
www.astesj.com 28

Software and Hardware Enhancement of Convolutional Neural Networks on GPGPUs

An-Ting Cheng*,1, Chun-Yen Chen1, Bo-Cheng Lai1, Che-Huai Lin2

1Institute of Electronics Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan

2Synopsys Taiwan Co., Ltd., Hsinchu, 300, Taiwan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 November, 2017
Accepted: 05 February, 2018
Online: 08 March, 2018

 Convolutional Neural Networks (CNNs) have gained attention in recent years for their
ability to perform complex machine learning tasks with high accuracy and resilient to noise
of inputs. The time-consuming convolution operations of CNNs pose great challenges to
both software as well as hardware designers. To achieve superior performance, a design
involves careful concerns between exposing the massive computation parallelism and
exploiting data reuse in complex data accesses. Existing designs lack comprehensive
analysis on design techniques and decisions. The analytical discussion and quantitative
proof behind the design criterion, such as choosing proper dimensions to parallelize, are
not well studied. This paper performs a series of qualitative and quantitative studies on
both the programming techniques and their implications on the GPU architecture. The
observations reveal comprehensive understanding on the correlation between the design
techniques and the resulting performance. Based on the analyses, we pinpoint the two major
performance bottlenecks of CNN on GPGPU: performing computation and loading data
from global memory. Software and hardware enhancements are proposed in this paper to
alleviate these issues. Experimental results on a cycle-accurate GPGPU simulator have
demonstrated up to 4.4x performance enhancement when compared with the reference
design.

Keywords:
Convolutional Neural Network
GPGPU
Design and Optimization

1. Introduction

Convolutional Neural Networks (CNNs) have gained
attention in recent years for their ability to perform complex
machine learning tasks. Followed by winning the 2012 ImageNet
competition, CNNs have demonstrated superior results in a wide
range of fields including image classification, natural language
processing and automotive. In addition to high accuracy in object
recognition, systems using CNNs are more robust and resilient to
noise in the inputs when compared to conventional algorithmic
solutions. However, the enormous amount of computing power
required by CNNs poses a great challenge to software as well as
architecture engineers. The most time-consuming operation in a
CNN is the convolution operation, which takes up over 90% of
the total runtime. Therefore, the convolution operation becomes
one of the most important concerns when implementing CNNs.

GPGPUs have demonstrated superior performance on CNN
by exploiting the inherent computation parallelism. Due to the
scaling architectures as well as ease-of-programming

environment, GPGPUs are among the most widely adopted
platforms for CNN. However, it is not a trivial task to have an
efficient CNN design on a GPGPU. To achieve superior
performance, a design involves careful concerns between
exposing the massive computation parallelism and exploiting data
reuse in complex data accesses.

This paper is an extension of work originally presented in
ICASI 2017 [1]. In this paper, we perform a series of qualitative
and quantitative studies on both the programming techniques and
their implications on the GPU architecture. The observations
reveal comprehensive understanding on the correlation between
the design techniques and the resulting performance. There exist
several frameworks and libraries that provide solutions to
performing convolution on GPGPUs, such as cuDNN [2], Caffe
[3], fbfft [4], and cuda-convnet2 [5]. Among the existing solutions,
cuda-convnet2 is one of the widely used open-source
implementations that enable superior performance on a variety of
CNN schemes [6]. It employs design techniques and optimization
strategies mainly for NVidia GPGPU architectures. However,
while providing a solid implementation, cuda-convnet2 lacks

ASTESJ
ISSN: 2415-6698

*Corresponding Author: An-Ting Cheng, National Chiao Tung University,
Email: ericcorter78.ee01@g2.nctu.edu.tw

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 21-27 (2018)
www.astesj.com

Special issue on Advancement in Engineering Technology

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com

Special issue on Advancement in Engineering Technology

https://dx.doi.org/10.25046/aj030204

http://www.astesj.com/
http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030204

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 29

comprehensive analysis on its design techniques and decisions.
The analytical discussion and quantitative proof behind the design
criterion, such as choosing proper dimensions to parallelize, are
not well studied. In addition, current GPGPUs are not designed
specifically for convolution. There exist potential architecture
enhancements that could significantly enhance the computation
efficiency with minor hardware and software cost.

This paper performs a series of qualitative and quantitative

studies on both the programming techniques and their
implications on the GPU architecture. The studies focus on the
widely adopted NVidia GPGPU architecture and CUDA
programming environment. The observations reveal
comprehensive understanding on the correlation between the
design techniques and the resulting performance. Based on the
analyses, we pinpoint the two major performance bottlenecks of
CNN on GPGPU: performing computation and loading data from
global memory. Software and hardware enhancements are
proposed in this paper to alleviate these issues. In the computation
part, we demonstrate how to avoid excessive local memory
accesses, the operations that severely degrade performance, by
applying loop unrolling. We then propose two simple yet effective
hardware accelerators to speed up the computation of the partial
sums. In the data-loading part, we identify that a significant
fraction of the time is spent on calculating addresses in the inner
loops of CNN. We propose two software techniques to
considerably reduce the computation. A low-cost address
generator is then introduced to speed up the address calculation.
Experimental results on a cycle-accurate GPGPU simulator,
GPGPU-sim [7], have demonstrated up to 4.4x performance
enhancement when compared with the original cuda-convnet2
design.

The rest of the paper is organized as follows. Section 2
discusses the implementation of the convolution kernel. The
techniques of exposing parallelism and data reuse will also be
discussed in Section 2. Section 3 and 4 describe the proposed
software and hardware improvements to the convolution kernel.
Section 5 discusses previous related works and Section 6 presents
the conclusions.

2. Implementing Convolution on GPGPU

2.1 Convolution in CNN

Convolution is the basic building block as well as the most
time-consuming operation in CNNs. The convolution operation in
CNN does more than just convolving two 2D matrices. It takes a

set of trainable filters and apply them to the input images, creating
one output image for each input image. Each input image consists
of one or more multiple feature maps, which means that every
pixel in an image contains several features. For example, each
pixel in an RGB picture contains three features: red, green and
blue. Each filter also has the same number of features that
correspond to the input images. When applying the filters to an
input image, the filters are convolved across the width and height
of the image, and the product of each feature is summed up to
produce an output feature map. The number of features in each
output image is therefore equal to the number of filters. Figure 1
illustrates an example of the convolution between one image and
2 filters with 3 features, producing one output with 2 features.

