
www.astesj.com 449

Verifying the Detection Results of Impersonation Attacks in Service Clouds
Sarra Alqahtani*, Rose Gamble

Tandy School of Computer Science, University of Tulsa, Tulsa, OK, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received : 05 April, 2017
Accepted : 04 May, 2017
Online: 24 May, 2017

 A web service impersonation is a class of attacks in which an attacker poses as or assumes
the identity of a legitimate service to maliciously utilize that service’s privileges. Providing
security for interacting cloud services requires more than user authentication with
passwords or digital certificates and confidentiality in data transmission. In this paper, we
focus on the service cloud model, which facilitates the composition and communication
among web services owned by different cloud vendors. We develop a distributed mechanism
to detect and mitigate impersonation attacks against web services in the cloud. The detection
approach monitors the behavior of each service and identifies anomalies as a potential
impersonation attack if it deviates significantly from the expected behavior. To verify the
impersonation attack, we deploy a cloud-based verification technique, misleading suspicious
services with useless responses. The experimental results show that modeling request
behavior reliably detects a significant number of impersonation attempts, with a
performance degradation that is a reasonable trade-off.

Keywords :
Impersonation
Cloud
Cybersecurity

1. Introduction

A web service impersonation is a class of attacks in which an
attacker poses as or assumes the identity of a legitimate service to
maliciously utilize that service’s privileges. This attack can cause
a serious threat to the security of service clouds, i.e. those clouds
that allow the provisioning of multiple vendor services to
dynamically compose an application to answer a client request. By
impersonating a legitimate service, the intruder can maliciously
access the victimized a service’s resources. For the service cloud,
this attack class is a version of identity theft. Such attacks
completely undermine traditional security mechanisms due to the
trust imparted to service credentials once they have been
authenticated. Many attempts have been made at detecting this
kind of attack (also called masquerader or identity spoofing
attacks) against legitimate users in clouds. In this dissertation, we
have developed a distributed mechanism to detect and mitigate
impersonation attacks against web services in the cloud [1].

When using the cloud, an end user’s credentials to authenticate
request messages between web services lacks the verification of
the origin of the request (i.e. the requester service). Thus, this
vulnerability can be used by the attacker after stealing the
credentials to create fake services. Since the credentials represent
a long-term authentication tool, the attacker can attack a web

service for unlimited time and the owner of the credentials would
not discover the problem until the damage is done.

In our proposed architecture (Figure 1) [1], we assume a secure
session with a security token issued by a Security Token Service
(STS) to mitigate the general vulnerability of spoofing the user
credentials. The STS is trusted by both the client and the web
service to provide interoperable security tokens. The client sends
an authentication request, with accompanying credentials, to the
STS. The STS verifies the credentials presented by the client, and
then in response, it issues a security context token (SCT) that
provides proof that the client has authenticated with the STS. The
SCT is built on a SAML standard format for exchanging
authentication and authorization data between different parties [1,
2]. The client presents the security token to the service. The service
then verifies the token with the STS, which proves that the client
has been successfully authenticated. For proper use of the token, it
is expected that all composed, trusted services communicate with
the STS to perform token delegation and validation at each service
request and response, but only client services issue or cancel a
token. The SCT holds information to specify its scope, creation,
and expiration time to develop the basis for encrypting and signing
subsequent message exchanges, which results in efficient and
secure communications between services in an application. The
cloud services and STS use X.509 certificates to sign and encrypt
their messages. The scope of the issued SCT is limited to the
designated STS regardless of whether the sender service specified

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Sarra Alqahtani, Tandy School of Computer Science,
University of Tulsa, Tulsa, OK, USA | Email: sarra-alqahtani@utulsa.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com

Special issue on Recent Advances in Engineering Systems

https://dx.doi.org/10.25046/aj020358

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020358

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 450

the scope in the initial request. This prevents the sender from using
the SCT to directly access a recipient without communicating first
with STS. Therefore, a token’s lifetime is limited to its session
active time.

The proposed architecture introduces the concept of scoped
distributed Security Management Databases (SMDBs) to store
audit logs, meta-information about the infrastructure of each
scope, history of security incidents, incident reports, related
security policies, and SLAs [2]. Scoped detectors use SMDB
content to identify security threats exploiting the scoped content.
We have shown in [3] how CAPEC attack patterns fit into the
evidence collection and evaluation strategy using the proposed
architecture.

For the proposed system, we implement our solution using
Apache Web Service Security for Java (WSS4J) to secure the
deployed cloud services and their messages within a provisioned
application given the primary security standards. WSS4J supports
the encryption of messages using X.509 certificates of services.
Furthermore, it prevents replay attacks that can happen when the
attacker sniffs a message and resends it to the same recipient.
Apache WSS4J makes all security tools available for developers
to secure their services against impersonation attacks by using
strict authentication standards. When a service passes the identity
authentication it is fully trusted in the application. However, if the
service identity has been compromised for any reason, WSS4J
cannot detect the impersonation attack or even log its traces in the
log file. Consequently, the impersonated service will be
authenticated and the attacker can illegally gain access to
potentially private information.

The impersonation attack is not only limited to the SOAP
messaging protocol in service clouds. Any type of
communications between services that requires request
authentication is vulnerable to impersonation attacks.
Authentication in REST services does not have a standard policy
or rules. However, the most common used approaches for REST
request authentication are HTTP AUTH and tokens. In HTTP
AUTH, the client service needs to compute the Base64 encoding
of its credentials and include them in each future HTTP request to
the server using the "Authorization" HTTP header. This header can
be encrypted using the server public key and the client private key.
This approach is very similar to the approach used in the SOAP
protocol by using the SOAP header to carry authentication
information to the destination. Both HTTP and SOAP headers can
be faked by the attackers who illegally obtain a copy of the
legitimate client service’s identity.

The second authentication approach used in RESTFUL clouds
is to create a dedicated login service similar to a STS that accepts
credentials and returns a token. This token should then be included,
as a URL argument, to each following request. The attacker can
also get a valid token by using the stolen credentials.
Consequently, regardless of the type of communication messaging
used between services, it is possible for an attacker who has a
stolen identity to successfully pass the authentication step and get
trusted in the target server.

