
www.astesj.com 40

A New profiling and pipelining approach for HEVC Decoder on ZedBoard Platform

Habib Smei*1, 2, Kamel Smiri 1, 3, Abderrazak Jemai 1, 4

1Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire LIP2, 2092, Tunis, Tunisie

2Direction Générale des Etudes Technologiques, Institut Supérieur des Etudes Technologiques de Rades, Rades, Tunisie

3Université de Manouba, Institut Supérieur des Arts Multimédias Manouba, Campus Universitaire Manouba, 2010, Tunisie

4Université de Carthage, INSAT, B.P. 676, 1080 Tunis, Cedex, Tunisie

1. Introduction

This paper is an extension of the work originally presented in
[1].

In recent years, the number of applications processing digital
video is steadily growing. Streaming videos, videoconferencing,

web cameras, mobile video conversations are examples of digital
video that require good video quality.

In addition, statistics show that by 2020 [2], Internet video
streaming and downloads will increase to over 80% of all
consumer Internet traffic. This growing demand for digital video
processing encourages digital video coding market operators to
design and develop new solutions that can meet this growing need.

ASTESJ

ISSN: 2415-6698

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 01 August, 2017
Accepted: 22 September, 2017
Online: 02 October, 2017

 New multimedia applications such as mobile video, high-quality Internet video or digital
television requires high-performance encoding of video signals to meet technical
constraints such as runtime, bandwidth or latency. Video coding standard h.265 HEVC
(High Efficiency Video Coding) was developed by JCT-VC to replace the MPEG-2, MPEG-
4 and h.264 codecs and to respond to these new functional constraints. Currently, there are
several implementations of this standard. Some implementations are based on software
acceleration techniques; Others, on techniques of purely hardware acceleration and some
others combine the two techniques. In software implementations, several techniques are
used in order to decrease the video coding and decoding time. We quote data parallelism,
tasks parallelism and combined solutions. In the other hand, In order to fulfill the
computational demands of the new standard, HEVC includes several coding tools that
allow dividing each picture into several partitions that can be processed in parallel, without
degrading neither the quality nor the bitrate.
In this paper, we adapt one of these approaches, the Tile coding tool to propose a pipeline
execution approach of the HEVC / h265 decoder application in its version HM Test model.
This approach is based on a fine profiling by using code injection techniques supported by
standard profiling tools such as Gprof and Valgrind. Profiling allowed us to divide
functions into four groups according to three criteria: the first criterion is based on the
minimization of communication between the different functions groups in order to have
minimal intergroup communication and maximum intragroup communication. The second
criterion is the load balancing between processors. The third criterion is the parallelism
between functions. Experiments carried out in this paper are based on the Zedboard
platform, which integrates a chip Zynq xilinx with a dual core ARM A9. We start with a
purely sequential version to reach a version that use the pipeline techniques applied to the
functional blocks that can run in parallel on the two processors of the experimental
Platform. Results show that a gain of 30% is achieved compared to the sequential
implementation.

Keywords:
Co-Design flow
Profiling
Performance estimation
Embedded Systems
Pipeline
HEVC decoder
Zynq
Zedboard

*Corresponding Author: Habib Smei, Université de Tunis El Manar, Faculté des
Sciences de Tunis, Laboratoire LIP2, 2092, Tunis, Tunisie
Email: habibsmei@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com

 Special Issue on Recent Advances in Engineering Technology

https://dx.doi.org/10.25046/aj020605

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020605

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 41

Indeed, we are witnessing an increase in companies and
research groups working to develop standards of video codec with
better quality.

The JCT-VC (Joint Collaborative Team on Video Coding)
group, formed by VCEG and MPEG, was created at the end of
2009 to create a new standard that meets the new requirements of
video processing [3]. Following the work of this group, a new
standard called H.265 / HEVC (High Efficiency Video Coding)
was created with the aim of compressing a half-rate video from the
previous H.264 / AVC standard to one Quality. This improvement
in terms of efficiency is necessary to manage beyond high
definition resolutions like HD, Quad-HD and Ultra-HD.

Many research groups and companies participate in
standardization meetings and contribute to the growth of the
standard with new algorithms. As a result, many implementations
of this standard have been developed. One of these
implementations is the test model software [4], which is a complete
encoder and a decoder for the new algorithms.

To design video processing devices that implement standard
video encoders, designers investigate several solutions. All
solutions are based on improvement techniques based on software
or hardware optimization approaches or a combination of both
approaches.

The work undertaken in this paper is part of the LIP2 co-design
flow.