The high-level algorithm of the convolution operation in CNN
is listed in Figure 2, where conv2 represents computing the 2D
convolution between two 2D matrices. The inputs and outputs of
the algorithm are all arranged in 4-dimensional arrays. Inputs to
the algorithm are the image array images (image_count, height,
width, image_features) and the filter array filters (image_features,
filter_size, filter_size, filter_count). The output is the array
outputs (image_count, height, width, filter_count). Each of the
parameters used in the algorithm is described as below.

image count. This parameter is the size of input mini-batch. A
mini-batch contains multiple independent input images to be
processed. Each image in the mini-batch will be processed by the
same set of filters to produce one output image.

width, height. These two parameters are the width and height of
the input images. All input images in the mini-batch have the same
size. In this paper, the size of output images is the same as the size
of the input images.

image_features. This parameter indicates the number of features
maps in an input image. This is also the number of feature maps
in a filter.

filter_size. In the context of CNNs, filters are always square-
shaped. Therefore, we use only one parameter, which is filter_size,
to represent both the width and height of a filter. As a result, the
number of pixels in a filter is (filter_size * filter_size).

filter_count. This parameter is the total number of filters.
Because each filter produces an output feature map, filter_count
is also the number of output feature maps.

2.2 Exploiting Parallelism and Data Reuse in Convolution

This paper uses cuda-convnet2 [5] as the reference
implementation of CNN on GPGPUs. Cuda-convnet2 is one of
the widely used open-source implementations that enable superior

Figure 1: Convolution in CNN

01: for (i = 0; i < image_count; i++) {
02: for (j = 0; j < filter_count; j++) {
03: result = zeros(height, width);
04: for (k = 0; k < image_features; k++)
05: result += conv2(images(k, :, :, i),
06: filters(k, :, :, j));
07: outputs(j, :, :, i) = result;
08: }
09: }

Figure 2: Pseudocode of convolution operations

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 30

performance on a variety of CNN schemes [6]. It employs design
techniques and optimization strategies mainly for NVidia GPGPU
architectures. This section will discuss how to implement the
convolution algorithm efficiently with CUDA [8].

CUDA is a design environment for massively parallel

applications. CUDA applications exploit parallelism provided by
the GPGPU by breaking down the task into blocks containing the
same number of threads. Functionally speaking, blocks are
independent to each other. Although some of them may be
assigned to the same computing tile (a.k.a. SM (Streaming
Multiprocessor in NVIDIA GPU), the computing model dictates
that one block cannot communicate with another. Threads in a
block are assigned to the same computing tile so that they can
communicate and share data. This computing model leads to two
important design decisions: 1) which dimensions to parallelize;
and 2) what data to share and reuse between threads within a block.

Parallelizing one dimension means that the task is divided

into smaller pieces by splitting at that dimension. For example, if
we choose to parallelize the image_count dimension, computation
for different images are divided into smaller tasks. In this case,
each task is responsible for a small number of images. There are
six dimensions in the inputs: image_count, image_features, width,
height, filter_size and filter_count. A designer needs to decide
which of these dimensions should be parallelized.

One limitation of the CUDA programming model is that

different blocks cannot communicate with each other. Therefore,
we can only parallelize dimensions that divide the problem into
smaller independent tasks. In other words, outputs of each task
should be stored separately without being combined into larger
results. Based on this criterion, we will separately examine each
of the dimensions to determine if it can be parallelized.

The dimension image_count represents the number of images.

Because each image produces its own output independent of other
images, we can parallelize the image_count dimension. The width
and height dimensions can also be parallelized because
computation of each output pixel is independent. Next, each filter
produces its own output feature map, so the filter_count
dimension can be parallelized. Now we are left with two
dimensions to examine. The features dimension represents the
number of feature maps in input images as well as filters. Because
the results from different feature maps are summed to form a
single output feature map (see Figure 1), we do not parallelize the
feature dimension. Finally, we also do not parallelize filter_size
because the products of filter pixels and image pixels are summed
to form a single output pixel. To summarize, the dimensions that
we are going to parallelize are image_count, width, height and
filter_count.

The next step is to decide what data is reused and shared by
different threads within a block. Figure 3 depicts the relation
between the input data (images and filters) and the output images.
Some input/output data set are labeled with capital letters for ease
of explanation. The arrows in the figure indicates the input-output
relation of the data. For example, the arrow pointing from A
(image 1) to V (feature 1 of output 1) means that computation of
V depends on A. From the figure we can see that different features
in the same output image share the same input image (e.g. V, W,
X all depend on A). Also, the same feature in different output
images share the same filter (e.g. V, Y, Z all depend on B). These
observations reveal some data-reuse opportunities.

To benefit from reusing both images and filters, a block
should load pixels of multiple images and filters from the global
memory. The threads also need to efficiently reuse the loaded data.
This can be done by arranging the threads into a 2D configuration
as show in Figure 4. The total number of threads in a block is
threads_x * threads_y, and each thread is responsible of
computing a single output pixel. All threads have an x and y index,
where the x index determines which image the thread uses and the
y index determines the filter. By doing this, the kernel only needs
to load threads_x image pixels and threads_y filter pixels to
compute threads_x * threads_y outputs. Each loaded image pixel
is reused by threads_y threads, and each loaded filter pixel is
reused by threads_x threads. As a result, this design reduces the
memory access required to load the images to 1 / threads_y and
that of the filters to 1 / threads_x.

Figure 3: The relation between the input data (images and filters) and the

output images.

Figure 4: Configuration of threads in a block

01: __shared__ float
 images_pixel[features][filter_size*filter_size][threads_x];
02: __shared__ float
 filter_pixel [features][filter_size*filter_size][threads_y];
03: <collaboratively load images and filters>
04: float result = 0;
05: for (int i = 0; i < filter_size*filter_size; i++)
06: for (int f = 0; f < features; f++)
07: result +=
 image_pixel[f][i][threadIdx.x]*
filter_pixel[f][i][threadIdx.y];
08: <write result back to global memory>

Figure 5: High-level structure of the CUDA kernel

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 31

The high-level structure of the CUDA kernel is listed in
Figure 5. Shared memory arrays are allocated to store the image
and filter pixels to be reused. At the beginning, all threads work
together to load the image and filter pixels required by the block.
Then, each thread computes the output pixel it is responsible for.
Finally, the computed results are written back to global memory.

