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 Convolutional Neural Networks (CNNs) have gained attention in recent years for their 
ability to perform complex machine learning tasks with high accuracy and resilient to noise 
of inputs. The time-consuming convolution operations of CNNs pose great challenges to 
both software as well as hardware designers. To achieve superior performance, a design 
involves careful concerns between exposing the massive computation parallelism and 
exploiting data reuse in complex data accesses. Existing designs lack comprehensive 
analysis on design techniques and decisions. The analytical discussion and quantitative 
proof behind the design criterion, such as choosing proper dimensions to parallelize, are 
not well studied. This paper performs a series of qualitative and quantitative studies on 
both the programming techniques and their implications on the GPU architecture. The 
observations reveal comprehensive understanding on the correlation between the design 
techniques and the resulting performance. Based on the analyses, we pinpoint the two major 
performance bottlenecks of CNN on GPGPU: performing computation and loading data 
from global memory. Software and hardware enhancements are proposed in this paper to 
alleviate these issues. Experimental results on a cycle-accurate GPGPU simulator have 
demonstrated up to 4.4x performance enhancement when compared with the reference 
design. 
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1. Introduction 

Convolutional Neural Networks (CNNs) have gained 
attention in recent years for their ability to perform complex 
machine learning tasks. Followed by winning the 2012 ImageNet 
competition, CNNs have demonstrated superior results in a wide 
range of fields including image classification, natural language 
processing and automotive. In addition to high accuracy in object 
recognition, systems using CNNs are more robust and resilient to 
noise in the inputs when compared to conventional algorithmic 
solutions. However, the enormous amount of computing power 
required by CNNs poses a great challenge to software as well as 
architecture engineers. The most time-consuming operation in a 
CNN is the convolution operation, which takes up over 90% of 
the total runtime. Therefore, the convolution operation becomes 
one of the most important concerns when implementing CNNs.  

GPGPUs have demonstrated superior performance on CNN 
by exploiting the inherent computation parallelism. Due to the 
scaling architectures as well as ease-of-programming 

environment, GPGPUs are among the most widely adopted 
platforms for CNN. However, it is not a trivial task to have an 
efficient CNN design on a GPGPU. To achieve superior 
performance, a design involves careful concerns between 
exposing the massive computation parallelism and exploiting data 
reuse in complex data accesses. 
 

This paper is an extension of work originally presented in 
ICASI 2017 [1]. In this paper, we perform a series of qualitative 
and quantitative studies on both the programming techniques and 
their implications on the GPU architecture. The observations 
reveal comprehensive understanding on the correlation between 
the design techniques and the resulting performance.  There exist 
several frameworks and libraries that provide solutions to 
performing convolution on GPGPUs, such as cuDNN [2], Caffe 
[3], fbfft [4], and cuda-convnet2 [5]. Among the existing solutions, 
cuda-convnet2 is one of the widely used open-source 
implementations that enable superior performance on a variety of 
CNN schemes [6]. It employs design techniques and optimization 
strategies mainly for NVidia GPGPU architectures. However, 
while providing a solid implementation, cuda-convnet2 lacks 
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comprehensive analysis on its design techniques and decisions. 
The analytical discussion and quantitative proof behind the design 
criterion, such as choosing proper dimensions to parallelize, are 
not well studied. In addition, current GPGPUs are not designed 
specifically for convolution. There exist potential architecture 
enhancements that could significantly enhance the computation 
efficiency with minor hardware and software cost. 
 

 
This paper performs a series of qualitative and quantitative 

studies on both the programming techniques and their 
implications on the GPU architecture. The studies focus on the 
widely adopted NVidia GPGPU architecture and CUDA 
programming environment. The observations reveal 
comprehensive understanding on the correlation between the 
design techniques and the resulting performance. Based on the 
analyses, we pinpoint the two major performance bottlenecks of 
CNN on GPGPU: performing computation and loading data from 
global memory. Software and hardware enhancements are 
proposed in this paper to alleviate these issues. In the computation 
part, we demonstrate how to avoid excessive local memory 
accesses, the operations that severely degrade performance, by 
applying loop unrolling. We then propose two simple yet effective 
hardware accelerators to speed up the computation of the partial 
sums. In the data-loading part, we identify that a significant 
fraction of the time is spent on calculating addresses in the inner 
loops of CNN. We propose two software techniques to 
considerably reduce the computation. A low-cost address 
generator is then introduced to speed up the address calculation. 
Experimental results on a cycle-accurate GPGPU simulator, 
GPGPU-sim [7], have demonstrated up to 4.4x performance 
enhancement when compared with the original cuda-convnet2 
design. 

The rest of the paper is organized as follows. Section 2 
discusses the implementation of the convolution kernel. The 
techniques of exposing parallelism and data reuse will also be 
discussed in Section 2. Section 3 and 4 describe the proposed 
software and hardware improvements to the convolution kernel. 
Section 5 discusses previous related works and Section 6 presents 
the conclusions. 
 
2. Implementing Convolution on GPGPU 
 
2.1 Convolution in CNN 
 

Convolution is the basic building block as well as the most 
time-consuming operation in CNNs. The convolution operation in 
CNN does more than just convolving two 2D matrices. It takes a 

set of trainable filters and apply them to the input images, creating 
one output image for each input image. Each input image consists 
of one or more multiple feature maps, which means that every 
pixel in an image contains several features. For example, each 
pixel in an RGB picture contains three features: red, green and 
blue. Each filter also has the same number of features that 
correspond to the input images. When applying the filters to an 
input image, the filters are convolved across the width and height 
of the image, and the product of each feature is summed up to 
produce an output feature map. The number of features in each 
output image is therefore equal to the number of filters. Figure 1 
illustrates an example of the convolution between one image and 
2 filters with 3 features, producing one output with 2 features.  