In a co-design process, designers typically begin to run
embedded application code on a host machine. Then, a thin
profiling step is done to describe each function. This description
can affect the execution time, memory size, number of calls,
relationship between functions and other parameters that may be
useful for the designer to make the best design decisions.

In this paper, we present a new approach to implement a
pipeline solution of the HEVC H.265 application decoder based on
the Zedboard platform [5]. The results show that a gain of 30% is
achieved compared to the sequential implementation.

The rest of this article is organized as follows: Section 2
presents an overview of the HEVC Standard and HEVC h.265
decoders. In section 3, we present some works in relation with
HEVC parallelization.

Section 4 gives a detailed description and profiling of the
version of the test model of the decoder and analyses the results
obtained. Section 4 shows the execution of the decoder pipeline on
the Zedboard platform. Finally, Some conclusion remarks and
future directions are given in Section 6.

2. Overview of the HEVC Standard

Due to the complexity of multiprocessor systems, the
probability of failure is all the more important that it requires
special consideration. Indeed, during a failure, a part of the
application state disappears and the application may pass in an
inconsistent state that prevents it from continuing normal
execution.

The HEVC [5,6] is the acronym of "High Efficiency Video
Coding". This is the latest video-coding format used by JCT-VC.
This standard is an improvement of the H.264 / AVC standard. It

was created on January 2013 [7], when a first version was
finalized. It was developed jointly by the ISO / IEC Moving Picture
Experts Group (MPEG) & ITU-T Video Coding Experts Group
(VCEG).

The main objective of this standard is to significantly improve
video compression compared to its predecessor MPEG-4 AVC /
H.264 by reducing bitrate requirements by as much as 50%
compared to H.264/ AVC, with equivalent quality.

The HEVC supports all common image definitions. It also
provides support for higher frame rates, up to 100, 120 or 150
frames per second.

Video coding standards have evolved mainly through the
development of the well known ITU-T and ISO / IEC standards.
ITU-T produced H.261 [8] and H.263 [9], ISO / IEC produced
MPEG-1 [10] and MPEG-4 Visual [11], and the two organizations
together produce H. 262 / MPEG -2 Video [12] and H.264 /
MPEG-4 Advanced Video Coding (AVC) [13,14] standards.

The two standards that have been produced jointly have had a
particularly strong impact and have found their way into a wide
variety of products that become increasingly common these days.
In the course of this evolution, efforts have been multiplied to
increase the compression capacity and to improve other
characteristics such as the robustness against data loss. These
efforts take into account the capability of practical IT resources to
be used in products at the time of the expected deployment of each
standard.

The HEVC standard is intended to complement various
objectives and to meet even stronger needs to encode videos with
an efficiency more important than H.264 / MPEG -4. Indeed, there
is a growing diversity of services such as ultra high definition
television (UHDTV) and video with a higher dynamic range.

On the other hand, the traffic generated by video applications
targeting peripherals and mobile tablets and transmission
requirements for video-on-demand services impose serious
challenges in current networks. An increased desire for quality and
superior resolutions also occurs in mobile applications.

The HEVC standard defines the process of encoding and
decoding the video. As an input, the encoder will process an
uncompressed video. It performs the prediction, transformation,
quantification and entropy coding processes to produce a bitstream
conforming to the H.265 standard.

The decoding process is divided into four stages. The first
stage is the entropy decoding for which relevant data such as
reference frame indices; intra-prediction mode and coding mode
are extracted. These data will be used in the following stages. The
second is called reconstruction step, which contains the inverse
quantization (IQ), inverse transform (IT) and a prediction process,
which can be either intra-prediction or motion compensation
(inter-prediction). In the third stage, a de-blocking filter DF is
applied to the reconstructed frame. Finally a new filter called
Sample Adaptive Offset (SAO) is applied in the fourth stage. This
filter adds offset values, which are obtained by indexing a lookup
table to certain sample values [14].

In HEVC, the coding structure is based on a quaternary tree
representation allowing partitioning into multiple block sizes that

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 42

easily adapt to the content of the frames. Three units are defined to
treat each frame. First, the Coding Unit (CU) that defined the
frame‘s based size on pixels. It allows sizes ranging from 8x8 to
64x64 pixels to be adapted according to the application. Second,
the Prediction Unit (PU) that defines the partitioning size
according to predicts type (inter and intra). Finally, the Transform
Unit (TU) defines the quantification and transforms size to be
applied to a prediction unit. Four levels of decomposition are
possible for this TU, which take sizes ranging from 4x4 to 32x32
pixels.

Three types of coding structures are defined; ALL intra or
intra-only (AI), Low Delay (LD) and Random Access (RA). In the
first structure, all pictures are encoded as intra, which yields very
high quality, and no delay; this mode is mainly aimed for studio
usage.