This kernel is functional, but there are some details that can

be improved. The first one is that this kernel loads the entire filter
into shared memory, resulting in higher shared memory usage.
This can be improved by loading the filter pixels in fixed-size
chunks instead of loading as a whole. Due to the commutativity
and associativity of summation, the final result is equal to the sum
of the partial result of each chunk. Now we can modify the
program by adding a parameter cached_pixels to set the size of
the chunk. The modifications are listed in Figure 6. Note that both
images and filters are loaded in chunks, or tiles. This technique is
normally referred as tiling. As listed in (1), the shared memory
usage after tiling (SharedMemtile) can be greatly reduced from the
original cost (SharedMemoriginal).

SharedMemtile = 𝑥𝑥 = cached_pixels
filter_size2

 × SharedMemoriginal (1)

Currently, each thread in the kernel computes only one output
pixel. We can generalize the kernel to compute multiple output
pixels per thread. An output pixel is computed from one image
and one filter, so we will add two extra kernel parameters
images_per_thread and filters_per_thread to make the kernel
compute multiple output pixels. These two parameters decide how
many images and filters should each thread use. Because each pair
of image and filter generate one output pixel, the number of
outputs of each thread is images_per_thread * filters_per_thread.
The modification to the program is listed in Figure 7. By adjusting
images_per_thread and filters_per_thread, we can make each
thread compute multiple outputs and therefore reduce the total
number of blocks for the same problem size. For example, if the
original kernel (equivalent to the modified kernel with
images_per_thread = filters_per_thread = 1) has N blocks in total,
the new kernel with images_per_thread = filters_per_thread = 2
only has N/4 blocks.

This kernel is used as the baseline program on which we
propose enhancements. In the next section, we will describe how
we choose the input sizes to use in our experiments.

2.3 Choosing the Input Size for Experiments

GPGPU-sim can obtain detailed execution behavior of
CUDA programs on a GPU architecture similar to GTX-480.
However, performance simulation in GPGPU-sim is very slow
compared to a physical GPU. For example, a program that takes
100ms on an NVidia GTX480 can take up to 3 hours when
running on GPGPU-sim. With such long simulation periods,
changes to the program or the simulator itself cannot be quickly
tested. Therefore, we think it is beneficial to reduce the size of the
input dataset for shorter simulation time. But reducing the input
data size, if done improperly, might produce inaccurate
simulation results that deviates from the behavior of the original
data. In this section, we will discuss a way to choose the size of
the reduced data.

Computation in CUDA is broken down into independent

blocks. Each block is assigned to a streaming multiprocessor (SM)
so that every thread in the block can be run concurrently via fine-
grain context switching of warps (groups of 32 threads). Also,
each SM is capable of executing multiple blocks at the same time.
On GTX480, the maximum number of blocks that a SM can run
concurrently is limited by the following limiting factors:

1. An SM has 32768 registers.
2. An SM has 48kB of shared memory.
3. There should be no more than 8 blocks assigned to the same

SM at the same time.

Each thread in a block has its own set of registers, so the
number of registers used by each block is block size×register per
thread. The limitation of blocks per SM due to the limiting factor
1 mentioned above is

�
32768

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� (2)

Another limitation is the size of shared memory. Because an
SM only has 48kB of shared memory, the limiting number of
blocks per SM due to limiting factor 2 is

�
48kB

𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
�

(3)

At last, due to scheduler hardware limitations (limiting factor
3), a SM can only run at most 8 blocks concurrently. Concluding

01: __shared__ float
 images_pixel [features][cached_pixels][threads_x];
03: __shared__ float
 filter_pixel [features][cached_pixels][threads_y];
05:
06: <collaboratively load images and filters>
07:
08: float result = 0;
09: for (int p = 0; p < filter_size*filter_size; p += cached_pixels){
10: for (int i = 0; i < cached_pixels; i++)
11: for (int f = 0; f < features; f++)
12: result += image_pixel[f][i][threadIdx.x] *

filter_pixel[f][i][threadIdx.y];
13: }
14:
15: <write result back to global memory>

Figure 6: Modified kernel that loads data in chunks

01: __shared__ float
images_pixel [images_per_thread][features]

[cached_pixels][threads_x];
02: __shared__ float

filter_pixel [filters_per_thread][features] [cached_pixels][threads_y];
03: <collaboratively load images and filters>
04: float result[images_per_thread][filters_per_thread] = {};
05: for (int p = 0; p < filter_size*filter_size; p += cached_pixels) {
06: for (int i = 0; i < cached_pixels; i++)
07: for (int f = 0; f < features; f++)
08: for (int ii=0; ii<images_per_thread; ii++)
09: for (int if=0; if<filters_per_thread; if++)
10: result += image_pixel[ii][f][i][threadIdx.x] *

filter_pixel[if][f][i][threadIdx.y];
11: }
12: <write result back to global memory>

Figure 7: Modified kernel with multiple output in each thread

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 32

(2), (3) and the hardware limitation, the actual maximum number
of blocks per SM can be obtained by (4).

min ��
32768

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� , �

48kB
𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

��

(4)

In GTX480, there are 15 SMs. If each SM can run eight
blocks in parallel, then the GPU can run 120 blocks concurrently.
While using very large datasets, the total number of blocks will
be much larger than 120 so that most of the time, all SMs on the
GPU is doing some work. However, if the reduced dataset has less
than 120 blocks, then some of the SMs on the GPU will be idle all
the time, making occupancy lower than it should have been in
larger datasets. Also, if the number of blocks is slightly more than
120 blocks, the GPU will execute the first 120 blocks in its full
capability, and then execute the remaining blocks using only some
of the SMs while leaving other SMs idle. This also makes
measurements inaccurate in the same way.

Therefore, it is preferable to adjust the reduced data size so
that blocks fill in all SMs during the entire simulation period. In
other words, the total number of blocks divided by the maximum
number of concurrent blocks should be a whole number or slightly
less than a whole number (ex. 1.99). By reducing the data size like
this, measurements will be closer to that of larger data sets.

