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In this paper, a delay-dependent controller based on the sliding mode 
concept is proposed to stabilize a networked robotic system in a 
decentralized synchronization scheme. In addition to being affected by 
communication time-delays between agents, and seen that external 
disturbances obviously affect any physical and dynamic system, an 
unsettling action resulting from measurement errors affects the 
position and the velocity state vectors of agents. Then, it has been 
proved that the synchronizing algorithm enables cooperative agents, 
acting in a disturbed environment, to efficiently accomplish a shared 
task and to compensate delayed communication data. The proposed 
controller has been implemented in a cooperative robotic system, where 
the controller proves its robustness face to disturbances.
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1 Introduction

The need for robust robotic controllers, that respond
to greater productivity and faster manufacturing de-
vices, has been a hot topic in the last few years.
This need obviously imposes high pressure on re-
searchers to acquire secure and effective robots, espe-
cially with the increasing humanitarian and social ex-
igency, which require interactions between robots and
humans. Thence, this paper presents an extension of
a research work originally presented in the 8th Inter-
national Conference on Modelling, Identification and
Control [1]. Recently, several similar synchroniza-
tion studies have been investigated in several complex
mechanical systems, where flexibility and accuracy
have been highly recommended [2], [3], [4], [5], [6].
There exist numerous samples of sophisticated tech-
nologies dedicated to modern life, such as material
transporting [7], [8], advanced agriculture aggrega-
tion [9], building tasks [10], etc. Indeed, in light of the
accelerated pace of development, there has become a
growing demand for cooperative multi-agent robotic
systems to serve contemporary industries and manu-
facturing applications [11], [12]. In this context, it has
been proved that the flexibility and the maneuverabil-
ity guaranteed by a cooperative robotic system are far
beyond the working capacity of one single manipula-
tor. In the other hand, the time-delay phenomenon

obviously appears in nature [13], especially in several
control systems (aircraft, chemical or process control
systems) either in the control input, in the state or
in measurements. In contrast to the ordinary differ-
ential equations, delayed systems are infinite dimen-
sional in nature, and time-delayed data transmission
presents in the most of cases, a source of instability.
As an illustration, a state estimator is designed in [14]
to a class of uncertain discrete-time Markovian jump
neural networks, with time-varying delays, in order to
estimate the network states through available output
measurements. Indeed, the study presented in [15]
seeks to resolve the problem of data packet dropout
and transmission delays resulted by communication
channels in the networked control system. So, great
efforts have been invested in the synthesis of uncer-
tain networked systems with time-delay, seen that the
stability issue as well as performances of the system
control with delay are both of theoretical and prac-
tical importance. However, in several robotic appli-
cations, the uncertainty may arise from many real-
world sources such as errors of the robot modeling,
unpredictable robot actuation, unpredictable move-
ments in the environment, etc [16], [17]. As well,
while robots are executing their assigned global task,
some assumptions under which controllers were built
may be invalidated: loads or robots may fail, the en-
vironment may change, etc. The cumulative effect of
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such uncertainty sources can be hard to manage dur-
ing the task execution. Thus, to ensure a fluid re-
sponse to the distributed multi-robot system, trade-
offs between multi-robot flexibility, time delay adjust-
ment, uncertainty compensation, and task execution
efficiency should be considered. To achieve it, we
present the stability analysis of a robust control con-
cept which combines the SMC design with a partic-
ular class of the graph theory, aiming to stabilize a
networked robotic system.

2 Introduction to the SMC

While considering the SMC concept, the state trajec-
tory evolution is divided into two parts [18]:

• from the initial state to the intersection with the
sliding surface, this part is called “the reaching
phase”,

• from the intersection with the sliding surface to
the origin, this part is called “ the sliding phase”.