The high-level algorithm of the convolution operation in CNN 
is listed in Figure 2, where conv2 represents computing the 2D 
convolution between two 2D matrices. The inputs and outputs of 
the algorithm are all arranged in 4-dimensional arrays. Inputs to 
the algorithm are the image array images (image_count, height, 
width, image_features) and the filter array filters (image_features, 
filter_size, filter_size, filter_count). The output is the array 
outputs (image_count, height, width, filter_count). Each of the 
parameters used in the algorithm is described as below. 

image count. This parameter is the size of input mini-batch. A 
mini-batch contains multiple independent input images to be 
processed. Each image in the mini-batch will be processed by the 
same set of filters to produce one output image.  

width, height. These two parameters are the width and height of 
the input images. All input images in the mini-batch have the same 
size. In this paper, the size of output images is the same as the size 
of the input images. 

image_features. This parameter indicates the number of features 
maps in an input image. This is also the number of feature maps 
in a filter. 

filter_size. In the context of CNNs, filters are always square-
shaped. Therefore, we use only one parameter, which is filter_size, 
to represent both the width and height of a filter. As a result, the 
number of pixels in a filter is (filter_size * filter_size). 

filter_count. This parameter is the total number of filters. 
Because each filter produces an output feature map, filter_count 
is also the number of output feature maps. 

2.2 Exploiting Parallelism and Data Reuse in Convolution 
 

This paper uses cuda-convnet2 [5] as the reference 
implementation of CNN on GPGPUs. Cuda-convnet2 is one of 
the widely used open-source implementations that enable superior 

 
 

Figure 1: Convolution in CNN 

 
01:  for (i = 0; i < image_count; i++) { 
02:     for (j = 0; j < filter_count; j++) { 
03:        result = zeros(height, width); 
04:        for (k = 0; k < image_features; k++) 
05:           result += conv2(images(k, :, :, i), 
06:                           filters(k, :, :, j)); 
07:        outputs(j, :, :, i) = result; 
08:     } 
09:  } 

Figure 2: Pseudocode of convolution operations 
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performance on a variety of CNN schemes [6]. It employs design 
techniques and optimization strategies mainly for NVidia GPGPU 
architectures. This section will discuss how to implement the 
convolution algorithm efficiently with CUDA [8].  

 
CUDA is a design environment for massively parallel 

applications. CUDA applications exploit parallelism provided by 
the GPGPU by breaking down the task into blocks containing the 
same number of threads. Functionally speaking, blocks are 
independent to each other. Although some of them may be 
assigned to the same computing tile (a.k.a. SM (Streaming 
Multiprocessor in NVIDIA GPU), the computing model dictates 
that one block cannot communicate with another. Threads in a 
block are assigned to the same computing tile so that they can 
communicate and share data. This computing model leads to two 
important design decisions: 1) which dimensions to parallelize; 
and 2) what data to share and reuse between threads within a block. 

 
Parallelizing one dimension means that the task is divided 

into smaller pieces by splitting at that dimension. For example, if 
we choose to parallelize the image_count dimension, computation 
for different images are divided into smaller tasks. In this case, 
each task is responsible for a small number of images. There are 
six dimensions in the inputs: image_count, image_features, width, 
height, filter_size and filter_count. A designer needs to decide 
which of these dimensions should be parallelized. 

 
One limitation of the CUDA programming model is that 

different blocks cannot communicate with each other. Therefore, 
we can only parallelize dimensions that divide the problem into 
smaller independent tasks. In other words, outputs of each task 
should be stored separately without being combined into larger 
results. Based on this criterion, we will separately examine each 
of the dimensions to determine if it can be parallelized. 

 
The dimension image_count represents the number of images. 

Because each image produces its own output independent of other 
images, we can parallelize the image_count dimension. The width 
and height dimensions can also be parallelized because 
computation of each output pixel is independent. Next, each filter 
produces its own output feature map, so the filter_count 
dimension can be parallelized. Now we are left with two 
dimensions to examine. The features dimension represents the 
number of feature maps in input images as well as filters. Because 
the results from different feature maps are summed to form a 
single output feature map (see Figure 1), we do not parallelize the 
feature dimension. Finally, we also do not parallelize filter_size 
because the products of filter pixels and image pixels are summed 
to form a single output pixel. To summarize, the dimensions that 
we are going to parallelize are image_count, width, height and 
filter_count. 
 

The next step is to decide what data is reused and shared by 
different threads within a block. Figure 3 depicts the relation 
between the input data (images and filters) and the output images. 
Some input/output data set are labeled with capital letters for ease 
of explanation. The arrows in the figure indicates the input-output 
relation of the data. For example, the arrow pointing from A 
(image 1) to V (feature 1 of output 1) means that computation of 
V depends on A. From the figure we can see that different features 
in the same output image share the same input image (e.g. V, W, 
X all depend on A). Also, the same feature in different output 
images share the same filter (e.g. V, Y, Z all depend on B). These 
observations reveal some data-reuse opportunities. 
 

To benefit from reusing both images and filters, a block 
should load pixels of multiple images and filters from the global 
memory. The threads also need to efficiently reuse the loaded data. 
This can be done by arranging the threads into a 2D configuration 
as show in Figure 4. The total number of threads in a block is 
threads_x * threads_y, and each thread is responsible of 
computing a single output pixel. All threads have an x and y index, 
where the x index determines which image the thread uses and the 
y index determines the filter. By doing this, the kernel only needs 
to load threads_x image pixels and threads_y filter pixels to 
compute threads_x * threads_y outputs. Each loaded image pixel  
is reused by threads_y threads, and each loaded filter pixel is 
reused by threads_x threads. As a result, this design reduces the 
memory access required to load the images to 1 / threads_y and 
that of the filters to 1 / threads_x. 
 

 

 
Figure 3: The relation between the input data (images and filters) and the 

output images. 
 