Input parameters Kernel parameters
image_count 128 images_per_thread 4
image_width 5 filters_per_thread 4
image_height 6 threads_x 16

image_features 3 threads_y 4
filter_count 32 cached_pixels 4

filter_width, filter_height 32

Table 1: Parameters used in the experiments

The actual input data size and kernel parameters we use in the
experiment are listed in Table 1. According to these parameters,
we can compute the total number of blocks using (5).

𝑛𝑛𝑛𝑛𝑚𝑚𝑏𝑏𝑟𝑟𝑟𝑟 𝑏𝑏𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 = �
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑟𝑟

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎_𝑥𝑥 × 𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑟𝑟𝑟𝑟_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎
�

× �
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_𝑤𝑤𝑟𝑟𝑎𝑎𝑟𝑟ℎ × 𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟𝑟𝑟_ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑟𝑟 × 𝑜𝑜𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑟𝑟

𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎_𝑚𝑚 × 𝑜𝑜𝑟𝑟𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑟𝑟𝑟𝑟_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎
�

(5)
After compiling this program, the compiler outputs the

following information:

1. Each thread uses 28 registers.
2. Each block uses 3900 bytes of shared memory.

Now we compute the number of blocks per SM. The
limitation caused by registers is

�
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟
� = �

32768
28 × (16 × 4)

�

 = 18 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆 (6)

The limitation caused by shared memory is

�
shared memory per SM

𝑟𝑟ℎ𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎 𝑚𝑚𝑟𝑟𝑚𝑚𝑏𝑏𝑟𝑟𝑚𝑚 𝑝𝑝𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� = �

48kB
3900

�

 = 12 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑟𝑟 𝑝𝑝𝑟𝑟𝑟𝑟 𝑆𝑆𝑆𝑆 (7)

Because both (6) and (7) exceed the hardware limitation of
eight blocks per SM, maximum numbers of blocks per SM in this
case is 8. Multiplying with the total numbers of SMs on GTX480,
we get 8×15=120 blocks that can be executed on the GPGPU in
parallel. Since there are exactly 120 blocks to be executed, all the
blocks can be run in parallel without any SM stalling.

2.4 Summary of Design Concerns

In this section, we discussed an implementation of
convolution in CUDA step-by-step. This convolution kernel
employs a 2D block configuration to enable sharing of onboard
data between threads through the shared memory, reducing
accesses to the global memory. The kernels are also parameterized
to enable adjusting the amount of work done by each thread. We
also explained how we choose a relatively small input size that
utilize all SMs. This method of choosing input sizes reduces the
error of the experiment results caused by idle SMs. In all the
following experiments, we will use the input sizes listed in Table
1.

According to simulation using GPGPU-sim, we identified
that the two bottlenecks of the convolution kernel are computation
of partial sums and loading of image and filter data. The following
two sections, Section 3 and Section 4, will elaborate the proposed
software and hardware improvements to speed up these two
bottlenecks.

3. Accelerating Computation Part

The result of profiling the baseline implementation is shown
in Figure 8. According to the profiling result, the most time-
consuming part in the entire kernel is the computation part, which
takes up over 97% of the overall runtime. In this section, we will
focus on reducing the computation cost by various techniques
including software and hardware modifications.

3.1 Avoid Local Memory Access

In order to improve the performance of the computation part,
we need to understand what is responsible for its relatively long
latency. Instruction-level breakdown of the profiling result listed
in Figure 9 reveals that the latencies of instructions accessing local

Figure 8: Initial Performance Breakdown

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 33

memory are orders of magnitude greater than other instructions.
In this section, we will discuss why there is local memory
accessing in the code and how can we avoid it.

latency instruction
…
900003
825928
909892
92553
25725679
1059732
84348
26358148
1059915
84135
26520275
1061173
84381
26074621
1062764
80641
168702
650839
...

…
add.u64 %rd55, %rd54, %rd51;
mul.lo.u64 %rd56, %rd55, 4;
add.u64 %rd57, %rd13, %rd56;
ld.shared.f32 %f47, [%rd57+0];
ld.local.f32 %f48, [%rd53+0];
 mad.f32 %f49, %f43, %f47,%f48;
st.local.f32 [%rd53+0], %f49;
ld.local.f32 %f50, [%rd53+4];
mad.f32 %f51, %f44, %f47, %f50;
st.local.f32 [%rd53+4], %f51;
ld.local.f32 %f52, [%rd53+8];
mad.f32 %f53, %f45, %f47, %f52;
st.local.f32 [%rd53+8], %f53;
ld.local.f32 %f54, [%rd53+12];
mad.f32 %f55, %f46, %f47, %f54;
st.local.f32 [%rd53+12], %f55;
add.u32 %r98, %r98, 1;
 add.u64 %rd53, %rd53, 16;
…

Figure 9: Local memory access latency

3.1.1 Local Variables in CUDA

Before going into discussion, we will first briefly introduce
how local variables (also known as automatic variables) are
handled in NVidia GPGPUs. In the CUDA programming
language, local variables are normally placed in the stack frame
of the current function call. But compilers are also allowed to put
them in registers if the architecture permits. Execution stack of
CUDA threads are placed in a special memory space called local
memory. Local memory resides in the global memory but is
partitioned and allocated to each thread. Each thread can only see
its own copy of local memory. Because global memory is much
slower than registers, it is often preferable to put local variables
in registers instead of local memory.

However, there are two limitations in CUDA regarding the

use of registers. One limitation is that Fermi GPGPUs only have
32768 register in each core, so the total number of registers used
by all threads in a block cannot exceed 32768. This limitation is
less of a problem in convolution because the number of threads
per block is relatively small (less than 100), and the number of
register required for each thread is around 60. The other limitation

is that registers have no addresses. This implies that an array can
be put in registers only if no indexing is performed on them.

3.1.2 Loop Unrolling

In the convolution kernel, the partial sums computed by each
thread are stored in a local array and accumulated over all pixels
as shown in Figure 11. The loop counter f and g are used with the
subscript operator to access the array element for each image and
filter. In this case, the compiler needs to put the array in local
memory because registers cannot be indexed. This will cause the
GPU to access global memory in every iteration of the inner loop.