In the low delay one, the first is an intra frame while the others
are encoded as generalized P or B pictures (GPB). This structure
is conceived for interactive real-time communication such as video
conferencing or real-time uses where no delay for waiting for
future frames is permitted.

Finally, the random access structure is similar to hierarchical
structure and intra pictures are inserted periodically, at the rate of
about one per second. It is designed to enable relatively frequent
random access points in the coded video data. This coding order
has an impact on latency, since it requires frame reordering: for
this reason the decoder might have to wait to have decoded several
frames before sending them to output. This is the most efficient
mode for compression but also requires the most computational
power.

Each of these three modes has a low complexity variant where
some of the tools are disabled or switched into a faster version. As
an example low complexity uses CAVLC instead of CABAC

Figure 1. Functional structure of the HEVC decoder

3. Related works

HEVC includes several parallel specifications for many
distributed multi-core systems. This allows division of each picture
into several partitions that can be processed in parallel.

For these specifications, coarse grain communications levels
are used. We cite the Group Of Pictures (GOP) level, the Slice
Level, the Tile level and the wavefront parallel processing (WPP)
level.

All these communication granularity has been justified by the
small data dependency between processes acting on separate
partition blocks.

For an embedded multiprocessor System on Chip (SoC)
implementation, the communication granularity specified is not
appropriate in all cases given the limited on-chip resources
(memory, CPU frequency, bandwidth, …). For this, more fine
grain communications granularities (CTU, TU, PU) are specified
in HEVC standard based on a fine partition of a frame.

In [15], Authors carried out the analysis of parallel processing
tools to understand the effectiveness of achieving the purpose for
which they are targeted. In [16], an optimized method for MV-
HEVC is proposed. It uses multi-threading and SIMD instructions
implementation on ARM processors. The proposed method of
MV-HEVC showed improvement in terms of processing speed on
advanced RISC multi-core processors mobile platforms (ARM). In
[17], Authors used the Wavefront Parallel Processing (WPP)
coding and implemented it on multi- and many-core processors.
The implemented approach is named Overlapped Wavefront
(OWF), an extension of WPP tool that allows processing multiple
picture partitions as well as multiple pictures in parallel with
minimal compression losses. Results of her experimentations show
that exploiting more parallelism by increasing the number of cores
can improve the energy efficiency measured in terms of Joules per
frame substantially. [18] discussed various methods in which the
throughput of the video codec has been improved including at the
low level in the CABAC entropy coder, at the high level with tiles,
and at the encoder with parallel merge/skip tool. In [19], many
optimizations are proposed to achieve HEVC real-time decoding
on a mobile processor. These code optimizations include the
adoption of single-instruction multiple-data (SIMD). An important
speedup is accomplished with multiple threads assigned each one
to a picture to be decoded. However, in the proposed solution, the
SAO filter has not been implemented and optimized. Further, for
the AI configuration, no additional speedup is achieved since no
CPU resources are available anymore to decode a picture. In [20],
a hybrid parallel decoding strategy for HEVC is presented. It
combines task and data parallelism without any constraint or
coding tools. The proposed approach aims to balance execution
time of different stages, especially with SSE (Streaming SIMD
Extensions) optimization. Another parallelism approach based on
entropy slices is presented in [21]. This approach is not based on
many slices because it can reduce the coding efficiency. It assigns
one thread per LCU block to parallelize the HEVC decoder.
Moreover, these threads are synchronized using the Ring-Line
Strategy to maintain the wave front dependencies. This solution is
great for high resolutions; however, it’s not the same for others.

4. Profiling of Test Model HEVC Decoder

In the specification and modelling phase of a co-design flow,
the complete embedded system is written in a high level language
such as C, C++, Java, Matlab and then the software is functionally
verified. It will then be simulated on a host machine in order to
understand its behaviour and measure the runtime performance of
the program and eventually return feedback and performance
statistics to the designer

This specification is an input to the profiling step, which
consists in understanding the behaviour of the system in the
various execution cases in order to deduce a clear representation of
the various functions that represent it.

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 43

The behaviour of the system can be understood and mastered
by following a parametric analysis of its execution in the different
configurations and situations that the system is subject to.

This analysis can only be undertaken after having completed a
detailed description of different functions of the system. The
description can include the execution time of each function, its
sizes, call graphs, dependencies between them and other
information that can help designers to make the best decisions and
technical choices. This process of identification and description is
called profiling.

Once the profiling is done, designers can test the system with
several configurations and estimate its performance parameters.