 
Figure 4: Configuration of threads in a block 

01: __shared__ float  
      images_pixel[features][filter_size*filter_size][threads_x]; 
02: __shared__ float  
      filter_pixel [features][filter_size*filter_size][threads_y]; 
03: <collaboratively load images and filters> 
04: float result = 0; 
05: for (int i = 0; i < filter_size*filter_size; i++) 
06:     for (int f = 0; f < features; f++) 
07:          result += 
               image_pixel[f][i][threadIdx.x]* 
filter_pixel[f][i][threadIdx.y]; 
08: <write result back to global memory> 

Figure 5: High-level structure of the CUDA kernel 
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The high-level structure of the CUDA kernel is listed in 
Figure 5. Shared memory arrays are allocated to store the image 
and filter pixels to be reused. At the beginning, all threads work 
together to load the image and filter pixels required by the block. 
Then, each thread computes the output pixel it is responsible for. 
Finally, the computed results are written back to global memory. 
 

 
This kernel is functional, but there are some details that can 

be improved. The first one is that this kernel loads the entire filter 
into shared memory, resulting in higher shared memory usage. 
This can be improved by loading the filter pixels in fixed-size 
chunks instead of loading as a whole. Due to the commutativity 
and associativity of summation, the final result is equal to the sum 
of the partial result of each chunk. Now we can modify the 
program by adding a parameter cached_pixels to set the size of 
the chunk. The modifications are listed in Figure 6. Note that both 
images and filters are loaded in chunks, or tiles. This technique is 
normally referred as tiling. As listed in (1), the shared memory 
usage after tiling (SharedMemtile) can be greatly reduced from the 
original cost (SharedMemoriginal). 

SharedMemtile = 𝑥𝑥 = cached_pixels
filter_size2

  × SharedMemoriginal  (1) 

Currently, each thread in the kernel computes only one output 
pixel. We can generalize the kernel to compute multiple output 
pixels per thread. An output pixel is computed from one image 
and one filter, so we will add two extra kernel parameters 
images_per_thread and filters_per_thread to make the kernel 
compute multiple output pixels. These two parameters decide how 
many images and filters should each thread use. Because each pair 
of image and filter generate one output pixel, the number of 
outputs of each thread is images_per_thread * filters_per_thread. 
The modification to the program is listed in Figure 7. By adjusting 
images_per_thread and filters_per_thread, we can make each 
thread compute multiple outputs and therefore reduce the total 
number of blocks for the same problem size. For example, if the 
original kernel (equivalent to the modified kernel with 
images_per_thread = filters_per_thread = 1) has N blocks in total, 
the new kernel with images_per_thread = filters_per_thread = 2 
only has N/4 blocks. 

This kernel is used as the baseline program on which we 
propose enhancements. In the next section, we will describe how 
we choose the input sizes to use in our experiments. 

2.3 Choosing the Input Size for Experiments 

GPGPU-sim can obtain detailed execution behavior of 
CUDA programs on a GPU architecture similar to GTX-480. 
However, performance simulation in GPGPU-sim is very slow 
compared to a physical GPU. For example, a program that takes 
100ms on an NVidia GTX480 can take up to 3 hours when 
running on GPGPU-sim. With such long simulation periods, 
changes to the program or the simulator itself cannot be quickly 
tested. Therefore, we think it is beneficial to reduce the size of the 
input dataset for shorter simulation time. But reducing the input 
data size, if done improperly, might produce inaccurate 
simulation results that deviates from the behavior of the original 
data. In this section, we will discuss a way to choose the size of 
the reduced data. 
 

 
Computation in CUDA is broken down into independent 

blocks. Each block is assigned to a streaming multiprocessor (SM) 
so that every thread in the block can be run concurrently via fine-
grain context switching of warps (groups of 32 threads). Also, 
each SM is capable of executing multiple blocks at the same time. 
On GTX480, the maximum number of blocks that a SM can run 
concurrently is limited by the following limiting factors: 
 
1. An SM has 32768 registers. 
2. An SM has 48kB of shared memory. 
3. There should be no more than 8 blocks assigned to the same 

SM at the same time. 

Each thread in a block has its own set of registers, so the 
number of registers used by each block is block size×register per 
thread. The limitation of blocks per SM due to the limiting factor 
1 mentioned above is 
 

�
32768

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� (2) 

Another limitation is the size of shared memory. Because an 
SM only has 48kB of shared memory, the limiting number of 
blocks per SM due to limiting factor 2 is 
 

�
48kB

𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� 

 
(3) 

At last, due to scheduler hardware limitations (limiting factor 
3), a SM can only run at most 8 blocks concurrently. Concluding 

01: __shared__ float 
      images_pixel [features][cached_pixels][threads_x]; 
03: __shared__ float 
      filter_pixel [features][cached_pixels][threads_y]; 
05:  
06: <collaboratively load images and filters> 
07:  
08: float result = 0; 
09: for (int p = 0; p < filter_size*filter_size; p += cached_pixels){ 
10:     for (int i = 0; i < cached_pixels; i++) 
11:         for (int f = 0; f < features; f++) 
12:               result += image_pixel[f][i][threadIdx.x] * 

filter_pixel[f][i][threadIdx.y]; 
13: } 
14: 
15: <write result back to global memory>  

Figure 6: Modified kernel that loads data in chunks 

 

01: __shared__ float 
images_pixel [images_per_thread][features] 

[cached_pixels][threads_x]; 
02: __shared__ float 

filter_pixel [filters_per_thread][features] [cached_pixels][threads_y]; 
03: <collaboratively load images and filters> 
04: float result[images_per_thread][filters_per_thread] = {}; 
05: for (int p = 0; p < filter_size*filter_size; p += cached_pixels) { 
06:  for (int i = 0; i < cached_pixels; i++) 
07:         for (int f = 0; f < features; f++) 
08:             for (int ii=0; ii<images_per_thread; ii++) 
09:                 for (int if=0; if<filters_per_thread; if++)     
10:                     result += image_pixel[ii][f][i][threadIdx.x] * 

filter_pixel[if][f][i][threadIdx.y]; 
11: } 
12: <write result back to global memory> 

Figure 7: Modified kernel with multiple output in each thread 
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(2), (3) and the hardware limitation, the actual maximum number 
of blocks per SM can be obtained by (4). 
 

min ��
32768

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� , �

48kB
𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

�� 

 
(4) 

In GTX480, there are 15 SMs. If each SM can run eight 
blocks in parallel, then the GPU can run 120 blocks concurrently. 
While using very large datasets, the total number of blocks will 
be much larger than 120 so that most of the time, all SMs on the 
GPU is doing some work. However, if the reduced dataset has less 
than 120 blocks, then some of the SMs on the GPU will be idle all 
the time, making occupancy lower than it should have been in 
larger datasets. Also, if the number of blocks is slightly more than 
120 blocks, the GPU will execute the first 120 blocks in its full 
capability, and then execute the remaining blocks using only some 
of the SMs while leaving other SMs idle. This also makes 
measurements inaccurate in the same way. 
 