01: float result[filters_per_thread][images_per_thread];
02: for (int pixel = 0; pixel < filter_pixels; pixel += cached_pixels)
03: {
04: <load filter pixels>
05: <load image pixels>
06: for (int i =0; i < cached_pixels*image_features; i++)
07: {
08: for (int f=0; f<filters_per_thread; f++)
09: {
10: for (int g=0; g<images_per_thread; g++)
11: {
12: result[f][g] += image_pixel[i][g] * filter_pixel[i][f];
13: }
14: }
15: }
16: }

Figure 11: Local Array in the Convolution Kernel

It can be seen in the figure that the overall latency is
dominated by local memory access (highlighted in boldface). The
bottleneck can be totally avoided if the array elements are put in
registers instead of local memory. However, the compiler cannot
put the array in register because the array needs to be dynamically
indexed.

One way to get around this limitation is to apply loop
unrolling, which effectively eliminates all dynamic indexing on
the array by expanding the loop and replacing the indices with
constants. As long as the array is not dynamically indexed, the
compiler can allocate registers for the array elements.

01: for (int i = 0; i < cached_pixels * image_features; i++) {
02: #pragma unroll
03: for (int f = 0; f < filters_per_thread; f++)
04: {
05: #pragma unroll
06: for (int g = 0; g < images_per_thread; g++)
07: {
08: result[f][g] += image_pixel[i][g] * filter_pixel[i][f];
09: }
10: }
11: }

Figure 12: Applying Loop Unrolling

Loop unrolling in CUDA can be enabled by setting up the
preprocessing hint during compilation. A directive #pragma
unroll is provided to let the programmer issue unrolling hints so
that the compiler knows which loops should be unrolled. Using
the unroll directive, we can apply loop unrolling to the original
program (shown in Figure 12). By using loop unrolling on the two
inner-most loops, the `result` array is expanded into multiple
independent registers. As a result, the inner loop no longer
requires local memory access. As shown in the profiling result in

Figure 10: Registers and Local Memory

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 34

Figure 13, latency of local memory accesses is completely
eliminated after unrolling the loop.

latency instruction
189822
1681
17345
25172
8650
1681
18890
24716
6933
1699
17569
24335
5724
1684
17055
24019
192675
1707
16959
...

ld.shared.f32 %f59, [%rd13+0];
ld.shared.f32 %f60, [%rd16+0];
mov.f32 %f61, %f2;
mad.f32 %f62, %f59, %f60, %f61;
mov.f32 %f63, %f62;
ld.shared.f32 %f64, [%rd13+4];
mov.f32 %f65, %f4;
mad.f32 %f66, %f64, %f60, %f65;
mov.f32 %f67, %f66;
ld.shared.f32 %f68, [%rd13+8];
mov.f32 %f69, %f6;
mad.f32 %f70, %f68, %f60, %f69;
mov.f32 %f71, %f70;
ld.shared.f32 %f72, [%rd13+12];
mov.f32 %f73, %f8;
mad.f32 %f74, %f72, %f60, %f73;
mov.f32 %f75, %f74;
ld.shared.f32 %f76, [%rd16+4];
mov.f32 %f77, %f10;
…

Figure 13: Profiling result after applying loop unrolling

Before applying loop unrolling, it takes 524k cycles for the
program to finish. The letter k is a postfix indicating 1,000. After
applying loop unrolling, the number of cycles is reduced to 148k,
resulting in a 71% improvement on the overall performance. The
latency breakdown in Figure 14 shows that the computation part
is dramatically improved by loop unrolling.

Figure 14: Loop unrolling performance improvement

3.2 Adding Inner Product Engine

The computation part (shown in Figure 15) is still the
bottleneck even after applying loop unrolling, taking up about
69% of the overall execution time. Looking at the loop as a whole,
what it does is computing the product between each image and
filter pixel and sum them together. The partial sums are then
accumulated in the array `result`.

01: for (int i = 0; i < cached_pixels * image_features; i++) {
02: #pragma unroll
03: for (int f = 0; f < filters_per_thread; f++)
04: {
05: #pragma unroll
06: for (int g = 0; g < images_per_thread; g++)
07: {
08: result[f][g] += image_pixel[i][g]* filter_pixel[i][f];
09: }
10: }
11: }

Figure 15: Computation loop

If we exchange the order of the outmost loop with the two
inner loops in Figure 16, the inner loops (Line 05 to Line 11)
becomes an inner product operation between the two arrays. This
modification does not change the behavior of the original function
because there is no dependency between each loop iteration. Since
the two outer loops are unrolled, the inner product becomes the
only bottleneck.

01: #pragma unroll
02: for (int f=0; f < filters_per_thread; f++) {
03: #pragma unroll
04: for (int g=0; g < images_per_thread; g++) {
05: for (int i=0; i<cached_pixels* image_features; i++)
06: {
07: result[f][g] += image_pixel[i][g] * filter_pixel[i][f];
08: }
09: }
10: }

Figure 16: Inner product in the computation loop

To reduce the bottleneck, we propose adding a hardware

inner product accelerator to the cores, one unit for each thread.
The accelerator loads pairs of image and filter pixels from shared
memory, compute the product of each pair, and then sum all the
products together. The program passes the starting addresses and
strides of both arrays and the number of elements to the
accelerator. These arguments are then stored in the internal
registers of the accelerator and are reused until their values are
changed again. The final result is also stored in the unit and can
be retrieved in the program.

The hardware architecture of the inner product accelerator
unit is shown in Figure 18. For each iteration, it loads two
elements from shared memory and accumulate the product of
them to a register. It requires one multiplier, one adder and a
register to store the partial results. In the actual implementation,
the multiplier and adder can be fused into a fused multiply-add
(FMA) circuit. We assume that it requires 2 cycles to load the two
elements from shared memory, and the latency of the FMA is also
assumed to be 2 cycles. A 2-stage pipeline can then be used to
repeatedly load elements and compute FMA. In our work, we
model the latency of the inner product unit as 2 * N, where N is
the number of elements to compute.

Figure 18: Inner Product Unit

Figure 17: Inner Product

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 35

Modeling the accelerator requires modifying both GPGPU-
sim and the application. We modeled the inner product accelerator
in GPGPU-sim by intercepting memory access to specific
addresses. We modified the load (ld) and store (st) handlers to
check if the source or target address matches any of the designated
addresses. List of the addresses we use and their functions are
listed in Table 2. If the address matches, the original memory
access is skipped and the corresponding function of the
accelerator is performed. For example, as soon as the thread writes
16 to address 0xffffffc8, GPGPU-sim sets the stride register of the
accelerator to 16.