The Amazon REST APIs use a custom HTTP scheme based on
a keyed-HMAC (Hash Message Authentication Code) to
authenticate REST requests. To authenticate a request, the client
needs first to concatenate selected elements of the request to form
a string. Then, it must use its AWS secret access key to calculate

the HMAC of that string. Informally, this process is called "signing
the request," and the output of the HMAC algorithm is called the
signature, because it simulates the security properties of a real
signature. Finally, the client, either a human user or another
service, has to add this signature as a parameter of the request by
using the syntax described by the server. The risk stems from the
leaked AWS secret access key, which happened recently for many
customers of Amazon clouds. Hence, the REST messaging
architecture is also vulnerable to impersonation attacks if the
authentication identity has been compromised. In this paper,
though we will focus on detecting the attack by using SOAP
protocol, the solution design can be extended to work with REST
services.

In this paper, we hypothesize that the legitimate service can
obtain sufficient information from the cloud regarding the
successor service classes that it often communicates with when
provisioned for certain application. An impersonated service, on
the other hand, would likely have a more chaotic and random
behavior by communicating more extensively with known
successor services and more broadly to services not often
communicated with in a manner that is different than the victim
service being impersonated [4]. Thus, our detection approach
focuses on monitoring a service's behavior in real time to
determine whether current service actions are consistent with the
service's profiled behavior.

To reduce the false positive rate, which is the main drawback
of the anomaly detection systems, we combine the detection of
anomalous behaviors with a cloud-based verification technique.
The verification technique prevents the risk of revealing private
data to impersonators and, at the same time, verifies the identity of
the malicious service. When the verification algorithm positively
verifies the detection results, it returns a fake response to delude
the attacker.

The major contribution of this paper is our distributed
framework for auditing and detecting impersonation attacks in
service clouds. We design a distributed impersonation detection
approach within the framework that is based on profiling each
service’s request behavior. This behavior reveals that monitoring
the general features of the SOAP request messages between web
services can achieve a reasonable detection rate with minimal false
positive alarms. In order to increase the accuracy of the detection
system, we design an aging method to determine when the profiles
need to be updated and how to adjust them so they are more heavily
influenced by the most recently observed behavior. Moreover, we
manifest the false positives and decrease the impersonator live
time inside the cloud by re-authenticating the suspicious service
using a novel verification technique. Since the credentials of the
suspicious service may be spoofed by the impersonator, our
verification technique uses a predefined fake response to validate
the identity of the suspicious service that exhibits a significant
behavior deviation. If the suspicious service accepts the fake
response by the suspicious service, then the detection system has
correctly detected the impersonator. Otherwise, the suspicious
service is considered to be a legitimate service that has been
incorrectly classified as an impersonator because it changed its
behavior without updating its profile.

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 451

Our experimental results show that modeling service behavior
reliably detects a high percentage of impersonated services with no
false positives. The limited set of statistical values used for service
behavior modeling results in an acceptable performance. However,
in the case of mimicry attacks where the impersonator fully mimics
the victim service’s behavior, the detection algorithm cannot detect
the malicious requests. Resolving such attacks and improving the
algorithm performance are future work.

The paper is organized as follows. The threat model is
described in Section 2. The literature review of impersonation
detection techniques is presented in Section 3. Section 4
demonstrate the detection approach used in this research. Section
5 discusses the detection results. Section 5 concludes the article
with some suggestions.

2. Threat Model

2.1. Vulnerabilities

The standard approaches of identity verification including
authentication and encryption have been shown to fail to detect
impersonated services for a variety of reasons, including insider
attacks, misconfigured services, faulty implementations, buggy
code, and the creative construction of effective and sophisticated
attacks not envisioned by the implementers of security procedures.
Attack methods such as phishing, fraud, and exploitation of system
vulnerabilities still achieve results in service clouds. Credentials
and passwords are often reused, which amplifies the impact of such
attacks.

The Heartbleed bug leaked private information such as
encryption keys and credentials from the service’s owner server.
Leaked secret keys allow an attacker to decrypt any past and future
traffic to the protected services and to impersonate the services as
well. Therefore, any protection given by the encryption and the
signatures in the X.509 certificates can still be bypassed.
Mitigating bugs like Heartbleed is out of the service owner and
cloud provider control, which means we need to design another
line of defense to mitigate the risk of “bleeding” the encryption
keys (X.509) and service credentials. In this article, we introduce
a preventative approach that distinguishes between requests
coming from legitimate services and those coming from fake
services with impersonated or spoofed credentials to block them
and alert the victim’s owner to revoke the stolen keys.

Different incidents happened in Amazon cloud prove that the
classical authentication and authorization techniques are not safe
enough to fully trust all services holding valid identities. In April

2010, Amazon experienced a Cross-Site Scripting (XSS) bug that
allowed attackers to hijack credentials from the site. In 2009,
numerous Amazon systems were hijacked to run Zeus botnet
nodes. Also, in April 2014, some of AWS clients claimed about
very high bills due to their credentials were compromised.

2.2. Target Assets

The expected target of the impersonation attack is the
legitimate service’s identity.

2.3. Impact

According to the CSA in [5], the risk analysis technique
CIANA classifies the impact of service hijacking or impersonating
as a combination of authenticity, integrity, confidentiality, non-
repudiation, and availability threat. On the other hand, STRIDE
risk analysis puts the service impersonation under tampering with
Data, repudiation, information disclosure, elevation of privilege,
and spoofing identity. Therefore, service impersonation attack
causes a very high risk on the cloud from all aspects of security.

According to a survey conducted by CSA the extended CSA
Top Threats Working Group [5] , the impersonation threat is still
relevant to clouds by 87%. Also, the data leakage was ranked as
the third top threat in 2013.The risk matrix for service
impersonation is depicted in Figure 2.

2.4. Scenarios

The attacker who exploits a bug similar to Heartbleed and has
a copy of the encryption public and private keys and the credentials
of the victim service (we use identity to describe these information)
can effectively perform a service impersonation attack against the
victim service. Then, it can illegitimately use the stolen identity to
gain access to other services in the service cloud by following the
listed steps:

1. The attacker builds a fake web service by using the stolen
identity to impersonate the victim service.

2. During an active session of an application that has the victim
service provisioned within it, the attacker uses sniffer
software to steal a valid token sent from the STS to the victim
service. The intercepted token is encrypted by the public key
of the victim service. Since the attacker has the encryption
keys of the victim service, he can decrypt the token.

3. The attacker uses the stolen token along with the victim
identity to ask the STS to delegate the token to the target
service of the attack. The target service must be provisioned
within the same application with the victim service.

