Existence Results for Nonlinear Anisotropic Elliptic Equation

Youssef Akdim\(^1\), Mostafa El moumni \(^2\), Abdelhafid Salmani\(^1\)
\(^1\) Sidi Mohamed Ben Abdellah University, Mathematics Physics and Computer Science, LSI, FP, Taza, Morocco
\(^2\) Chouaib Doukkali University, Department of Mathematics, Faculty of Sciences El Jadida, Morocco

\begin{abstract}
In this work, we shall be concerned with the existence of weak solutions of anisotropic elliptic operators \(Au + \sum_{i=1}^{N} g_i(x,u,Vu) + \sum_{i=1}^{N} H_i(x,u,Vu) = f - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} k_i\), where the right hand side \(f\) belongs to \(L^{2^*}(\Omega)\) and \(k_i\) belongs to \(L^{p_i}(\Omega)\) for \(i = 1,\ldots, N\) and \(A\) is a Leray-Lions operator. The critical growth condition on \(g_i\) is the respect to \(u\) and no growth condition with respect to \(u\), while the function \(H_i\) grows as \(|\nabla u|^{p_i-1}\).
\end{abstract}

1 Introduction

In this paper we study the existence of weak solutions to anisotropic elliptic equations with homogeneous Dirichlet boundary conditions of the type

\[
\begin{aligned}
Au + \sum_{i=1}^{N} g_i(x,u,Vu) + \sum_{i=1}^{N} H_i(x,u,Vu) &= f - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} k_i, \\
 u &= 0
\end{aligned}
\]

in \(\Omega\), where \(\Omega\) is a bounded open subset of \(\mathbb{R}^N (N \geq 2)\) with Lipschitz continuous boundary. The operator \(Au = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i(x,u,Vu)\) is a Leray-Lions operator such that the functions \(a_i\), \(g_i\) and \(H_i\) are Carathodory functions satisfying the following conditions for all \(s \in \mathbb{R}, \xi \in \mathbb{R}^N, \xi' \in \mathbb{R}^N\) and a.e. in \(\Omega\):

\[
\sum_{i=1}^{N} a_i(x,s,\xi)\xi_i \geq \lambda \sum_{i=1}^{N} |\xi_i|^{p_i},
\]

\[
|a_i(x,s,\xi)| \leq \gamma |s|^{p_i} + |\xi_i|^{p_i-1},
\]

\[
(g_i(x,s,\xi) - a_i(x,s,\xi'))(\xi_i - \xi_i') > 0 \quad \text{for} \quad \xi_i \neq \xi_i',
\]

\[
g_i(x,s,\xi)s \geq 0,
\]

\[
|g_i(x,s,\xi)| \leq L(|s|)|\xi_i|^{p_i} \quad \forall i = 1,\ldots, N,
\]

where \(\lambda, \gamma, h_1\) are some positive constants, for \(i = 1,\ldots, N\) and \(L : \mathbb{R}^+ \to \mathbb{R}^+\) is a continuous and non decreasing function. The right hand side \(f\) and \(k_i\) for \(i = 1,\ldots, N\) are functions belonging to \(L^{2^*}(\Omega)\) and \(L^{p_i}(\Omega)\) where \(p_i^* = \frac{p_i}{p_i - 1}, p_{\infty} = \frac{p_{\infty}}{p_{\infty} - 1}\), with \(p_{\infty} = \max\{p_1,\ldots, p_N\}\), where \(p = \max\{p_1,\ldots, p_N\}\), \(\overline{p} = \frac{1}{\sum_{i=1}^{N} \frac{1}{p_i}}\) and \(\overline{p}_\infty = \frac{N\overline{p}}{N-\overline{p}}\).

Since the growth and the coercivity conditions of each \(a_i\) for all \(i = 1,\ldots, N\) depend on \(p_i\), we need to use the anisotropic Sobolev space. We mention some papers on anisotropic Sobolev spaces (see e.g. [1]-[5]).

