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A B S T R A C T
To perform an exploration process over complex structured data within
unsupervised settings, the so-called kernel spectral clustering (KSC) is
one of the most recommended and appealing approaches, given its
versatility and elegant formulation. In this work, we explore the
relationship between (KSC) and other well-known approaches, namely
normalized cut clustering and kernel k-means. To do so, we first deduce
a generic KSC model from a primal-dual formulation based on
least-squares support-vector machines (LS-SVM). For experiments,
KSC as well as other consider methods are assessed on image
segmentation tasks to prove their usability.
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1 Introduction

In general, for classifying or grouping a set of ob-
jects (represented as data points) into subsets hold-
ing similar objects, the field of machine learning -
specifically, the pattern recognition- provides two
great alternatives being essentially different from each
other: Supervised- and Unsupervised-learning-based
approaches. The former ones normally establish a
model from beforehand known information on data
normally provided by an expert, while the latter ones
form the groups by following a natural clustering
criterion based on a (traditionally heuristic) proce-
dure of data exploration [1]. Therefore, unsupervised
clustering techniques are preferred when object la-
belling is either unavailable or unfeasible. In litera-
ture, we can find tens of clustering techniques, which
are based on different principles and criteria (such as:
distances, densities, data topology, and divergences,
among others) [2]. Some remarkable, emerging ap-
plications are inbalanced data analysis [3] and time-
varying data analysis [4]. Particularly, spectral cluster-
ing (SC) is a suitable technique to deal with grouping
problems involving hardly separable clusters. Many
SC approaches have been proposed, among them:
Normalized-cut-based clustering (NCC), which, ap-
plied as explained in [5], heuristically and iteratively
estimates binary cluster indicators [5] or approxi-
mates the solution in a one-iteration fashion by solv-
ing a quadratic programming problem [6]. Kernel k-

means (KKM) that can be formulated using eigenvec-
tors [7]. Kernel spectral clustering (KSC), which uses
a latent variable model and a least-squares-support-
vector-machine (LS-SVM) formulation [8]. This work
has a particular focus on KSC, being one of the most
modern approaches. It has been widely used in nu-
merous applications such as time-varying data [9,10],
electricity load forecasting [11], prediction of indus-
trial machine maintenance [12], and among others.
Also, some improvements and extensions have been
proposed [12–14].

The aim of this work is to demonstrate the rela-
tionship between KSC and other approaches, namely
NCC and KKM. To do so, elegant mathematical devel-
opments are performed. Starting from either the pri-
mal or dual formulation of KSC, we show clearly the
links with the other considered methods. Experimen-
tally, in order to assess the clustering performance,
we explore the benefit of each considered method on
image segmentation. In this connection, images ex-
tracted from the free access Berkeley Segmentation
Data Set [15] are used. As a meaningful result of this
work, Also, we provide mathematical and experimen-
tal evidence of the usability of combining together
a LS-SVM formulation and a generic latent variable
model for clustering purposes.

The rest of this paper is organized as follows: Sec-
tion 2 outlines the primal-dual formulation for KSC
starting with a LS-SVM formulation regarding a vari-
able model, which naturally yields an eigenvector-
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based solution. Sections 3 and 4 explore and dis-
cusses on the links of KSC with NCC and KKM, re-
spectively. Some experimental results are shown in
Section 5. Section 6 presents some additional remarks
on improved versions of KSC and its relationship with
spectral dimensionality reduction. Finally, section 7
draws some final and concluding remarks.

2 Kernel Spectral clustering

Accounting for notation and future statements, let us
consider the following definitions: Define a set of N
objects or samples represented by d-dimensional fea-
ture vectors. Likewise, consider a data matrix hold-
ing all the feature vectors, so that X ∈ R

N×d : X =
[x⊤1 , . . . ,x

⊤
N ]
⊤, where xi ∈ R

d is the i-th d dimensional
feature vector or data point. KSC is aiming to split X
into K disjoint subsets, being K the number of desired
groups.

2.1 Latent variable model and problem
formulation

In the following, the clustering model is described.
Let e(l) ∈ R

N be the l-th projection vector, which is
assumed in the following latent variable form:

e(l) =Φw(l) + bl1N , (1)

where w(l) ∈ R
dh is the l-th weighting vector, bl is a

bias term, ne is the number of considered latent vari-
ables, notation 1N stands for aN dimensional all-ones
vector, and the matrix Φ = [φ(x1)

⊤, . . . ,φ(xN )
⊤]⊤ ,Φ ∈

R
N×dh , is a high dimensional representation of data.