4. The STS authenticates the impersonated service and replies
with a delegated token.

5. The attacker finds the interface of the target web service and
its entry points (i.e., methods) by discovering its public
WSDL file.

6. The attacker uses the delegated token and the stolen identity
to create and encrypt a request to the target service.

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 452

7. The target web service validates the token of the
impersonated service with the STS.

8. The STS authenticates the token and sends the confirmation
to the target service.

9. The target service decrypts and checks the structure of the
message.

10. The target service responds to the impersonated service
with a valid encrypted response SOAP.

11. The attacker decrypts the received response using the
victim private key.

With this scenario, private information can be revealed to
illegitimate services by trusting the presented identity without
doing a more thorough check. The success of this attack can trigger
several attacks, such as DDoS attacks as we have explained in [6],
to abuse the availability of the target service and the integrity of
the victim service.

3. Related Work

There are two general approaches for intrusion detection:
misuse detection and anomaly detection [7]. The misuse detection
uses the knowledge accumulated about attacks and checks for
signatures of these attacks while the anomaly detection builds a
reference model of the usual behavior of the system being
monitored and checks for deviations from the observed usage. The
false positive rates of misuse detection are lower than that of
anomaly detection [8] but anomaly detection has the advantage of
detecting previously unknown attacks. In impersonation attack
detection, the intrusion detection system cannot get the signatures
of attackers until the attackers have been detected by the system.
Therefore, the attack model cannot be constructed in advance;
hence we prefer to use anomaly detection approach in this context.

In the literature, anomaly detection was implemented in a
variety of approaches. These approaches are usually categorized
into two groups, i.e. statistical approaches and machine learning
approaches [8]. In statistical approaches, anomaly detection
systems usually watch behaviors of observed objects to comprise
statistical distributions as a set of trained profiles during the
training phase. These systems then apply the set of trained profiles
by comparing them against a new set of activities of observed
objects during runtime. An anomaly is detected if there is a
significant deviation resulted from the observation. In general, any
incident whose frequency goes beyond a predefined standard
deviation from statistical normal ranges raises an intrusion alarm
[7].

Machine learning based approaches tend to reduce the
supervision costs during the training phase of statistical
approaches by enabling detection systems to learn and improve
their performance on their own. Neural networks and Hidden
Markov Model have been proved to be useful techniques at the
network traffic level as shown in in [9] and [10]. However, using
ML algorithms in a highly dynamic environment like service
clouds have several drawbacks such as increasing performance
overhead, storage requirements, and computational expense [11].

In the context of this paper, we focus on statistical approaches
for detecting impersonation attacks. In [8,12-15], statistical
algorithms are applied to detect anomalous patterns in the system.
They use the normal behavioral profiles of the monitored object,
which is either a user or system process. Unlike these systems, this
research applies anomaly detection at the web service level. Rather
than profiling the normal behavior of users or systems, our

approach profiles the normal request behavior of web services.
Hence, the detection system deals with the web service as an
independent object that can be impersonated irrespective of its
owner’s behavior.

Researchers in [16] provide an intrusion detection framework
for cloud systems targeting masquerader attacks. Each user has a
profile to model its behavior and make it available across the cloud.
To measure the deviation between an activity initiated by a normal
user and activity initiated by the masquerader, they use the Data-
Driven Semi-Global Smith Waterman alignment algorithm. The
objective is to compute the best alignment score, by aligning the
active user's session sequence (e.g., mouse movements, system
calls, opened windows titles, etc.) to the previous stored sequences
for this user. It achieves good results in detecting masqueraders in
clouds with detection accuracy of 88.4 % and a low false positive
rate of 1.7 %. However, the focus on monitoring human users is
insufficient for detecting service impersonations in service clouds.
Service clouds are mainly composed of collaborative services from
different administrative domains with different security policies.
Researchers in [16] do not address attacks that might be triggered
by impersonated services with legitimate identities.

The detection approach presented in [17] detects insider
masqueraders in file systems. This approach tracks and measures
changes in user behavior, alerting on any significant changes. They
use one-class support vector machines to develop user behavior
models and a set of data features related to the file systems
including: the process name, the process path, the parent of the
process, and the type of process action, the process command
arguments. Their experiments show that modeling search
behaviors of genuine users reliably detects all masqueraders with
a very low false positive rate of 1.1%. Despite the fact that they do
not test this approach on clouds, it may be applicable for only
storage clouds. Hence, their detection system is not applicable for
the service cloud model we work with. However, our verification
technique is inspired by their proposed decoy technique, which
launches disinformation attacks against malicious insiders,
preventing them from distinguishing the real sensitive data from
fake worthless data. They place traps within the file system which
are documents downloaded from the Internet including several
types of useless documents such as tax return forms, medical
records, credit card statements, e-bay receipts, etc. The decoy files
are downloaded by the legitimate user who owned the system and
placed in highly-conspicuous locations that are not likely to cause
any interference with the normal user activities on the system. A
masquerader, who is not familiar with the file system and its
contents, is likely to access these decoy files, if he or she is in
search for sensitive information. Their decoy technology is more
suitable for file systems or storage clouds more than service
clouds. Hence, we design a service-cloud-based decoy technique
as our verification technique to mislead the impersonators with
fake information.

An anomaly based network intrusion detection system for
Remote to Local (R2L) attacks is proposed in [15]. R2L attacks
usually exploit a vulnerability in a service at the target machine to
elevate the attacker’s privileges. This attack is similar to the
impersonation attacks occurring in clouds. The proposed detection
system consists of two logical modules, the Packet Processing Unit
(PPU) and the Statistical Processing Unit (SPU). The PPU has to
extract service requests from the stream of packets on the wire to
pass them to the SPU. The task of the SPU is to read the service

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 453

requests and extract suitable statistical input data. Requests are
divided into several groups where each group contains request
types with similar statistical properties such as Get and Post
protocols. The requests of each group are then analyzed
independently. The properties of a request used to determine its
anomaly score include: type of request, length of request, and
payload distribution. The anomaly score of a service request is the
weighted sum of the three scores computed for each of the
previously mentioned properties. Finally, the anomaly score is
compared to a threshold that can be manually set by the security
administrator. The presented detection system has detected all
anomaly requests with a very slight false positive rate. Since the
anomaly score technique proposed for network packets, we adjust
it to detect impersonators in service clouds by computing the
anomaly score of SOAP request messages exchanged between
services.

