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 The availability of traffic data and computational advances now make it possible to build 
data-driven models that capture the evolution of the state of traffic along modeled stretches 
of road. These models are used for short-time prediction so that transportation facilities 
can be operated in an efficient way that guarantees a high level of service. In this paper, 
we adopted a state-of-the-art machine learning deep neural network and the divide-and-
conquer approach to model large road stretches. The proposed approach is expected to be 
a tool used in daily routines to enhance proactive decision support systems. The proposed 
approach maintains spatiotemporal correlations between contiguous road segments and is 
suitable for practical applications because it divides the large prediction problem into a set 
of smaller overlapping problems. These smaller problems can be solved in a reasonable 
time using a medium configuration PC. The proposed approach was used to model 21.1- 
and 30.7-mile stretches of highway along I-15 and I-66, respectively. The resulting 
predictions were better than predictions obtained using partial least squares regression.  
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1. Introduction  

The growing economy and an increasing number of vehicles 
on the road have brought about traffic problems that increase 
travelers’ inconvenience. Traffic congestion features prominently 
among these problems, and has become an everyday concern in 
many urban areas, bringing with it negative environmental effects. 
During periods of congestion, cars cannot run efficiently, resulting 
in air pollution, carbon dioxide (CO2) emissions, and increased 
fuel use. In 2007, wasted fuel and lost productivity cost Americans 
$87.2 billion. This number reached $115 billion in 2009 [1]. 
Congestion also increases travel time. In 1993, driving under 
congested conditions caused a delay of about 1.2 minutes per 
kilometer of travel on arterial roads [2]. Since then, this problem 
has grown worse, as evidenced by a report from the Texas 
Transportation Institute that indicates that the number of wasted 
hours due to traffic congestion increased fivefold between 1982 
and 2005 for Americans.  

In the past, the solution to these problems was constructing new 
roads, but that era of build-out ended due to its social and economic 
effects. Subsequently, Transportation Management Centers 
(TMCs) were deployed to solve traffic problems. Most of these 
TMCs operate in reactive mode, applying management strategies 
only after conditions in their regions change. Today, due to 
advances in technology, applying predictive traffic control 
strategies offers a cost-effective solution to improving traffic flow. 
Predictive traffic control is a proactive approach where traffic 
problems, such as congestion, are anticipated and countermeasures 
are applied prior to their occurrence. 

Data-driven, short-term prediction of traffic characteristics, 
such as flow, density, and speed, is essential for applying 
predictive traffic control strategies. However, because of unstable 
traffic conditions and complex road settings, short-term prediction 
is not a straightforward task [3]. Applying mathematical models 
that are based on macroscopic and microscopic theories of traffic 
flow is difficult so data-driven modeling is considered a good 
approach to model complex traffic characteristics. Thanks to 
computational advances that make data collection and processing 
easy and rapid, a promising research area based on data-driven 
algorithms has emerged.  
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The use of deep learning neural networks for traffic state 
prediction was demonstrated to be promising by Elhenawy and 
Rakha [4]. In this paper, we describe new research on the 
prediction of traffic speeds and flows for basic freeway segments 
using a data-driven approach. Predictions are based on the current 
traffic state data, weather conditions, visibility levels, and seasonal 
predictors (i.e., day of the week and time of the day). State-of-the-
art deep neural networks were trained and tested to predict traffic 
states for a larger spatial and temporal horizon. The proposed 
approach allows for identification of traffic problems up to 2 hours 
in advance, and implementation of solutions up to several miles 
away. In order to make the proposed approach suitable for practical 
applications at TMCs, a principal component analysis (PCA) was 
used to reduce the dimensionality of the inputs to the deep neural 
network. Moreover, we used the divide-and-conquer approach to 
divide the large prediction problem into a set of smaller 
overlapping problems. 

Following the introduction, in Section 2 related work is 
discussed. Section 3 defines the short-term prediction problem. 
Section 4 briefly presents a background of the methods used in this 
paper. The model calibration is described in Section 5. The study 
sites and the preprocessing of the traffic state data are discussed in 
Section 6. In Section 7, the results of the experimental work are 
outlined. Finally, the paper’s conclusions and recommendations 
for future work are described in Section 8. 