The function φ(·) maps data from the original dimen-
sion to a higher one dh, i.e., φ(·) : R

d → R
dh . Therefore,

e(l) represents the latent variables from a set of ne bi-
nary cluster indicators obtained with sign(e(l)), which
are to be further encoded to obtain the K resultant
groups.

From the least-squares SVM formulation of equa-
tion (1), the following optimization problem can be
stated:

max
e(l),w(l),b(l)

1

2N

ne∑

l=1

γle
(l)⊤Ve(l) −

1

2

ne∑

l=1

w(l)⊤w(l) (2a)

s.t.e(l) =Φ
⊤w(l) + bl1N , (2b)

where γl ∈ R
+ is the l-th regularization parameter

and V ∈ R
N×N is a diagonal matrix representing the

weight of projections.

2.2 Matrix problem formulation

For the sake of simplicity, we can express the primal
formulation (2) in matrix terms, as follows:

max
E,W,b

1

2N
tr(E⊤VEΓ )−

1

2
tr(W⊤W) (3a)

s.t.E =ΦW+ 1N ⊗b
⊤, (3b)

where b = [b1, . . . ,bne ], b ∈ R
ne , Γ = Diag([γ1, . . . ,γne ]),

W = [w(1), · · · ,w(ne)], W ∈ R
dh×ne , and E =

[e(1), · · · ,e(ne)], E ∈ RN×ne . Notations tr(·) and ⊗ denote
the trace and the Kronecker product, respectively. By
minimizing the previous cost function, the goals of
minimizing the weighting variance of E and maximiz-
ing the variance ofW are reached simultaneously. Let
ΣE be the weighting covariance matrix of E and ΣW

be the covariance matrix of W. Since matrix V is di-
agonal, we have that tr((V1/2E)⊤V1/2E) = tr(ΣE). In
other words, ΣE is the covariance matrix of weighted
projections, i.e., the projections scaled by square root
of matrix V. As well, tr(W⊤W) = tr(ΣW). Then, KSC
can be seen as a kernel, weighted principal component
analysis (KWPCA) approach [8].

2.3 Solving KSC by using a dual formula-
tion

To solve the KSC problem, we form the correspond-
ing Lagrangian of the problem from equation (2) as
follows:

L(E,W,Γ ,A) =
1

2N
tr(ΓE⊤VE)−

1

2
tr(W⊤W)

− tr(A⊤(E−ΦW− 1N ⊗b
⊤)), (4)

where matrix A ∈ R
N×ne holds the Lagrange multi-

plier vectors A = [α(1), · · · ,α(ne)], and α(l) ∈ R
N is the

l-th vector of Lagrange multipliers.

Solving the partial derivatives on L(E,W,Γ ,A) to
determine the Karush-Kuhn-Tucker conditions, we
obtain:

∂L

∂E
= 0 ⇒ E =NV−1AΓ−1,

∂L

∂W
= 0 ⇒W =Φ

⊤A,

∂L

∂A
= 0 ⇒ E =ΦW,

∂L

∂b
= 0 ⇒ b⊤1N = 0.

Therefore, by eliminating the primal variables
from initial problem (2) and assuming a kernel trick
such that ΦΦ

⊤ = Ω, being Ω ∈ RN×N a given kernel
matrix, the following eigenvector-based dual solution
is obtained:

AΛ =V(IN + (1N ⊗b
⊤)(ΩΛ)−1)ΩA, (5)

where Λ = Diag(λ), Λ ∈ RN×N , λ ∈ RN is the vector of
eigenvalues with λl =N/γl , λl ∈R

+.
Also, taking into account that the kernel matrix

represents the similarity matrix of a graph with K
connected components as well as V = D−1 where D ∈
R
N×N is the degree matrix defined as D = Diag(Ω1N );

then the K − 1 eigenvectors contained in A, associ-
ated to the largest eigenvalues, are piecewise con-
stant and become indicators of the corresponding con-
nected parts of the graph. Therefore, value ne is fixed
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to be K − 1 [8]. With the aim of achieving a dual for-
mulation, but satisfying the condition b⊤1N = 0 by
centering vector b (i.e. with zero mean), the bias term
should be chosen in the form

bl = −1/(1
⊤
NV1N )1

⊤
NVΩα(l). (6)