Several works dealing with performance estimation of
embedded systems have been realized. In the case of the HEVC
codec, performance estimation aims to test the ability of codecs to
process video for real-time applications and to support new
resolutions (HD, UHD, Full HD, 4k, 8k) and to measure footprint
and the space occupied by the hardware components that make up
the device.

In the work carried out by [22], a complete profiling of the
encoder was carried out. The aim of this work is to present the
different functions of the encoder, their execution times and the
types of operations carried out in order to deduce the functions that
are candidates for a hardware migration. The results are presented
in terms of types of assembly level instructions in each encoder
function. In [23], the authors propose a hybrid parallel decoding
strategy for HEVC, which combines task level parallelism and data
level parallelism. In [24], the authors use a performance estimation
analysis to prove a power model based on bit derivations that
estimates the energy required to decode a given HEVC coded
bitstream. In [25], authors proposed a method to improve
H.265/HEVC encoding performance for 8K UHDTV moving
pictures by detecting amount or complexity of object motions.

4.1. Functions of the Test Model
HEVC HM Test Model is an open source project under BSD

license. It is intended for the implementation of an efficient C++
HEVC decoder. The version used in this work was released from
[4] and it is compliant with most of the HEVC standard. The code
of the application is composed of C++ classes, and the main classes
and functions are listed in the table 1.

The graph below (Figure 2) shows the most important classes in
the decoding process and their associated functions. We note that
the most significant classes are TComDataCU, TComTrQuant and
TComSlice. The TComDataCU class represents the declaration of
the CU data structure. The TComTrQuant class includes inverse
transformation and inverse quantization, and the TComSlice class
includes the decoder decompression process.

The optimization of the codes of the functions making up these
classes can have a positive impact on the execution time and the
footprint of the decoder.

As DecodeCTU, DecompressCtu called recursive function
xDecompressCU which, in turn, decompresses each CU with the
adequate prediction mode. When all CTUs in a frame are
processed, the loop ends and the decoder performs both DF and
SAO filters to correct artefacts.

Table 1: Main classes and principal functions of test model decoder

Main Classes Principal functions Size of code
(Ko)

TDecGop FilterPicture
decompressSlice 8

TAppDecCfg parseCfg 9

TAppDecTop Decode x WriteOutput
21

TDecEntropy

decodePredInfo

decodePUWise

decodeInterDirPU

28

TdecTop Decode Executeloopfilter 32

TComLoopFilter xDeblockCU
LoopFilterPic

35

TDecCU

decompressCtu decodeCtu

xdecodeCU xcompressCU

xReconInter xReconIntraQT

44

TComSlice decompressSlice 126

TComTrQuant

partialBufferflyInverse32

partialBufferflyInverse16

partialBufferflyInverse8

xDeQuant

135

TComDataCU initCu
copySubCu

140

As shown in the diagram in Fig. 3, the process of decoding a
frame is done by calling the DecompressCTU function of the
TDecSlice class. This function executes a read loop of all CTUs in
the current frame. Each CTU is decoded through the DecodeCtu
function of the TDecCu class. The XdecodeCu function of the
same class, recursively performs the decoding of all CUs in the
same CTU. When decoding a CTU, the TDecSlice makes a second
call to the DecompressCTU function of the TDecCu class. Like
DecodeCTU, DecompressCtu call the recursive function
xDecompressCU, which, in turn, decompresses each CU with the
proper prediction mode. When all CTUs in a frame are processed,
the loop ends and the decoder perform DF and SAO filters to
correct the artefacts.

Figure 2. Main functions of Test Model Decoder

0

50

100

150

Size of code
(Ko)

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 44

Figure 3. Frame decode Diagram of HM version

4.2. Call Graph functions of HM HEVC Decoder
Our goal in this step is to check the behaviour of the decoder

described above, and to evaluate the performance of its various
components in detail.

To achieve the profiling operation, we made use of profiling
techniques based on code injection and also the use of tools such
as gprof [26, 27] and Valgrind [28]. Gprof provides a flat profiling
to give the execution time of each function of the decoder and also
the number of times this function is called. Gprof can give us as a
result, the call graph. This indicates for each function code, the
number of times it was called, either by other functions or by itself.
This information shows the relationships between the different
functions and can be used to optimize certain code paths. Roughly,
the results of profiling the performance generated by GProf
revealed a runtime complexity of balance in terms of computing
time in the functions Motion Compensation (36%) and
ExecuteLoofilters of (16.7%).

Valgrind is a GPL licensed programming tool that can be used
for profiling under the Linux operating system. It includes several
tools, one of which is Callgrind. We used Callgrind to obtain the
exact number of operations that were performed while decoding
an entire video sequence. The results are separated in terms of
classes, and in every class in terms of functions.