If \(p_i = p\) for all \(i = 1,\ldots, N\), we refer some works such as by Guibé in [6], by Monetti and Randazzo in [7] and by Y. Akdim, A. Benkirane and M. El Moumen in [8].

In [3], L.Boccardo, T. Gallouet and P. Marcellini have studied the problem [1] when \(a_i(x,u,Vu) = \left|\frac{\partial}{\partial x_i}\right|^{p_i-2}\frac{\partial}{\partial x_i} g_i = 0, H_i = 0, k_i = 0 \) and \(f = 0\) is Radon's measure. In [3], F. Li has proved the existence and regularity of weak solutions of the problem [1] with \(g_i = 0, H_i = 0, k_i = 0 \) for all \(i = 1,\ldots, N\) and \(f\) belongs to \(L^{2^*}(\Omega)\) with \(m > 1\). In [9], R. Di Nardo and F. Feo have proved the existence of weak solution of the problem [1] when \(g_i = 0, k_i = 0, H_i > 0 \) for all \(i = 1,\ldots, N\).

In this work, we prove the existence of weak solu-
2 Preliminaries

Let \(\Omega \) be a bounded open subset of \(\mathbb{R}^N (N \geq 2) \) with Lipschitz continuous boundary and let \(1 < p_1, \ldots, p_N < \infty \) be \(N \) real numbers, \(p^* = \max \{p_1, \ldots, p_N\} \), and \(\overline{p} = (p_1, \ldots, p_N) \). The anisotropic Sobolev space (see [12])

\[
W^{1,\overline{p}}(\Omega) = \left\{ u \in W^{1,1}(\Omega) : \frac{\partial u}{\partial x_i} \in L^p(\Omega), i = 1, 2, \ldots, N \right\}
\]

is a Banach space with respect to norm

\[
\|u\|_{W^{1,\overline{p}}(\Omega)} = \|u\|_{L^1(\Omega)} + \sum_{i=1}^N \|\frac{\partial u}{\partial x_i}\|_{L^p(\Omega)}.
\]

The space \(W^{1,\overline{p}}_0(\Omega) \) is the closure of \(C_0^\infty(\Omega) \) with respect to this norm. We recall a Poincaré-type inequality.

Let \(u \in W^{1,\overline{p}}_0(\Omega) \) then there exists a constant \(C_p \) such that (see [13])

\[
\|u\|_{L^p(\Omega)} \leq C_p \|\frac{\partial u}{\partial x_i}\|_{L^p(\Omega)} \text{ for } i = 1, \ldots, N.
\]

Moreover a Sobolev-type inequality holds. Let us denote by \(\overline{p} \) the harmonic mean of these numbers, i.e.,

\[
\frac{1}{\overline{p}} = \frac{1}{N} \sum_{i=1}^N \frac{1}{p_i}.
\]

Let \(u \in W^{1,\overline{p}}_0(\Omega) \), then there exists (see [12]) a constant \(C_s \) such that

\[
\|u\|_{L^q(\Omega)} \leq C_s \left(\sum_{i=1}^N \left(\frac{\partial u}{\partial x_i} \right)^{1/p_i} \right)^{1/q} \|u\|_{L^{p_i}(\Omega)}.
\]

Where \(q = \frac{Nq}{\overline{p}} \) if \(\overline{p} < N \) or \(q \in [1, +\infty[\) if \(\overline{p} \geq N \). We recall the arithmetic mean: Let \(a_1, \ldots, a_N \) be positive numbers, it holds

\[
\frac{1}{N} \sum_{i=1}^N a_i \leq \left(\frac{1}{N} \sum_{i=1}^N a_i^\alpha \right)^{1/\alpha} \leq \frac{1}{N} \sum_{i=1}^N a_i.
\]

Which implies by \([2]\)

\[
\|u\|_{L^q(\Omega)} \leq C_s \frac{1}{N} \sum_{i=1}^N \left(\frac{\partial u}{\partial x_i} \right)^{1/p_i} \|u\|_{L^{p_i}(\Omega)}.
\]