Thus, the solution of problem of equation (3) is re-
duced to the following eigenvector-related problem:

AΛ =VHΩA, (7)

where matrix H ∈ RN×N is the centering matrix that is
defined as

H = IN −
1

1⊤NV1N
1N1

⊤
N ,V,

where IN denotes a N-dimensional identity matrix
and, Ω = [Ωij ],Ω ∈ R

N×N , being Ωij = K(xi ,xj ), i, j ∈

[N ]. Notation K(·, ·) : Rd ×Rd → R stands for the ker-
nel function. As a result, the set of projections can be
calculated as follows:

E =ΩA+ 1N ⊗b
⊤. (8)

Once projections are calculated, we proceed to
carry out the cluster assignment by following an en-
coding procedure applied on projections. Because
each cluster is represented by a single point in the
K − 1-dimensional eigenspace, such that those sin-
gle points are always in different orthants due also to
the KKT conditions, we can encode the eigenvectors
considering that two points are in the same cluster
if they are in the same orthant in the corresponding
eigenspace [8]. Then, a code book can be obtained
from the rows of the matrix containing the K − 1 bi-
narized leading eigenvectors in the columns, by using
sign(e(l)). Then, matrix Ẽ = sgn(E) is the code book
being each row a codeword.

2.4 Out-of-sample extension

KSC can be extended to out-of-samples analysis with-
out re-clustering the whole data to determine the as-
signment cluster membership for new testing data [8].
In particular, defining z ∈ Rne as the projection vector
of a testing data point xtest, and by taking into con-
sideration the training clustering model, the testing
projections can be computed as:

z = A⊤Ωtest +b, (9)

where Ωtest ∈R
ne is the kernel vector such that

Ωtest = [Ωtest1 , . . . ,ΩtestN ]
⊤,

and Ωtesti = K(xi ,xtest). Once, the test projection vec-
tor z is computed, a decoding stage is carried out
that consists of comparing the binarized projections
with respect to the codewords in the code book Ẽ and
assigning cluster membership based on the minimal
Hamming distance [8].

2.5 KSC algorithm

Following the pseudo-code (Algorithm 1) to perform
KSC is shown.

Algorithm 1 Kernel spectral clustering: [qtrain,qtest] =
KSC(X,K(·, ·),K)

1: Input: K , X, K(·, ·)

2: Form the kernel matrix Ω such that Ωij =K(yi ,xj )
3: Determine E through (8)
4: Form the training codebook by binarizing Ẽ = sgn(E)
5: Assign the output training labels qtrain according to sim-

ilar codewords

6: Compute the training codewords for testing

7: Assign the output testing labels qtest according to the

minimal Hamming distance when comparing with train-

ing codewords

8: Output: qtrain,qtest

3 Links between KSC and NCC

This section deals with the relationship between KSC
and NCC, starting from the formulation of the NC
problem until reaching a weighting principal compo-
nent analysis (WPCA) formulation in a finite domain.

3.1 Multi-cluster spectral clustering
(MCSC) from two point of view

In [5], the so-called Multi-cluster spectral cluster-
ing (MCSC) is introduced, which is based on the
well-known k-way normalized cut-based formulation
given by:

max
1

K

tr(M⊤ΩM)

tr(M⊤DM)
= max

m(k)

1

K

∑K
k=1m

(k)⊤
Ω̂m(k)

∑K
k=1m

⊤m
(10a)

s.t.M ∈ {0,1}N×K , M1K = 1N . (10b)

Expressions (10a) and (10b) are the formulation of
the NC optimization problem, named (NCPM). Pre-
vious formulation can also be expressed as follows.

Let Ω̂ = D−1/2ΩD−1/2 be a normalized kernel matrix
and L = D1/2M be a binary matrix normalized by the
square root of the kernel degree. Then, a new NCPM
version can be expressed as:

max
L

1

K

tr(L⊤Ω̂L)

tr(L⊤L)
= max

ℓ(k)

1

K

∑K
k=1 ℓ

(k)⊤
Ω̂ℓ(k)

∑K
k=1 ℓ

(k)⊤ℓ(k)
(11a)

s.t.D−1/2L ∈ {0,1}N×K , D−1/2L1K = 1N , (11b)

where ℓ(k) is the column k of L.