In [14], the detection system concentrates on profiling the
behavior of system processes by studying the set of system calls
made by the program. The designed algorithm compares the
sequence of system calls captured during online usage to the
normal sequences profiles during the training phase. The detection
accuracy was 72.2% with a false positive rate of 2.1%.

4. Impersonation Attack Detection Approach

When dealing with the impersonation attack detection, it is
important to mention that we assume the impersonator has already
obtained the required security parameters including the victim
service’s credentials, the security token, and the encryption keys to
get involved in the cloud application and communicate with its
services (explained above). We also assumed that the attack targets
are only web services. Hence, SMDBs, detectors and other entities
are assumed to be sufficiently secure.

When presenting the stolen identity, the impersonated service
appears as a legitimate service with the same access rights as the
victim service. Ideally, monitoring a service's behavior after being
granted access is required in order to detect such attacks. We find
that certain types of service activities can reveal the service intent.
For instance, SOAP requests used for web service communication
offer an interesting behavior to monitor. A service request contains
the sender supplied data which is sent over the network to another
provisioned service in the same application session to perform a
single task on behalf of that sender, which is either a human user
or another service. This data shows the intent of the service trying
to gain secure information from different services in a very short
period of time before the stolen security token expires and before
the victim finds out about its stolen identity.

The developed approach composes of three steps. The output
of each step represents the input to the next step (Figure 2):

A. Auditing services’ messages by the auditing system during
the training phase.

B. Profiling the request behavior of each service in a profile
document before running the detection algorithms during
runtime using log files.

C. Detecting any significant change between the profiled and
live behaviors then verifying the identity of the malicious
service by using the verification technique.

To assess the feasibility of our approach within the service
cloud model, we craft an easy to understand case study with a
deployed service cloud hosting 25 distinct web services with 15

tenants owning and offering these services. We implement a
session manager randomly chooses among appropriate services
and composes them to provision an application that satisfies a
user’s request. A service cloud receives the traveler requirements
with the preferred maximum price and the cloud returns the most
suitable travel package with allowed payment. Table 1 shows the
services and tenants used in the case study to evaluate the proposed
impersonation attack detection approach. The cloud employs
different meta-services to manage the travel reservations. These
services are a Travel Agency service, Transportation services, and
Living services.

Figure 3: Impersonation detection approach

Table 1: The available services in the case study

Tenant Class Web Services

Banks CreditChecking, Payment, CreditCard,
paymentService, CreditVerification,CreditPayment,

CheckBalance

Airlines FlightFinder, FlightService, CheapFlight,
TicketFinder, FlightFinder

Car Rentals RentalAgent, RentalService, CarRental,
RentalService, RentCar

Hotels RoomBooking, RoomLocator, Accom, AvaRoom,
BookingService, FindRoom

Weather WeatherRetriever, Forecast

The Session Manager (SM in Figure 1) dynamically provisions
services from tenants into a service chain to simulate a travel
management system as in Figure 4. Given a client request, the
provisioned services buy a flight ticket to a specific destination at
a specific time, reserve a hotel room, rent a car, retrieve the forecast
for the desired travel dates, and pay the total price from the client’s
bank account. The resulting service chain consists of at least 9
services from at least 5 tenants.

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 454

4.1. Auditing System

In our service cloud architecture [3], the impersonation
detection algorithm is distributed across a tenant scope, session or
application scope, and cloud scope as depicted in Fig. 1. This
distribution allows for load balancing among services logging
events, tenants generating profiles of all of its hosted services,
applications executing service chains to satisfy clients’ requests
and detect impersonation attempts, and the cloud verifying the
extent of the attack.

Figure 4: A scenario of Travel Package Bidder

Event logging at each service is done by its tenant’s Auditor.
The Auditor is a web service interceptor attached to each service
to monitor its request and received messages. By intercepting
SOAP requests, the Auditor is able to collect important
information about the recipient to sufficiently check the sender’s
request behavior. Such information includes recipient services and
their business classes, requested methods in these recipients,
request size, and other critical details. The advantage of this
approach is that the logging process created and managed
independent of the service process code to protect the auditing
process from intruders. Since the tenant auditor would not be able
to log requests issued by the impersonated service, checking the
victim service’s log file for the suspicious events helps to detect
the attack at early stages.

At the application scope, the STS log file retains messages
communicated by the client and services as it manages the
creation, delegation, validation, and cancellation of the security
token. By logging these details, we can corroborate the STS log
file with the victim service’s log file (the service whose credentials
have been stolen) to reveal any missing events [1] as significant
evidence of an impersonation attack.

The cloud scope gathers centralized forensic investigation
information and examines it for impersonation attacks. During the
detection process, the cloud scope correlates alerts received from
any affected application scope and compares the malicious request
of the impersonated service with the victim service’s log file. The
final decision about the malicious request is logged by the cloud
Auditor at the cloud scope.

4.2. Profiler

The detection system detects an impersonated service by
comparing its observed request to its expected behavior using
certain metrics that are defined in its profile. The expected

behavior can be deduced during the training period. Since the
manual creation of expected behavior is cumbersome, we use the
training period for each service to collect information about its
behavior. During training, the auditing system logs enough
information about request events for each service. Extracted data
about requests from a specific service’s log file are not classified
in advance, meaning that the frequent requests represent the
general behavior of the service. Hence, during runtime, received
requests are evaluated against a summary of the training data (i.e.
profile) to measure the deviation from the normal behavior.

Profiling the services’ behavior is done in two phases: profile
generation and profile aging. Each phase is discussed in detail in
next subsections.

4.2.1. Profile Generation

Instead of building the detection system by evaluating the
received request during runtime against all requests in the sender’s
log file, we summarize these records in profile documents. Thus,
the detection time dramatically decreases which leads to an
improvement in the performance. The Profiler uses the logged data
at the tenant scope to generate the service’s request behavior
profile. Then, SM makes the services’ profiles available to the
involved application detector.

The profiler depends on a statistical model to generate the
request behavior profile from the service log file. This model
consists of different attributes extracted from the SOAP request
without processing its payload. Hence, the model reduces the cost
of decrypting payloads of malicious requests that would be
declined at the end. The used attributes are recipient’s class, SOAP
size, method, and historical incidents. We found these attributes
sufficient to reveal any deviation from the normal request
behavior.