When \(\overline{p} < N \) hold, inequality \([3]\) implies the continuous embedding of the space \(W^{1,\overline{p}}_0(\Omega) \) into \(L^q(\Omega) \) for every \(q \in [1, \overline{p}] \). On the other hand the continuity of the embedding \(W^{1,\overline{p}}_0(\Omega) \hookrightarrow L^q(\Omega) \) relies on inequality \([1]\). Let us put \(p_\infty := \max\{p_\star, p^*\} \)

Proposition 1 For \(q \in [1, p_\infty] \) there is a continuous embedding \(W^{1,\overline{p}}_0(\Omega) \hookrightarrow L^q(\Omega) \). If \(q < p_\infty \) the embedding is compact.

3 Assumptions and Definition

We consider the following class of nonlinear anisotropic elliptic homogenous Dirichlet problems

\[
\begin{align*}
-\sum_{i=1}^N \frac{\partial}{\partial x_i} a_i(x, u, \nabla u) + \sum_{i=1}^N g_i(x, u, \nabla u) + & \\
\sum_{i=1}^N H_i(x, \nabla u) = f - \sum_{i=1}^N \frac{\partial}{\partial x_i} k_i \text{ in } \Omega, \\
\quad u = 0 \text{ on } \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded open subset of \(\mathbb{R}^N (N \geq 2) \) with Lipschitz continuous boundary \(\partial \Omega \), \(1 < p_1, \ldots, p_N < \infty \). We assume that \(a_i : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R}, g_i : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R} \) and \(H_i : \Omega \times \mathbb{R}^N \rightarrow \mathbb{R} \) are Carathéodory functions such that for all \(s \in \mathbb{R}, \xi \in \mathbb{R}^N \) and a.e. in \(\Omega \):

\[
\begin{align*}
\sum_{i=1}^N a_i(x, s, \xi) \xi_i \geq \lambda \sum_{i=1}^N |\xi_i|^{p_i}, \\
\sum_{i=1}^N \left| a_i(x, s, \xi) \right| \leq \gamma \left(|s|^{\overline{p}} + |\xi|^{p_i} \right),
\end{align*}
\]

(5)

\[
\begin{align*}
|g_i(x, s, \xi)| \leq |g_i(x, s)| \\
|g_i(x, s, \xi)| \leq |g_i(x, s)| + \lambda \sum_{i=1}^N |\xi_i|^{p_i} \forall i = 1, \ldots, N,
\end{align*}
\]

(6)

\[
\begin{align*}
|H_i(x, \xi)| \leq b_i |\xi|^{p_i-1},
\end{align*}
\]

(10)

where \(\lambda, \gamma, b_i \) are some positive constants, for \(i = 1, \ldots, N \) and \(L : \mathbb{R}^N \rightarrow \mathbb{R}^+ \) is a continuous and non decreasing function. Moreover, we suppose that

\[
\begin{align*}
f & \in L^{p_\star}(\Omega), \\
\quad k_i \in L^{p_i}(\Omega) \quad \text{for} \quad i = 1, \ldots, N.
\end{align*}
\]

(11)

Definition 1

A function \(u \in W^{1,\overline{p}}_0(\Omega) \) is a weak solution of the problem \([1]\) if \(\sum_{i=1}^N g_i(x, u, \nabla u) \in L^1(\Omega) \) and \(u \) satisfies

\[
\begin{align*}
\sum_{i=1}^N \int_{\Omega} \left[a_i(x, u, \nabla u) \frac{\partial \varphi}{\partial x_i} + g_i(x, u, \nabla u) \varphi + H_i(x, \nabla u) \varphi \right] \\
= \int_{\Omega} \left[f \varphi + \sum_{i=1}^N k_i \frac{\partial \varphi}{\partial x_i} \right]
\end{align*}
\]

(12)

\[\forall \varphi \in W^{1,\overline{p}}_0(\Omega) \cap L^\infty(\Omega). \]
4 Main results

In this section we prove the existence of at least a weak solution of the problem [1]. We consider the approximate problems.

