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 A web service impersonation is a class of attacks in which an attacker poses as or assumes 
the identity of a legitimate service to maliciously utilize that service’s privileges. Providing 
security for interacting cloud services requires more than user authentication with 
passwords or digital certificates and confidentiality in data transmission. In this paper, we 
focus on the service cloud model, which facilitates the composition and communication 
among web services owned by different cloud vendors. We develop a distributed mechanism 
to detect and mitigate impersonation attacks against web services in the cloud. The detection 
approach monitors the behavior of each service and identifies anomalies as a potential 
impersonation attack if it deviates significantly from the expected behavior. To verify the 
impersonation attack, we deploy a cloud-based verification technique, misleading suspicious 
services with useless responses. The experimental results show that modeling request 
behavior reliably detects a significant number of impersonation attempts, with a 
performance degradation that is a reasonable trade-off.  
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1. Introduction  

A web service impersonation is a class of attacks in which an 
attacker poses as or assumes the identity of a legitimate service to 
maliciously utilize that service’s privileges. This attack can cause 
a serious threat to the security of service clouds, i.e. those clouds 
that allow the provisioning of multiple vendor services to 
dynamically compose an application to answer a client request. By 
impersonating a legitimate service, the intruder can maliciously 
access the victimized a service’s resources. For the service cloud, 
this attack class is a version of identity theft. Such attacks 
completely undermine traditional security mechanisms due to the 
trust imparted to service credentials once they have been 
authenticated. Many attempts have been made at detecting this 
kind of attack (also called masquerader or identity spoofing 
attacks) against legitimate users in clouds. In this dissertation, we 
have developed a distributed mechanism to detect and mitigate 
impersonation attacks against web services in the cloud [1]. 

When using the cloud, an end user’s credentials to authenticate 
request messages between web services lacks the verification of 
the origin of the request (i.e. the requester service). Thus, this 
vulnerability can be used by the attacker after stealing the 
credentials to create fake services. Since the credentials represent 
a long-term authentication tool, the attacker can attack a web 

service for unlimited time and the owner of the credentials would 
not discover the problem until the damage is done.  

In our proposed architecture (Figure 1) [1], we assume a secure 
session with a security token issued by a Security Token Service 
(STS) to mitigate the general vulnerability of spoofing the user 
credentials. The STS is trusted by both the client and the web 
service to provide interoperable security tokens. The client sends 
an authentication request, with accompanying credentials, to the 
STS. The STS verifies the credentials presented by the client, and 
then in response, it issues a security context token (SCT) that 
provides proof that the client has authenticated with the STS. The 
SCT is built on a SAML standard format for exchanging 
authentication and authorization data between different parties [1, 
2]. The client presents the security token to the service. The service 
then verifies the token with the STS, which proves that the client 
has been successfully authenticated. For proper use of the token, it 
is expected that all composed, trusted services communicate with 
the STS to perform token delegation and validation at each service 
request and response, but only client services issue or cancel a 
token. The SCT holds information to specify its scope, creation, 
and expiration time to develop the basis for encrypting and signing 
subsequent message exchanges, which results in efficient and 
secure communications between services in an application. The 
cloud services and STS use X.509 certificates to sign and encrypt 
their messages. The scope of the issued SCT is limited to the 
designated STS regardless of whether the sender service specified 
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the scope in the initial request. This prevents the sender from using 
the SCT to directly access a recipient without communicating first 
with STS.  Therefore, a token’s lifetime is limited to its session 
active time. 

The proposed architecture introduces the concept of scoped 
distributed Security Management Databases (SMDBs) to store 
audit logs, meta-information about the infrastructure of each 
scope, history of security incidents, incident reports, related 
security policies, and SLAs [2]. Scoped detectors use SMDB 
content to identify security threats exploiting the scoped content. 
We have shown in [3] how CAPEC attack patterns fit into the 
evidence collection and evaluation strategy using the proposed 
architecture. 

For the proposed system, we implement our solution using 
Apache Web Service Security for Java (WSS4J) to secure the 
deployed cloud services and their messages within a provisioned 
application given the primary security standards. WSS4J supports 
the encryption of messages using X.509 certificates of services. 
Furthermore, it prevents replay attacks that can happen when the 
attacker sniffs a message and resends it to the same recipient. 
Apache WSS4J makes all security tools available for developers 
to secure their services against impersonation attacks by using 
strict authentication standards. When a service passes the identity 
authentication it is fully trusted in the application. However, if the 
service identity has been compromised for any reason, WSS4J 
cannot detect the impersonation attack or even log its traces in the 
log file. Consequently, the impersonated service will be 
authenticated and the attacker can illegally gain access to 
potentially private information.  

The impersonation attack is not only limited to the SOAP 
messaging protocol in service clouds. Any type of 
communications between services that requires request 
authentication is vulnerable to impersonation attacks. 
Authentication in REST services does not have a standard policy 
or rules. However, the most common used approaches for REST 
request authentication are HTTP AUTH and tokens. In HTTP 
AUTH, the client service needs to compute the Base64 encoding 
of its credentials and include them in each future HTTP request to 
the server using the "Authorization" HTTP header. This header can 
be encrypted using the server public key and the client private key. 
This approach is very similar to the approach used in the SOAP 
protocol by using the SOAP header to carry authentication 
information to the destination. Both HTTP and SOAP headers can 
be faked by the attackers who illegally obtain a copy of the 
legitimate client service’s identity. 

The second authentication approach used in RESTFUL clouds 
is to create a dedicated login service similar to a STS that accepts 
credentials and returns a token. This token should then be included, 
as a URL argument, to each following request. The attacker can 
also get a valid token by using the stolen credentials. 
Consequently, regardless of the type of communication messaging 
used between services, it is possible for an attacker who has a 
stolen identity to successfully pass the authentication step and get 
trusted in the target server.  