1) Recipient’s Class:

We hypothesize that each service has a logical “preferred” set
of business classes where it sends requests based on its business
purpose. For example, flight reservation services always
communicate with different services in the banking and airline
classes to buy a ticket for the client. In the statistical model, we
compute how frequent the recipient’s class has been accessed by
the sender during the training phase. The probability of relevant
frequency is used to compute the anomaly score (AS) of recipient’s
class as follows:

ASclass = - log2 (P[c]) (1)

Equation (1) assigns higher anomaly scores to requests sent to
recipients with less frequent classes. The probability P[c]
represents the relative frequency that a request with class c has
occurred during the training period of the sender. In order to
prevent too high anomaly scores (or even infinite values) for the
class that has been requested by the sender very infrequently
(noise) or not at all during the training period, the probability of
each request class needs to be set to a minimum value depends on
the service characteristics and it might be adapted from time to
time. Since this minimum value yields to a maximal anomaly score
for classes that never received requests from the sender, it is
necessary to maintain the same maximum anomaly score across all
attributes of SOAP requests to keep the total anomaly score
consistent.

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 455

2) SOAP Size:

The size of a SOAP request can be a good indicator of the
reliability of its source. The structure of a SOAP request consists
of optional elements that the service can include, such as SOAP
Header and SOAP Fault. Usually, the size of the SOAP message
does not vary much between requests that are generated by
services in a certain class to a specific recipient. The situation looks
different when requests carry input wanting to obtain information
from the target recipient. For instance, the attacker may send a
request with nested queries to get more information from the
recipient’s database. To assess this attribute properly, we correlate
SOAP size with either the recipient service or class based on some
properties of the observed request.

The sender’s profile keeps track of all recipient services and
their classes that have ever received requests from that sender
along with the average size of these requests. If the current
recipient of the observed request has been accessed by the sender
over an acceptable rate of requests then the available information
about the requests sent by the sender to this recipient would be
sufficient to evaluate the size of the received request. Otherwise,
the size of requests received by the current recipient’s class
(received by any service in this class) would be used to compute
the size attribute.

We calculate the anomaly score for SOAP size as in [15], by
using the mean (µ) and the standard deviation (σ) of the sizes of
the requests that have been sent by the sender during its training
period to either a specific recipient or class. These two values are
stored in the sender’s profile for each recipient and each class that
has been previously accessed by the sender. The following formula
is used to check the anomalousness of a request with size Z during
run time. The anomaly score grows exponentially as the request
size increases. In order to tolerate a reasonable amount of deviation
of the size attributes, we set x variable as the base and multiply σ
with a constant factor of y. The choice of x and y is the recipient’s
responsibility based on its features and needs. The x and y
variables are stored in the application SMDB and available for the
detection algorithm.

 ASsize= x ^ ((Z-µ) / (y*σ)) (2)

This equation assigns anomaly scores greater than x only to
requests that have SOAP size longer than the average. This is
consistent with our assumption that malicious request increases the
total size of the soap message. We limit the maximum value of
ASsize to the same value in ASclass to avoid having infinite anomaly
scores.

3) Method

The WSDL file for a web service shows its business logic and
policies. The business logic is represented by the operations or
methods that are available for the client to call along with
information about their required parameters, data types, maximum
values etc. Since this information is publicly available, there is no
reason for the attacker to restrict himself from calling any method
while he has valid credentials. However, for the victim service,
there should be a noticeable behavior towards the recipients’
methods.

Assume the recipient is a credit card service with two methods;
one to check the sufficiency of an input card number to cover a
certain payment and another method to return the available balance
of the received card number. If the recipient receives a call from

the impersonated service to the balance returning method given
information that the victim service is used to frequently call the
sufficiency checking method then the detection system can
consider this call as a serious flag of an impersonation attack.

To compute the anomaly score of the invoked method in the
observed request, we correlate this method with the probability of
relevant frequency of its service which is the current recipient of
the request. However, the dynamic nature of the provisioning
process in service clouds can lead to provisioning some services
offering the same business service less frequent than others. For
recipients that have been provisioned and accessed by the sender
more than a predefined threshold, the anomaly score of their
methods would be computed using their probabilities in equations
(3) and (4) below.

The anomaly score (4) for the called method is calculated for
each method in the recipient WSDL that was called by the sender
using the conditional probability in (3) if P(rec) is greater than a
preset threshold. The anomaly score is stored in the sender’s
profile. We also limit the maximum value of ASmeth to the same
value in ASclass and ASsize to avoid having infinite anomaly scores.

P(meth|rec)= (P(meth and rec))/(P(rec)) (3)

ASmeth = - log2 (P[meth|rec]) (4)

Other recipients with less provisioning probability do not have
sufficient information about their methods in the sender’s profile
that can be used by the detection system to determine the anomaly
scores of their methods. Hence, using equations (3) and (4) to
compute the anomaly score of the invoked method for infrequent
recipients would introduce a significant bias into the final anomaly
decision. Instead, owners of infrequent recipients need to set
anomaly scores to their methods representing their acceptable risk
degree of revealing information by each method if it has been
accessed by an impersonated sender.

4) Historical Impersonation Incidents

Since the cloud hosts many services owned and operated by
different tenants, the cloud provider must not assume that all
tenants are careful about the security configuration of their
services. Thus, the detection system needs to consider the
historical incidents of impersonations occurred for each service
when examining its requests. The service profile provides the
probability that the service historically reveals to be a victim of an
impersonation attack.

To calculate the impersonation probability for each service,
information about the historical incidents that occurred for the
service is accumulated in the tenant SMDB. Then, Profiler exploits
this information with the information extracted from the service
log file about the total number of requests to compute the
probability of the service being a victim of previous impersonation
attacks:

P(s) = (total impersonated requests) / (total requests) (5)

We use P(s) to compute the anomaly score for the service
history in (6). We weight the probability to have a maximum value
similar to other attributes. The higher the anomaly score of the
service history the more likely that the service is currently involved
in an impersonation attack.

5) AShistory = P[s] * max (6)

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 456

The behavior profile for each service has a summary of its
request messages logged in its log file using equations (1)-(6).
These values would be preserved in the tenant SMDB upon the
service registration and provisioned to the relevant applications’
SMDBs by the SM.

4.2.2. Profile Aging

When the detection system produces more false alarms than
that logged for a previous period for a certain service, that means
either the request behavior of this service has dramatically changed
or the training data used to generate the profile became old and
misrepresents the current behavior. Hence, we propose a strategy
indicating when and how to update behavior profiles for services
to increase the accuracy of the detection system.