Solution of former problem has been addressed in
[5, 16] by introducing a relaxed version, in which nu-
merator is maximized subject to denominator is con-
stant, so

max
L

1

K
tr(L⊤Ω̂L) s.t. tr(L⊤L) = const. (12)
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Indeed, authors assume the particular case L⊤L = IK ,
i.e. letting L be an orthonormal matrix. Then, solu-
tion correspond to any K-dimensional basis of nor-
malized matrix eigenvectors. Despite that in [16] it
is presented an one-iteration solution for NCPM with
suboptimal results avoiding the calculation of SVD
per iteration, the omitting of the effect of denomi-
nator tr(L⊤L) by assuming orthogonality causes that
the solution cannot be guaranteed to be a global op-
timum. In addition, this kind of formulation provide
non-stable solutions due to the heuristic search car-
ried out to determine an optimal rotation matrix [16].

3.2 Solving the problem by a difference:
Empirical feature map

Recalling original problem 3.1, we introduce an-
other way to solve the NCPM formulation via a
minimization problem where the aims for maximiz-

ing tr(L⊤Ω̂L) and minimizing tr(L⊤L) can be accom-
plished simultaneously, so:

max
L

tr(L⊤Ω̂LDiag(γ))− tr(L⊤L) (13)

where γ = (γ1, . . . ,γN )
⊤ is a vector containing the reg-

ularization parameters.
Let us assume Ω = ΨΨ

⊤ where Ψ is a N ×N di-
mensional auxiliary matrix, and consider the follow-
ing equality:

tr(Ω̂) = tr(D−1/2ΩD−1/2) = tr(D−1Ω)

= tr(D−1ΨΨ
⊤) = tr(Ψ⊤D−1Ψ),

then

D−1/2ΩD−1/2 =Ψ
⊤D−1Ψ.

Previous formulation is possible since kernel matrix
Ω is symmetric. Now, let us define h(k) ∈RN =Ψ

⊤ℓ(k)

as the k-th projection and H = (h(1), · · · ,h(K)) as the
projections matrix. Then, formulation given by (13)
can be expressed as follows:

max
h(k),ℓ(k) ,γk

1

2K

K∑

k=1

γkh
(k)⊤Vh(k) −

1

2

K∑

k=1

ℓ(k)⊤ℓ(k) (14a)

such that h(k) =Ψℓ(k), (14b)

where matrix V ∈RN×N can be chosen as:

- IN : We can normalize matrix Ω in such way for all
i condition

∑N
j ωij = 1 is satisfied and there-

fore we would obtain a degree matrix equaling
the identity matrix. Then,

∑
h(l)⊤h(l) = tr(H⊤H),

which corresponds to a PCA-based formulation.

- Diag(v): With v ∈ RN such that v⊤v = 1, we have a
WPCA approach.

- D−1: Given the equality V = D−1, optimization
problem can be solved by means of a procedure
based on random walks; being the case of inter-
est in this study.

3.2.1 Gaussian processes

In terms of Gaussian processes, variable Ψ represents
amappingmatrix such thatΨ = (ψ(x1), . . . ,ψ(xN )) and
where ψ(·) : Rd → R

N ) is mapping function, which
provides a new N-dimensional data representation
where resultant clusters are assumed to be more sepa-
rable. Also, matrixΩ is to be chosen as a Gaussian ker-
nel [17]. Therefore, according to optimization prob-
lem given by (14), term h(k) is to be the k-th projection
of normalized binary indicators as h(k) =Ψℓ(k).

3.2.2 Eigen-solution

We present a solution for 14, which after solving the
KKT conditions on its corresponding Lagrangian, an
eigenvectors problem is yielded. Then, we first solve
the Lagrangian of problem (14) so:

L(h, ℓ,γ,α) =
1

2K
h⊤Vh−

1

2
ℓ⊤ℓ −α⊤(h−Ψw), (15)

where α is a N-dimensional vector containing the La-
grange multipliers.

Solving the partial derivatives to determine the
KKT conditions, we have:

∂L

∂h
= 0 ⇒ h =

K

γ
Dα,

∂L

∂ℓ
= 0 ⇒ ℓ =Ψ

⊤α,

∂L

∂α
= 0 ⇒ h =Ψℓ.