Table 2: Addresses used by the inner product engine

address direction function

0xffffffc0 write address of image array

0xffffffc8 write stride of image array

0xffffffd0 write address of filter array

0xffffffd8 write stride of filter array

0xfffffff0 write number of elements

0xfffffff8 read start computing and retrieve the result; stall the
thread for N cycles

To use this inner product accelerator, the application needs to
use the addresses to manipulate the registers inside the accelerator.
First, the application should pass the starting address of the image
and filter array to 0xffffffc0 and 0xffffffd0 respectively. The
image stride is threads_x * images_per_thread, and the filter stride
is threads_y * filters_per_thread. These two values are constant
as the dimensions of the arrays are known in compile time, so it
is only necessary to write them once at the beginning of the kernel.
The fifth parameter, number of elements, is also known in compile
time and only needs to be write once. Finally, after all parameters
are set, the program needs to read from address 0xfffffff8 to
retrieve the result of the inner product. The modified program is
listed in Figure 19.

01: // beginning of the kernel
02: *(unsigned long long*)(0xffffffc8) = sizeof(shm_images[0]);
03: *(unsigned long long*)(0xffffffd8) = sizeof(shm_filters[0]);
04: *(unsigned long long*)(0xfffffff0) = cached_pixels * image_features;
05: // inside the computation part
06: #pragma unroll
07: for (int f = 0; f < filters_per_thread; f++) {
08: *(float**)(0xffffffd0) = &shm_filters[0][threadIdx.y * filters_per_thread

+ f];
09: #pragma unroll
10: for (int g = 0; g < images_per_thread; g++) {
11: float partial_sum;
12: *(float**)(0xffffffc0) = &shm_images[0][threadIdx.x *
 images_per_thread + g];
13: partial_sum = *(float*)0xfffffff8;
14: result[f][g] += partial_sum;
15: }
16: }

Figure 19: Program modified to use the inner product engine

The profiling result of the modified program is listed as
follows in Figure 20. As shown in the figure, the computation part

is improved by 88% and results in 66% improvement on the
overall performance. The bottleneck of the program is no longer
the computation part.

Figure 20: Loop unrolling performance improvement

3.3 Outer Product Engine

In this section, we will discuss an alternative way to
accelerate at the computing part. The two inner loops (shown in
line 03~09 in Figure 21) can also be viewed as computing the
products of each pair of elements in image_pixel[i] and
filter_pixel[i]. This operation is called the outer product, which
can be represented as multiplying a column matrix with a row
matrix as shown in the figure. Inputs to the outer product are two
arrays image_pixels[i] and filter_pixel[i], each with length
images_per_thread and filters_per_thread. Each element in the
first array is multiplied with each element in the second array,
producing a total of images_per_thread * filters_per_thread
numbers. The outer product is performed cached_pixels *
image_features times, and the output of each time is accumulated
to produce the partial sums.

01: for (int i = 0; i < cached_pixels * image_features; i++) {
02: for (int f = 0; f < filters_per_thread; f++) {
03: for (int g = 0; g < images_per_thread; g++)
04: {
05: result[f][g] += image_pixel[i][g] * filter_pixel[i][f];
06: }
07: }
08: }

Figure 21: Outer product in the computation loop

We propose an accelerator to speed up the computation of the
outer product. The accelerator has at least images_per_thread *
filters_per_thread internal registers to store the computed partial
sums. It loads two arrays, compute the product of each pair of
elements, and accumulate the results to the internal registers.
Values of the registers can be read or reset to zero by the program.

The hardware architecture of the outer product accelerator

unit is shown in Figure 23. For each iteration, it loads four
elements from image array and one element from filter array

Figure 22: Outer product

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 36

multiply them to a register, and the adder adds previous partial
sum to the original register. It consumes four multiplier, one adder
and number of image array * filter array registers to save the
partial results. Suppose the multiplier requires 1 cycle to produce
the result, storing result to register and loading pixel from shared
memory also consumes 1 cycle. Then, a 3-stage pipeline can be
applied to repeatedly load elements, compute outer product and
store results. In our implementation, we model the latency of the
outer product unit which assume that the accelerator can load one
pixel from the shared memory each cycle. It will need to preload
some pixels from the image array before using a 3-stage pipeline,
and the number of preloaded pixels depends on image array length.
Therefore, we can assume that the total latency of the accelerator
is image array length + (2*N)-2 ,where N is the number of
elements to compute.

Figure 23: Outer Product Unit

Figure 24: Outer product performance improvement

4. Accelerating Data-Loading
After applying the improvements described in Section IV, the

computation part is improved a lot. As illustrated in Figure 25,
the data-loading part, including loading of images and filters,
becomes the bottleneck of the program.

Figure 25: Performance breakdown after improvements

The data-loading part is responsible for loading image and
filter pixels from global memory to shared memory. It is
composed of deeply nested control structures of loops and
conditionals. The control structures themselves also take time to
execute, especially for the inner loops. Any subtle overhead inside
inner loops can build up and become major bottlenecks. In this
section, we propose two software approaches to reduce the
overhead inside inner loops. We also propose a hardware
accelerator to speed up address calculation in the image-loading
part.

4.1 Strength Reduction

One of the major bottlenecks in inner loops is the
computation of array indices for each iteration. In the data-loading
loops, array indices in inner loops can contain complex arithmetic
expressions that translates into larger number of instructions.
Because the arithmetic instructions are executed in the inner loops,
latencies of them can quickly build up and become a major
bottleneck.

Take the program in Figure 26 as an example. To compute
the array index for images, it needs to compute two
multiplications and two additions for each iteration (line 4). If we
work out the total number of operations, we will find that the
program needs to carry out image_features * images_per_thread
multiplications and additions in total.

Figure 26: Arithmetic operation in the inner loop

We propose a method based on strength reduction to improve
the performance of this program. This method takes advantage of
the fact that some arithmetic operations can be reduced to
successive simpler operations. For example, multiplication can be
done with repeated addition of the multiplier. Instead of
computing the multiplication in each iteration, we can use a
separate counter variable idx to accumulate the index throughout
the entire loop and update it according to the following rule.