The resulting graph shows for each function, the execution
time as a percentage of the total execution time (Valingring) and
the functions to which they appealed. Normally, the graph shows
that the most time-consuming functions are Motion Compensation
and ExecuteLoofilters.

The aim of the profiling step is to understand the behaviour of
the decoder described above and to evaluate the performance of its
various components in detail.

To do so, we used profiling tools such as Gprof and Valgrind.
These tools allow us to present the call graphs of the different
functions and their execution times, and thus the state of the stack
used. In order to have a complete profiling which includes the
execution sequences in the different execution scenarios and

configurations, a manual injection of code has been realized into
significant functions.

The Gprof tool can give as a result, the call graph. This
indicates for each function, the number of times it was called. This
information shows the relationships between the different
functions and can be used to optimize some code paths.

The profiling results generated by GProf revealed a
computational complexity in terms of execution time in Motion
Compensation (36%) and ExecuteLoofilters (16.7%) functions.

Valgrind is a GPL licensed tool. It includes several tools, one
of which is Callgrind. We used Callgrind to get the exact number
of operations performed when decoding a complete video
sequence. The results are separated in terms of classes and in each
class in terms of functions.

The resulting graph shows, for each function, the execution
time as a percentage of the total execution time and the functions
to which they appealed.

The graph shows that the most time-consuming functions are
Motion Compensation and ExecuteLoofilters.

4.3. Profiling and functions Execution trace
As explained above, in order to determine the sequence of

execution of the various functions of the decoder and the number
of calls, a combination of code injection (manual code injection)
and sampling profiling (using tools such as valgrind , Gprof, ...)
has been made. The code injection in each function of the decoder
has allowed us to locate called and calling functions. This also
helps us to know the execution sequential order of different
functions.

Figure 4. Functions execution Sequences

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 45

Values in parentheses indicate the execution order of decoder’s
functions.

The distribution of functions into groups is mainly based on
three criteria: The first is to minimize communication between
different groups of functions in order to have minimal inter-group
communication and maximum intra-group communication. The
second criterion is load balancing between the processors. Indeed,
the target platform (Zedboard) is equipped with the two ARM V9
processors. To ensure optimal utilization of two processors, we
must balance the charge of activity between the two cores. The
third criterion is the execution parallelism. Indeed, we must ensure
maximum parallel execution to minimize the average processing
time of images.

Taking into account all the criteria, we came to the distribution
of assigning the group functions 1, 2 and 4 to processor 0 (proc0)
and functions of the group 3 to processor 1 (Proc1).

The calculations we have developed suggested the division

mentioned above with the following performance data:

■ CPU.0:

Group 1: (1) (2) (3) (4) (15) (16) (17) (18) = 24.46%
Group 2: (5) (6) (7) (8) = 6.85%
Group 4: (19) (20) (21) (22) (23) (24) (25) (26) = 16.70%
Total activity time = 48.01%

■ CPU.1
Group 3: (9)(10)(11)(11’) (12)(12’)(13)(14)= 51.95%

Figure 5. Grouping decoder functions

According to profiling procedure, we can divide the code on
four main parts (Figure 4). The first contains the configurations
functions. The second group represents the entropy decoding
functions (decodeCTU and xdecodeCU). The third group is the
reconstruction. Finally, the HEVC filters are grouped. We analyse
their decoder’s execution time in order to know its behaviour at
runtime.

5. Experimental results

5.1. Test sequences
As an effort to carry out a good evaluation of the standard, the JCT-
VC developed a document with some reference sequences and the
codec configuration, which should be used with each one [29]. The
sequences are divided into 6 groups (Classes) based on their
temporal dynamics, frame rate, bit depth, resolution, and texture
characteristics

A subset of six video sequences was selected from this list.
These six video sequences were selected from three classes, such
that two sequences from each class, namely Class A, Class C,
Class F. Detailed descriptions of the sequences are given in Table
II.

Table 2: Bitstreams used in the experimentations

Resolution

(Sequence class)

Name Frame
rate

Frame
number

2560x1600
(Class A)

PeopleOnStreet
30

150

Traffic
30

300

832x480
(Class C)

BQMall
60

600

PartyScene 30 500

1024x768
(Class F)

ChinaSpeed 50 500

Slideediting 30 300

5.2. Zedboard Platform
Zedboard platform [30] (table III) is an evaluation platform

based on a Zynq-7000 family [31]. It contains on the same chip
two components. A dual-core ARM Cortex MPCore based on a
high-performance processing system (PS) that can be used under
Linux operating system or in a standalone mode and an advanced
programmable logic (PL) from the Xilinx 7th family that can be
used to hold hardware accelerators in multiple areas.