2. Related Work 

Over the past few decades, traffic characteristic prediction 
models have been developed by researchers from different areas, 
such as transportation engineering, control engineering, and 
economics. The developed prediction approaches can be classified 
into three broad categories: parametric models, nonparametric 
models, and simulations. Parametric models include time-series 
models, stochastic differential equations, etc. Nonparametric 
models include a variety of techniques that range from simple 
methods like k-nearest neighbor (k-NN) to complex support vector 
regressions (SVR) and artificial neural networks (ANNs).  

The time-series technique is a parametric model used widely in 
traffic flow prediction. The autoregressive integrated moving 
average (ARIMA) model was used very early to predict short-term 
freeway traffic flow [5]. After that, different advanced versions of 
ARIMA were used to develop more-accurate prediction models. 
Voort et al. integrated the Kohonen self-organizing map and 
ARIMA into a new method called KARIMA, which uses a 
Kohonen self-organizing map to cluster the data and then models 
each cluster using ARIMA [6]. Lee et al. used a subset ARIMA 
model for the one-step-ahead forecasting task, which returned 
more stable and accurate results than the full ARIMA model [7]. 
Williams and Hoel used seasonal ARIMA (SARIMA) to analyze 
data from two freeways, and the results showed that one-step 
seasonal ARIMA predictions outperformed heuristic forecast 
benchmarks [8]. 

Due to both the highly nonlinear nature of traffic characteristics 
and the availability of data, nonparametric methods have also 
attracted researchers’ attention. For traffic flow prediction, there 
are many versions of the k-NN algorithm that show a good 
prediction accuracy. Davis and Nihan argued that k-NN can 
capture linear and nonlinear relationships and is therefore able to 

model the nonlinear transition between free-flow and congested 
traffic [9]. However, the results of their empirical study showed 
that k-NN was no better than a simple univariate time-series 
forecast.  Sun et al. considered the traffic prediction model as a 
nonlinear system with historical and current traffic characteristics 
as inputs and future traffic characteristics as outputs [10]. They 
used the local linear regression model to approximate the nonlinear 
relationship between system inputs and outputs to predict future 
traffic characteristics. Young-Seon et al. proposed a short-term 
traffic flow prediction algorithm combining the online-based SVR 
with the weighted learning method for short-term traffic flow 
predictions [1]. ANN is considered one of the best tools to model 
highly nonlinear relationships between inputs and outputs, and 
many papers have adopted different ANN models, such as the 
Bayesian neural network [11] and radial basis function neural 
network [12], for predicting traffic flow. For more information, 
Vlahogianni et al. [13] provide a good review of the proposed 
techniques as well as the challenges of short-term prediction. 

Recently, a number of algorithms have been developed to train 
neural networks with many hidden layers. These deep learning 
neural networks are state-of-the-art machine learning techniques 
used to solve complex problems. However, this technique requires 
a huge amount of data for the training to return good results. In 
recent years, deep neural networks have attracted the attention of 
researchers in the transportation field as a super-tool to model 
traffic evolution. Huang et al. used a deep belief network to learn 
the important features for flow prediction and then passed those 
features to the regression output layer [14]. In another paper, the 
problem of traffic forecasting at peak hour and after an accident is 
approached using a generic deep learning framework based on 
long short term memory units [15]. Polson and Sokolov used a 
deep neural network to predict traffic flow, demonstrating that the 
deep neural network is capable of giving precise short-term 
prediction at the sharp traffic flow regime [16]. Lv et al. used a 
stacked autoencoder model to learn features that capture the 
nonlinear spatial and temporal correlations from the traffic data, 
then forwarded these features to the output layer to predict the 
traffic flow [17]. In an another recent study by Ma et al., 
spatiotemporal speed matrices were considered as images and used 
to train a convolution neural network, and then this network was 
used to predict large-scale, network-wide traffic speed with high 
accuracy [18]. 

