateless Parallel Processing. Today, as the single processor speed
approaches to a plateau, it seems that unconstrained clustered
computing is the only likely future computing architecture. No
single big-CPU machine, even if quantum class machines, would
be able to meet the exponentially growing data processing needs.

This paper is organized as follows. Section 2 introduces the
assumptions and a narrow definition of a Scalable Computing
Service (SCS). It also includes three “Reproducible Architecture
Tests” as the necessary and sufficient conditions for SCS. In this
paper, the data storage is considered stable and lossless. Data
intensive SCS will need additional requirements. A single-sided
Statistic Multiplexed Computing (SMC) architecture is presented.
Section 3 provides a high level examination of the single-sided
SMC or Stateless Parallel Processing (SPP) paradigm using the
proposed scalability tests. Section 4 illustrates the need for
granularity tuning for optimal parallel processing. Section 5
evaluates MPI, Hadoop, Spark and two SMC prototypes: Synergy
(SPP) and AnkaCom (SMC) using the scalability tests. Section 6
documents the experiment design and objectives. Section 7
reports the computational results. Section 8 contains the summary.

2. Assumption, Definition and Tests

Scalability is the capability of a system to handle a growing
amount of work. It is well understood in an economic context,
where a company's scalability undermines the potentials economic
growth of the company. Since the future societal economic growth
depends on all available computing services, the importance of the
computing service scalability is self-evident.

The economic law of diminishing returns states that in all
productive processes, adding more of one factor of production,
while holding all others constant, will at some point yield lower
incremental per-unit returns. Parallel computing using multiple
processors and networks obey the same law.

There are many possible dimensions in scalability measures.
For compute intensive services, assuming infinite supplies of
processors and networks, the scalable computing research
challenge is to devise a computing service architecture that can
scale indefinitely in order to meet the growing demands. The
Internet and SMP (Symmetric Multiprocessing) systems are such
service architectures. Delivering robust service for growing
demands, however, has met the seemingly insurmountable
challenge of the scalability dilemma. The infinite resource
assumption was rooted in practice. This assumption also makes the
theoretical discussions possible.

The dependency on reliable processors and networks for
delivering reliable service is the root cause of the scalability
dilemma. Since electronic components can suffer random failures,
a robust computing architecture must be able to exploit all useable
components at the time of need. Thus the infinite resource
assumption can be translated into the minimal survivable resource
set assumption in practice. That is, all discussions on scalable
performance, reliability and service quality are based on the
assumption that the processing architecture affords the ``minimal
survivable resource set" at the time of need. The architecture
design challenge is to build a mechanical structure capable of
leveraging all available resources at the time of need without
reprogramming the application.

In this paper, we also assume that the storage is reliable. Data
intensive SCS requires additional treatments following the same
principles [6].

Definition: A Scalable Computing Service (SCS) is a
computing service that allows unlimited infrastructure expansion
without reliability and service quality degradation. Application
performance should subject to the same definition until the law of
diminishing returns applies.

Parallel applications are the integral parts of the scientific
discovery processes. It is thus important to ensure that extreme

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1455

scale service architecture does not hinder the scientific discovery
process. The service reproducibility requirement is implied.
Further, it would be difficult to distinguish a computing
architecture design flaw from a poorly composed non-scalable
application (crossing the point of diminishing returns
prematurely), the following reproducible SCS tests are proposed:

a. Share-nothing Test. No processors or networks can
be assumed reliable while still delivering full range of
services. Not passing this test breaks the scalable
reliability definition.

b. Sublinear Cost Test. The runtime management
overhead should be bound within a sublinear factor
with regard to the infrastructure size. Failing this test
means diminishing benefits when the application up-
scales. It breaks the scalable performance definition.

c. Reproducible Node Test. Each node in the
architecture must be able to reproduce identical
semantically acceptable results given identical inputs.
These include both deterministic and non-
deterministic programs. Failing this test will break the
service quality definition.

Test (a) requires a single-sided programming paradigm (such
as Figure 2) and a multiplexing runtime architecture. Tests (a) and
(b) are the necessary and sufficient conditions for SCS. Tests (a),
(b) and (c) are the necessary and sufficient conditions for a
reproducible SCS, since the infrastructure ensures reliable services
in any scale using faulty components.