The two parts (PS and PL) interact between them by using
different interfaces and other signals through over 3,000
connections [32]. Available four 32/64-bit high-performance (HP)
Advanced eXtensible Interfaces (AXI) and a 64-bit AXI
Accelerator Coherency.

Table 3: Zedboard technical specifications

Component Characteristics

Processeur ZYNQ-7020 AP
SOC XC7Z020-
7CLG484CES

2 ARM Cortex A9 cores at 667
MHz

Memory 512 MB DDR3, 256 MB Quad-SPI
Flash et SD Card

Communication 10/100/1000 Ethernet, USB OTG et
USB UART

Extension FMC (Low Pin Count) et 5 Pmod
headers (2*6)

Display HDMI output, VGA output et
128*32 OLED

Input / Output 8 switches, 7 push butons et 8
leds

Current and Voltage 3.0 A (Max) et 12V DC input
Certification CE and RoHS certifier

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 46

In our experimentations, we have configured and compiled a
custom Linux kernel downloaded from the official Linux kernel
from Xilinx [31].

5.3. Pipeline execution approach

Since ZedBoard is based on Zynq chip that has dual cores, it is
possible to distribute functions between the two cores.

Because of strict sequentially that we have seen in the functions
execution of the HEVC decoder (HM Test Model version), the two
processors will necessarily be in mutual exclusion of activity. To
create parallel activity, we can transform the sequential video
processing by a "pipelined" treatment.

If we refer to the grouping of functions explained above, we
can consider that video sequence processing goes through four
stages:

Stage 0: Download to a frame buffer (FB) the frame to be
processed. This step corresponds to transition (1) in the graph (Fig.
5)

Stage 1: Decoding of the frame, corresponding to transitions
(2, 3, 4, 5, 6, 7, 8). This stage corresponds to the Entropy decode
process.

Stage 2: Decompression, corresponding to transitions (9, 10,
11-11 ', 12-12', 13, 14). This stage corresponds to the
reconstruction process (that contains Inverse Transform, Inverse
Quantification, Inter- prediction and Intra-prediction).

Stage 3: Filtering, which corresponds to transitions (15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26). This stage corresponds to the
Loop Filter process

A parametric analysis of the application has enabled to deduce
that the overall execution time of Stages 0, 1 and 3 is
approximately equivalent to the execution time of Stage 2.
Therefore, we can affect stages 0, 1 and 3 in the first PROC0
processor and Stage 2 to the second processor PROC1.

Figure 6. Pipeline execution based on dual cores Processor

Si,j represents the execution sequence of stage i applied to the
frame number j. The first three rows reflect the sequencing of stage
Si,j on the same processor PROC0:

Process P0, P1 and P2 support respectively the first, second and
the third row.

The fourth row reflects the execution sequence of stage2 of the
processor PROC1 applied to successive frames. A process P3
supports it.

Figure 7. Sequence Process on two processors (cores)

Results obtained for the RA, AI and LD configurations are presentaed in tables
IV, V and VI..

Table 4: Results for AI configuration

Class Sequence Frames
Number QP

Sequential Pipelined
Time
(ms)

Time
(ms)

A

People On
Street 150 22 594.28 386.28

32 454.59 295.49

Traffic 150 22 610.68 396.94
32 432.75 281.29

Average execution time 523.075 340
Gain 35%

C
Party Scene 500 22 307.41 218.26

32 219.16 155.61
BQ Mall 600 22 259.30 184.10

32 191.85 136.21
Average execution time 244.43 173.54

Gain 29%

F
China Speed 500 22 382.39 287.68

32 295.93 207.15
Slide Editing 300 22 279.75 199.83

32 242.71 169.9
Average execution time 300.19 210.14

Gain 28%

Table 5: Results for RA configuration

Class Sequence Frames
Number QP

Sequential Pipelined
Time
(ms)

Time
(ms)

A

People On
Street 150 22 409.51 274.37

32 256.97 172.17

Traffic 150
22 293.26 196.48
32 179.19 120.06

Average execution time 284.77 190.77
Gain 33%

C
Party Scene 500 22 153.41 107.38

32 89.64 62.75
BQ Mall 600

22 131.76 93.55
32 84.08 59.70

Average execution time 114.72 80.84
Gain 29.5%

F
China Speed 500 22 216.84 156.12

32 140.75 101.34
Slide Editing 300

22 56.93 38.14
32 50.25 33.67

Average execution time 116.19 82.31
Gain 29.15%

http://www.astesj.com/

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 47

Table 6: Results for LD configuration

Class Sequence Frames
Number QP

Sequential Pipelined
Time
(ms)