3. Problem Definition  

In this research, we are interested in predicting the traffic states 
of several segments of a freeway for up to a 2-hour horizon. This 
is not an easy task, since the evolution of traffic states is a complex 
spatiotemporal process. In order to define our prediction problem, 
we first define the spatiotemporal speed/flow matrix, 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 , where 
I is the number of the stretch’s segments and T is the day’s time 
intervals. The spatiotemporal traffic state prediction problem can 
be stated as follows. Let 𝑠𝑠𝑖𝑖𝑡𝑡  be the observed elements of the 
spatiotemporal state matrix at the time interval 𝑡𝑡 = 1, 2, … , 𝑡𝑡0 and 
segment 𝑖𝑖 = 1, 2, … , ℎ of the studied stretch of road. Given the 
spatiotemporal observed traffic state submatrix that ends at 
time 𝑡𝑡0, the forecasted weather conditions, and the visibility level, 
our goal is to predict the spatiotemporal traffic state submatrix that 
spans the time interval [𝑡𝑡0 + 1, 𝑡𝑡0 + ∆]  for some prediction 
horizon ∆. 
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Figure 1. Illustration of the problem where a model is needed to predict the 
speed evolution in time (x-axis ) and space (y-axis ). 

The general form of the solution for the problem above is 
shown in Equation 1 [19]; 

 𝑦𝑦𝑡𝑡0+∆ = 𝐺𝐺�𝑋𝑋𝑡𝑡0 , 𝑒𝑒𝑡𝑡0 ,Θ� + 𝑒𝑒𝑡𝑡0+∆ (1) 

where: 

𝐺𝐺 the chosen model 

𝑦𝑦𝑡𝑡0+∆ the prediction at horizon ∆ 

𝑋𝑋𝑡𝑡0 the inputs’ predictors, including the observed 
elements of the spatiotemporal state submatrix at 
the time interval 𝑡𝑡0, time of day, day of week, 
and the forecasted weather conditions and 
visibility 

Θ estimated model parameters 

𝑒𝑒𝑡𝑡0+∆ errors (unexplained variability) due to the 
absence of factors we cannot observe  

We propose using a deep neural network for this prediction 
problem for the following three reasons. First, the stochastic nature 
of the input-output data makes it possible to find two different 
responses for the same input. In other words, the response 
corresponding to any input predictor is a distribution rather than a 
single point in the response space. Second, the spatiotemporal 
response is multivariate and the input-output relationship is 
nonlinear. Third, there is no closed mathematical form (model) that 
can be used to explain the relationship between the input predictors 
and the response. 

4. Methods 

4.1. Discriminatively Pre-Trained Deep Neural Networks 

In machine learning, ANNs are powerful tools used to estimate 
or approximate unknown linear and nonlinear functions, and are 
used for both classification and regression problems. 

 An ANN consists of an input layer, hidden layers, and an 
output layer. Each layer consists of several processing units, called 
neurons. In this paper, we used a multi-layered, feed-forward 

ANN, which is commonly used for classification/regression 
analysis. In a multi-layered, feed-forward ANN, the neurons make 
use of directed connections, which allow information flow in the 
direction from the input layer to output layer. A neuron k at layer 
𝑚𝑚  receives an input xj  from each neuron j at layer m − 1. The 
neuron adds the weighted sum of its inputs to a bias term, then 
applies the whole thing to a transfer function and passes the result 
to its output toward the downstream layer. Given the training 
dataset, the ANN can use a learning algorithm such as back 
propagation to learn the weights and biases for each single neuron 
[20]. In general, training a deep neural network that has more than 
one hidden layer is challenging because the gradient vanishes as it 
propagates back. Over the past 10 years or so,  many algorithms 
have been proposed to train deep neural networks, the 
discriminative pre-training method being one of the most simple 
[21]. The discriminative pre-training algorithm starts by training a 
neural network that has only one hidden layer. The input predictors 
and the responses are used in the supervised pre-training. Once the 
one-hidden-layer network has been trained, the algorithm inserts a 
new hidden layer before the output layer. The expanded whole 
network keeps the weights and biases of the input layer and the 
previously pre-trained hidden layer as initial weights for the next 
pre-training cycle. This algorithm continues growing the network 
until the desired depth is reached. Finally, the whole network is 
fine-tuned using a backpropagation algorithm. 