4.1 Approximate problems and a priori estimates

Let

\[g_i^n(x, u, \nabla u) = \frac{g_i(x, u, \nabla u)}{1 + \frac{1}{n}|g_i(x, u, \nabla u)|} \]

and

\[H_i^n(x, \nabla u) = \frac{H_i(x, \nabla u)}{1 + \frac{1}{n}|H_i(x, \nabla u)|} \]

By Leray-Lions (see e.g. [14]), there exists at least a weak solution \(u_n \in W_0^{1,p} (\Omega) \) of the following approximate problem

\[
\begin{align*}
\left\{ \begin{array}{l}
- \sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i(x, u_n, \nabla u_n) + \sum_{i=1}^{N} g_i^n(x, u_n, \nabla u_n) \\
\quad + \sum_{i=1}^{N} H_i^n(x, \nabla u_n) = f - \sum_{i=1}^{N} \frac{\partial}{\partial x_i} k_i \quad \text{in } \Omega \\
\quad \text{on } \partial \Omega.
\end{array} \right.
\]

(13)

Lemma 1 See ([9], lemma 4.2) Let \(A \in \mathbb{R}^+ \) and \(u \in W_0^{1,p} (\Omega) \), then there exists \(t \) measurable subsets \(\Omega_1, \ldots, \Omega_t \) of \(\Omega \) and \(t \) functions \(u_1, \ldots, u_t \) such that \(\Omega_1 \cup \cdots \cup \Omega_t = \Omega \) and \(|\Omega_1| = A \) for \(s \in \{1, \ldots, 1\} \), \(x \in \Omega : |\frac{\partial u}{\partial x_i}| = 0 \) for \(i = 1, \ldots, t \), \(N \subseteq \Omega_t, \frac{\partial u}{\partial x_i} = \frac{\partial u}{\partial x_i} \) a.e. in \(\Omega_t \), \(\frac{\partial u}{\partial x_i} = \frac{\partial u}{\partial x_i} \) \(u \in \Omega \) and \(\text{sign}(u) = \text{sign}(u_n) \) if \(u \notin \Omega \).

Proposition 2 Assume that \(\bar{p} < N \), ([12] hold and let \(u_n \in W_0^{1,p} (\Omega) \) be a solution to problem (13) then, we have

\[
\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^p \leq C,
\]

(14)

for some positive constant \(C \) depending on \(N, \Omega, \lambda, \gamma, p, b, \|f\|_{L^{p'}(\Omega)}, \|g\|_{L^{p'}(\Omega)} \) for \(i = 1, \ldots, N \).

Proof: Let \(A \) be a positive real number, that will be chosen later, Refering to lemma 1. Let us fix \(s \in \{1, \ldots, t\} \) and let us use \(T_k(u_n) \) as test function in problem (13) using ([5], [6]), Young’s and Hölder’s inequalities and proposition 1 we obtain

\[
\sum_{i=1}^{N} \int_{|u_n| \leq k} \left| \frac{\partial u_n}{\partial x_i} \right|^p \leq C_1 \left(\int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_1} \right)^{\frac{1}{p_1}} + \sum_{k=1}^{N} \int_{|u_n| \leq k} \left| \frac{\partial u_n}{\partial x_i} \right|^p \]

(15)

The dominated convergence theorem implies that

\[
\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^p \leq C_1 \left(\int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_1} \right)^{\frac{1}{p_1}} + \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^p \]

(16)

and in what the constants depend on the data but not on the function \(u \).