Time
(ms)

A

People On
Street 150 22 446.65 294.79

32 266.68 176.01

Traffic 150 22 310.86 220.71
32 164.25 116.62

Average execution time 297.11 202.03
Gain 32%

C
Party Scene 500 22 176.65 125.42

32 91.99 60.71
BQ Mall 600 22 142.03 99.42

32 85.04 56.13
Average execution time 123.9275 85.42

Gain 31%

F
China Speed 500 22 217.94 155.84

32 143.83 99.93
Slide Editing 300 22 45.43 35.35

32 41.39 27.85
Average execution time 112.14 74.01

Gain 28.89%

Figure 8. Execution time gain (AI configuration)

The experimental tests use reference sequences for the three
configurations (AI, RA and LD) and with different quantification
parameters (QPs). For the different configurations, results show a
considerable gain compared to the sequential version (around
30%). We also note that class A frames have more processing time
than the other classes (C and F) with a slightly more significant
gain. This is logical since the resolution in this class is more
important than for the other classes.

6. Conclusion

The objective of this article was to study the behaviour of the
HEVC decoder represented by the reference application Test
Model (HM). This study permitted us to discover the different
functions of the decoder, their size, the call graphs, the percentage
of CPU utilization and the number of instructions for each
function.

Moreover, we have identified the most consuming functions in
terms of CPU execution time and memory size, and then we have
represented the execution trace of the functions by the use of an
injection code technics. All these profiling results allowed us to
divide the functions into groups. Once the regrouping is done, we
proposed a parallelism approach based on the pipeline principle in
order to run the application on the two cores of the Zedboard

Platform. The experimental results found show an acceleration of
about 30% compared to the sequential version.

Other technics can be added to improve this approach such as
the increase of the number of processors or the implementation of
hardware accelerators in the PL side.

References

[1] H. Smei, K. Smiri, A. Jemai, “Pipelining the HEVC Decoder on ZedBoard
Plateform”, in 11th International Design & Test Symposium, IDT 2016,
Hammamet, Tunisia, December 18-20, 2016. IEEE 2016, ISBN 978-1-5090-
4900-4(IDT 2016).

[2] Cisco, Visual Networking Index (VNI): Forecast and Methodology, 2015-
2020.

[3] JCT-VC - Joint Collaborative Team on Video Coding -
[Online]:http://www.itu.int/en/ITU-T/studygroups/2013-
2016/16/Pages/video/jctvc.aspx

[4] BSD Licence HEVC decoder (HM), Reference web site :
[Online]:https://hevc.hhi.fraunhofer.de, code available Online at
https://github.com/bbc/vc2-reference. Accessed, September 2016

[5] Bingjie Han , Ronggang Wang, Zhenyu Wang, Shengfu Dong, Wenmin
Wang, Wen Gao, “HEVC decoder acceleration on multi-core x86 platform”
IEEE International Conference on Acoustic, Speech and Signal Processing
(ICASSP), 2014.

[6] D. Marpe and T. Wiegand, J. Sullivan, Microsoft Corporation, IEEE
Communications Magazine. August 2006.

[7] Article about HEVC -
[Online]:http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding

[8] Video Codec for Audiovisual Services at px64 kbit/s, ITU-T Rec. H.261,
version 1: Nov. 1990, version 2: Mar. 1993.

[9] Video Coding for Low Bit Rate Communication, ITU-T Rec. H.263, Nov.
1995 (and subsequent editions).

[10] Coding of Moving Pictures and Associated Audio for Digital Storage Media
at up to About 1.5 Mbit/s—Part 2: Video, ISO/IEC 11172-2 (MPEG-1),
ISO/IEC JTC 1, 1993.

[11] Coding of Audio-Visual Objects—Part 2: Visual, ISO/IEC 14496-2 (MPEG-
4 Visual version 1), ISO/IEC JTC 1, Apr. 1999 (and subsequent editions).

[12] Generic Coding of Moving Pictures and Associated Audio Information—
Part 2: Video, ITU-T Rec. H.262 and ISO/IEC 13818-2 (MPEG 2 Video),
ITU-T and ISO/IEC JTC 1, Nov. 1994.

[13] Advanced Video Coding for Generic Audio-Visual Services, ITU-T Rec.
H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC JTC 1, May 2003
(and subsequent editions).

[14] H.Krichene Zrida, A.Jemai, A.C.Ammari, M.Abid, “High Level H.264/AVC
Video Encoder Parallelization for Multiprocessor Implementation”,
Date’09, International Conference on Design, automation &Test. Nice,
France.