Therefore, it is preferable to adjust the reduced data size so 
that blocks fill in all SMs during the entire simulation period. In 
other words, the total number of blocks divided by the maximum 
number of concurrent blocks should be a whole number or slightly 
less than a whole number (ex. 1.99). By reducing the data size like 
this, measurements will be closer to that of larger data sets. 
 

Input parameters Kernel parameters 
image_count 128 images_per_thread 4 
image_width 5 filters_per_thread 4 
image_height 6 threads_x 16 

image_features 3 threads_y 4 
filter_count 32 cached_pixels 4 

filter_width, filter_height 32   

Table 1: Parameters used in the experiments 

The actual input data size and kernel parameters we use in the 
experiment are listed in Table 1. According to these parameters, 
we can compute the total number of blocks using (5). 
 

𝑛𝑛𝑛𝑛𝑚𝑚𝑏𝑏𝑟𝑟𝑟𝑟 𝑏𝑏𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 = �
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑟𝑟

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎_𝑥𝑥 ×  𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑟𝑟𝑟𝑟_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎
� 

 

× �
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_𝑤𝑤𝑟𝑟𝑎𝑎𝑟𝑟ℎ ×  𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑟𝑟 ×  𝑜𝑜𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑟𝑟

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎_𝑚𝑚 × 𝑜𝑜𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑟𝑟𝑟𝑟_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎
� 

(5) 
After compiling this program, the compiler outputs the 

following information: 
 
1. Each thread uses 28 registers. 
2. Each block uses 3900 bytes of shared memory. 
 

Now we compute the number of blocks per SM. The 
limitation caused by registers is 

 

�
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟
� = �

32768
28 × (16 × 4)

� 

   = 18 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆                                                             (6) 

The limitation caused by shared memory is 

�
shared memory per SM

𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� = �

48kB
3900

� 

 
   = 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆                                                                     (7) 

Because both (6) and (7) exceed the hardware limitation of 
eight blocks per SM, maximum numbers of blocks per SM in this 
case is 8. Multiplying with the total numbers of SMs on GTX480, 
we get 8×15=120 blocks that can be executed on the GPGPU in 
parallel. Since there are exactly 120 blocks to be executed, all the 
blocks can be run in parallel without any SM stalling. 

2.4 Summary of Design Concerns 

In this section, we discussed an implementation of 
convolution in CUDA step-by-step. This convolution kernel 
employs a 2D block configuration to enable sharing of onboard 
data between threads through the shared memory, reducing 
accesses to the global memory. The kernels are also parameterized 
to enable adjusting the amount of work done by each thread. We 
also explained how we choose a relatively small input size that 
utilize all SMs. This method of choosing input sizes reduces the 
error of the experiment results caused by idle SMs. In all the 
following experiments, we will use the input sizes listed in Table 
1. 

According to simulation using GPGPU-sim, we identified 
that the two bottlenecks of the convolution kernel are computation 
of partial sums and loading of image and filter data. The following 
two sections, Section 3 and Section 4, will elaborate the proposed 
software and hardware improvements to speed up these two 
bottlenecks. 

3. Accelerating Computation Part  

The result of profiling the baseline implementation is shown 
in Figure 8. According to the profiling result, the most time-
consuming part in the entire kernel is the computation part, which 
takes up over 97% of the overall runtime. In this section, we will 
focus on reducing the computation cost by various techniques 
including software and hardware modifications. 

 
3.1 Avoid Local Memory Access 

In order to improve the performance of the computation part, 
we need to understand what is responsible for its relatively long 
latency. Instruction-level breakdown of the profiling result listed 
in Figure 9 reveals that the latencies of instructions accessing local 

 
Figure 8: Initial Performance Breakdown 
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memory are orders of magnitude greater than other instructions. 
In this section, we will discuss why there is local memory 
accessing in the code and how can we avoid it. 

latency     instruction 
… 
900003      
825928      
909892      
92553       
25725679    
1059732     
84348       
26358148   
1059915    
84135       
26520275   
1061173    
84381       
26074621    
1062764     
80641       
168702      
650839     
... 

… 
add.u64        %rd55, %rd54, %rd51; 
mul.lo.u64     %rd56, %rd55, 4; 
add.u64        %rd57, %rd13, %rd56; 
ld.shared.f32  %f47, [%rd57+0]; 
ld.local.f32   %f48, [%rd53+0]; 
 mad.f32        %f49, %f43, %f47,%f48; 
st.local.f32   [%rd53+0], %f49; 
ld.local.f32   %f50, [%rd53+4]; 
mad.f32        %f51, %f44, %f47, %f50; 
st.local.f32   [%rd53+4], %f51; 
ld.local.f32   %f52, [%rd53+8]; 
mad.f32        %f53, %f45, %f47, %f52; 
st.local.f32   [%rd53+8], %f53; 
ld.local.f32   %f54, [%rd53+12]; 
mad.f32        %f55, %f46, %f47, %f54; 
st.local.f32   [%rd53+12], %f55; 
add.u32        %r98, %r98, 1; 
 add.u64        %rd53, %rd53, 16; 
… 

Figure 9: Local memory access latency 

3.1.1   Local Variables in CUDA 

Before going into discussion, we will first briefly introduce 
how local variables (also known as automatic variables) are 
handled in NVidia GPGPUs. In the CUDA programming 
language, local variables are normally placed in the stack frame 
of the current function call. But compilers are also allowed to put 
them in registers if the architecture permits. Execution stack of 
CUDA threads are placed in a special memory space called local 
memory. Local memory resides in the global memory but is 
partitioned and allocated to each thread. Each thread can only see 
its own copy of local memory. Because global memory is much 
slower than registers, it is often preferable to put local variables 
in registers instead of local memory. 