All modern computers running reasonable software can pass
the Reproducible Node Test. The Share-nothing and Sublinear
Cost Tests are more difficult.

Services built using the end-to-end reference model fail the
Share-nothing Test. The end-to-end reference model requires
explicit receiver addresses in an IP-addressable network. This
seemingly innocent requirement causes the entire application to
depend on the reliability of all processors and networks. This is the
root cause of the scalability dilemma [1].

The following computing systems can pass the Share-nothing
Test: a) Dataflow machines [7], b) Tuple Space machines [8], and
c) services by Content Addressable Networks [9]. Similarly, the
search engines and SMP (Symmetric Multiprocessing) systems
also qualify. These systems have two common features: a) API
(Application Programming Interface) has no fixed destination
(single-sided), and b) every task can be processed by any
processing elements.

Dataflow and Tuple Space machines are elegant automated
parallel systems but suffer the poor performance stigma. Content
Addressable Networks are designed for the next-generation
Internet services. It is not typically used for parallel computing.
Search engines and SMP systems are designed to service multiple
clients effectively. They are ineffective for solving the single
application's scalability dilemma.

However, putting these systems together brought a unique
opportunity: Stateless Parallel Processing (SPP) or Statistic
Multiplexed Computing (SMC) [10]-[15]. Specifically, it is
possible to build a “Service Content Addressable Network” using
the Tuple Space semantics and dataflow principle thus making the
“best effort computing" practical.

Figure 3 illustrates such a multiplexing computing service
under a UVR (Unidirectional Virtual Ring) architecture.

3. Single-sided Statistic Multiplexing

Passing the Share-nothing Test for a computing architecture
requires the absence of all component reliability assumptions
(except for the storage for this paper). The service communication
architecture must be capable of exploiting all possible network
topologies. In Figure 3, SW is a collection of network switches in
any topology. Each node is a standalone computer with any
number of cores, local memory, storage and multiple network
interfaces. UVR (Unidirectional Virtual Ring) implements a
Service Content Addressable Network (or Tuple Switching
Network (TSN) [16]) using all available processing and
networking components. This allows zero single point failures
regardless the number of networks and processors for a given
application.

The UVR architecture ensures that except for the Master (the
client of the parallel computing service), there is no need for
explicit IP addresses for data exchanges.

Unlike traditional parallel Masters, the SMC Master is part of
UVR architecture in that it is responsible for tuple retransmission
discipline and redundancy handling. Actual data exchanges are
implemented using all available network links directly. Services
built using the TSN do not subject to the end-to-end impossibility.
The high level UVR computing concept passes the Share-nothing
Test. The “best effort computing" idea could become feasible, if
the implementation also passes the same test.

Once the application runs, the dataflow semantics allow the
computing infrastructure to automatically form SIMD (Single
Instruction Multiple Data), MIMD (Multiple Instruction Multiple
Data) and pipeline clusters at runtime. These effects are identical
to early dataflow machines [7].

However, passing the Sublinear Cost Test needs more work.
On the surface, it seems impossible to traverse P nodes paying less
than linear traversal cost. However, k-order multicast can cut the

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1456

UVR traversal complexity to O(lgkP) [17]. Further, once a tuple is
matched against its processor, actual data exchange will be done
directly. Imposing an order on the tuple values can further force
the tuple matching overheads to O(1) using the ideas from
Consistent Hashing [18]. For practical applications, the one-time
O(lgkP) traversal cost seems reasonable for deploying millions of
nodes.

4. Single-sided Statistic Multiplexing

All compute intensive applications are typically partitioned
into parallel tasks that can be processed using SIMD, MIMD and
pipeline parallelisms. Since data exchange costs time, the partition
size or processing granularity determines the ultimately
deliverable performance by the service architecture. The best
performance is delivered when all tasks terminate at the exactly the
same time. A small granularity allows for higher concurrency but
at the expense of higher data exchange costs. A bigger granularity
risks lower concurrency and longer synchronization times due to
differences in processing capabilities. The optimal granularity
delivers the best possible parallel performance for the application
running on a given processing environment.

The optimal processing granularity (G) of an application
defines the Termination Time Equilibrium [19], [20] for that
application. Finding the optimal G will allow the SMC
applications to overcome the poor performance stigma of earlier
dataflow and Tuple Space machines.