4.2. Partial Least Squares Regression 

Multiple linear regression (MLR) is a good tool to model the 
relationship between predictors and responses. MLR is effective 
when the number of predictors is small, there is no significant 
multicollinearity, and there is a well-understood relationship 
between predictors and responses [22]. In many scientific 
problems, the relationship between predictors and responses are 
poorly understood, and the main goal is to construct a good 
predictive model using a large number of predictors. In this case, 
MLR is not a suitable tool. If the number of predictors becomes 
too large, an MLR model will over-fit the sampled data perfectly 
but fail to predict new data well. 

When the number of the observations is less than the number 
of predictors, the chance of multicollinearity increases and 
ordinary MLR fails. Several approaches have been proposed to 
overcome this problem. For instance, principal component 
regression is used to remove the multicollinearity by projecting X 
into the orthogonal component and then regressing X’s scores on 
Y. These orthogonal components explain X but may not be 
relevant for Y. 

Partial least squares regression (PLSR) is a more recent 
technique that generalizes and combines features from principal 
component analysis and MLR. It is used to predict Y from X and 
to describe their common structure. PLSR assumes that there are a 
few latent factors that account for most of the variation in the 
response. The general idea of PLSR is to try to extract those latent 
factors, accounting for as much of the predictors’ X variation as 
possible, while at the same time modeling the responses well. A 
number of variants of PLSR algorithms exist, most of which 
estimate the coefficients of the linear regression between 𝑋𝑋 
and 𝑌𝑌 as 𝑌𝑌 = 𝑋𝑋𝛽𝛽� + 𝛽𝛽0�. Some PLSR algorithms are designed for 
the case where 𝑌𝑌 is a column vector, while others are suitable for 
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the general case, in which 𝑌𝑌 is a matrix. One example of a simple 
PLSR algorithm is the nonlinear iterative partial least squares 
(NIPALS) algorithm [23]. 

4.3. Principal Component Analysis (PCA) 

The stretch-wide prediction problem is a multivariate problem 
that may involve a considerable number of correlated predictors. 
PCA is a popular technique for dimensionality reduction that 
linearly transforms possibly correlated variables into uncorrelated 
variables called principal components. 

PCA is usually used to reduce the number of predictors 
involved in the downstream analysis; however, the smaller set of 
transformed predictors still contains most of the information 
(variance) in the large set. The principal components are the 
Eigenvectors of the dataset covariance matrix. The following steps 
show how to find 𝑘𝑘 principle components given 𝑁𝑁 data vectors in 
the space 𝑅𝑅𝑛𝑛 where 𝑘𝑘 ≤ 𝑛𝑛. 

1. Normalize input data vectors. 
2. Compute the covariance matrix 𝑆𝑆 for the normalized 

dataset. 
3. Compute the Eigenvectors and the associated 

Eigenvalue of the covariance matrix 𝑆𝑆. 
4. Sort the Eigenvectors in order of decreasing 

Eigenvalues. 
5. Reduce the size of the data by choosing the first 𝑘𝑘 

Eigenvectors. 
6. Construct a good approximation of the original 

dataset by multiplying the transpose of the matrix 
consisting of the 𝑘𝑘 Eigenvectors with the original data 
matrix. 

The first principal component is the normalized Eigenvector, 
which is associated with the highest Eigenvalue. The first principal 
component represents the direction in the space that has the most 
variability in the data, and each succeeding component accounts 
for as much of the remaining variability as possible.  

5. Model Calibration 

5.1. Divide-and-Conquer Approach 

One major challenge in traffic state short-term prediction using 
the spatiotemporal state matrix is the dimension of the predictor 
and response vectors and the large number of required parameters 
that must be estimated. As the stretch of road grows, the deep 
neural network needs a great deal of time for training or suffers 
from memory problems. To deal with these issues, this study 
adopts a divide-and-conquer approach model. 