We combine two conditions to determine the profile age and
trigger an updating. The first one is a chronological condition for
the profile to be updated periodically based on the service owner’s
policy. The updating process is automatically done at the tenant
scope by Profiler using the service’s log file. Secondly, when the
detection system causes too many false alarms for a certain service
before reaching the next updating cycle, the cloud scope (Figure 1)
triggers the update at the tenant scope to use the most recent
requests in the log file to model the service’s profile.

During the updating period for a specific service, the service
becomes unavailable for provisioning in cloud applications.
Profiler checks the availability of enough requests in the service
log file to replace the currently used training data since the last time
this data has been collected. If there is enough data, the most
recently logged requests are used to generate the profile. Otherwise
all recent requests substitute the oldest requests in the training
dataset. This method of aging has the effect of creating a moving
time window for the profile data, so that the behavior is influenced
strongly by the most recently observed behavior. Thus, the
detection system adaptively learns services’ behavior patterns; as
services alter their behavior, their corresponding profiles change.

4.3. Detection System

Although any anomaly detection algorithm can be used to
model normal behavior, the algorithm to be used for a significant
amount of data in service clouds during real-time must be very
efficient. Instead of ML algorithms, we develop an anomaly
detection algorithm, which in our experiments leads to a high rate
of accuracy and an acceptable performance overhead. In next
sections, we explain in details our algorithms to detect suspicious
requests and verify their owners’ identities.

4.3.1. Detection Process

Inspired by the anomaly detection scoring system in [15], our
algorithm does not detect data that represent an attack in the
training period because it does not label such data as an anomaly;
it assumes all data is normal. It is based on the premise that low
probability values with a low likelihood of certain attributes are
regarded as noise, and hence. Given that attack data is a minority
of the training data then they would be recognized as attacks by the
detection algorithm implicitly as low probability events and treated
as anomalies at run time. “If attacks were prevalent and high
probability events, then they are normal events, by definition” [18].

Upon each request, the application detector retrieves the
sender’s profile from the application SMDB to examine the
impersonation attack. The deviation rate between the received
request and the normal behavior is calculated by using the
statistical model previously explained.

The total request anomaly score is a value that specifies the
extent of the deviation of the received request from the expected
values of anomaly scores specified by the sender’s profile. It is a
compound value derived from the attributes that have been
computed in equations (1), (2), (4), and (6) and stored in the profile
as follows:

AS = w1 ASclass + w2 ASsize + w3 ASmeth + w4 AShistory (7)

The anomaly score for each attribute can be weighted to reflect
its importance for the detection system using weight variables w1,
w2, w3, and w4. This total score is compared to a threshold that
can be chosen by the security administrator. A lower threshold
means it is more likely that requests from impersonated services
are detected with the disadvantage of an increasing number of false
alarms. On the other hand, a higher threshold would allow for
malicious requests to pass without detection.

ALGORITHM 1 performs the detection process. Line 24
indicates that the detector of the affected application sends the
adequate information about the detected request to the cloud scope
to take the proper action.

New services may not have a performance record in the cloud.
If they are impersonated by attackers during the training phase; the
detection system assumes their abnormal behaviors are normal
behaviors. Therefore, once a new service arrives, the cloud must
assume a certain amount of risk for some acceptable time if it
provisions a new service into an application, given that the use of
the new service can cause unrecoverable damage or too many false
positives. Thus, the cloud needs to set constraints on the use of new
services to determine their trustworthiness. In the proposed
architecture (Figure 1), the SMDB of each tenant has an archive of
the historical security incidents that have occurred on each service
owned by this tenant. This history can be used by the cloud
provider to evaluate the trustworthiness of the tenant in order to
accept its new services in the provisioning process.

Each application has in its SMDB a white list of services that
are within their training phase. The application detector skips
checking this new service against ALGORITHM 1. Otherwise, the
detector would generate an alert for each request instantiated by
every new service which increases the false positive rate of the
detection system.

ALGORITHM 1: IMPERSONATION_DETECTION
Input:
1. Sender’s profile (prof).
2. Received request (req).
Output:
3. Anomaly score (AS) for the received
request.
Begin:
4. initialize soapSize, recipient, method,
class,µ,σ,AShist,ASmeth,ASclass,ASsize,
anomalyThreshold
5. method = req.getSoapAction()

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 457

6. recipient = req.getRecipient()
7. soapSize = req.getSoapSize()
8. class = SMDB(recipient)
9. if (find(class in prof) {
10. ASclass= prof.get(ClassAS) (1)
11. Ashist=prof.get(HistoryAS) (6)
12. µ = get (Mean, prof)
13. σ = get (standardDeviation, prof)
14. ASsize=x^((soapSize-µ))/(y*σ) (2)
15. if (find(recipient in prof)
16. ASmeth=prof.get(MethodAS) (4)
17. else
18. ASmeth=max
19. AS=w1*ASclass+w2*ASsize+w3*ASmeth+

 w4*AShist(7)
20. }
21. else {
22. AS= 0.4* 15 + 0.2* zero + 0.2* zero +

 0.2* zero }
23. if (AS> anomalyThreshold)
24. send alert to Cloud scope
25. else
26. pass req
End

4.3.2. Verification Process

The impersonation detection algorithm gives an alert about a
malicious request deviating from the normal behavior of the
legitimate sender. To verify the identity of the suspicious sender,
we use a verification technique. This technique confounds and
confuses an impersonator into believing they have useful
information when its identity is not verified. We integrate this
technique with the service behavior profiling to secure the service
in the cloud from being impersonated.

Upon registration, the verification technique requires each
service to present a faked version of its response to the cloud
SMDB. Then, the SMDB provisions this response to the
applications that this service involved in. In addition, the cloud
SMDB provisions a random code to each application for
verification purposes. Hence, whenever a malicious request to the
recipient service is detected by the application detector using
ALGORITHM 1, the fake response is returned by the application
detector in such a way as to appear completely legitimate and
normal. The detector is the only party in the application has the
privilege to access the code and fake responses reside in the
application SMDB. Therefore, whenever a service has been
impersonated, the attacker has no way to neither realize that the
received response is faked nor use the application code to verify
his identity.