The principle of finding the optimal G is analogous to the use
of Snell's Law for solving the Brachistochrone problem in physics
and mathematics [21]. Figure 4 illustrates that the solution to the
fastest descent under the influence of uniform gravitational field

and friction-less surfaces is not the straight line that connects the
source and the destination, but the Brachistochrone curve that
optimizes the gravitational and normal forces. It is a cycloid. Using
fixed application partitioning is like the straight line (which
happened to be the slowest descent). The astonishing feature of
the Brachistochrone curve is that it is also called “Tautochrone"
that regardless where you start on the curve, all will reach the
destination at the same time. In parallel processing, the
Brachistochrone curve represents the optimal G's where the overall
computing time equals to the overall data exchange time. As will
be shown, if we tune G carefully, there are indeed multiple optimal
G’s (modulated under a communication overhead curve) for every
compute intensive kernel [19].

Further, the optimal G is only discoverable without
reprogramming under the single-sided paradigms. For end-to-end
computing programs, unless the task distribution is pooled [22] or

using the single-sided “scatter_v” call in MPI, once compiled,
changing processing granularity requires reprogramming.

Other single-sided systems include Hadoop [23] and Spark
[24]. They have demonstrated substantially better reliability and
performance than similar end-to-end distributed computing
systems. But performance against bare metal HPC programs have
not being rigorously investigated.

The remaining of this paper reports computation experiments
comparing two SMC prototypes: Synergy and AnkaCom against
MPI (Message Passing Interface). The Brachistochrone effects are
also demonstrated.

5. Computing Service Architectures and Scalability Tests

The MPI parallel processing architecture is embedded in its
application programs. The (node) operating systems are
responsible for the basic data communication and task execution
functions, the programmer has explicit controls of the parallel
machines. The explicit end-point requirement makes it impossible
to pass the share-nothing test. Even with a “task pool"
implementation, unless the implementation is completely
distributed, thus forming a “application content addressable
network", passing the share-nothing test remains negative.

The Hadoop system uses the single-sided <key, value> API
(Application Programming Interface) for reliable large scale
distributed processing. It can pass the share-nothing test at the
concept level. Unfortunately, it fails the same test at the
implementation level due to the use of the RPC (Remote Procedure
Call) protocol. This results in the “single namenode
architecture”. The “namenode” is the single-point failure of the
entire system. However, even though Hadoop cannot pass the
Share-nothing Test, its single-sided API allowed much better
runtime fault tolerance than other systems. Many very large scale
successful experiments are completed within the 100M file design
limitation.

The Spark system relies on the Hadoop File System (HDFS)
but leverages high speed in-memory processing. It's scalability test
is identical to Hadoop.

The Ethereum project [25] is a decentralized distributed
computing platform that runs smart contracts: applications that run
exactly as programmed without any possibility of downtime,
censorship, fraud or third party interference. It can pass the share-
nothing test easily. These applications run on a custom built
blockchain, a shared global infrastructure that can move value
around and represent the ownership of property. This enables
developers to create markets, store registries of debts or promises,
move funds in accordance with instructions given long in the past
(like a will or a futures contract) and many other things that have
not been invented yet, all without a middle man or counterparty
risk. However, its Blockchain implementation cannot pass the
Sublinear Cost Test due to linear overhead increases when the
chain expands.

The Synergy system is also a distributed parallel computing
system that uses named Tuple Space Servers to simulate the TSN.
Although it can pass the Share-noting Test at the concept level, the
actual implementation fails the test due to the use of the named
Tuple Space Servers with fixed IP addresses [9].

The AnkaCom system [26] is a fully distributed peer-to-peer
TSN implementation. It can pass the share-nothing test at the
concept level and the implementation level. The fundamental

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1457

departure point of the AnkaCom implementation from others is the
absence of the single-ACK/NAK assumption as compared to the
RPC protocol. It can also pass the Sublinear cost test by
implementing the one-time O(lgkP) UVR traversal protocol.