Using condition ([10]), Hölder’s and Young’s inequalities, lemma 1 and proposition 1 we get

\[
\sum_{i=1}^{N} \int_{\Omega} \left| H_i(x, \nabla u) \right| |u_n| \leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^p \]

(17)

for some constant \(C_1 > 0 \), where \(d_i = \prod_{i=1}^{N} \left(\int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right|^{p_1} \right)^{\frac{1}{p_1}} \)

(18)
inequality (17) becomes
\[\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_i}{\partial x_i} \right|^p \leq C_4 \left(\sum_{i=1}^{N} \int_{\Omega} \frac{\left| f_i \right|}{L^p(\Omega)} \right)^{1/p} \]
for some constant \(C_4 > 0 \) and for \(s = 1 \), we get
\[\int_{\Omega} \left| \frac{\partial u_i}{\partial x_i} \right|^p \leq \frac{1}{2} \sum_{i=1}^{N} \int_{\Omega} \frac{\partial u_i}{\partial x_i} |p_i| \]
\[\leq C_4 \left(\sum_{i=1}^{N} \int_{\Omega} \frac{\left| f_i \right|}{L^p(\Omega)} \right)^{1/p} \]
Let us choose \(A \) such that (18) and \(1 - C_4 \sum_{i=1}^{N} A_i \left| \frac{\partial u_i}{\partial x_i} \right|^p > 0 \) hold, (see [9]).
For example, we can take
\[A \min \left\{ \left(\frac{1}{x^2} \right)^{\frac{1}{2} \max_{i \leq N \leq 1} |1 - \frac{\partial u_i}{\partial x_i}|}, \left(\frac{1}{x^2} \right)^{\frac{1}{2} \max_{i \leq N \leq 1} |\frac{\partial u_i}{\partial x_i}|} \right\} \]
By this choice, we obtain
\[d_1 = \min \left\{ \sum_{i=1}^{N} \left(\int_{\Omega} \frac{\partial u_i}{\partial x_i} |p_i| \right)^{1/p} \right\} \]
\[\leq C_5 \left(\left(\sum_{i=1}^{N} \int_{\Omega} \frac{\left| f_i \right|}{L^p(\Omega)} \right)^{1/p} \left(\sum_{i=1}^{N} \int_{\Omega} \frac{\left| \frac{\partial u_i}{\partial x_i} \right|^p}{L^p(\Omega)} \right)^{1/p} \right) \]
Then there exists a constant \(C_6 > 0 \) such that \(d_1 \leq C_6 \) and by (20), we obtain
\[\sum_{i=1}^{N} \int_{\Omega} \frac{\partial u_i}{\partial x_i} |p_i| \leq C_7 \]
for some constant \(C_7 > 0 \). Moreover using (21) in (19) and iterating on \(s \), we have
\[\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_i}{\partial x_i} \right|^p \leq C_9 \]
then arguing as before, we obtain \(\sum_{i=1}^{N} \int_{\Omega} \frac{\partial u_i}{\partial x_i} |p_i| \leq C_9 \),
for some constant \(C_9 > 0 \), then
\[\left| \int_{\Omega} |u|^p \right|_{L^p(\Omega)} \leq C_{10} \]
for some positive \(k > 0 \).
Since \(u_n \) is bounded in \(L^p(\Omega) \) (the embedding \(L^p(\Omega) \hookrightarrow L^p(\Omega) \)) is compact, we obtain the following results.

Corollary 1 If \(u_n \) is a weak solution of problem (13), then there exists a subsequence \((u_{n_k})_k \) such that \(u_n \rightharpoonup u \) weakly in \(L^p(\Omega) \), strongly in \(L^p(\Omega) \) and a.e. in \(\Omega \).

4.2 Strong convergence of \(T_k(u_n) \)

Lemma 2 Assume that \(u_n \rightharpoonup u \) weakly in \(L^p(\Omega) \) and \(a, \epsilon \) in \(\Omega \) and
\[\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u_n, \nabla u_n) - a_i(x, u, \nabla u) \right] \frac{\partial u_n}{\partial x_i} \cdot \frac{\partial u_n}{\partial x_i} \rightarrow 0 \],
\[u_n \rightharpoonup u \text{ strongly in } L^p(\Omega) \).

Proof: The proof follows as in Lemma 5 of [15] taking into account the anisotropy of operator.