During the reaching phase, the attractiveness condi-
tion of the sliding surface Ṡ(x)S(x) < 0 is verified. This
condition is global but it does not guarantee a finite
sliding time. To ensure a finite sliding time, the con-
dition becomes:

Ṡ(x)S(x) < −ε1 − ε2|S | if S(x) , 0 and ε > 0 (1)

This sliding time can be imposed by choosing the slid-
ing surface of the form:

Ṡ(x) = −µS(x)−µΩsign[S(x)] (2)

This expression, which has been adopted in this study,
is a solution of a differential equation [19]. During the
sliding phase (S(x) = 0 and Ṡ(x)S(x) < 0), the closed
loop system has the same behavior than S(x) = 0.
In general, for a system of order n which is described
in the state space by:{

ẋi = xi+1 i = 1, ...,n− 1
ẋn = f (x, t) + g(x, t)u(t) (3)

the linear sliding surface according to the state has the
form:

S(x) = Cx =
n∑
i=1

cixi (4)

In the sliding phase, the looped system will have
the same behavior as the system is described by:

ẋi = xi+1 ; i = 1, ...,n− 2

ẋn−1 = −
n−1∑
i=1
cixi ;cn = 1

(5)

This is a linear system of order (n−1) [20]. Thus, when
the sliding regime is reached (after an interval tg of
time), the operating point is going to stay on the sur-
face whose equation is S(x) = 0. Therefore, the looped
system has an insensitivity to parameter variations of
the system to be controlled.

3 Problem formulation and Mu-
tual SMC synchronization con-
cept

Let us consider p manipulator robots described by the
following differential equation:

Mi(q̈i) +Ci(qi , q̇i)q̇i +Gi(qi) = τi (6)

for i = 1 · · ·p. Each robot has n degrees of freedom, for
which:

• qi ∈Rn denotes the vector of measured displace-
ments and i is the number of cooperative robots,

• q̇i ∈Rn is the measured velocity vector,

• q̈i ∈Rn is the vector of articulatory acceleration,

• Mi(qi) ∈Rn×n is the inertia matrix, which is sym-
metric uniformly bounded and positive definite,

• Ci(qi , q̇i)q̇i ∈ R
n is the vector expressing the

Coriolis and the centrifugal forces,

• Gi(qi) ∈Rn is the vector of gravitational forces,

• τi ∈ R
n denotes the vector of external torques

and forces applied at each joint.

The state vector is presented as: xi =
(
qi
q̇i

)
, and its

control vector is ui = τi . To achieve a coordinated
control motion, a cross coupling synchronizing ap-
proach (that is derived from the graph theory [21])
has been applied to the networked system. Thus, the
cross-coupled SMC concept is adopted in this work to
control the whole multi-agent system, which in turn
becomes considered as a single generalized system.
The typical procedure for implementing such a con-
trol module is to first build a global error model in
real time [3], based on the information feedbacks de-
rived from all system members. In order to achieve
this goal, we define the tracking error as follows:

ζ1i(t) = qi(t)− qd(t) (7)

where:

• qd(t) ∈ R
n denotes the desired position of the

robot.

The ‘cross-coupling’ concept consists in presenting a
synchronization error with reference to the calcula-
tion of differences between position errors. This error
is presented as follows [3]:

ζ2i(t) =
p∑
j,i

Λij [qi(t)− qj (t − τ)] (8)

where Λij = Λji are symmetric positive-definite ma-
trices which reveal an idea about the communication
quality between the ith and jth agent. Finally, the
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global error concerning each agent of the system is
given by:

εi = ζ1i +
∫ t

0
ζ2i(µ)dµ (9)

Let’s consider the sliding surface:

si = ε̇i +λiεi

and let’s define the control law:

ui = ueq +∆u (10)

Hence, equality ṡi = 0 yields the following equivalent
control expression:

ueq =Mi

[
q̈id − ζ̇2i −λi(ζ2i − ζ̇1i)

]
+Ci(qi , q̇i)q̇i +Gi (11)

and the discontinuous control part becomes:

∆u = −M−1
i Ki sign (si) (12)

where Ki is a definite positive diagonal matrix.
Applying the control law (10) yields the expres-

sion of the differential with respect to time of vector
si :

ṡi = −Ki sign(si) (13)

The advantage of the adopted decentralized architec-
ture is that it allows to each robot to have local infor-
mation about relative positions of its neighbors. So
each agent can communicate and share information
with robots placed just nearby, according to the uti-
lized cross coupling approach.