The arithmetic expression for computing the array index can
be broken down into 3 parts:

a. loop invariants (terms that does not change throughout
the nested loops)

b. multiples of the outer loop counter f
c. multiples of the outer inner loop counter i

Terms belonging to Part a is constant with respect to both the
inner and outer loops. Therefore, the term `base` is used to
initialize idx before entering the loops. Part b contains the term f
* stride, whose value increases by stride whenever f is
incremented. Therefore, stride is added to idx at the end of the
outer loop. Part c contains the term i * threadIdx.x. The value of
this term goes from 0 to (images_per_thread-1) * threadIdx.x in
the inner loop and returns to zero again. Therefore, we will first
save the value of idx before entering the inner loop, increment idx
in each iteration, and restore idx after leaving the inner loop. The
resulting program is listed in Figure 27.

01: for (f = 0; f < image_features; f++) {
02: for (i = 0; i < images_per_thread; i++) {
03: image_pixel[f][i] = images[base + f * stride + i * threadIdx.x];
04: }
05: }

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 37

Figure 27: Applying strength reduction

In this transformed program, it only needs to compute one
addition for each iteration in the inner loop and one addition for
each iteration in the outer loop. In total, we get image_features *
(images_per_thread+1) additions. The total number of operations
is cut in half compared to the original program, so the modified
program should run faster in the data-loading part. Profiling
results in Figure 28 supports this prediction by showing that the
performance of the image-loading and filter-loading parts are
improved significantly. The impact of strength reduction is 25.9%
on the overall performance.

Figure 28: Strength reduction performance improvement

4.2 Extract Conditionals

In addition to strength reduction, we also identified another
useful optimization strategy in the data-loading loop. The idea is
to prevent unnecessary condition checks in inner loops by
checking whether the conditional is necessary in the loop before
entering the loop. To illustrate the case, consider the following
code snippet taken from the convolution kernel:

01: int idx = base;
02: for (f = 0; f < image_features; f++) {
03: int idx_save = idx;
04: for (i = 0; i < images_per_thread; i++) {
05: image_pixel[f][i] = images[idx];
06: idx += threadIdx.x;
07: }
08: idx = idx_save;
09: idx += stride;
10: }

Figure 29: Boundary checking in the data-loading loop

In the inner-most loop, it checks whether the index of image
to load (image_index + i) is within bounds and only load the
image if so. Because the total number of image is not always a
multiple of images_per_thread, the boundary condition check is
necessary here to ensure that the index to load is within bounds.
However, checking for the boundary condition every time in an
inner loop degrades performance. To eliminate redundant checks
in inner loops, the loop is duplicated and modified into two
variants: one with boundary checking, and the other without them.
Without the checking overhead, the one without boundary

checking will run faster. The problem we are left with is how to
choose between these two variants.

Because the loop variable i is always less than or equal to
images_per_thread - 1, image_index + i will always be less than
or equal to image_index + images_per_thread - 1. If given
image_index + images_per_thread - 1 < image_count, we will
automatically get image_index + i < image_count. In other words,
if image_index + images_per_thread <= image_count, there is no
need to check for the boundary condition. As a result, we will
choose the faster loop without boundary checking if image_index
+ images_per_thread <= image_count, or the slower loop
otherwise. The resulting code is listed in Figure 30.

Figure 30: Reduced boundary check code

Profiling result before and after applying this technique is
shown in Figure 31. This technique improves the overall
performance by 2.6% compared to the previous version using only
strength reduction.

Figure 31: Extract conditionals performance improvement

4.3 Index Conversion Accelerator

In the data-loading part of the convolution kernel, filter and
image pixels are loaded to shared memory one after another.
Before loading each pixel from global memory, the program must
compute the index of the pixel in the input arrays. In each iteration
of the loop, the program first loads several filter pixels. While
loading the filter, there is no need to compute the index because
the loop counter itself represents the index of the filter pixel to
load. However, for each filter pixel, it is still necessary to load the
corresponding image pixel. Computing the index of image pixels
is more involved. Sometimes the filter pixel is placed outside the

01: for (int f = 0; f < image_features; f++) {
02: for (int i = 0; i < images_per_thread; i++) {
03: if (image_index + i < image_count) {
04: /* load image `image_index + i` */
05: }
06: }
07: }

01: if (image_index + images_per_thread <= image_count) {
02: for (int f = 0; f < image_features; f++) {
03: for (int i = 0; i < images_per_thread; i++)
04: { // no boundary check
05: // load image `image_index + i`
06: }
07: }
08: } else {
09: for (int f = 0; f < image_features; f++) {
10: for (int i = 0; i < images_per_thread; i++)
11: {
12: if (image_index + i < image_count)
13: { // boundary check
14: // load image `image_index + i`
15: }
16: }
17: }
18: }

http://www.astesj.com/

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 38

image and doesn't overlap with any pixel in the input. When this
happens, the loaded image pixel should be set to zero because
zero-padding is used outside the edges of the image. If the filter
pixel is placed within the image, the filter pixel index should be
converted into the image pixel index, which is then used to load
the image pixel from global memory.

01:for (int p = 0; p < cached_pixels; p += threads_y) {
02: int pixel_index = pixel + p + threadIdx.y;
03: int x = image_pixel_x – filter_size / 2 + pixel_index % filter_size;
04: int y = image_pixel_y - filter_size / 2 + pixel_index / filter_size;
05: if (y >= 0 && y < image_height && x >= 0 && x < image_width)
06: {
07: int image_pixel_index = (y * image_width + x) * image_count;
08: <load image pixel from image_pixel_index>
09: } else {
10: <set image pixel to 0>
11: }
12: }

Figure 32: Index conversion in the data-loading loop

Computing the image pixel index and checking for the
boundary condition takes up about 1/3 of the image-loading time.
Therefore, we propose adding an accelerator to speed up this two
tasks at the same time. Before describing what this accelerator
should do, we will first look at the code to convert filter pixel
index to image pixel index.

From the code listed above, we can see that there are three
steps involved in converting filter pixel index to image filter index.
The first step is break down filter pixel index to its x and y
component and offset the coordinates by the location of the kernel.
Then, boundary check is performed on the (x, y) point to ensure
that there is a corresponding pixel in the input. Finally, the (x, y)
is converted to the image pixel index. These steps are translated
to tens of instructions and slows down the program.