Proposition 3 Let \(u_n \) be a solution to the approximate problem (13), then
\[T_k(u_n) \rightarrow T_k(u) \text{ strongly in } L^p(\Omega) \].

Proof: Let us fix \(k \) and let \(\delta \) be a real number such that \(\delta \geq \left(\frac{(1/k)}{2} \right)^2 \). Let us define \(z_n = T_k(u_n) - T_k(u) \) and \(\varphi(s) = se^{\delta s^2} \), it is easy to check that for all \(s \in \mathbb{R} \) one has
\[\varphi'(s) - \frac{L(k)}{\lambda} |\varphi(s)| \geq \frac{1}{2} \]
Using \(\varphi(z_n) \) as test function in (13), we get
\[\sum_{i=1}^{N} \int_{\Omega} \left[a_i(x, u_n, \nabla u_n) \frac{\partial \varphi(z_n)}{\partial x_i} \right] + \sum_{i=1}^{N} \int_{\Omega} H_i^\epsilon(x, u_n, \nabla u_n) \varphi(z_n) = \int_{\Omega} f \varphi(z_n) + \sum_{i=1}^{N} \int_{\Omega} \left(\frac{\partial \varphi(z_n)}{\partial x_i} \right) \frac{\partial u_n}{\partial x_i} \]
Since \(\varphi(z_n) \rightarrow 0 \) weakly in \(L^p(\Omega) \) then \(\int_{\Omega} f \varphi(z_n) \rightarrow 0 \) as \(n \rightarrow +\infty \). Since \(T_k(u_n) \rightarrow T_k(u) \) weakly in \(L^p(\Omega) \) and \(\varphi'(z_n) \) is bounded then \(\sum_{i=1}^{N} \int_{\Omega} \left(\frac{\partial \varphi(z_n)}{\partial x_i} \right) \frac{\partial u_n}{\partial x_i} \rightarrow 0 \) as \(n \rightarrow +\infty \). On the other hand, we have
\[\sum_{i=1}^{N} \int_{\Omega} H_i^\epsilon(x, u_n, \nabla u_n) \varphi(z_n) \]
then dominated convergence theorem \(b_i \varphi(z_n) \rightarrow 0 \) strongly in \(L^p(\Omega) \), then
\[\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq C \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
Since \(b_i \varphi(z_n) \rightarrow 0 \) a.e. in \(\Omega \) and \(|b_i \varphi(z_n)| \leq |b_i| x 2 \epsilon k^2 \delta \in L^p(\Omega) \), then by dominated convergence theorem \(b_i \varphi(z_n) \rightarrow 0 \) strongly in \(L^p(\Omega) \), then
\[\sum_{i=1}^{N} \int_{\Omega} H_i^\epsilon(x, u_n, \nabla u_n) \varphi(z_n) \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
\[\leq \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial u_n}{\partial x_i} \right| |b_i \varphi(z_n)| \]
On the other hand, we have
\[
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \frac{\partial \varphi(z_{n})}{\partial x_{i}} dx = \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi'(z_{n}) dx.
\]

Then the sequence \(\left\{ a_{i}(x, u_{n}, \nabla u_{n}) \varphi(z_{n}) \right\} \) is bounded in \(L^{p}(\Omega) \), then by the growth condition \(6 \), we get
\[
\left| \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u_{n}, \nabla u_{n}) \frac{\partial \varphi(z_{n})}{\partial x_{i}} dx \right| \leq 2^{p_{i}^{-1}} \left(1 + 8 \delta k^{2} \right) \int_{\Omega} \left| \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \frac{\partial T_{k}(u_{n})}{\partial x_{i}} \varphi'(z_{n}) dx \right| \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx.
\]