4 Stability analysis

To prove the stability of one agent in the system, we
consider a Lyapunov function:

Vi =
1
2
sTi K

−1
i si > 0 (14)

Its differentiation with respect to time gives:

V̇i = −sTi sign(si) < 0 (15)

By considering the whole multi-agent system, the cho-
sen Lyapunov candidate function becomes:

V =
p∑
i

Vi > 0

and after its differentiation with respect to time we
obtain:

V̇ = −
p∑
i

sTi sign(si) < 0

This proves the stability of the overall system.

5 Convergence to the desired tra-
jectory

It is clear that si(t) goes to zero after the reaching
phase (t > t0). In the sliding phase, we have si = 0.
That is for t > t0:

εi(t) = εi(t0)e−λ(t−t0) (16)

ε̇i(t) = −λεi(t0)e−λ(t−t0) (17)

It is obvious that:

lim
t−→+∞

εi(t) = 0 (18)

lim
t−→+∞

ε̇i(t) = 0 (19)

Then, we can write that for t > t1 = t0 + 5
λ :

εi(t) ' 0 , ε̇i(t) ' 0 (20)

Let’s assume that the following quantities are uni-
formly bounded for t > t1:

‖qd(t)− qd(t − τ)‖ ≤ m1 (21)

‖q̇d(t)− q̇d(t − τ)‖ ≤ m2 (22)∥∥∥∥∥∥
∫ t

t−τ
qd(ς)− qd(ς − τ)dς

∥∥∥∥∥∥ ≤ m3 (23)

Let’s write, for t > t1, ε̇ = 0:

q̇i(t)− q̇d(t) +

∑
j,i

Λij

 [qi(t)− qd(t)]

−
∑
j,i

Λij [qj (t − τ)− qd(t − τ)]

+
∑
j,i

Λij [qd(t)− qd(t − τ)] = 0 (24)

Denoting:

di(t) =
∑
j,i

Λij [qd(t)− qd(t − τ)] (25)

we can write that:

ζ̇1i(t)+

∑
j,i

Λij

ζ1i(t)−
∑
j,i

Λijζ1j (t−τ)+di(t)=0 (26)

Let’s define: ζ1 = [ζT1i ζ
T
2i · · · ]T and d = [dT1 dT2 · · · ]T .

Then, we have:

ζ̇1(t) = Aζ1(t) +Bζ1(t − τ) + d(t) (27)

where A is a block-diagonal matrix, for which each
bloc-diagonal term is:

Ai = −
p∑
j,i

Λij (28)

which is a symmetric definite negative matrix. This
shows that all eigenvalues of matrix Ai have strictly
negative real parts. Consequently, A is a Hurwitz ma-
trix.
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Figure 1: The 1st joints SMC:(a) Trajectory tracking and position synchronization,(b) Velocity synchronization.
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Figure 2: The 2nd joints SMC:(a) Trajectory tracking and position synchronization,(b) Velocity synchronization.

Table 1: Joints initiation and parameters
Articulation Mass Length

q1 8 kg 0.4 m
q2 6 kg 0.3 m
q3 0.5 kg 0.3 m

Using properties of matrices A and B, and using
the fact that d(t) is uniformly bounded, we can de-
duce that ζ1(t) is uniformly bounded [22, 23, 24]. This
shows that ζ2i(t) and:∫ t

0
ζ2i(t)dt = εi − ζ1i(t) (29)

are uniformly bounded. This yields that:

lim
t−→+∞

ζ2i(t) = 0 (30)

In consequence, we have, for t > t1:

ε(t) = ζ̇1i + ζ2i ' 0 (31)

Finally, we can easily deduce that for t > t1:
ζ1(t) ' 0. This proves that positions of al robots con-
verge to their desired trajectory.