The Amazon REST APIs use a custom HTTP scheme based on 
a keyed-HMAC (Hash Message Authentication Code) to 
authenticate REST requests. To authenticate a request, the client 
needs first to concatenate selected elements of the request to form 
a string. Then, it must use its AWS secret access key to calculate 

the HMAC of that string. Informally, this process is called "signing 
the request," and the output of the HMAC algorithm is called the 
signature, because it simulates the security properties of a real 
signature. Finally, the client, either a human user or another 
service, has to add this signature as a parameter of the request by 
using the syntax described by the server. The risk stems from the 
leaked AWS secret access key, which happened recently for many 
customers of Amazon clouds. Hence, the REST messaging 
architecture is also vulnerable to impersonation attacks if the 
authentication identity has been compromised. In this paper, 
though we will focus on detecting the attack by using SOAP 
protocol, the solution design can be extended to work with REST 
services. 

In this paper, we hypothesize that the legitimate service can 
obtain sufficient information from the cloud regarding the 
successor service classes that it often communicates with when 
provisioned for certain application. An impersonated service, on 
the other hand, would likely have a more chaotic and random 
behavior by communicating more extensively with known 
successor services and more broadly to services not often 
communicated with in a manner that is different than the victim 
service being impersonated [4]. Thus, our detection approach 
focuses on monitoring a service's behavior in real time to 
determine whether current service actions are consistent with the 
service's profiled behavior. 

To reduce the false positive rate, which is the main drawback 
of the anomaly detection systems, we combine the detection of 
anomalous behaviors with a cloud-based verification technique. 
The verification technique prevents the risk of revealing private 
data to impersonators and, at the same time, verifies the identity of 
the malicious service. When the verification algorithm positively 
verifies the detection results, it returns a fake response to delude 
the attacker. 

The major contribution of this paper is our distributed 
framework for auditing and detecting impersonation attacks in 
service clouds. We design a distributed impersonation detection 
approach within the framework that is based on profiling each 
service’s request behavior. This behavior reveals that monitoring 
the general features of the SOAP request messages between web 
services can achieve a reasonable detection rate with minimal false 
positive alarms. In order to increase the accuracy of the detection 
system, we design an aging method to determine when the profiles 
need to be updated and how to adjust them so they are more heavily 
influenced by the most recently observed behavior. Moreover, we 
manifest the false positives and decrease the impersonator live 
time inside the cloud by re-authenticating the suspicious service 
using a novel verification technique. Since the credentials of the 
suspicious service may be spoofed by the impersonator, our 
verification technique uses a predefined fake response to validate 
the identity of the suspicious service that exhibits a significant 
behavior deviation. If the suspicious service accepts the fake 
response by the suspicious service, then the detection system has 
correctly detected the impersonator. Otherwise, the suspicious 
service is considered to be a legitimate service that has been 
incorrectly classified as an impersonator because it changed its 
behavior without updating its profile. 
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Our experimental results show that modeling service behavior 
reliably detects a high percentage of impersonated services with no 
false positives. The limited set of statistical values used for service 
behavior modeling results in an acceptable performance. However, 
in the case of mimicry attacks where the impersonator fully mimics 
the victim service’s behavior, the detection algorithm cannot detect 
the malicious requests. Resolving such attacks and improving the 
algorithm performance are future work. 

The paper is organized as follows. The threat model is 
described in Section 2. The literature review of impersonation 
detection techniques is presented in Section 3. Section 4 
demonstrate the detection approach used in this research. Section 
5 discusses the detection results. Section 5 concludes the article 
with some suggestions. 

2. Threat Model 

2.1. Vulnerabilities 

The standard approaches of identity verification including 
authentication and encryption have been shown to fail to detect 
impersonated services for a variety of reasons, including insider 
attacks, misconfigured services, faulty implementations, buggy 
code, and the creative construction of effective and sophisticated 
attacks not envisioned by the implementers of security procedures. 
Attack methods such as phishing, fraud, and exploitation of system 
vulnerabilities still achieve results in service clouds. Credentials 
and passwords are often reused, which amplifies the impact of such 
attacks. 

The Heartbleed bug leaked private information such as 
encryption keys and credentials from the service’s owner server. 
Leaked secret keys allow an attacker to decrypt any past and future 
traffic to the protected services and to impersonate the services as 
well. Therefore, any protection given by the encryption and the 
signatures in the X.509 certificates can still be bypassed. 
Mitigating bugs like Heartbleed is out of the service owner and 
cloud provider control, which means we need to design another 
line of defense to mitigate the risk of “bleeding” the encryption 
keys (X.509) and service credentials. In this article, we introduce 
a preventative approach that distinguishes between requests 
coming from legitimate services and those coming from fake 
services with impersonated or spoofed credentials to block them 
and alert the victim’s owner to revoke the stolen keys. 

Different incidents happened in Amazon cloud prove that the 
classical authentication and authorization techniques are not safe 
enough to fully trust all services holding valid identities. In April 

2010, Amazon experienced a Cross-Site Scripting (XSS) bug that 
allowed attackers to hijack credentials from the site. In 2009, 
numerous Amazon systems were hijacked to run Zeus botnet 
nodes. Also, in April 2014, some of AWS clients claimed about 
very high bills due to their credentials were compromised. 

2.2. Target Assets 

The expected target of the impersonation attack is the 
legitimate service’s identity. 

2.3. Impact 

According to the CSA in [5], the risk analysis technique 
CIANA classifies the impact of service hijacking or impersonating 
as a combination of authenticity, integrity, confidentiality, non-
repudiation, and availability threat. On the other hand, STRIDE 
risk analysis puts the service impersonation under tampering with 
Data, repudiation, information disclosure, elevation of privilege, 
and spoofing identity. Therefore, service impersonation attack 
causes a very high risk on the cloud from all aspects of security. 

According to a survey conducted by CSA the extended CSA 
Top Threats Working Group [5] , the impersonation threat is still 
relevant to clouds by 87%. Also, the data leakage was ranked as 
the third top threat in 2013.The risk matrix for service 
impersonation is depicted in Figure 2. 