6. Experiment Design

Matrix multiplication is frequently used in scientific
simulations and engineering applications. Dense matrix
multiplication has high computing and communication
requirements that can saturate resources quickly. It is selected as
the benchmark for this study. Matrix multiplication is a “regular"
parallel applications that fixed application partition seems
reasonable for using a dedicated cluster of bare metal processors.
The MPI parallel matrix multiplication program is implemented in
C. It is optimized for locality for the three nested (i,j,k) loops. The
Synergy program is also implemented in C and similarly
optimized. The AnkaCom program is implemented in Java. The
loop order is also optimized.

The MPI and Synergy runtime systems are implemented in C.
The AnkaCom runtime is implemented in Java.

The computing platforms include the NSF (National Science
Foundation) Chameleon bare metal cluster [27] at TACC (Texas
Advanced Computing Center) and the owlsnest.hpc.temple.edu
traditional bare metal cluster [28] at Temple University. The
benchmark application is a naive dense square matrix
multiplication application. The SMC prototypes are Synergy 3.0+
and AnkaCom 1.0. OpenMPI versions 1.4.4 and 1.10.0 are used in
the experiments.

• Owlsnest cluster has multiple IB (Infiniband) support.
The Chameleon cluster only has single IB support at
the time of experiments.}

• The Chameleon and Owlenest bare metal clusters
have same number of cores (48) and sufficient
memory for many-core experiments (256 GB for
Chameleon) per node and (543GB for Owlsnest).

The Synergy implementation will only sustain to a small
number of cores before saturating the single-threaded Tuple Space
server. Thus, every test using large number of cores is also a sense
of reliability test of the UVR concept.

The AnkaCom implementation will sustain to any number of
nodes and cores due to the implementation of distributed TSN. The
Java runtime overheads should be much higher than the C-MPI
combination. For AnkaCom, the IB support comes from the built-
in Java library. The C-MPI implementation has a custom IB driver.

There are three groups of experiments:

• Single-Node Single-Core. This group of tests
examines the runtime’s ability to leverage multiple
hardware components in parallel by overlapping
single-core computing, communication and disk
activities.

• Single-Node Multiple-Core. This group of tests
examines the parallel runtime system’s ability to use
up to 48 cores concurrently in addition to other
communication and storage components.

• Multiple-Node Multiple-Core. This group of tests
examines the parallel runtime system’s ability to
harness multiple multicore nodes effectively. In this

study, we used twenty 12 core nodes on Owlsnest with
dual IB support.

The single-sided API affords SMC applications a flexible
parallel task pooling capability that is not supported by direct
message passing systems such as MPI. The SMC workers can be
programmed to compute for tasks of different sizes without re-
programming. In contrast, the MPI applications rely on fixed N/P
partitioning.

7. Computational Results

7.1. Single-Node Single-Core Results

. The Java compiler does not have an optimization option.

The baseline experiment is provided by a sequential C-program

running on a single core. Figure 6 shows the results in GLOPS on
Owlenest running matrix of sizes 1000 - 6000.

The significance of the Figure 5 curve is that it depicts the
typical “Cache, Memory, Swap and Die" (CMSD) single core
performance behavior. Understanding this behavior enables
further quantitative application scalability analysis [19].

A partitioned parallel program running on a single node with a
single core will exhibit different behavior than a sequential
program running in the same environment. The partitioned
programs can exploit hidden concurrencies even in the single node
single core environment. Figure 6 reports the single-core single
worker tests for both MPI and Synergy against the sequential
program (in yellow). Due to the restriction of end-to-end
communication, the MPI (Open MPI 1.4.4) program was not able

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1458

to compete against the sequential code in different matrix sizes
(1000-6000) consistently. The Chameleon results are similar.

7.2. Single-Node Multiple-Core Results

Single node multi-core is best suited for MPI and Synergy
architectures since the inter-program data exchanges can be very
fast. Figure 7 reports the granularity tuning results for MPI and
Synergy on Chameleon for N=9000, P=45 (factor of 9000). In
Figure 7, the optimal granularity sizes are: 11, 22, and 33. The
relationship between these sizes are given by the volatility power
indices of the 45 cores at their peaks: 303, 409, and 818 [20]. At
these optimal points, the synchronization overhead is near zero
(note the Brachistochrone analogy). Further quantitative
scalability analysis becomes possible using the optimized
performance and simpler time complexity models [20]. The MPI
(Open MPI 1.10.0) on Centos 7 delivered consistently worse
performance than the worst tuned Synergy performance
(5.1GFLOPS).