Eliminating the primal variables, we obtain the
following eigenvector problem:

λα =D−1Ωα, (16)

where λ = N/γ . Then, matrix ∆K = (α(1), · · · ,α(K)) can
be computed as the eigenvectors associated with the
first K longest eigenvalues of D−1Ω.

Finally, projections matrix H is in the form

H =ΨL =ΨD1/2M =Ω∆K , (17)

and thereforeM =Ψ
−1D−1/2Ω∆K , whereΨ can be ob-

tained from a Cholesky decomposition.

Then, within a finite domain, both solution and
formulation of NCC can be expressed similarly as
done in KSC. So it is demonstrated the relationship
between a kernel-based model and Gaussian pro-
cesses.
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4 Links between KSC and KKM

Kernel K-means method (KKM) is a generalization
of standard K-means that can be seen as a spec-
tral relaxation when introducing a mapping func-
tion in the objective function formulation [18]. As
mentioned throughout this paper, spectral cluster-
ing approaches usually are performed on a lower-
dimensional space, keeping the pairwise relationships
among nodes. Then, it often leads to a relaxed NP-
problems where continuous solutions are obtained by
a eigen-decomposition. Such an eigen-decomposition
is regarding the normalized similarity matrix (Lapla-
cian, as well). In a Kernel K-means framework, eigen-
vectors are considered as geometric coordinates and
then K-means methods is applied over the eigen-space
to get the resultant clusters [19,20].

Previous instance is as follows: Suppose that we
have a gray scale matrix m × n pixels in size. Char-
acterizing each image pixel with d features -e. g.,
color spaces, morphological descriptors- it is yielded
as a result a data matrix in the form X ∈ RN×d , where
N = mn. Afterwards, the eigenvectors VR

N×N of a
normalized kernel matrix P ∈ R

N×N such that P =
D−1Ω, being Ω the kernel matrix and D ∈ RN×N the
corresponding degree matrix. Then, we proceed to
cluster V into K groups using K-means algorithm:
q = kmeans(V,K), being q ∈ R

N the output cluster
indicator such that qi ∈ [K]. The segmented image
is then a m × n sized matrix holding regions in accor-
dance with q.

Briefly put, one simple way to perform a KKM pro-
cedure is applying k-means over the eigen-space. In
Equation (7), the dual formulation is regarding the
matrix S = VHΩ where weighting matrix can be cho-
sen as V =D−1 and D is the degree of the data-related
graph. Since H causes a centering effect, matrix S is
the same as P when kernel matrix Ω is centered. In
other words, KKM can be seen as a KSC formulation
with an incomplete latent variable model being a non-
centered one (with no bias term).

5 Results and discussion

In order to show how considered methods work, we
conduct some experiments to test their clustering
ability on segmenting images. To do so, the segmen-
tation performance is quantified by a supervised in-
dex noted as Probabilistic Rand Index (PR), explained
in [21], such that PR ∈ [0,1], being 1 when regions are
properly segmented. Images are drawn from the free
access Berkeley Segmentation Data Set [15]. To rep-
resent each image as a data matrix, we characterize
the images by color spaces (RGB, YCbCr, LAbB, LUV)
and the xy position of each pixel. At the end, data
matrix X gathers N pixels represented by d character-
istics (variables). To run the experiment, we resize the
images at 20% of the original size due to memory us-
age restrictions. All the methods are performed with
a given number of clusters K manually set as shown in
shown in Fig. 5 and using the scaled exponential sim-

ilarity matrix as described in [19], setting the number
of neighbors to be 9.

To test all the methods in a fair scenario, kernel-
based methods (KSC and KKM) use Ω as kernel ma-
trix, whereas such a matrix is the affinity matrix for
NCC. As well, to perform the clustering procedure,
the number of clusters is the same for all the consid-
ered methods. As can be readily appreciated, KSC
overcome the rest of studied clustering methods. This
fact can be attributed to the KSC formulation, which
involves a whole latent variable model being in turn
incorporated within a LS-SVM framework. Indeed,
just like principal component analysis (PCA), KSC op-
timizes an energy term. Differently, such an energy
term is regarding a latent variable instead of directly
the input data matrix. Concretely, a latent variable
model is used, which is linear and formulated in terms
of projections of the input data. The versatility of KSC
relies on the kernel matrix required during the opti-
mization procedure of its cost function. Such a matrix
holds pairwise similarities, then KSC can be seen as
data-driven approach that not only consider the na-
ture of data but yields a true clustering model. It is
important to quote that -depending on the difficulty
of the segmentation task- data matrices represent-
ing images yield features spaces, which may present
hardly separable classes. Then, we have demonstrated
the benefit of the KSC approach that uses a model
along with a LS-SVM formulation -everything within
a primal-dual scheme. Other studies have also proven
the usability and versatility of this kind of approaches
[8, 22].