 

2.4. Scenarios 

The attacker who exploits a bug similar to Heartbleed and has 
a copy of the encryption public and private keys and the credentials 
of the victim service (we use identity to describe these information) 
can effectively perform a service impersonation attack against the 
victim service. Then, it can illegitimately use the stolen identity to 
gain access to other services in the service cloud by following the 
listed steps:  

1. The attacker builds a fake web service by using the stolen 
identity to impersonate the victim service. 

2. During an active session of an application that has the victim 
service provisioned within it, the attacker uses sniffer 
software to steal a valid token sent from the STS to the victim 
service. The intercepted token is encrypted by the public key 
of the victim service. Since the attacker has the encryption 
keys of the victim service, he can decrypt the token. 

3. The attacker uses the stolen token along with the victim 
identity to ask the STS to delegate the token to the target 
service of the attack. The target service must be provisioned 
within the same application with the victim service. 

4. The STS authenticates the impersonated service and replies 
with a delegated token. 

5. The attacker finds the interface of the target web service and 
its entry points (i.e., methods) by discovering its public 
WSDL file. 

6. The attacker uses the delegated token and the stolen identity 
to create and encrypt a request to the target service. 
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7. The target web service validates the token of the 
impersonated service with the STS. 

8. The STS authenticates the token and sends the confirmation 
to the target service. 

9. The target service decrypts and checks the structure of the 
message. 

10. The target service responds to the impersonated service 
with a valid encrypted response SOAP. 

11. The attacker decrypts the received response using the 
victim private key.  

With this scenario, private information can be revealed to 
illegitimate services by trusting the presented identity without 
doing a more thorough check. The success of this attack can trigger 
several attacks, such as DDoS attacks as we have explained in [6], 
to abuse the availability of the target service and the integrity of 
the victim service. 

3. Related Work 

There are two general approaches for intrusion detection: 
misuse detection and anomaly detection [7]. The misuse detection 
uses the knowledge accumulated about attacks and checks for 
signatures of these attacks while the anomaly detection builds a 
reference model of the usual behavior of the system being 
monitored and checks for deviations from the observed usage. The 
false positive rates of misuse detection are lower than that of 
anomaly detection [8] but anomaly detection has the advantage of 
detecting previously unknown attacks. In impersonation attack 
detection, the intrusion detection system cannot get the signatures 
of attackers until the attackers have been detected by the system. 
Therefore, the attack model cannot be constructed in advance; 
hence we prefer to use anomaly detection approach in this context. 

In the literature, anomaly detection was implemented in a 
variety of approaches. These approaches are usually categorized 
into two groups, i.e. statistical approaches and machine learning 
approaches [8]. In statistical approaches, anomaly detection 
systems usually watch behaviors of observed objects to comprise 
statistical distributions as a set of trained profiles during the 
training phase. These systems then apply the set of trained profiles 
by comparing them against a new set of activities of observed 
objects during runtime. An anomaly is detected if there is a 
significant deviation resulted from the observation. In general, any 
incident whose frequency goes beyond a predefined standard 
deviation from statistical normal ranges raises an intrusion alarm 
[7]. 

Machine learning based approaches tend to reduce the 
supervision costs during the training phase of statistical 
approaches by enabling detection systems to learn and improve 
their performance on their own. Neural networks and Hidden 
Markov Model have been proved to be useful techniques at the 
network traffic level as shown in in [9] and [10]. However, using 
ML algorithms in a highly dynamic environment like service 
clouds have several drawbacks such as increasing performance 
overhead, storage requirements, and computational expense [11]. 

In the context of this paper, we focus on statistical approaches 
for detecting impersonation attacks. In [8,12-15], statistical 
algorithms are applied to detect anomalous patterns in the system. 
They use the normal behavioral profiles of the monitored object, 
which is either a user or system process. Unlike these systems, this 
research applies anomaly detection at the web service level. Rather 
than profiling the normal behavior of users or systems, our 

approach profiles the normal request behavior of web services. 
Hence, the detection system deals with the web service as an 
independent object that can be impersonated irrespective of its 
owner’s behavior.   

Researchers in [16] provide an intrusion detection framework 
for cloud systems targeting masquerader attacks. Each user has a 
profile to model its behavior and make it available across the cloud. 
To measure the deviation between an activity initiated by a normal 
user and activity initiated by the masquerader, they use the Data-
Driven Semi-Global Smith Waterman alignment algorithm. The 
objective is to compute the best alignment score, by aligning the 
active user's session sequence (e.g., mouse movements, system 
calls, opened windows titles, etc.) to the previous stored sequences 
for this user. It achieves good results in detecting masqueraders in 
clouds with detection accuracy of 88.4 % and a low false positive 
rate of 1.7 %. However, the focus on monitoring human users is 
insufficient for detecting service impersonations in service clouds. 
Service clouds are mainly composed of collaborative services from 
different administrative domains with different security policies. 
Researchers in [16] do not address attacks that might be triggered 
by impersonated services with legitimate identities. 

The detection approach presented in [17] detects insider 
masqueraders in file systems. This approach tracks and measures 
changes in user behavior, alerting on any significant changes. They 
use one-class support vector machines to develop user behavior 
models and a set of data features related to the file systems 
including: the process name, the process path, the parent of the 
process, and the type of process action, the process command 
arguments. Their experiments show that modeling search 
behaviors of genuine users reliably detects all masqueraders with 
a very low false positive rate of 1.1%. Despite the fact that they do 
not test this approach on clouds, it may be applicable for only 
storage clouds. Hence, their detection system is not applicable for 
the service cloud model we work with. However, our verification 
technique is inspired by their proposed decoy technique, which 
launches disinformation attacks against malicious insiders, 
preventing them from distinguishing the real sensitive data from 
fake worthless data. They place traps within the file system which 
are documents downloaded from the Internet including several 
types of useless documents such as tax return forms, medical 
records, credit card statements, e-bay receipts, etc. The decoy files 
are downloaded by the legitimate user who owned the system and 
placed in highly-conspicuous locations that are not likely to cause 
any interference with the normal user activities on the system. A 
masquerader, who is not familiar with the file system and its 
contents, is likely to access these decoy files, if he or she is in 
search for sensitive information. Their decoy technology is more 
suitable for file systems or storage clouds more than service 
clouds. Hence, we design a service-cloud-based decoy technique 
as our verification technique to mislead the impersonators with 
fake information.  