 
However, there are two limitations in CUDA regarding the 

use of registers. One limitation is that Fermi GPGPUs only have 
32768 register in each core, so the total number of registers used 
by all threads in a block cannot exceed 32768. This limitation is 
less of a problem in convolution because the number of threads 
per block is relatively small (less than 100), and the number of 
register required for each thread is around 60. The other limitation 

is that registers have no addresses. This implies that an array can 
be put in registers only if no indexing is performed on them. 

3.1.2 Loop Unrolling 

In the convolution kernel, the partial sums computed by each 
thread are stored in a local array and accumulated over all pixels 
as shown in Figure 11. The loop counter f and g are used with the 
subscript operator to access the array element for each image and 
filter. In this case, the compiler needs to put the array in local 
memory because registers cannot be indexed. This will cause the 
GPU to access global memory in every iteration of the inner loop. 

 
01: float result[filters_per_thread][images_per_thread]; 
02: for (int pixel = 0; pixel < filter_pixels; pixel += cached_pixels) 
03: { 
04:  <load filter pixels> 
05:   <load image pixels> 
06:       for (int i =0; i < cached_pixels*image_features; i++) 
07:       { 
08:           for (int f=0; f<filters_per_thread; f++) 
09:          { 
10:               for (int g=0; g<images_per_thread; g++) 
11:              { 
12:                   result[f][g] += image_pixel[i][g] * filter_pixel[i][f]; 
13:               } 
14:          } 
15:       } 
16: } 

Figure 11: Local Array in the Convolution Kernel 

It can be seen in the figure that the overall latency is 
dominated by local memory access (highlighted in boldface). The 
bottleneck can be totally avoided if the array elements are put in 
registers instead of local memory. However, the compiler cannot 
put the array in register because the array needs to be dynamically 
indexed. 

One way to get around this limitation is to apply loop 
unrolling, which effectively eliminates all dynamic indexing on 
the array by expanding the loop and replacing the indices with 
constants. As long as the array is not dynamically indexed, the 
compiler can allocate registers for the array elements. 

01: for (int i = 0; i < cached_pixels * image_features; i++) { 
02:  #pragma unroll 
03:    for (int f = 0; f < filters_per_thread; f++) 
04:    { 
05: #pragma unroll 
06:        for (int g = 0; g < images_per_thread; g++) 
07:       { 
08:            result[f][g] += image_pixel[i][g] * filter_pixel[i][f]; 
09:        } 
10:    } 
11: } 

Figure 12: Applying Loop Unrolling 

Loop unrolling in CUDA can be enabled by setting up the 
preprocessing hint during compilation. A directive #pragma 
unroll is provided to let the programmer issue unrolling hints so 
that the compiler knows which loops should be unrolled. Using 
the unroll directive, we can apply loop unrolling to the original 
program (shown in Figure 12). By using loop unrolling on the two 
inner-most loops, the `result` array is expanded into multiple 
independent registers. As a result, the inner loop no longer 
requires local memory access. As shown in the profiling result in 

 
 

Figure 10: Registers and Local Memory 
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Figure 13, latency of local memory accesses is completely 
eliminated after unrolling the loop. 

latency     instruction 
189822     
1681       
17345       
25172       
8650       
1681       
18890       
24716      
6933       
1699        
17569       
24335       
5724       
1684       
17055       
24019      
192675      
1707       
16959       
... 

ld.shared.f32   %f59, [%rd13+0]; 
ld.shared.f32   %f60, [%rd16+0]; 
mov.f32   %f61, %f2; 
mad.f32   %f62, %f59, %f60, %f61; 
mov.f32   %f63, %f62; 
ld.shared.f32   %f64, [%rd13+4]; 
mov.f32   %f65, %f4; 
mad.f32   %f66, %f64, %f60, %f65; 
mov.f32   %f67, %f66; 
ld.shared.f32   %f68, [%rd13+8]; 
mov.f32   %f69, %f6; 
mad.f32   %f70, %f68, %f60, %f69; 
mov.f32   %f71, %f70; 
ld.shared.f32   %f72, [%rd13+12]; 
mov.f32   %f73, %f8; 
mad.f32   %f74, %f72, %f60, %f73; 
mov.f32   %f75, %f74; 
ld.shared.f32   %f76, [%rd16+4]; 
mov.f32   %f77, %f10; 
… 

Figure 13: Profiling result after applying loop unrolling 

Before applying loop unrolling, it takes 524k cycles for the 
program to finish. The letter k is a postfix indicating 1,000. After 
applying loop unrolling, the number of cycles is reduced to 148k, 
resulting in a 71% improvement on the overall performance. The 
latency breakdown in Figure 14 shows that the computation part 
is dramatically improved by loop unrolling. 

 
Figure 14: Loop unrolling performance improvement 

3.2 Adding Inner Product Engine 

The computation part (shown in Figure 15) is still the 
bottleneck even after applying loop unrolling, taking up about 
69% of the overall execution time. Looking at the loop as a whole, 
what it does is computing the product between each image and 
filter pixel and sum them together. The partial sums are then 
accumulated in the array `result`. 

01: for (int i = 0; i < cached_pixels * image_features; i++) { 
02:   #pragma unroll 
03:     for (int f = 0; f < filters_per_thread; f++) 
04:    { 
05:     #pragma unroll 
06:        for (int g = 0; g < images_per_thread; g++) 
07:        { 
08:            result[f][g] += image_pixel[i][g]* filter_pixel[i][f]; 
09:        } 
10:    } 
11: } 

Figure 15: Computation loop 

If we exchange the order of the outmost loop with the two 
inner loops in Figure 16, the inner loops (Line 05 to Line 11) 
becomes an inner product operation between the two arrays. This 
modification does not change the behavior of the original function 
because there is no dependency between each loop iteration. Since 
the two outer loops are unrolled, the inner product becomes the 
only bottleneck. 