01: for (int p = 0; p < cached_pixels; p += threads_y) {
02: <invoke index converter using inline assembly>
03: // the result is stored in image_pixel_index
04: if (image_pixel_index >= 0) {
05: <load image pixel from image_pixel_index>
06: } else {
07: <set image pixel to 0>
08: }
09: }

Figure 33: Modified program using the index conversion accelerator

Figure 34: Index converter performance improvement

We propose adding a hardware accelerator to do the index
conversion. The accelerator we propose will do the three steps

altogether in one instruction. If the (x, y) point is within bounds,
it returns the index of the image pixel. Otherwise, it returns -1.
We implement the accelerator in GPGPU-sim as an instruction
and use inline assembly in the convolution kernel to invoke the
instruction. The modified program is listed in Figure 33. The
performance improvement of using the index converter is listed in
Figure 34. The overall performance is improved by 5%.

5. Related Work

Accelerating convolutional neural networks is a very popular
research topic. Accelerators have been developed in different
hardware technologies. Eyeriss [9][15] developed by Yu-Hsin
Chen et al. is an ASIC CNN accelerator that can run AlexNet at
35fps with only 278mW of power consumption. There are other
ASIC accelerators proposed to exploit the redundancy of CNN
networks [16][17][18]. Cheng Zhang [10] implemented a CNN
accelerator on FPGA and achieved 61.62 GFLOPS under
100MHz clock frequency. He also proposed an analytical design
scheme using the roofline model.

The GPGPU is also a widely-used platform for CNN. NVidia
developed a software library named cuDNN [2] that uses GPGPU
to speed up convolution. When integrated with the Caffe
framework, it can improve the performance by up to 36%.
However, the cuDNN library is proprietary and cannot be studied
by the community. The fbfft library [4] also uses GPGPU to speed
up CNN, but it employs a different algorithm (FFT) to compute
convolution. Cuda-convnet2 is an efficient implementation of
CNN for NVidia GPGPU. It is by far the fastest open-source CNN
implementation. However, it lacks analysis on the techniques it
uses to improve the performance.

6. Conclusion

This paper describes an implementation of the convolution
operation on NVidia GPGPU and analyze the techniques in the
implementation. We propose software and hardware
enhancements to the program to speed up the computation of
partial sums and loading the input data, which are the two major
bottlenecks. The experiments have shown that the proposed
modifications have achieved 4.4x speedup compared with the
baseline implementation.

References
[1] Lin, C.-H.; Cheng, A.-T.; Lai, B.-C.; "A Software Technique to Enhance

Register Utilization of Convolutional Neural Networks on GPGPUs," IEEE
International Conference on Applied System Innovation, May 2017.
http://ieeexplore.ieee.org/document/7988499/

[2] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro,
B., & Shelhamer, E. (2014). cudnn: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759. https://arxiv.org/abs/1410.0759

[3] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ...
& Darrell, T. (2014, November). Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia (pp. 675-678). ACM.

[4] Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., & LeCun,
Y. (2014). Fast convolutional nets with fbfft: A GPU performance
evaluation. arXiv preprint arXiv:1412.7580.
https://arxiv.org/abs/1412.7580

[5] Alex Krizhevsky. cuda-convnet2. https://code.google.com/p/cuda-
convnet2/, 2014. [Online; accessed 23-January-2015].

[6] Lavin, A. (2015). maxDNN: an efficient convolution kernel for deep
learning with maxwell gpus. arXiv preprint arXiv:1501.06633.
https://arxiv.org/abs/1501.06633

http://www.astesj.com/
http://ieeexplore.ieee.org/document/7988499/
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1412.7580
https://arxiv.org/abs/1501.06633

A.T. Cheng et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 2, 28-39 (2018)

www.astesj.com 39

[7] Bakhoda, A., Yuan, G. L., Fung, W. W., Wong, H., & Aamodt, T. M. (2009,
April). Analyzing CUDA workloads using a detailed GPU simulator. In
Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on (pp. 163-174). IEEE.
http://ieeexplore.ieee.org/abstract/document/4919648/

[8] Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue, 6(2), 40-53.

[9] Chen, Y. H., Krishna, T., Emer, J., & Sze, V. (2016, January). 14.5 Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. In 2016 IEEE International Solid-State Circuits
Conference (ISSCC) (pp. 262-263). IEEE.
http://ieeexplore.ieee.org/document/7738524/

[10] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015, February).
Optimizing fpga-based accelerator design for deep convolutional neural
networks. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (pp. 161-170). ACM.
https://dl.acm.org/citation.cfm?id=2689060

[11] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (pp. 1097-1105).
https://dl.acm.org/citation.cfm?id=2999257

[12] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.
https://arxiv.org/abs/1409.1556

[13] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., & Temam, O. (2014,
February). Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. In ACM Sigplan Notices (Vol. 49, No. 4, pp.
269-284). ACM. https://dl.acm.org/citation.cfm?id=2541967

[14] Cavigelli, L., Magno, M., & Benini, L. (2015, June). Accelerating real-time
embedded scene labeling with convolutional networks. In Proceedings of
the 52nd Annual Design Automation Conference (p. 108). ACM.
http://ieeexplore.ieee.org/document/7167293/

[15] Y.-H Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, 2017.

[16] D. Kim, J. Ahn, and S. Yoo, “A novel zero weight/activation-aware
hardware architecture of convolutional neural network,” in Design,
Automation, and Test in Europe (DATE), 2017.

[17] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for
compressed-sparse convolutional neural networks,” in 44th Annual
International Symposium on Computer Architecture (ISCA), 2017, pp. 27–
40.

[18] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y.
Chen, “Cambricon-X: An accelerator for sparse neural networks,” in 49th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016.

http://www.astesj.com/
http://ieeexplore.ieee.org/abstract/document/4919648/
http://ieeexplore.ieee.org/document/7738524/
https://dl.acm.org/citation.cfm?id=2689060
https://dl.acm.org/citation.cfm?id=2999257
https://arxiv.org/abs/1409.1556
https://dl.acm.org/citation.cfm?id=2541967
http://ieeexplore.ieee.org/document/7167293/

	1. Introduction