An anomaly based network intrusion detection system for  
Remote to Local (R2L) attacks is proposed in [15]. R2L attacks 
usually exploit a vulnerability in a service at the target machine to 
elevate the attacker’s privileges. This attack is similar to the 
impersonation attacks occurring in clouds. The proposed detection 
system consists of two logical modules, the Packet Processing Unit 
(PPU) and the Statistical Processing Unit (SPU). The PPU has to 
extract service requests from the stream of packets on the wire to 
pass them to the SPU. The task of the SPU is to read the service 
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requests and extract suitable statistical input data. Requests are 
divided into several groups where each group contains request 
types with similar statistical properties such as Get and Post 
protocols. The requests of each group are then analyzed 
independently. The properties of a request used to determine its 
anomaly score include: type of request, length of request, and 
payload distribution. The anomaly score of a service request is the 
weighted sum of the three scores computed for each of the 
previously mentioned properties. Finally, the anomaly score is 
compared to a threshold that can be manually set by the security 
administrator. The presented detection system has detected all 
anomaly requests with a very slight false positive rate. Since the 
anomaly score technique proposed for network packets, we adjust 
it to detect impersonators in service clouds by computing the 
anomaly score of SOAP request messages exchanged between 
services.  

In [14], the detection system concentrates on profiling the 
behavior of system processes by studying the set of system calls 
made by the program. The designed algorithm compares the 
sequence of system calls captured during online usage to the 
normal sequences profiles during the training phase. The detection 
accuracy was 72.2% with a false positive rate of 2.1%. 

4. Impersonation Attack Detection Approach 

When dealing with the impersonation attack detection, it is 
important to mention that we assume the impersonator has already 
obtained the required security parameters including the victim 
service’s credentials, the security token, and the encryption keys to 
get involved in the cloud application and communicate with its 
services (explained above). We also assumed that the attack targets 
are only web services. Hence, SMDBs, detectors and other entities 
are assumed to be sufficiently secure.  

When presenting the stolen identity, the impersonated service 
appears as a legitimate service with the same access rights as the 
victim service. Ideally, monitoring a service's behavior after being 
granted access is required in order to detect such attacks. We find 
that certain types of service activities can reveal the service intent. 
For instance, SOAP requests used for web service communication 
offer an interesting behavior to monitor. A service request contains 
the sender supplied data which is sent over the network to another 
provisioned service in the same application session to perform a 
single task on behalf of that sender, which is either a human user 
or another service. This data shows the intent of the service trying 
to gain secure information from different services in a very short 
period of time before the stolen security token expires and before 
the victim finds out about its stolen identity. 

The developed approach composes of three steps. The output 
of each step represents the input to the next step (Figure 2): 

A. Auditing services’ messages by the auditing system during 
the training phase. 

B. Profiling the request behavior of each service in a profile 
document before running the detection algorithms during 
runtime using log files. 

C.  Detecting any significant change between the profiled and 
live behaviors then verifying the identity of the malicious 
service by using the verification technique. 

To assess the feasibility of our approach within the service 
cloud model, we craft an easy to understand case study with a 
deployed service cloud hosting 25 distinct web services with 15 

tenants owning and offering these services. We implement a 
session manager randomly chooses among appropriate services 
and composes them to provision an application that satisfies a 
user’s request.  A service cloud receives the traveler requirements 
with the preferred maximum price and the cloud returns the most 
suitable travel package with allowed payment. Table 1 shows the 
services and tenants used in the case study to evaluate the proposed 
impersonation attack detection approach. The cloud employs 
different meta-services to manage the travel reservations. These 
services are a Travel Agency service, Transportation services, and 
Living services.  

 
Figure 3: Impersonation detection approach 

Table 1: The available services in the case study 

Tenant Class Web Services 

Banks CreditChecking, Payment, CreditCard, 
paymentService, CreditVerification,CreditPayment, 

CheckBalance 

Airlines FlightFinder, FlightService, CheapFlight, 
TicketFinder, FlightFinder 

Car Rentals RentalAgent, RentalService, CarRental, 
RentalService, RentCar 

Hotels RoomBooking, RoomLocator, Accom, AvaRoom, 
BookingService, FindRoom 

Weather WeatherRetriever, Forecast 
 

The Session Manager (SM in Figure 1) dynamically provisions 
services from tenants into a service chain to simulate a travel 
management system as in Figure 4. Given a client request, the 
provisioned services buy a flight ticket to a specific destination at 
a specific time, reserve a hotel room, rent a car, retrieve the forecast 
for the desired travel dates, and pay the total price from the client’s 
bank account. The resulting service chain consists of at least 9 
services from at least 5 tenants.  
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4.1. Auditing System 

In our service cloud architecture [3], the impersonation 
detection algorithm is distributed across a tenant scope, session or 
application scope, and cloud scope as depicted in Fig. 1. This 
distribution allows for load balancing among services logging 
events, tenants generating profiles of all of its hosted services, 
applications executing service chains to satisfy clients’ requests 
and detect impersonation attempts, and the cloud verifying the 
extent of the attack. 

Figure 4: A scenario of Travel Package Bidder 

Event logging at each service is done by its tenant’s Auditor. 
The Auditor is a web service interceptor attached to each service 
to monitor its request and received messages. By intercepting 
SOAP requests, the Auditor is able to collect important 
information about the recipient to sufficiently check the sender’s 
request behavior. Such information includes recipient services and 
their business classes, requested methods in these recipients, 
request size, and other critical details. The advantage of this 
approach is that the logging process created and managed 
independent of the service process code to protect the auditing 
process from intruders. Since the tenant auditor would not be able 
to log requests issued by the impersonated service, checking the 
victim service’s log file for the suspicious events helps to detect 
the attack at early stages. 

At the application scope, the STS log file retains messages 
communicated by the client and services as it manages the 
creation, delegation, validation, and cancellation of the security 
token. By logging these details, we can corroborate the STS log 
file with the victim service’s log file (the service whose credentials 
have been stolen) to reveal any missing events [1] as significant 
evidence of an impersonation attack. 