The divide-and-conquer paradigm suggests that if the problem 
cannot be solved as is, it should be decomposed into two or more 
small problems of the same type, which are then solved. The final 
solution to the difficult big problem is the combination of solutions 
to the smaller problems. 

We applied divide and conquer in a straightforward manner to 
our prediction problem by dividing the input predictors of the 
spatial-temporal state matrix into smaller overlapping windows. 
The same method was applied to the responses, as shown in Figure 
2.  

 

Figure 2. Illustration of divide-and-conquer approach, where l is the prediction 
horizon and h is the width of the predictors’ windows. 

The overlap of the windows is important for determining a 
smooth predicted speed. In the experimental work done in this 
paper, we set the window length equal to four segments and the 
overlap between contiguous windows equal to two segments. 
Because of this overlap between windows, each segment has two 
predicted traffic states at the testing phase, and the final predicted 
traffic state for overlapped segments is the average. 

5.2. Training and Testing Phase 

The model calibration process consists of a training phase and 
a testing phase. In the training phase, the deep neural network’s 
weights are estimated using the training dataset. In the testing 
phase, the constructed deep neural network’s accuracy is tested 
using an unseen dataset called the testing dataset. The training 
phase in our approach includes the following steps: 

1. Partitioning (dividing) the whole stretch into small 
windows, each with four segments. 

2. Preparing the 𝑋𝑋 and 𝑌𝑌 matrices for each window by 
reshaping the traffic state, weather, and visibility 
inside the windows, with widths of ℎ  and 𝑙𝑙 
respectively.  

3. Shifting the window to the right and repeating Step 2 
to get another raw 𝑋𝑋 and 𝑌𝑌, as shown in Figure 3.  

4. Using PCA to find 𝑋𝑋�, which is the scores of the matrix 
𝑋𝑋. 

5. Using 𝑋𝑋� and 𝑌𝑌  matrices as the inputs and outputs, 
respectively, to train the one-hidden-layer neural 
network. Once the one-hidden layer network is 
trained, the algorithm discards the output layer and 
keeps the first hidden layer with its trained weights. 
Then, it stacks another hidden layer with a new output 
layer on top of the first layer and randomly initializes 
the weights of the new layers. The grown network is 
retrained again using the same 𝑋𝑋� and 𝑌𝑌 matrices. This 
algorithm continues growing the network until the 
desired depth is reached. Finally, the whole network 
is fine-tuned using the backpropagation algorithm. 
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Figure 3. Illustration of preparing X and Y matrices for one window. 

The testing phase is always simpler and does not require a great 
deal of time. This phase includes passing the testing data through 
the neural network after reducing it using the same principal 
components. The last step in testing is putting the predicted pieces 
together to find the prediction for the whole stretch. 

6. Case Study 

The performance of the proposed algorithm was tested on two 
real datasets collected from Interstate 66 (I-66) in Virginia and 
Interstate 15 (I-55) in California. This section describes the study 
sites and the preparation of the data. 

6.1. Virginia Study Site 

The selected I-66 eastbound study site is located between 
Gainesville and Arlington in Northern Virginia. There are 36 
segments along the selected 30.7-mile stretch of freeway. This 
corridor has four lanes in each direction, with the leftmost lane 
designated as an HOV-2 lane during morning and afternoon peak 
hours. This is the major commuting corridor between Northern 
Virginia and Washington, DC. INRIX probe data from 2011 to 
2013 were used to develop the prediction models, and data 
reduction was conducted to extract the daily traffic speed matrices. 
One-minute average speeds (or travel times) are available in the 
raw data for each roadway segment. Initially, the daily speed data 
were sorted by time and location from the raw data into a two-
dimensional matrix. In order to reduce the stochastic noise and 
measurement error, the speed matrices were aggregated by 15-
minute intervals. The missing data in the aggregated speed 
matrices were estimated using the moving average from a 3 × 3 
window.  