[15] P. GB, P. NS and R. Adireddy. “Analysis of HEVC/H265 Parallel Coding
Tools”. PathPartner Technology consulting Pvt. Ltd. White Paper. (2014).

[16] W. Liu, J. Li and Y. B. Cho. “A novel architecture for parallel multi-view
HEVC decoder on mobile device”. Journal on Image and Video Processing
(2017).

[17] C. Ching, M. Alvarez-Mesa, J. L. Ben Juurlink and T. Schierl. “Parallel
HEVC Decoding on Multi- and Many-core Architectures. A Power and
Performance Analysis”. J Sign Process Syst (2013).

[18] M. Zhou, V. Sze and M. Budagavi. “Parallel Tools in HEVC for High-
Throughput Processing”. Applications of Digital Image Processing XXXV,
Vol. 8499, 849910, (2014).

[19] B. Bross and al. “HEVC Real-time Decoding”, SPIE Proceedings Vol.
8856: Applications of Digital Image Processing XXXVI, (2013).

[20] B. Han and al. “HEVC Decoder acceleration multi-core X86 plateform”,
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), (2014).

[21] M. Alvarez-Mesa and al. “Parallel video decoding in the emerging HEVC
standard”, 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), (2012).

[22] F. Saab, I.H. Elhajj, A. Kayssi and A. Chehab, “ Profiling of HEVC
encoder", Article in Electronics Letters, July 2014.

0

100

200

300

400

500

600

Class A Class C Class F

AI configuration

Sequential version

Pipeline version

http://www.astesj.com/
http://dblp.uni-trier.de/pers/hd/s/Smei:Habib
http://dblp.uni-trier.de/pers/hd/b/Bekri:Safa
http://dblp.uni-trier.de/db/conf/idt/idt2016.html#SmiriBS16
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/video/jctvc.aspx
https://hevc.hhi.fraunhofer.de/
https://github.com/bbc/vc2-reference
http://en.wikipedia.org/wiki/High_Efficiency_Video_Coding

H. Smei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 6, 40-48 (2017)

www.astesj.com 48

[23] B.Han, R.Wang, Z.Wang, S.Dong, W.Wang and W.Gao, "HEVC Decoder
Acceleration On Multi-Core X86 Platform", IEEE International Conference
on Acoustic, Speech and Signal Processing (ICASSP), 2014.

[24] C.Herglotz, D.Springer, M.Reichenbach, B.Stabernack, and A.Kaup,
"Modeling the Energy Consumption of the HEVC Decoding Process", DOI
10.1109/TCSVT.2016.2598705, IEEE, 2016.

[25] R.Harada, Y.Matsuo And J.Katto, "Improvement Of H.265/HEVC Encoding
For 8K UHDTV By Detecting Motion Complexity", IEEE International
Conference on Consumer Electronics (ICCE), 2016.

[26] Gprof web Site. https://sourceware.org/binutils/docs/gprof/
[27] Gprof tutorial. [Online]:https://www.gadgetdaily.xyz/apply-gradual-

transition-effects-to-page-elements/
[28] Valgrind Web site. [Online]:http://valgrind.org/.
[29] F. Bossen, "Common HM test conditions and software reference

configurations," in 12th Meeting: Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC 1/SC 29/WG 11,
Geneva, 2013, document JCTVC-L1100.

[30] Zedboard Plateform web site. www.zedboard.org. Accessed, September
2016

[31] Xilinx, Inc. (2016). Zynq-7000 All Programmable SoC Technical Reference
Manual. http:// www.xilinx.com/support/documentation/user_
guides/ug585-Zynq-7000-TRM.pdf.

[32] Linux kernel from Xilinx. [Online]:https://github.com/Xilinx/linux-xlnx

http://www.astesj.com/
https://sourceware.org/binutils/docs/gprof/
https://www.gadgetdaily.xyz/apply-gradual-transition-effects-to-page-elements/
https://www.gadgetdaily.xyz/apply-gradual-transition-effects-to-page-elements/
http://valgrind.org/
http://www.zedboard.org/
https://github.com/Xilinx/linux-xlnx

	4.1. Functions of the Test Model
	4.2. Call Graph functions of HM HEVC Decoder
	4.3. Profiling and functions Execution trace
	As explained above, in order to determine the sequence of execution of the various functions of the decoder and the number of calls, a combination of code injection (manual code injection) and sampling profiling (using tools such as valgrind , Gprof, ...
	5. Experimental results
	5.1. Test sequences
	5.2. Zedboard Platform
	5.3. Pipeline execution approach

	6. Conclusion
	References