The cloud scope gathers centralized forensic investigation 
information and examines it for impersonation attacks. During the 
detection process, the cloud scope correlates alerts received from 
any affected application scope and compares the malicious request 
of the impersonated service with the victim service’s log file. The 
final decision about the malicious request is logged by the cloud 
Auditor at the cloud scope. 

4.2. Profiler 

The detection system detects an impersonated service by 
comparing its observed request to its expected behavior using 
certain metrics that are defined in its profile. The expected 

behavior can be deduced during the training period. Since the 
manual creation of expected behavior is cumbersome, we use the 
training period for each service to collect information about its 
behavior. During training, the auditing system logs enough 
information about request events for each service. Extracted data 
about requests from a specific service’s log file are not classified 
in advance, meaning that the frequent requests represent the 
general behavior of the service. Hence, during runtime, received 
requests are evaluated against a summary of the training data (i.e. 
profile) to measure the deviation from the normal behavior. 

Profiling the services’ behavior is done in two phases:  profile 
generation and profile aging. Each phase is discussed in detail in 
next subsections. 

4.2.1. Profile Generation 

Instead of building the detection system by evaluating the 
received request during runtime against all requests in the sender’s 
log file, we summarize these records in profile documents. Thus, 
the detection time dramatically decreases which leads to an 
improvement in the performance. The Profiler uses the logged data 
at the tenant scope to generate the service’s request behavior 
profile. Then, SM makes the services’ profiles available to the 
involved application detector.  

The profiler depends on a statistical model to generate the 
request behavior profile from the service log file. This model 
consists of different attributes extracted from the SOAP request 
without processing its payload. Hence, the model reduces the cost 
of decrypting payloads of malicious requests that would be 
declined at the end. The used attributes are recipient’s class, SOAP 
size, method, and historical incidents. We found these attributes 
sufficient to reveal any deviation from the normal request 
behavior. 

1) Recipient’s Class: 

We hypothesize that each service has a logical “preferred” set 
of business classes where it sends requests based on its business 
purpose. For example, flight reservation services always 
communicate with different services in the banking and airline 
classes to buy a ticket for the client. In the statistical model, we 
compute how frequent the recipient’s class has been accessed by 
the sender during the training phase. The probability of relevant 
frequency is used to compute the anomaly score (AS) of recipient’s 
class as follows: 

ASclass  = - log2 (P[c])                (1) 

Equation (1) assigns higher anomaly scores to requests sent to 
recipients with less frequent classes. The probability P[c] 
represents the relative frequency that a request with class c has 
occurred during the training period of the sender. In order to 
prevent too high anomaly scores (or even infinite values) for the 
class that has been requested by the sender very infrequently 
(noise) or not at all during the training period, the probability of 
each request class needs to be set to a minimum value depends on 
the service characteristics and it might be adapted from time to 
time. Since this minimum value yields to a maximal anomaly score 
for classes that never received requests from the sender, it is 
necessary to maintain the same maximum anomaly score across all 
attributes of SOAP requests to keep the total anomaly score 
consistent.  
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2) SOAP Size: 

The size of a SOAP request can be a good indicator of the 
reliability of its source. The structure of a SOAP request consists 
of optional elements that the service can include, such as SOAP 
Header and SOAP Fault. Usually, the size of the SOAP message 
does not vary much between requests that are generated by 
services in a certain class to a specific recipient. The situation looks 
different when requests carry input wanting to obtain information 
from the target recipient. For instance, the attacker may send a 
request with nested queries to get more information from the 
recipient’s database. To assess this attribute properly, we correlate 
SOAP size with either the recipient service or class based on some 
properties of the observed request. 

The sender’s profile keeps track of all recipient services and 
their classes that have ever received requests from that sender 
along with the average size of these requests.  If the current 
recipient of the observed request has been accessed by the sender 
over an acceptable rate of requests then the available information 
about the requests sent by the sender to this recipient would be 
sufficient to evaluate the size of the received request. Otherwise, 
the size of requests received by the current recipient’s class 
(received by any service in this class) would be used to compute 
the size attribute.   

We calculate the anomaly score for SOAP size as in [15], by 
using the mean (µ) and the standard deviation (σ) of the sizes of 
the requests that have been sent by the sender during its training 
period to either a specific recipient or class. These two values are 
stored in the sender’s profile for each recipient and each class that 
has been previously accessed by the sender. The following formula 
is used to check the anomalousness of a request with size Z during 
run time. The anomaly score grows exponentially as the request 
size increases. In order to tolerate a reasonable amount of deviation 
of the size attributes, we set x variable as the base and multiply σ 
with a constant factor of y. The choice of x and y is the recipient’s 
responsibility based on its features and needs. The x and y 
variables are stored in the application SMDB and available for the 
detection algorithm. 

 ASsize= x ^ ((Z-µ) / (y*σ))                (2) 

This equation assigns anomaly scores greater than x only to 
requests that have SOAP size longer than the average. This is 
consistent with our assumption that malicious request increases the 
total size of the soap message. We limit the maximum value of 
ASsize to the same value in ASclass to avoid having infinite anomaly 
scores. 

3) Method 

The WSDL file for a web service shows its business logic and 
policies. The business logic is represented by the operations or 
methods that are available for the client to call along with 
information about their required parameters, data types, maximum 
values etc. Since this information is publicly available, there is no 
reason for the attacker to restrict himself from calling any method 
while he has valid credentials. However, for the victim service, 
there should be a noticeable behavior towards the recipients’ 
methods.  

Assume the recipient is a credit card service with two methods; 
one to check the sufficiency of an input card number to cover a 
certain payment and another method to return the available balance 
of the received card number. If the recipient receives a call from 

the impersonated service to the balance returning method given 
information that the victim service is used to frequently call the 
sufficiency checking method then the detection system can 
consider this call as a serious flag of an impersonation attack. 

To compute the anomaly score of the invoked method in the 
observed request, we correlate this method with the probability of 
relevant frequency of its service which is the current recipient of 
the request. However, the dynamic nature of the provisioning 
process in service clouds can lead to provisioning some services 
offering the same business service less frequent than others. For 
recipients that have been provisioned and accessed by the sender 
more than a predefined threshold, the anomaly score of their 
methods would be computed using their probabilities in equations 
(3) and (4) below.  