 
Figure 4.  Virginia study site (I-66) (source: Google Maps). 

6.2. California Study Site 

The 2013 and 2014 loop detector data from I-15 southbound 
were used to develop traffic prediction models for the California 
study site. The layout of the I-15 freeway corridor and the locations 
of loop detectors are presented in Figure 4. There are 43 loop 
detectors along the 21.1-mile stretch of the corridor. Data 
reduction was conducted on the loop detector data collected from 
the test site to extract the daily traffic data matrices of speed and 
flow. The speed and flow matrices were 15-minute aggregated 
matrices. 

 

Figure 5. California study site (I-15) (source: Google Maps) 

7. Prediction Experimental Results 

This section describes the evaluation criteria and then shows 
the experimental results of the proposed traffic state prediction for 
the Virginia and California study sites.  

7.1. Evaluation Criteria  

Relative and absolute prediction errors were calculated to 
compare the models using shallow networks, those using deep 
neural networks, and those using PLSR. The relative error was 
computed as the Mean Absolute Percentage Error (MAPE) using 
(2). This error is the average absolute percentage change between 
the predicted and the true values. The corresponding absolute error 
is presented by the mean absolute error (MAE) using (3). This error 
is the absolute difference between the predicted and the true 
values.  

 MAPE = 100
IxJ
∑ ∑

�yi
j− yı

ȷ� �

yi
j

I
i=1

J
j=1  (2) 

 MAE = 1
IxJ
∑ ∑ �yi

j −  yı
ȷ� �I

i=1
J
j=1  (3) 

where: 

J = total number of observations in the testing data set  

I = total number of elements in each observation  

y = ground truth traffic state 

𝑦𝑦� = predicted traffic state  

In the following experimental work, leave-one-out validation 
was used to cross-validate the prediction errors. During each fold 
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of the leave-one-out validation, one month was kept out for testing 
and the other months were used to train the model such that each 
month was used only once for testing. The leave-one-out 
validation subsequently reported the final prediction errors as the 
average errors of all folds. 

7.2. I-66 Results 

In this section, we present the results of applying the PLSR 
model, shallow network model, and deep neural network model to 
predict the speed for up to 120 minutes in the future for the I-66 
stretch. The dataset for the I-66 road stretch contained only speed 

data. The input to the neural network is the score matrix 𝑋𝑋�, which 
is obtained from the predictors’ matrix 𝑋𝑋  using PCA. In our 
previous study [24], we trained different one-hidden-layer 
networks with different numbers of neurons, ranging from 3 to 31, 
in the hidden layer. The different networks were compared using 
the MAPE and MAE, and the results showed that nine neurons was 
a good choice. Accordingly, in this experimental work, the number 
of neurons in each hidden layer was set equal to nine. The MAPE 
and MAE for the speed at different prediction horizon are shown 
in Figure 6. 

   

(a) (b) 

Figure 6. Speed prediction errors for I-66 in Virginia: (a) MAE; (b) MAPE. 

 expected to be high, 
and the variability in the response could be explained using a linear 
model such as PLSR. However, as the prediction horizon 
increased, the relationship between the predictors and responses 

became nonlinear and the PLSR did not predict well. The neural 
network, on the other hand, had the ability to estimate a nonlinear 
function, and predicted well. It should also be noted that, as the 
number of hidden layers increased, the average errors decreased. 
In order to visually inspect differences among the four models, we 
plotted the average of the errors of all folds and estimated the 95% 
confidence interval, as shown in Figure 7. 

 
Figure 7. The speed MAPE and 95% confidence interval for the four developed models I-66 in Virginia). 
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                                                      (a)                                    (b) 

Figure 8. Speed prediction errors for I-15 in California; (a) MAPE; (b) MAE. 