01:  #pragma unroll 
02:  for (int f=0; f < filters_per_thread; f++) { 
03:     #pragma unroll 
04:     for (int g=0; g < images_per_thread; g++) { 
05:        for (int i=0;  i<cached_pixels* image_features; i++) 
06:       { 
07:         result[f][g] += image_pixel[i][g] * filter_pixel[i][f]; 
08:       } 
09:    } 
10: } 

Figure 16: Inner product in the computation loop 

 
To reduce the bottleneck, we propose adding a hardware 

inner product accelerator to the cores, one unit for each thread. 
The accelerator loads pairs of image and filter pixels from shared 
memory, compute the product of each pair, and then sum all the 
products together. The program passes the starting addresses and 
strides of both arrays and the number of elements to the 
accelerator. These arguments are then stored in the internal 
registers of the accelerator and are reused until their values are 
changed again. The final result is also stored in the unit and can 
be retrieved in the program. 

The hardware architecture of the inner product accelerator 
unit is shown in Figure 18. For each iteration, it loads two 
elements from shared memory and accumulate the product of 
them to a register. It requires one multiplier, one adder and a 
register to store the partial results. In the actual implementation, 
the multiplier and adder can be fused into a fused multiply-add 
(FMA) circuit. We assume that it requires 2 cycles to load the two 
elements from shared memory, and the latency of the FMA is also 
assumed to be 2 cycles. A 2-stage pipeline can then be used to 
repeatedly load elements and compute FMA. In our work, we 
model the latency of the inner product unit as 2 * N, where N is 
the number of elements to compute. 

 
Figure 18: Inner Product Unit 

 
Figure 17: Inner Product 
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Modeling the accelerator requires modifying both GPGPU-
sim and the application. We modeled the inner product accelerator 
in GPGPU-sim by intercepting memory access to specific 
addresses. We modified the load (ld) and store (st) handlers to 
check if the source or target address matches any of the designated 
addresses. List of the addresses we use and their functions are 
listed in Table 2. If the address matches, the original memory 
access is skipped and the corresponding function of the 
accelerator is performed. For example, as soon as the thread writes 
16 to address 0xffffffc8, GPGPU-sim sets the stride register of the 
accelerator to 16. 

Table 2: Addresses used by the inner product engine 

address direction function 

0xffffffc0 write address of image array 

0xffffffc8 write stride of image array 

0xffffffd0 write address of filter array 

0xffffffd8 write stride of filter array 

0xfffffff0 write number of elements 

0xfffffff8 read start computing and retrieve the result; stall the 
thread for N cycles 

To use this inner product accelerator, the application needs to 
use the addresses to manipulate the registers inside the accelerator. 
First, the application should pass the starting address of the image 
and filter array to 0xffffffc0 and 0xffffffd0 respectively. The 
image stride is threads_x * images_per_thread, and the filter stride 
is threads_y * filters_per_thread. These two values are constant 
as the dimensions of the arrays are known in compile time, so it 
is only necessary to write them once at the beginning of the kernel. 
The fifth parameter, number of elements, is also known in compile 
time and only needs to be write once. Finally, after all parameters 
are set, the program needs to read from address 0xfffffff8 to 
retrieve the result of the inner product. The modified program is 
listed in Figure 19. 

01: // beginning of the kernel 
02: *(unsigned long long*)(0xffffffc8)  =  sizeof(shm_images[0]); 
03: *(unsigned long long*)(0xffffffd8)  =  sizeof(shm_filters[0]); 
04: *(unsigned long long*)(0xfffffff0)   =  cached_pixels * image_features; 
05: // inside the computation part 
06: #pragma unroll 
07: for (int f = 0; f < filters_per_thread; f++) { 
08:    *(float**)(0xffffffd0) = &shm_filters[0][threadIdx.y * filters_per_thread 

+ f]; 
09: #pragma unroll 
10:    for (int g = 0; g < images_per_thread; g++) { 
11:        float partial_sum; 
12:           *(float**)(0xffffffc0) = &shm_images[0][threadIdx.x *                          
                 images_per_thread + g]; 
13:         partial_sum = *(float*)0xfffffff8; 
14:         result[f][g] += partial_sum; 
15:    } 
16: } 

Figure 19: Program modified to use the inner product engine 

The profiling result of the modified program is listed as 
follows in Figure 20. As shown in the figure, the computation part 

is improved by 88% and results in 66% improvement on the 
overall performance. The bottleneck of the program is no longer 
the computation part. 

 

 
Figure 20: Loop unrolling performance improvement 

3.3 Outer Product Engine  

In this section, we will discuss an alternative way to 
accelerate at the computing part. The two inner loops (shown in 
line 03~09 in Figure 21) can also be viewed as computing the 
products of each pair of elements in image_pixel[i] and 
filter_pixel[i]. This operation is called the outer product, which 
can be represented as multiplying a column matrix with a row 
matrix as shown in the figure. Inputs to the outer product are two 
arrays image_pixels[i] and filter_pixel[i], each with length 
images_per_thread and filters_per_thread. Each element in the 
first array is multiplied with each element in the second array, 
producing a total of images_per_thread * filters_per_thread 
numbers. The outer product is performed cached_pixels * 
image_features times, and the output of each time is accumulated 
to produce the partial sums. 

01: for (int i = 0;  i < cached_pixels * image_features;  i++) { 
02:    for (int f = 0; f < filters_per_thread; f++) { 
03:        for (int g = 0; g < images_per_thread; g++) 
04:        { 
05:           result[f][g] += image_pixel[i][g] * filter_pixel[i][f]; 
06:        } 
07:    } 
08: } 

Figure 21: Outer product in the computation loop 

We propose an accelerator to speed up the computation of the 
outer product. The accelerator has at least images_per_thread * 
filters_per_thread internal registers to store the computed partial 
sums. It loads two arrays, compute the product of each pair of 
elements, and accumulate the results to the internal registers. 
Values of the registers can be read or reset to zero by the program.  