The anomaly score (4) for the called method is calculated for 
each method in the recipient WSDL that was called by the sender 
using the conditional probability in (3) if P(rec) is greater than a 
preset threshold. The anomaly score is stored in the sender’s 
profile. We also limit the maximum value of ASmeth to the same 
value in ASclass and ASsize to avoid having infinite anomaly scores. 

P(meth|rec)= (P(meth and rec))/(P(rec))               (3) 

ASmeth = - log2 (P[meth|rec])                (4) 

Other recipients with less provisioning probability do not have 
sufficient information about their methods in the sender’s profile 
that can be used by the detection system to determine the anomaly 
scores of their methods. Hence, using equations (3) and (4) to 
compute the anomaly score of the invoked method for infrequent 
recipients would introduce a significant bias into the final anomaly 
decision. Instead, owners of infrequent recipients need to set 
anomaly scores to their methods representing their acceptable risk 
degree of revealing information by each method if it has been 
accessed by an impersonated sender. 

4) Historical Impersonation Incidents 

Since the cloud hosts many services owned and operated by 
different tenants, the cloud provider must not assume that all 
tenants are careful about the security configuration of their 
services. Thus, the detection system needs to consider the 
historical incidents of impersonations occurred for each service 
when examining its requests. The service profile provides the 
probability that the service historically reveals to be a victim of an 
impersonation attack. 

To calculate the impersonation probability for each service, 
information about the historical incidents that occurred for the 
service is accumulated in the tenant SMDB. Then, Profiler exploits 
this information with the information extracted from the service 
log file about the total number of requests to compute the 
probability of the service being a victim of previous impersonation 
attacks: 

P(s) = (total impersonated requests) / (total requests)           (5) 

We use P(s) to compute the anomaly score for the service 
history in (6). We weight the probability to have a maximum value 
similar to other attributes. The higher the anomaly score of the 
service history the more likely that the service is currently involved 
in an impersonation attack.  

5) AShistory  = P[s] * max                (6) 
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The behavior profile for each service has a summary of its 
request messages logged in its log file using equations (1)-(6). 
These values would be preserved in the tenant SMDB upon the 
service registration and provisioned to the relevant applications’ 
SMDBs by the SM.  

4.2.2. Profile Aging 

When the detection system produces more false alarms than 
that logged for a previous period for a certain service, that means 
either the request behavior of this service has dramatically changed 
or the training data used to generate the profile became old and 
misrepresents the current behavior. Hence, we propose a strategy 
indicating when and how to update behavior profiles for services 
to increase the accuracy of the detection system.  

We combine two conditions to determine the profile age and 
trigger an updating. The first one is a chronological condition for 
the profile to be updated periodically based on the service owner’s 
policy. The updating process is automatically done at the tenant 
scope by Profiler using the service’s log file. Secondly, when the 
detection system causes too many false alarms for a certain service 
before reaching the next updating cycle, the cloud scope (Figure 1) 
triggers the update at the tenant scope to use the most recent 
requests in the log file to model the service’s profile. 

During the updating period for a specific service, the service 
becomes unavailable for provisioning in cloud applications. 
Profiler checks the availability of enough requests in the service 
log file to replace the currently used training data since the last time 
this data has been collected. If there is enough data, the most 
recently logged requests are used to generate the profile. Otherwise 
all recent requests substitute the oldest requests in the training 
dataset.  This method of aging has the effect of creating a moving 
time window for the profile data, so that the behavior is influenced 
strongly by the most recently observed behavior. Thus, the 
detection system adaptively learns services’ behavior patterns; as 
services alter their behavior, their corresponding profiles change. 

4.3. Detection System 

Although any anomaly detection algorithm can be used to 
model normal behavior, the algorithm to be used for a significant 
amount of data in service clouds during real-time must be very 
efficient. Instead of ML algorithms, we develop an anomaly 
detection algorithm, which in our experiments leads to a high rate 
of accuracy and an acceptable performance overhead. In next 
sections, we explain in details our algorithms to detect suspicious 
requests and verify their owners’ identities. 

4.3.1. Detection Process 

Inspired by the anomaly detection scoring system in [15], our 
algorithm does not detect data that represent an attack in the 
training period because it does not label such data as an anomaly; 
it assumes all data is normal. It is based on the premise that low 
probability values with a low likelihood of certain attributes are 
regarded as noise, and hence. Given that attack data is a minority 
of the training data then they would be recognized as attacks by the 
detection algorithm implicitly as low probability events and treated 
as anomalies at run time. “If attacks were prevalent and high 
probability events, then they are normal events, by definition” [18]. 

Upon each request, the application detector retrieves the 
sender’s profile from the application SMDB to examine the 
impersonation attack. The deviation rate between the received 
request and the normal behavior is calculated by using the 
statistical model previously explained.  

The total request anomaly score is a value that specifies the 
extent of the deviation of the received request from the expected 
values of anomaly scores specified by the sender’s profile. It is a 
compound value derived from the attributes that have been 
computed in equations (1), (2), (4), and (6) and stored in the profile 
as follows: 

AS = w1 ASclass + w2 ASsize + w3 ASmeth + w4 AShistory              (7) 

The anomaly score for each attribute can be weighted to reflect 
its importance for the detection system using weight variables w1, 
w2, w3, and w4. This total score is compared to a threshold that 
can be chosen by the security administrator. A lower threshold 
means it is more likely that requests from impersonated services 
are detected with the disadvantage of an increasing number of false 
alarms. On the other hand, a higher threshold would allow for 
malicious requests to pass without detection. 

ALGORITHM 1 performs the detection process. Line 24 
indicates that the detector of the affected application sends the 
adequate information about the detected request to the cloud scope 
to take the proper action. 