6 Additional remarks

As explained in [23], KSC performance can be en-
hanced in terms of cluster separability by optimally
projecting original input data and performing the
clustering procedure over the projected space. Given
the unsupervised nature, spectral clustering becomes
very often a parametric approach, involving then a
stage of selection/tunning of collection of initial pa-
rameters to avoid any local-optimum solution. Typ-
ically, the initial parameters are the kernel or sim-
ilarity matrix and the number of groups. Nonethe-
less, in some problems when data are represented in
a high-dimensional space and/or data-sets are non-
linearly separable, a proper feature extraction may be
an advisable alternative. In particular, a projection
generated by a proper feature extraction procedure
may provide a new feature space wherein the cluster-
ing procedure can reach more accurate cluster indi-
cators. In other words, data projection accomplishes
a new representation space, where the clustering can
be improved, in terms of a given mapping criterion,
rather than performing the clustering procedure di-
rectly over the original input data.

The work developed in [23] introduces a matrix
projection focusing on a better analysis of the struc-
ture of data that is devised for a KSC. Since data pro-
jection can be seen as a feature extraction process,
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Original KSC MCSC KKM
image

(a) 113044 (b) PR = 0.6992 (c) PR = 0.6882 (d) PR = 0.6555

K = 2

(e) 118035 (f) PR = 0.7858 (g) PR = 0.8096 (h) PR = 0.4479

K = 4

(i) 12003 (j) PR = 0.6901 (k) PR = 0.6823 (l) PR = 0.5452

K = 4

(m) 181091 (n) PR = 0.7992 (o) PR = 0.7700 (p) PR = 0.6125

K = 7

Figure 1: Clustering performance on image segmentation reached by all the considered methods. It is no-
ticeable that KSC overcome the remaining methods. Images are data that traditionally involve highly non-
separable clusters. Therefore, the benefit of using a whole latent variable model within a LS-SVM formulation
is verified.

we propose the M-inner product-based data projec-
tion, in which the similarity matrix is also considered
within the projection framework, similarly as dis-
cussed in [24]. There are two main reasons for using
data projection to improve the performance of kernel
spectral clustering: firstly, the data global structure is
taken into account during the projection process and,
secondly, the kernel method exploits the information
of local structures.

Another study [25] explores the links of KSC with
spectral dimensionality reduction from a kernel view-
point. Particularly, the proposed formulation is LS-
SVM in terms of a generic latent variable model in-
volving the projected input data matrix. In order to
state a kernel-based formulation, such a projection
maps data onto a unknown high-dimensional space.
Again, the solution of the optimization problem is ad-
dressed through a primal-dual scheme. Finally, once
latent variables and parameters are determined, the
resultant model outputs a versatile projected matrix
able to represent data in a low-dimensional space. To
do so, since the optimization is posed under a maxi-
mization criterion and dual version has a quadratic
from, the eigenvectors associated with the largest
eigenvalues can be chosen as a solution. Therefore, the
generalized kernel model may represente a weighted
version of kernel principal component analysis.

7 Conclusions

This works explores a widely-recommended method
for unsupervised data classification, namely ker-
nel spectral clustering (KSC). From elegant develop-
ments, the relationship between KSC and two other
well-known spectral clustering approaches (normal-
ized cut clustering and kernel k-means) is demon-
strated. As well, the benefit of KSC-like approaches
is mathematically and experimentally proved. The
goodness of KSC relies on the nature of its formula-
tion, which is based on a latent variable model incor-
porated into a least-square-support-vector-machine
framework. Additionally, some key aspects and hints
to improve KSC performance as well as its ability
to represent dimensionality reduction approaches are
briefly outlined and discussed.

As a future work, a generalized clustering frame-
work is to be designed so that a wide range of spectral
approaches can be represented. Doing so, the task of
selecting and/or testing a spectral clustering method
would become easier and fairer.
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