When the sender is correctly identified as an impersonated
service, it accepts the faked response since it does not have the
ability to communicate with the application detector to distinguish
between real and fake responses (Figure 5.A). As a result of this
acceptance, the application detector terminates the application
after a predefined period of time and delivers the information about
the detected request as a security alert to the cloud scope for more
investigation. The cloud scope then asks the tenant that owned the
detected sender for its recent log file. If the detected request is not
recorded in the original sender log file then the decision made by
the application detector is correct otherwise it is a sign that the
profile of the falsely detected needs to be updated.

Figure 5: The verification process after detecting an impersonator

For the legitimate sender, the application detector would
receive the fake response and readily recognize it and send the
same request again along with the application random code to the
same recipient (Figure 5.B). This encoded request is the
application detector way to verify the sender’s identity and issue a
false positive alarm. The verification technique here serves two
purposes: (1) validating whether the sender is authorized when
abnormal request is detected, and (2) confusing the impersonator
with useless information.

To incorporate the verification technique with the defined
detection system, we need to change ALGORITHM 1 at line 24 to
call ALGORITHM 2 instead of the cloud scope as follows:

VERIFICATION (req)

ALGORITHM 2 details how the detection system sends
useless information as a response to malicious services. In line 5,
the detector checks if the received request is a repeated request
from a legitimate sender having the predefined code to verify its
identity. In Line 7 the request is passed to the recipient after
decoding it. Line 9 shows that the fake response for each service
is extracted from the application SMDB. The fake response is
passed in Line 10 to the sender.

ALGORITHM 2: VERIFICATION

Input:

1. The malicious request (req).
Output:

2. Detector’s action against the malicious
request.

Begin:

3. sender = req.getSender()
4. recipient = req.getRecipient()
5. if (req.hasEncodedData) {
6. Req.removeEncoded()
7. pass req }
8. else {
9. fake_info= SMDB.getFake(recipient)
10. pass fake_info }
End

ALGORITHM 3 shows how the detector reacts when receiving
a fake response by one of the application services. Line 4 declares
that the detector uses a single code provisioned by the cloud scope
to resend the legitimate requests. The detector deploys the
verification technique either by sending or responding to the fake

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 458

response without getting the recipient service involved, which
reduces the performance overhead and keeps the service black-
boxed in the cloud without changing its internal code.

ALGORITHM 3: RECEIVING_FakeRes
Input:
1. fake response (res).
Output:
2. req: a new request holding the old request
and the code.
Begin:
3. if (res is fake){
4. req.update(code)
5. pass req }
6. else
7. pass res
End

5. Results and Discussion

The developed framework is deployed in Azure cloud. JBoss
server is used to deploy the web applications while Apache CXF
Framework is used to develop web services and the STS. The
application Detector and Auditor are implemented as CXF
inbound and outbound interceptors attached to the STS in order to
manipulate each SOAP request and response after being
authenticated.

To generate behavior profiles for services in the Travel Agency
case study, we deployed the framework 300 times to respond to
client requests, randomly creating 300 service compositions
(applications) from the available services. We used the resulting
log files to generate profiles from while recording the generation
time. The average time for each service to generate its behavior
profile was about 3.2 seconds.

 We have conducted three different tests on the designed
case study: no attack check, anomaly check, and attack check. We
have run the framework without attacks for legitimate services and
anomalous services that are changed their behaviors without
updating their profiles to measure the false positive rate. In
addition, we designed several attacks to measure the detection
accuracy rate of the detection algorithm. The designed tests have
been deployed on randomly generated applications with a
distinctive percentage of 94%. The anomaly threshold was ranging
between 3 and 5. We used 0.4, 0.2, 0.2, and 0.2 to weight ASclass,
ASsize, ASmeth, and AShistory respectively. The recipient’s class
anomaly score has slightly more weight since it primarily
represents the business logic of the sender. The threshold is
computed during the training phase and set to a value that would
cause 10 false alarms per 100 applications when the system would
receive the training data itself as input. A lower threshold would
detect more attacks with the disadvantage of an increasing false
positive rate. Hence, the threshold should be set to the lowest value
possible provided the acceptable false positive rate. This decision
depends on the type of traffic that is seen on the service clouds and
SLAs between cloud providers and consumers deciding how many
false alarms are considered acceptable [15].

For the test with no attacks, the framework responded with
random applications to 100 client requests without involving any
attacks. The services here behaved normally as in their profiles.
The false positive rate was 1.7%. We have decreased the default
threshold of 3 to 2.7 and the false positive rate slightly increases to
1.715%.

During the test with behavior anomalies, the same requests
were tested on other random applications with some modifications
on the legitimate services’ behaviors. These legitimate services
were enforced to dramatically change their behavior during
runtime before the profile’s update time. The changes included
accessing new methods, sending large message sizes, and
accessing rarely accessed classes. The false positive rate during
this test was 28.75%. The false alarms have been exclusively
caused by requests that called methods that had not been accessed
during the training period. However, this result was generated
without using the verification technique. With the verification
technique, our detection system eliminated all false positives with
a considerable performance overhead as depicted in Figure 6. The
detection system needs to support variable security levels with
different overhead for different applications. For example, if a
banking application is running in the service cloud then there
should be possibility to provide highly secure detection for this
application by running the verification technique. In case of online
games and voice over IP (VoIP) applications, performance and
quality of service (QoS) could be of higher priority which requires
disabling the verification technique.

Figure 6 : Verification technique overhead

After exploring the false positive rate, we attacked the case
study in four distinct tests to measure accuracy. Each test had 100
client requests to initiate 100 different applications each has an
impersonated service sending a malicious request to another
service in the same application. The attacks mimicked the victim’s
behavior at different degrees. The victim services were meta-
services since they have request behavior profiles while the
tenants’ services did not have profiles in this test. Any attack
targeting a tenant’s service would be detected immediately since
the expected normal behavior for such services does not include
sending requests to any service in the cloud. Table 2 lists the
average anomaly scores for statistical properties of malicious
requests and the detection accuracy of the impersonation attacks
for all four cases. All tests were conducted twice; one with victim
services having no historical impersonation attacks and one with a
moderate history of attacks.