Then the sequence \(\left\{ a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \varphi(z_{n}) \right\} \) is equi-integrable and by Vitali’s theorem one has \(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \varphi(z_{n}) \) converges to \(a_{i}(x, T_{k}(u), \nabla T_{k}(u)) \) strongly in \(L^{p}(\Omega) \). Since \(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} \to \frac{\partial T_{k}(u)}{\partial x_{i}} \) weakly in \(L^{p}(\Omega) \), then
\[
\lim_{n \to +\infty} \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u)) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi'(z_{n}) = 0.
\]

It follows that
\[
\sum_{i=1}^{N} \int_{\Omega} \left(a_{i}(x, u_{n}, \nabla u_{n}) \frac{\partial \varphi(z_{n})}{\partial x_{i}} \right) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi'(z_{n}) = 0.
\]

On the other hand, by virtue of \(5 \) and \(9 \),
\[
\sum_{i=1}^{N} \int_{\Omega} \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi'(z_{n}) + \varepsilon_{5}(n).
\]

Similarly as above, it’s easy to see that by \(6 \), corollary \(1 \) and Vitali’s theorem one has
\[
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \varphi(z_{n}) dx \leq \sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx.
\]

and taking into account that \(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} \to \frac{\partial T_{k}(u)}{\partial x_{i}} \) weakly in \(L^{p}(\Omega) \), we obtain
\[
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx \to 0
\]

where \(\kappa \in L^{p}(\Omega) \). Hence, we get
\[
\sum_{i=1}^{N} \int_{\Omega} \left(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \right) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx \to 0
\]

as \(n \to +\infty \). Thanks to \(6 \) and \(14 \), the sequence \(\left\{ a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \right\} \) is bounded in \(L^{p}(\Omega) \), so that there exists \(l_{k}^{*} \in L^{p}(\Omega) \) such that \(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \to l_{k}^{*} \) weakly in \(L^{p}(\Omega) \). We have
\[
\sum_{i=1}^{N} \int_{\Omega} \left(a_{i}(x, T_{k}(u_{n}), \nabla T_{k}(u_{n})) \right) \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx = \sum_{i=1}^{N} \int_{\Omega} l_{k}^{*} \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx.
\]

Since \(\varphi(z_{n}) \to 0 \) weakly in \(L^{\infty}(\Omega) \), we conclude that
\[
\sum_{i=1}^{N} \int_{\Omega} l_{k}^{*} \left(\frac{\partial T_{k}(u_{n})}{\partial x_{i}} - \frac{\partial T_{k}(u)}{\partial x_{i}} \right) \varphi(z_{n}) dx \to 0
\]

as \(n \to +\infty \). Hence, we get
\[\left| \sum_{i=1}^{N} \int_{[u_n \leq k]} g_i^n(x, u_n, \nabla u_n) \varphi(z_n) dx \right| \leq \frac{L(k)}{\lambda} \sum_{i=1}^{N} \int_{\Omega} A_i(x, T_k(u_n), \nabla T_k(u_n)) \]

(26)

\[-a_i(x, T_k(u_n), \nabla T_k(u_n)) \left(\frac{\partial T_k(u_n)}{\partial x_i} - \frac{\partial T_k(u)}{\partial x_i} \right) \varphi(z_n) dx + \epsilon \varepsilon(n). \]

Combining (24), (25) and (26), we obtain

\[0 \leq \sum_{i=1}^{N} \int_{\Omega} \left(a_i(x, T_k(u_n), \nabla T_k(u_n)) - a_i(x, T_k(u), \nabla T_k(u)) \right) \left(\frac{\partial T_k(u_n)}{\partial x_i} - \frac{\partial T_k(u)}{\partial x_i} \right) \leq 2 \epsilon \varepsilon(n), \]

then Lemma 2 gives

\[T_k(u_n) \rightarrow T_k(u) \text{ strongly in } W_0^{1, \overline{p}}(\Omega). \]

(27)

4.3 Existence results

Theorem 1 Assume that \(\overline{p} < N \) and (6)–(12) hold. Then there exists at least a weak solution of the problem (1).