Figure 8 reports a broader range of tests for different matrix
sizes without granularity tuning (G=20 fixed). Synergy still
outperforms MPI when the matrix size exceeds 3,200. These
results are consistent with Figure 6: the bigger the problem sizes,
the better the Synergy performance.

7.3. Multiple-Node Multiple-Core Results

 the granularity tuning effects in the

multi-node multi-core environment. The Brachistochrone effects
are shown again by the multiple optimal synchronization times at
specific granularity points. These points are modulated by the
increasing communication overheads (left to the optimal
granularity (70) and increasing synchronization (waiting) time
(right to the optimal point 70).

Figure 10 reports AnakaCom performances against MPI using

120 cores.

AnkaCom implements multi-threaded distributed Tuple Space
daemons following the UVR architecture. As discussed, this
effectively decouples application programs and data completely
from processors and networks. Each distributed Tuple Space
server can replicate its contents elsewhere (R > 0). In this reported
experiment, R = 1. This means that each tuple is replicated with 1
copy elsewhere. This experiment was designed to reveal the effects
of “diminishing of return" as well as the power of granularity
tuning.

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1459

Each AnkaCom run is optimized by picking the best
performing granularity through multiple runs. The recorded MPI
run is the best of three runs with identical task size N/P.

Figure 10 shows consistently better AnkaCom performances
over MPI. The performance differences grew bigger as the number
of cores increased. The MPI performance started to trend down at
P=108 while AnkaCom kept strong for yet another 12 more cores
until the end where N/P became merely 75 (9000/120). Note that
the Intel XEON clock cycle is 2.2GHZ. The 75 rows (9000
columns) of dot-products seems the break-even point for sustained
performance of this particular application. After this point, both
MPI and AnkaCom’s communication overheads took over. This
was a demonstration of the economic law of “diminishing return".

The C-MPI runs are via the “mpirun –np X -mca btl ib” option
triggering the use of custom Infiniband driver. The AnkaCom
Infiniband support is by the standard Java library.

8. Summary

Solving the scalability dilemma is of primary importance for
developing robust computing services. End-to-end computing
paradigms are suitable for small scale data processing needs. In the
era of big data, with the Moore’s Law approaching its end, extreme
scale clustered computing is the only possible path for the future
internet-scaled computing. The prior large scale HPC experiments
uncovered the scalability dilemma, energy efficiency and
reproducibility challenges in delivering robust computing services.
It is time to eliminate the known fallacy in the making of
distributed computing services.

According to the impossibility theory [2] and the possibility of
delivering reliable service using faulty components [4], addressing
the scalability challenges requires a paradigm shift: from IP-
addressable programming to content addressable programming.
This paper reports a single-sided Statistic Multiplexed Computing
(SMC) paradigm in order to circumvent the impossibility and to
fully leverage the possibility of statistic multiplexing. A narrow
Scalable Computing Service definition and three reproducible
scalable service tests are proposed. MPI, Hadoop, Spark, Synergy
and AnkaCom are all examined using the same scalability tests.

In order to gain a sense of deliverable performance and
reliability of the proposed service architecture in multi-node and
multi-core environments, computational experiments are
conducted in three groups: single node and single core, single node
multiple core and multiple node and multiple core. The single-
node single-core group provides the baseline for performance
comparisons.

The computational results revealed the following:

• Low communication overhead is not a necessary
condition for the optimized parallel performance.
Figures 2-9 demonstrated overwhelmingly that
parallel performance optimization by tuning the
processing granularity can easily out-perform the low
overhead MPI implementation.

• The choice of fixed N/P partition for MPI was
deliberate. It is possible to build a task-pool layer in
MPI or use single-sided “scatter_v" to allow dynamic
granularity tuning without reprogramming. There will
be significant implementation challenges considering
passing the Share-nothing and Sublinear Cost Tests.

However, when the problem size, the number of
processors and the dynamic runtime load distribution
happen to hit the “sweat-spot" (the fixed granularity
is the optimal for the given runtime dynamics), MPI
program will out-perform Synergy and AnkaCom.

• Both Synergy and AknaCom were running with built-
in fault tolerance. Including checkpoints in the MPI
program will push the performance to be much worse
than reported.