New services may not have a performance record in the cloud. 
If they are impersonated by attackers during the training phase; the 
detection system assumes their abnormal behaviors are normal 
behaviors. Therefore, once a new service arrives, the cloud must 
assume a certain amount of risk for some acceptable time if it 
provisions a new service into an application, given that the use of 
the new service can cause unrecoverable damage or too many false 
positives. Thus, the cloud needs to set constraints on the use of new 
services to determine their trustworthiness. In the proposed 
architecture (Figure 1), the SMDB of each tenant has an archive of 
the historical security incidents that have occurred on each service 
owned by this tenant. This history can be used by the cloud 
provider to evaluate the trustworthiness of the tenant in order to 
accept its new services in the provisioning process. 

Each application has in its SMDB a white list of services that 
are within their training phase. The application detector skips 
checking this new service against ALGORITHM 1. Otherwise, the 
detector would generate an alert for each request instantiated by 
every new service which increases the false positive rate of the 
detection system. 

ALGORITHM 1: IMPERSONATION_DETECTION 
Input: 
1. Sender’s profile (prof). 
2. Received request (req). 
Output: 
3. Anomaly score (AS) for the received 
request. 
Begin: 
4. initialize soapSize, recipient, method, 
class,µ,σ,AShist,ASmeth,ASclass,ASsize, 
anomalyThreshold 
5. method =  req.getSoapAction() 
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6. recipient = req.getRecipient() 
7. soapSize = req.getSoapSize() 
8. class = SMDB(recipient) 
9. if ( find(class in prof) { 
10.  ASclass= prof.get(ClassAS)          (1) 
11.  Ashist=prof.get(HistoryAS)          (6) 
12.  µ = get (Mean, prof) 
13.  σ = get (standardDeviation, prof) 
14.  ASsize=x^((soapSize-µ))/(y*σ)       (2) 
15.  if (find(recipient in prof) 
16.     ASmeth=prof.get(MethodAS)        (4) 
17.  else 
18.     ASmeth=max  
19.     AS=w1*ASclass+w2*ASsize+w3*ASmeth+     

    w4*AShist(7) 
20. } 
21. else { 
22.  AS= 0.4* 15 + 0.2* zero + 0.2* zero +     

 0.2* zero } 
23. if ( AS> anomalyThreshold) 
24.   send alert to Cloud scope 
25. else 
26.   pass req  
End 

4.3.2. Verification Process 

The impersonation detection algorithm gives an alert about a 
malicious request deviating from the normal behavior of the 
legitimate sender. To verify the identity of the suspicious sender, 
we use a verification technique. This technique confounds and 
confuses an impersonator into believing they have useful 
information when its identity is not verified. We integrate this 
technique with the service behavior profiling to secure the service 
in the cloud from being impersonated. 

Upon registration, the verification technique requires each 
service to present a faked version of its response to the cloud 
SMDB. Then, the SMDB provisions this response to the 
applications that this service involved in. In addition, the cloud 
SMDB provisions a random code to each application for 
verification purposes. Hence, whenever a malicious request to the 
recipient service is detected by the application detector using 
ALGORITHM 1, the fake response is returned by the application 
detector in such a way as to appear completely legitimate and 
normal. The detector is the only party in the application has the 
privilege to access the code and fake responses reside in the 
application SMDB. Therefore, whenever a service has been 
impersonated, the attacker has no way to neither realize that the 
received response is faked nor use the application code to verify 
his identity. 

When the sender is correctly identified as an impersonated 
service, it accepts the faked response since it does not have the 
ability to communicate with the application detector to distinguish 
between real and fake responses (Figure 5.A). As a result of this 
acceptance, the application detector terminates the application 
after a predefined period of time and delivers the information about 
the detected request as a security alert to the cloud scope for more 
investigation. The cloud scope then asks the tenant that owned the 
detected sender for its recent log file. If the detected request is not 
recorded in the original sender log file then the decision made by 
the application detector is correct otherwise it is a sign that the 
profile of the falsely detected needs to be updated. 

 
Figure 5: The verification process after detecting an impersonator 

For the legitimate sender, the application detector would 
receive the fake response and readily recognize it and send the 
same request again along with the application random code to the 
same recipient (Figure 5.B). This encoded request is the 
application detector way to verify the sender’s identity and issue a 
false positive alarm. The verification technique here serves two 
purposes: (1) validating whether the sender is authorized when 
abnormal request is detected, and (2) confusing the impersonator 
with useless information. 

To incorporate the verification technique with the defined 
detection system, we need to change ALGORITHM 1 at line 24 to 
call ALGORITHM 2 instead of the cloud scope as follows: 

VERIFICATION (req) 

ALGORITHM 2 details how the detection system sends 
useless information as a response to malicious services. In line 5, 
the detector checks if the received request is a repeated request 
from a legitimate sender having the predefined code to verify its 
identity. In Line 7 the request is passed to the recipient after 
decoding it.  Line 9 shows that the fake response for each service 
is extracted from the application SMDB. The fake response is 
passed in Line 10 to the sender. 

ALGORITHM 2: VERIFICATION 

Input: 

1. The malicious request (req). 
Output: 

2. Detector’s action against the malicious 
request. 

Begin: 

3. sender = req.getSender() 
4. recipient = req.getRecipient() 
5. if (req.hasEncodedData) { 
6.     Req.removeEncoded() 
7.     pass req } 
8. else {  
9.     fake_info= SMDB.getFake(recipient) 
10. pass fake_info  } 
End 

ALGORITHM 3 shows how the detector reacts when receiving 
a fake response by one of the application services. Line 4 declares 
that the detector uses a single code provisioned by the cloud scope 
to resend the legitimate requests. The detector deploys the 
verification technique either by sending or responding to the fake 
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response without getting the recipient service involved, which 
reduces the performance overhead and keeps the service black-
boxed in the cloud without changing its internal code. 

ALGORITHM 3: RECEIVING_FakeRes 
Input: 
1. fake response (res). 
Output: 
2. req: a new request holding the old request 
and the code. 
Begin: 
3. if (res is fake){ 
4. req.update(code) 
5. pass req } 
6. else 
7. pass res 
End 
 

5. Results and Discussion 

The developed framework is deployed in Azure cloud. JBoss 
server is used to deploy the web applications while Apache CXF 
Framework is used to develop web services and the STS. The 
application Detector and Auditor are implemented as CXF 
inbound and outbound interceptors attached to the STS in order to 
manipulate each SOAP request and response after being 
authenticated.  