Proof: By (4.2) the sequence \(\frac{\partial u_n}{\partial x_i} \) is bounded in \(L^{\overline{p}}(\Omega) \), so that \(\frac{\partial u_n}{\partial x_i} \rightarrow \frac{\partial u}{\partial x_i} \) weakly in \(L^{\overline{p}}(\Omega) \) for \(i = 1, \ldots, N \) and \(u_n \rightarrow u \) strongly in \(L^{\overline{p}}(\Omega) \). By (6) there exists a subsequence, which we still denote by \(u_n \) such that \(\frac{\partial u_n}{\partial x_i} \rightarrow \frac{\partial u}{\partial x_i} \) a. e. in \(\Omega \) for \(i = 1, \ldots, N \), then for \(i = 1, \ldots, N \), we have

\[\int_{\Omega} A_i(x, u_n, \nabla u_n) \varphi(z_n) dx \leq \frac{L(k)}{\lambda} \sum_{i=1}^{N} \int_{\Omega} a_i(x, T_k(u_n), \nabla T_k(u_n)) \left(\frac{\partial T_k(u_n)}{\partial x_i} - \frac{\partial T_k(u)}{\partial x_i} \right) \varphi(z_n) dx + \epsilon \varepsilon(n). \]

Moreover by (6) and (10), we have

\[\int_{\Omega} \left(H_i^n(x, u_n, \nabla u_n) \right) dx \leq C \left(\int_{\Omega} |u_n|^{\overline{p}^*} + \int_{\Omega} |\partial u_n|^{p_i} \right) \]

(14)

\[\int_{\Omega} \left(H_i^n(x, u_n, \nabla u_n) \right) dx \leq C \left(\int_{\Omega} |\partial u_n|^{p_i} \right) \]

by (14), \(\left(a_i(x, u_n, \nabla u_n) \right) \) and \(\left(H_i(x, u_n, \nabla u_n) \right) \) are bounded in \(L^{\overline{p}}(\Omega) \) then \(a_i(x, u_n, \nabla u_n) \rightarrow a_i(x, u, \nabla u) \) weakly in \(L^{\overline{p}}(\Omega) \) and \(H_i(x, u_n, \nabla u_n) \rightarrow H_i(x, u, \nabla u) \) weakly in \(L^{\overline{p}}(\Omega) \). Now we prove that \(g_i^n(x, u_n, \nabla u_n) \) is uniformly equi-integrable for \(i = 1, \ldots, N \). For any measurable \(E \) of \(\Omega \) and for any \(k \) in \(\mathbb{R}^* \), we have

\[\int_{E} g_i^n(x, u_n, \nabla u_n) dx \leq \int_{E \cap [u_n \leq k]} g_i^n(x, u_n, \nabla u_n) dx + \int_{E \cap [u_n > k]} g_i^n(x, u_n, \nabla u_n) dx \]

\[\leq \frac{1}{k} \int_{E \cap [u_n > k]} T_k(u_n)g_i^n(x, u_n, \nabla u_n) dx \]

we have \(g_i^n \) is uniformly equi-integrable for any \(i \), since \(g_i^n(x, u_n, \nabla u_n) \rightarrow g_i(x, u, \nabla u) \) a. e. in \(\Omega \), we get \(g_i^n(x, u_n, \nabla u_n) \rightarrow g_i(x, u, \nabla u) \) in \(L^1(\Omega) \). That allow us to pass to the limit in the approximate problem.

Remark 1 The condition (6) can be substituted by

\[\left| a_j(x, s, \xi) \right| \leq \frac{1}{j} \int_{[\xi]} \left(j_1 + |\xi| \right)^{p_i - 1} |\xi|, \]

where \(j_1 \) is a positive function in \(L^p(\Omega) \) for \(i = 1, \ldots, N \), and the condition (12) can be substituted by

\[\left| g_j(x, s, \xi) \right| \leq C_i (\xi|\xi|^{p_i - 1}), \]

where \(C_i \) is a positive function in \(L^1(\Omega) \) for \(i = 1, \ldots, N \).

www.astesj.com
References