The application reliability of the single-sided paradigm was
also tested. Connection failures did occur during Synergy 48 core
tests. The prototype SMC protocols worked flawlessly allowing all
tests to complete without any check pointing.

The single-sided SMC application demonstrated consistently
better performance in all experiments. Since SMC applications are
natively protected by the TSN, the SMC application’s performance
and reliability have far exceeded the end-to-end computing MPI
programs.

The SMC principle is also applicable for transactional and
storage services [5]. Solving the data intensive SCS problem
requires a solution to the CAP Theorem [29].

This paper tries to convince the reader that the robust service
scalability dilemma of distributed and parallel computing is
indeed solvable. The proposed single-sided SMC paradigm is a
feasible solution for delivering efficient and robust computing
services using faulty components. Correct implementation of the
Statistic Multiplexed Computing principle ensures the reliability
of large scale distributed services. Extracting the optimal
processing performance is similar to finding the Brachistochrone
curve in physics and mathematics. The SMC goal of building non-
stoppable services is similar to the Etherem project [25]. The
implementation of SMC paradigm, however, can promises high
information security without linearly increasing overheads.

In addition to extreme scale parallel computing, the single-
sided SMC service architecture is also suited for mission critical
applications. It promises true non-stop computing service as long
as the infrastructure affords the minimal survivable resource set, a
task that can be automated completely in practice. This
development will impact all existing mission critical distributed
and parallel services. These include Enterprise Service Buses
(ESB), mission critical transaction processes, mission critical
storage systems, smart grid controllers and software defined
network (SDN) control plane implementations. Finally, the use of
service content addressable network for mission critical services
makes all IP-based cyberattacks, such as DDOS (Distributed
Denial of Service), ineffective. These developments will redefine
the state of the Internet.

About Authors

The corresponding author is responsible for the scalability
definition and tests, the UVR architecture design and the first
prototype implementation Synergy. He is the original proposer of
the Stateless Parallel Processing concept and the SMC framework.
Author Yasin Celik is currently a PhD student completing a
dissertation at Temple University. Yasin is responsible for the
practical rendition of the SMC framework (AnkaCom) and
validation tests. His dissertation includes both compute and data
intensive SMC implementations and scalability studies.

http://www.astesj.com/

J. Y. Shi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 1453-1460 (2017)

www.astesj.com 1460

Acknowledgment

The reported study is supported in part by the 2016 NSF REU
Program at Temple University Site, NSF MRI Grant
#CNS0958854 (owlsnest.hpc.temple.edu), and computing
resource grant #CH-817746 from the NSF Chameleon Computing
Cloud Testbed.

The authors thank two NSF REU (Research Experience for
Undergraduate) program students, Kimberly Kosman (Purdue
University) and Traves Evans (Louisiana Polytechnique Institute)
contributed in independent validation of prior performance results
in the summer of 2016.

Support from the administrative staff of the
Owlsnest.hpc.temple.edu and the CIS Department, College of
Science and Technology are also acknowledged.

References

[1] Peter Deutsch. “Eight fallacies of distributed computing”. [online]
https://blogs.oracle.com/jag/resource/Fallacies.html .

[2] Alan Fekete, Nancy Lynch, Yishay Mansour, and John Spinelli. “The
impossibility of implementing reliable communication in the face of
crashes”. J. ACM, 40:1087–1107, November 1993.

[3] XSEDE 2014 reproducibility workshop report, “Standing together for
reproducibility in large-scale computing”. [online]
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-
2de11113a40f .

[4] John M. Spinelli. “Reliable data communication in faulty computer
networks”, June 1989. PhD thesis, MIT.

[5] OSI Reference Model [online] https://en.wikipedia.org/wiki/OSI_model
[6] Justin Y. Shi, Yasin Celik, “AnkaStore: A Single-Sided Statistic Multiplexed

Transactional Distributed Storage System”, unpublished manuscript, 2017.
[7] R. S. Nikhil Arvind. “Implicit parallel programming in pH”, In Introduction

to Management Science (10th Ed), Morgan Kaufmann, 2011.
[8] David Gelernter and Nicholas Carriero. “Coordination languages and their

significance”. In Communications of ACM. ACM, 1992.
[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. “A scalable content-addressable network”. In SIGCOMM 2001,
San Diego, CA, USA, 2001. ACM.