Table 2: The detection results for the attack tests

Test Avg
(ASclass)

Avg
(ASsize)

Avg
(ASmeth)

Avg
(AShistory)

Accuracy

T1 6.6 1.1 1.9 0(1.5) 92%
T2 1.2 11.3 0.15 0(1.5) 67%(69%)
T3 1.2 11.3 6.2 0(1.5) 97%
T4 1.7 1.8 0.14 0(1.5) 0%

http://www.astesj.com/

S. Alqahtani et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 449-459 (2017)

www.astesj.com 459

In the test T1, different impersonated services used the
legitimate credentials of the victim services to send requests to
services from classes that never been or rarely accessed by the
victims before. The detection accuracy in this test was high (92%)
because the Recipient’s Class attribute has a highest weight in the
anomaly detection equation among other attribute in the statistical
model. However, any attribute can be differently weighted to
reflect its security importance in the cloud.

T2 focused on revealing more information from the attacked
services by embedding multiple queries in one request. 67% of the
attacks have been correctly detected. On the other hand, the
detection accuracy increased when the victim services had
previously faced impersonation attacks. Furthermore, the detection
accuracy reached 97% when the attacks targeted both the message
size and the method at the same time as shown in T3 in Table 2.
The last group of attacks fully mimicked the victim services which
cannot be detected by the proposed detection system using the
victim behavior profile. Thus, we need to extend the algorithm to
cover such mimicry attacks in future work.

From the computational perspective, the presented algorithm
accelerates the detection and profile update operations by
implementing these operations in distinct scopes. The profile
generation process is done before runtime at the tenant scope by
the Profiler to reduce the computational load during the detection
live time. The application scope holds the detection process during
runtime by using the generated profiles. This results in shorter
impersonator live time inside the cloud because it is limited to the
active session lifetime at the application scope. As a counterpart,
this approach needs a fast periodic update of the service’s behavior
profile and this introduces some overhead in the cloud network.
Furthermore, the verification technique adds some overhead. We
believe that updating the behavior profiles very frequently would
decrease the need to trigger the verification technique which would
eliminate much of the overhead.

Conclusions

The presented detection process depends on two parameters:
the anomaly score computed by the detection algorithm using the
behavior profiles of the services sending requests, and the fake
response used by the verification technique to validate the
malicious sender’s identity.

In future work, some questions regarding the detection
approach needs to be further investigated to improve the detection
rate including: How much data is required in order to properly
train each service? Should behavior profiles be based on
individual service, or should services from the same class be
grouped together?

Conflict of Interest

This manuscript is an extension of a conference paper that has
been published in December 2016. All authors listed have
contributed sufficiently to the project to be included as authors, and
all those who are qualified to be authors are listed in the author
byline. To the best of our knowledge, no conflict of interest,
financial or other, exists.

References
[1] R. Gamble, S. AlQahtani, "Mitigating service impersonation attacks in

clouds," Future Technologies Conference (FTC), San Francisco, CA, 2016.
[2] S. Alqahtani, R. Gamble, I. Ray, “Auditing requirements for implementing

the Chinese Wall model in the service cloud,” in World Congress on Services,
San Jose, 2013.

[3] S. Alqahtani, R. Gamble, “Embedding a distributed auditing mechanism in
the service cloud,” in IEEE World Congress on Services,2014.

[4] M, Salem, S.J. Stolfo, “Modeling user search behavior for masquerade
detection,” in the the 14th International Conference on Recent Advances in
Intrusion Detection, 2011.

[5] (CSA), Cloud Security Alliance, “The notorious nine: cloud computing top
threats in 2013,” Available from:
http://www.cloudsecurityalliance.org/topthreats.

[6] S. Alqahtani, R. Gamble “DDoS attacks in service clouds”, in 48th HICSS
Conference, Hawaii, 2015.

[7] X. Zhao, G. Hu, Z. Wu Z, “Masquerade detection using support vector
machines in the smart grid,” in Computational Sciences and Optimization
(CSO), 2014.

[8] W. Sha, Y. Zhu, M. Chen, T. Huang, “Statistical learning for anomaly
detection in cloud server systems: A Multi-Order Markov Chain framework,”
in Cloud Computing, IEEE Transactions, 2015.

[9] S. Vanakumar, A. Kumar, S. Anandaraj, S. Gowtham, “Algorithms based on
artificial neural networks for intrusion detection in heavy traffic computer
networks,” in the International Conference on Advancements in Information
Technology With workshop of ICBMG 2011, Singapore.

[10] C.V. Raman, A. Negi, “A Hybrid method to intrusion detection systems using
HMM,” Springer Berlin Heidelberg, pp 389-396, 2005.

[11] S. Omar, A. Ngadi, H.H Jebur, “Machine learning techniques for anomaly
detection: an overview,” International Journal of Computer Applications
(0975 – 8887) 79 (2), 2013.

[12] H.A, Kholidy, F. Baiardi, “CIDS: a framework for intrusion detection in cloud
systems,” in: Information Technology: New Generations (ITNG), 2012.

[13] D. Gao D, M.K. Reiter MK, D. Song, “Behavioral distance for intrusion
detection,” in the 8th international conference on Recent Advances in
Intrusion Detection, Seattle, 2006.

[14] A.K. Ghosh, A. Schwartzbard, M.Schatz, “Learning program behavior
profiles for intrusion detection,” in the 1st conference on Intrusion Detection
and Network Monitoring, Santa Clara, 1999.

[15] C. Krügel C, T. Toth, E. Kirda, “Service Specific Anomaly Detection for
Network Intrusion Detection,” in ACM symposium on Applied computing,
2002.

[16] H.A. Kholidy, F. Baiardi F, S. Hariri, “DDSGA: A Data-Driven Semi-Global
alignment approach for detecting masquerade attacks,” IEEE Transactions on
Dependable and Secure Computing, 12(2):164-178, 2015.

[17] S.J. Stolfo, M.B Salem, A.D Keromytis, “Fog Computing: Mitigating Insider
Data Theft Attacks in the Cloud,” in Security and Privacy Workshops (SPW),
2012.

[18] S.J. Stolfo, F. Apap,E. Eskin, K. Heller, S. Hershkop, A. Honig A, K. Svore,
“A Comparative Evaluation of Two Algorithms for Windows Registry
Anomaly Detection,” Journal of Computer Security,659-693, 2005.

http://www.astesj.com/
http://www.cloudsecurityalliance.org/topthreats

	1. Introduction
	2. Threat Model
	2.1. Vulnerabilities
	2.2. Target Assets
	2.3. Impact
	2.4. Scenarios

	3. Related Work
	4. Impersonation Attack Detection Approach
	4.1. Auditing System
	4.2. Profiler
	4.3. Detection System

	5. Results and Discussion
	Conclusions
	Conflict of Interest
	References