 

                                                           (a)                                             (b) 

Figure 9. Flow prediction errors for I-15 in California; (a) MAPE; (b) MAE

 As shown in Figure 7, at the 15-minute prediction horizon, all 
models are quite similar where their four confidence intervals 
intersect. At a larger prediction horizon, we can group the four 
models into three different groups. The first group includes the 
PLSR model; the second group includes the one-hidden-layer 
neural network model; the third group includes both the two- and 
three-hidden-layers neural network models. This figure suggests 
that the three-hidden-layers neural network is the best model, 
particularly at the 120-minute prediction horizon, as its confidence 
interval does not intersect with the one-hidden-layer neural 
network’s confidence interval.  

7.3. I-15 Results 

In this section, we discuss the results of applying the proposed 
approach to a different dataset to predict the traffic states 
(speed/flow) for up to 120 minutes in the future for the studied 
stretch if I-15. We modeled the traffic state using shallow network 
models, the PLSR model, and deep network models. The prediction 
errors for both speed and flow at different prediction horizons are 
shown in Figure 8 and Figure 9, respectively.  

 

Figure 8 compares the shallow network and the two deep 
networks for the speed prediction, with the top panel showing the 

MAPE and the bottom panel showing the MAE. The PLSR model 
is shown as well for the sake of comparison. As the figure 
illustrates, the deep neural networks had smaller prediction errors 
compared to the shallow neural network. Moreover, the three-
hidden-layers network did not remarkably reduce the average 
prediction error. However, the confidence intervals of the various 
models still need to be considered before deciding on a preferred 
model. Figure 8 also shows that at the 15-minute and 30-minute 
prediction horizon PLSR performed quite well, as there was high 
correlation between the input predictors and the responses. 
However, for the longer prediction horizons, neural networks 
returned better results than PLSR. 

The flow prediction errors shown in Figure 9 indicate that the 
deep neural network had smaller prediction errors compared to the 
shallow neural network. Moreover, the three-hidden-layers 
network had the lowest prediction errors. Figure 9 also shows that 
the prediction errors for PLSR were the worst among all the 
models, especially for the long prediction horizons. 

differentiate between the models with close 
average errors. In this figure, we can visually inspect whether the 
four models are, in fact, different by plotting the average of the 
errors of all folds and estimating the 95% confidence interval.  
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Figure 10. The flow MAPE and 95% confidence interval for the four developed models (I-15 in California). 

As shown in Figure 10, the confidence intervals of the two- and 
three-hidden-layers neural networks intersect, indicating that they 
are not significantly different. However, the three-hidden-layers 
model is preferred because it does not intersect with the one-
hidden-layer model at the 15-minute prediction horizon, and its 
confidence interval is far from that of the one-hidden-layer 
model’s confidence interval.  

8. Conclusions and Future work 

In this paper, we adopted discriminatively pre-trained deep 
neural networks to build a traffic state short-term prediction model. 
We compared a shallow neural network, a two-hidden-layers 
neural network, a three-hidden-layers neural network, and PLSR. 
The four models were used to predict traffic states for two different 
freeway road stretches. We used the divide-and-conquer approach 
to overcome the central processing unit time and memory 
requirements for long roadway stretches and large prediction 
horizons. The models were compared using MAE and MAPE 
measures. Experimental results showed that the three-hidden-
layers neural network was the best model for traffic state short-
term prediction and that PLSR was the worst among the four 
models. However, PLSR performed well at the 15-minute 
prediction horizon, as evidenced by its high correlation between 
the responses and predictors at that horizon. 

Adding other factors, such as work zones and incident 
information, to the prediction models is planned in future studies. 
Adding these factors may explain some of the variability that 
cannot be accounted for using the current prediction models.  

Note that the models proposed in this paper do not consider the 
response of travelers if they are receiving predicted traffic 

information disseminated by the agencies operating the network. 
Studying the interaction of informed travelers and including 
travelers’ responses as an input factor to the prediction models is 
an area for further work. Another area for future work is network-
wide traffic prediction, for which models to predict the traffic on 
different roadway segments in a network will be developed. For 
network-wide prediction, we can make use of newly available 
technologies along with new big data techniques to integrate travel 
behavior and enhance traffic predictions. Moreover, online 
learning algorithms that continue to learn from each new incoming 
observation are needed to capture the dynamics of traffic patterns 
inside cities, which change over time. 
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