[10] Yuan Shi. “Stateless Parallel Processing Prototype: Synergy”, 1996. [online]
https://github.com/jys673/Synergy30.

[11] Justin Y. Shi. “System for high-level virtual computer with heterogeneous
operating systems”. U.S. Patent #5,381,534, 1995.

[12] Justin Y. Shi. “Multi-computer system and method”. U.S. Patent #5,517,656,
1996.

[13] Justin Y. Shi and Suntian Song. “Apparatus and method of optimizing
database clustering with zero transaction loss”. U.S. Patent Application:
#2008018969, 2008.

[14] Justin Y. Shi. “Fault tolerant self-optimizing multiprocessor system and
method thereof”. U.S. Patent Application #20090019258, 2007.

[15] Justin Y. Shi. “System and method for fault tolerant scalable computing”.
U.S. Patent Application #605725, November 2016.

[16] Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, and Jie Wu. “Tuple
switching network – when slower maybe better”. International Journal of
Parallel and Distributed Computing, 72, 2011.

[17] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. “Chord: A scalable peer-to-peer lookup service for Internet
applications”. SIGCOMM Comput. Commun. Rev., 31(4):149–160, August
2001.

[18] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. “Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the worldwide web”.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’97, pages 654–663, New York, NY, USA, 1997. ACM.

[19] Y. Shi. “A distributed programming model and its applications to
computation intensive problems for heterogeneous environments”. In 1992

Earth and Space Science Information Systems, AIP Conference Proceedings,
Pasadena, CA, 1992.

[20] Justin Y. Shi, Moussa Taifi, Abdallah Khreishah, Aakash Predeep, and
Vivek Anthony. “Program scalability analysis for HPC cloud: Applying
Amdahl’s law to NAS benchmarks”. In International Workshop on
Sustainable HPC Cloud/Supercomputing Conference 2012. IEEE, 2012. Salt
Lake City, Utah.

[21] Brachitoschrone curve. [online]
https://en.wikipedia.org/wiki/Brachistochrone.

[22] Judith Hippold and Gudula Runger. “Task pool teams for implementing
irregular algorithms on clusters of SMPs”. Nice, France, 2003. IEEE Press.

[23] Apache hadoop. http://hadoop.apache.org.
[24] Archley Kattt. “Spark – lightning-fast cluster computing”. Berkeley, CA,

USA, 2011. University of California.
[25] Ethereum Homestead Documentation – “A Blockchain Application Platform”

[online] http://www.ethdocs.org/en/latest/ .
[26] Yasin Celik, Aakash Pradeep, and Justin Y. Shi. Ankacom: “A development

and experiment for extreme scale computing”. In CIT/IUCC/DASC/PICom,
pages 2010–2016. IEEE, 2015.

[27] Chameleon. “A configurable experimental environment for large-scale cloud
research”. https://www.chameleoncloud.org/ , 2017.

[28] Temple University HPC Facility: Owlsnest.
http://www.hpc.temple.edu/owlsnest/OwlsnestUserGuide.html.

[29] Gilbert and Lynch. “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services”. In ACM SIGACT News (2002),
volume 33(2), page 59. ACM, 2002.

http://www.astesj.com/
https://blogs.oracle.com/jag/resource/Fallacies.html
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f
https://www.xsede.org/documents/659353/d90df1cb-62b5-47c7-9936-2de11113a40f
https://en.wikipedia.org/wiki/OSI_model
https://github.com/jys673/Synergy30
https://en.wikipedia.org/wiki/Brachistochrone
http://www.ethdocs.org/en/latest/
https://www.chameleoncloud.org/
http://www.hpc.temple.edu/owlsnest/OwlsnestUserGuide.html

	1. Introduction
	2. Assumption, Definition and Tests
	3. Single-sided Statistic Multiplexing
	4. Single-sided Statistic Multiplexing
	5. Computing Service Architectures and Scalability Tests
	6. Experiment Design
	7. Computational Results
	7.1. Single-Node Single-Core Results
	7.2. Single-Node Multiple-Core Results
	7.3. Multiple-Node Multiple-Core Results

	8. Summary
	About Authors
	Acknowledgment
	References