 
The hardware architecture of the outer product accelerator 

unit is shown in Figure 23. For each iteration, it loads four 
elements from image array and one element from filter array 

 
Figure 22: Outer product 
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multiply them to a register, and the adder adds previous partial 
sum to the original register. It consumes four multiplier, one adder 
and number of image array * filter array registers to save the 
partial results. Suppose the multiplier requires 1 cycle to produce 
the result, storing result to register and loading pixel from shared 
memory also consumes 1 cycle. Then, a 3-stage pipeline can be 
applied to repeatedly load elements, compute outer product and 
store results. In our implementation, we model the latency of the 
outer product unit which assume that the accelerator can load one 
pixel from the shared memory each cycle. It will need to preload 
some pixels from the image array before using a 3-stage pipeline, 
and the number of preloaded pixels depends on image array length. 
Therefore, we can assume that the total latency of the accelerator 
is image array length + (2*N)-2 ,where N is the number of 
elements to compute. 

 
Figure 23: Outer Product Unit 

 
Figure 24: Outer product performance improvement 

4. Accelerating Data-Loading  
After applying the improvements described in Section IV, the 

computation part is improved a lot. As illustrated in Figure 25, 
the data-loading part, including loading of images and filters, 
becomes the bottleneck of the program. 

 
Figure 25: Performance breakdown after improvements 

The data-loading part is responsible for loading image and 
filter pixels from global memory to shared memory. It is 
composed of deeply nested control structures of loops and 
conditionals. The control structures themselves also take time to 
execute, especially for the inner loops. Any subtle overhead inside 
inner loops can build up and become major bottlenecks. In this 
section, we propose two software approaches to reduce the 
overhead inside inner loops. We also propose a hardware 
accelerator to speed up address calculation in the image-loading 
part. 

4.1  Strength Reduction 

One of the major bottlenecks in inner loops is the 
computation of array indices for each iteration. In the data-loading 
loops, array indices in inner loops can contain complex arithmetic 
expressions that translates into larger number of instructions. 
Because the arithmetic instructions are executed in the inner loops, 
latencies of them can quickly build up and become a major 
bottleneck. 

Take the program in Figure 26 as an example. To compute 
the array index for images, it needs to compute two 
multiplications and two additions for each iteration (line 4). If we 
work out the total number of operations, we will find that the 
program needs to carry out image_features * images_per_thread 
multiplications and additions in total. 

Figure 26: Arithmetic operation in the inner loop 

We propose a method based on strength reduction to improve 
the performance of this program. This method takes advantage of 
the fact that some arithmetic operations can be reduced to 
successive simpler operations. For example, multiplication can be 
done with repeated addition of the multiplier. Instead of 
computing the multiplication in each iteration, we can use a 
separate counter variable idx to accumulate the index throughout 
the entire loop and update it according to the following rule. 

The arithmetic expression for computing the array index can 
be broken down into 3 parts: 

a. loop invariants (terms that does not change throughout 
the nested loops) 

b. multiples of the outer loop counter f 
c. multiples of the outer inner loop counter i 

Terms belonging to Part a is constant with respect to both the 
inner and outer loops. Therefore, the term `base` is used to 
initialize idx before entering the loops. Part b contains the term f 
* stride, whose value increases by stride whenever f is 
incremented. Therefore, stride is added to idx at the end of the 
outer loop. Part c contains the term i * threadIdx.x. The value of 
this term goes from 0 to (images_per_thread-1) * threadIdx.x in 
the inner loop and returns to zero again. Therefore, we will first 
save the value of idx before entering the inner loop, increment idx 
in each iteration, and restore idx after leaving the inner loop. The 
resulting program is listed in Figure 27. 

 

01: for (f = 0; f < image_features; f++) { 
02:    for (i = 0; i < images_per_thread; i++) { 
03:       image_pixel[f][i] = images[ base + f * stride + i * threadIdx.x]; 
04:    } 
05: } 
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Figure 27: Applying strength reduction 

In this transformed program, it only needs to compute one 
addition for each iteration in the inner loop and one addition for 
each iteration in the outer loop. In total, we get image_features * 
(images_per_thread+1) additions. The total number of operations 
is cut in half compared to the original program, so the modified 
program should run faster in the data-loading part. Profiling 
results in Figure 28 supports this prediction by showing that the 
performance of the image-loading and filter-loading parts are 
improved significantly. The impact of strength reduction is 25.9% 
on the overall performance. 

 
Figure 28: Strength reduction performance improvement 

4.2   Extract Conditionals 

In addition to strength reduction, we also identified another 
useful optimization strategy in the data-loading loop. The idea is 
to prevent unnecessary condition checks in inner loops by 
checking whether the conditional is necessary in the loop before 
entering the loop. To illustrate the case, consider the following 
code snippet taken from the convolution kernel: 

01: int idx = base; 
02: for (f = 0; f < image_features; f++) { 
03:    int idx_save = idx; 
04:    for (i = 0; i < images_per_thread; i++) { 
05:       image_pixel[f][i] = images[idx]; 
06:       idx += threadIdx.x; 
07:    } 
08:    idx = idx_save; 
09:    idx += stride; 
10: } 

Figure 29: Boundary checking in the data-loading loop 

In the inner-most loop, it checks whether the index of image 
to load (image_index + i) is within bounds and only load the 
image if so. Because the total number of image is not always a 
multiple of images_per_thread, the boundary condition check is 
necessary here to ensure that the index to load is within bounds. 
However, checking for the boundary condition every time in an 
inner loop degrades performance. To eliminate redundant checks 
in inner loops, the loop is duplicated and modified into two 
variants: one with boundary checking, and the other without them. 
Without the checking overhead, the one without boundary 

checking will run faster. The problem we are left with is how to 
choose between these two variants. 

Because the loop variable i is always less than or equal to 
images_per_thread - 1, image_index + i will always be less than 
or equal to image_index + images_per_thread - 1. If given 
image_index + images_per_thread - 1 < image_count, we will 
automatically get image_index + i < image_count. In other words, 
if image_index + images_per_thread <= image_count, there is no 
need to check for the boundary condition. As a result, we will 
choose the faster loop without boundary checking if image_index 
+ images_per_thread <= image_count, or the slower loop 
otherwise. The resulting code is listed in Figure 30. 