To generate behavior profiles for services in the Travel Agency 
case study, we deployed the framework 300 times to respond to 
client requests, randomly creating 300 service compositions 
(applications) from the available services. We used the resulting 
log files to generate profiles from while recording the generation 
time. The average time for each service to generate its behavior 
profile was about 3.2 seconds. 

 We have conducted three different tests on the designed 
case study: no attack check, anomaly check, and attack check. We 
have run the framework without attacks for legitimate services and 
anomalous services that are changed their behaviors without 
updating their profiles to measure the false positive rate. In 
addition, we designed several attacks to measure the detection 
accuracy rate of the detection algorithm. The designed tests have 
been deployed on randomly generated applications with a 
distinctive percentage of 94%. The anomaly threshold was ranging 
between 3 and 5. We used 0.4, 0.2, 0.2, and 0.2 to weight ASclass, 
ASsize, ASmeth, and AShistory respectively. The recipient’s class 
anomaly score has slightly more weight since it primarily 
represents the business logic of the sender. The threshold is 
computed during the training phase and set to a value that would 
cause 10 false alarms per 100 applications when the system would 
receive the training data itself as input. A lower threshold would 
detect more attacks with the disadvantage of an increasing false 
positive rate. Hence, the threshold should be set to the lowest value 
possible provided the acceptable false positive rate. This decision 
depends on the type of traffic that is seen on the service clouds and 
SLAs between cloud providers and consumers deciding how many 
false alarms are considered acceptable  [15].   

For the test with no attacks, the framework responded with 
random applications to 100 client requests without involving any 
attacks. The services here behaved normally as in their profiles. 
The false positive rate was 1.7%. We have decreased the default 
threshold of 3 to 2.7 and the false positive rate slightly increases to 
1.715%. 

During the test with behavior anomalies, the same requests 
were tested on other random applications with some modifications 
on the legitimate services’ behaviors. These legitimate services 
were enforced to dramatically change their behavior during 
runtime before the profile’s update time. The changes included 
accessing new methods, sending large message sizes, and 
accessing rarely accessed classes. The false positive rate during 
this test was 28.75%. The false alarms have been exclusively 
caused by requests that called methods that had not been accessed 
during the training period. However, this result was generated 
without using the verification technique. With the verification 
technique, our detection system eliminated all false positives with 
a considerable performance overhead as depicted in Figure 6. The 
detection system needs to support variable security levels with 
different overhead for different applications. For example, if a 
banking application is running in the service cloud then there 
should be possibility to provide highly secure detection for this 
application by running the verification technique. In case of online 
games and voice over IP (VoIP) applications, performance and 
quality of service (QoS) could be of higher priority which requires 
disabling the verification technique. 

 
Figure   6 : Verification  technique overhead 

After exploring the false positive rate, we attacked the case 
study in four distinct tests to measure accuracy. Each test had 100 
client requests to initiate 100 different applications each has an 
impersonated service sending a malicious request to another 
service in the same application. The attacks mimicked the victim’s 
behavior at different degrees. The victim services were meta-
services since they have request behavior profiles while the 
tenants’ services did not have profiles in this test. Any attack 
targeting a tenant’s service would be detected immediately since 
the expected normal behavior for such services does not include 
sending requests to any service in the cloud. Table 2 lists the 
average anomaly scores for statistical properties of malicious 
requests and the detection accuracy of the impersonation attacks 
for all four cases. All tests were conducted twice; one with victim 
services having no historical impersonation attacks and one with a 
moderate history of attacks. 

Table 2: The detection results for the attack tests 

Test Avg 
(ASclass) 

Avg 
(ASsize) 

Avg 
(ASmeth) 

Avg 
(AShistory) 

Accuracy 

T1 6.6 1.1 1.9 0(1.5) 92% 
T2 1.2 11.3 0.15 0(1.5) 67%(69%) 
T3 1.2 11.3 6.2 0(1.5) 97% 
T4 1.7 1.8 0.14 0(1.5) 0% 
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In the test T1, different impersonated services used the 
legitimate credentials of the victim services to send requests to 
services from classes that never been or rarely accessed by the 
victims before. The detection accuracy in this test was high (92%) 
because the Recipient’s Class attribute has a highest weight in the 
anomaly detection equation among other attribute in the statistical 
model. However, any attribute can be differently weighted to 
reflect its security importance in the cloud.  

T2 focused on revealing more information from the attacked 
services by embedding multiple queries in one request. 67% of the 
attacks have been correctly detected. On the other hand, the 
detection accuracy increased when the victim services had 
previously faced impersonation attacks. Furthermore, the detection 
accuracy reached 97% when the attacks targeted both the message 
size and the method at the same time as shown in T3 in Table 2. 
The last group of attacks fully mimicked the victim services which 
cannot be detected by the proposed detection system using the 
victim behavior profile. Thus, we need to extend the algorithm to 
cover such mimicry attacks in future work. 

From the computational perspective, the presented algorithm 
accelerates the detection and profile update operations by 
implementing these operations in distinct scopes. The profile 
generation process is done before runtime at the tenant scope by 
the Profiler to reduce the computational load during the detection 
live time. The application scope holds the detection process during 
runtime by using the generated profiles. This results in shorter 
impersonator live time inside the cloud because it is limited to the 
active session lifetime at the application scope. As a counterpart, 
this approach needs a fast periodic update of the service’s behavior 
profile and this introduces some overhead in the cloud network. 
Furthermore, the verification technique adds some overhead. We 
believe that updating the behavior profiles very frequently would 
decrease the need to trigger the verification technique which would 
eliminate much of the overhead. 

Conclusions 

The presented detection process depends on two parameters: 
the anomaly score computed by the detection algorithm using the 
behavior profiles of the services sending requests, and the fake 
response used by the verification technique to validate the 
malicious sender’s identity.  

In future work, some questions regarding the detection 
approach needs to be further investigated to improve the detection 
rate including:  How much data is required in order to properly 
train each service?  Should behavior profiles be based on 
individual service, or should services from the same class be 
grouped together? 
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