6 Application

Consider the SMC law applied to the networked
robotic system for a trajectory tracking control task.
Here, the cooperation is defined as a group of robots
that work together to accomplish a required task,
where resources are shared between all agents, and
the action performed by each robot takes into account
actions performed by others. The required behavior
of the proposed synchronizing SMC is to handle mea-
surement errors appearing in the controller of one
robot in the system, the communication time delay
lag between cooperative robot movements, and at the
same time to retain all properties and system perfor-
mances. So that, the designed controller must have a
sufficient authority which is able to dominate the un-
desirable disturbances affecting one robot, and which
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Figure 3: The 3rd joints SMC:(a) Trajectory tracking and position synchronization,(b) Velocity synchronization.

(a) (b)

Figure 4: (a) Applied torque behaviors: The black lines present behaviors of the robot affected by the mea-
surement errors, (b) Enlarged scales: Dotted lines- In the presence of external disturbances. Continuous lines-
Without external disturbances,

have been transmitted to other neighbors due to the
feedback control sharing imposed by the cross cou-
pling design. Dynamic parameters of the manipulator
robot model are mentioned in Table I. We note that:

• Ri : designate the cooperative robots, i = 1..3.

• R-MErrors: presents the robot behavior without
measurement errors ( in the presence of a con-
stant communication time delay z = 0.4s).

• R+MErros: presents the robot behavior in the
presence of measurement errors affecting the
position vector of the first robot R1 ( in the pres-
ence of a constant communication time delay z
= 0.4s).

Discussion: Simulation results present a compari-
son between behaviors of the time-delayed networked
system acting with and without presence of measure-
ment errors. The robust synchronization of the net-
worked system, realized by the synchronizing SMC
has been proved when the time delay rate is valued
around 0.4 s, even in the presence of external dis-
turbances. In fact, position and velocity behaviors

of the multi-agent system are almost similar in both
cases as shown in Figs.1, 2 and 3, despite the addi-
tion of measurement errors (at the position vector of
the first robot) whose impact reaches 20% of its right
value. So the global system addresses imposed pertur-
bations and different positions of cooperative robots
rapidly attain their desired trajectories. At the same
time, the synchronization effect is clearly presented
despite the existence of communication time delay be-
tween robots. Besides, the generated velocity curves
also reflect the insensitivity of the proposed control
approach to different perturbations applied to the sys-
tem, as demonstrated in Figs.1(b), 2(b) and 3(b). This
proves the robustness of the synchronizing SMC in
achieving adequate motion control and meeting the
efficiency requirement throughout a middle affected
by a constant communication time-delay and rela-
tively high valued external disturbances. Concerning
the control input behavior, we note that the signum
function (which is responsible to generate the chatter-
ing phenomenon) has been replaced by an approxi-
mating function (Hyperbolic tangent) in order to bet-
ter present the disturbance effect on the system. This
is justified by the fact that the high frequency sig-
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nals resulted from the chattering phenomenon cover
the measurement error impact, whose amplitude is
much smaller in comparison with the chattering one.
So in the absence of measurement errors, torques be-
have smoothly as shown in Fig.4(a) and obviously
in Fig.4(b). However, it is clear that input torques
are influenced by the presence of disturbances, where
slight oscillating signals disrupt input torques of the
affected robot, and lower disturbing signals appear in
the torque behaviors of other agents not affected. This
shows that each robot influences other teammates un-
der the synchronizing control effect. So, feedbacks de-
rived from unaffected robots help the affected agent to
overcome external disturbances which he meets.

7 Conclusion

In this paper, we have developed an analytical ap-
proach to define adequate synchronizing stability
conditions in the presence of constant communication
delays, and illustrated them for a decentralized archi-
tecture of a class of networked robotic systems. This
analysis shows that the overall system synchroniza-
tion, even in a middle disturbed by measurement er-
rors, can be successfully guaranteed by transmitting
feedbacks between cooperative system agents. Ob-
tained comparison between simulation results shows
that the networked system can easily reach desired be-
haviors and move smoothly when the considered com-
munication time delay is valued around 0.4 s, and the
rate of measurement errors attain 20presence of low
disturbing frequencies in the control torques of agents
proves that the proposed controller addresses distur-
bances and guarantees a robust synchronized motion
task.Further researches will involve consideration of
the system convergence rate with respect to the time-
varying delay functions, to the SMC constraints, and
the limit rate of time delays which can be supported
and compensated by such a variable structure con-
troller.
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