Figure 30: Reduced boundary check code 

Profiling result before and after applying this technique is 
shown in Figure 31. This technique improves the overall 
performance by 2.6% compared to the previous version using only 
strength reduction. 

 
Figure 31: Extract conditionals performance improvement 

4.3   Index Conversion Accelerator 

In the data-loading part of the convolution kernel, filter and 
image pixels are loaded to shared memory one after another. 
Before loading each pixel from global memory, the program must 
compute the index of the pixel in the input arrays. In each iteration 
of the loop, the program first loads several filter pixels. While 
loading the filter, there is no need to compute the index because 
the loop counter itself represents the index of the filter pixel to 
load. However, for each filter pixel, it is still necessary to load the 
corresponding image pixel. Computing the index of image pixels 
is more involved. Sometimes the filter pixel is placed outside the 

01: for (int f = 0; f < image_features; f++) { 
02:    for (int i = 0; i < images_per_thread; i++) { 
03:   if (image_index + i < image_count) { 
04:             /* load image `image_index + i` */ 
05:         } 
06:   } 
07: } 

01: if (image_index + images_per_thread <= image_count) { 
02:   for (int f = 0; f < image_features; f++) { 
03:      for (int i = 0; i < images_per_thread; i++) 
04:      { // no boundary check 
05:         // load image `image_index + i` 
06:      } 
07:   } 
08:  } else { 
09:    for (int f = 0; f < image_features; f++) { 
10:       for (int i = 0; i < images_per_thread; i++) 
11:      { 
12:          if (image_index + i < image_count) 
13:          { // boundary check 
14:             // load image `image_index + i` 
15:          } 
16:      } 
17:  } 
18: } 
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image and doesn't overlap with any pixel in the input. When this 
happens, the loaded image pixel should be set to zero because 
zero-padding is used outside the edges of the image. If the filter 
pixel is placed within the image, the filter pixel index should be 
converted into the image pixel index, which is then used to load 
the image pixel from global memory. 

01:for (int p = 0; p < cached_pixels; p += threads_y) { 
02:   int pixel_index = pixel + p + threadIdx.y; 
03:   int x = image_pixel_x – filter_size / 2 + pixel_index % filter_size; 
04:   int y = image_pixel_y - filter_size / 2 + pixel_index / filter_size; 
05:   if (y >= 0 && y < image_height && x >= 0 && x < image_width) 
06:   {    
07:       int image_pixel_index = (y * image_width + x) * image_count; 
08:       <load image pixel from image_pixel_index> 
09:    } else { 
10:      <set image pixel to 0> 
11:   } 
12: } 

Figure 32: Index conversion in the data-loading loop 

Computing the image pixel index and checking for the 
boundary condition takes up about 1/3 of the image-loading time. 
Therefore, we propose adding an accelerator to speed up this two 
tasks at the same time. Before describing what this accelerator 
should do, we will first look at the code to convert filter pixel 
index to image pixel index. 

From the code listed above, we can see that there are three 
steps involved in converting filter pixel index to image filter index. 
The first step is break down filter pixel index to its x and y 
component and offset the coordinates by the location of the kernel. 
Then, boundary check is performed on the (x, y) point to ensure 
that there is a corresponding pixel in the input. Finally, the (x, y) 
is converted to the image pixel index. These steps are translated 
to tens of instructions and slows down the program. 

01: for (int p = 0; p < cached_pixels; p += threads_y) { 
02: <invoke index converter using inline assembly> 
03:  // the result is stored in image_pixel_index 
04:     if (image_pixel_index >= 0) { 
05:     <load image pixel from image_pixel_index> 
06:     } else { 
07:     <set image pixel to 0> 
08:     } 
09: } 

Figure 33: Modified program using the index conversion accelerator 

 
Figure 34: Index converter performance improvement 

We propose adding a hardware accelerator to do the index 
conversion. The accelerator we propose will do the three steps 

altogether in one instruction. If the (x, y) point is within bounds, 
it returns the index of the image pixel. Otherwise, it returns -1. 
We implement the accelerator in GPGPU-sim as an instruction 
and use inline assembly in the convolution kernel to invoke the 
instruction. The modified program is listed in Figure 33. The 
performance improvement of using the index converter is listed in 
Figure 34. The overall performance is improved by 5%. 

5. Related Work 

Accelerating convolutional neural networks is a very popular 
research topic. Accelerators have been developed in different 
hardware technologies. Eyeriss [9][15] developed by Yu-Hsin 
Chen et al. is an ASIC CNN accelerator that can run AlexNet at 
35fps with only 278mW of power consumption. There are other 
ASIC accelerators proposed to exploit the redundancy of CNN 
networks [16][17][18]. Cheng Zhang [10] implemented a CNN 
accelerator on FPGA and achieved 61.62 GFLOPS under 
100MHz clock frequency. He also proposed an analytical design 
scheme using the roofline model. 

The GPGPU is also a widely-used platform for CNN. NVidia 
developed a software library named cuDNN [2] that uses GPGPU 
to speed up convolution. When integrated with the Caffe 
framework, it can improve the performance by up to 36%. 
However, the cuDNN library is proprietary and cannot be studied 
by the community. The fbfft library [4] also uses GPGPU to speed 
up CNN, but it employs a different algorithm (FFT) to compute 
convolution. Cuda-convnet2 is an efficient implementation of 
CNN for NVidia GPGPU. It is by far the fastest open-source CNN 
implementation. However, it lacks analysis on the techniques it 
uses to improve the performance. 

6. Conclusion 

This paper describes an implementation of the convolution 
operation on NVidia GPGPU and analyze the techniques in the 
implementation. We propose software and hardware 
enhancements to the program to speed up the computation of 
partial sums and loading the input data, which are the two major 
bottlenecks. The experiments have shown that the proposed 
modifications have achieved 4.4x speedup compared with the 
baseline implementation. 
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