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 Though AES is the highest secure symmetric cipher at present, many attacks are now 
effective against AES too which is seen from the review of recent attacks of AES. This paper 
describes an extended AES algorithm with key sizes of 256, 384 and 512 bits with round 
numbers of 10, 12 and 14 respectively. Data block length is 128 bits, same as AES. But 
unlike AES each round of encryption and decryption of this proposed algorithm consists of 
five stages except the last one which consists of four stages. Unlike AES, this algorithm uses 
two different key expansion algorithms with two different round constants that ensure 
higher security than AES. Basically, this algorithm takes one cipher key and divides the 
selected key of two separate sub-keys: FirstKey and SecondKey. Then expand them through 
two different key expansion schedules. Performance analysis shows that the proposed 
extended AES algorithm takes almost same amount of time to encrypt and decrypt the same 
amount of data as AES but with higher security than AES. 
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1. Introduction 

Communications among individual or organizations are 
increasing day by day. Everyone wants to keep their private 
information secure from any type of threats or being lost. 
Cryptography achieves this goal to secure private information. 
Schemes are being developed rapidly and frequently for 
cryptography and attacks on those schemes are being developed 
often too. New attacks are being strong, effective and attenuating 
the security of existing cryptographic schemes. 

Rijndael block cipher was proposed as AES by September 03, 
1999 [1]. National Institute of Standards and Technology (NIST) 
announced Rijndael block cipher as AES by Federal Information 
Processing Standards Publication 197 (FIPS 197) by November 
26, 2001. Several attacks were developed after the publication of 
AES that are threatening for AES but not practically successful 
on full AES. Until 2006, the best-known attacks were on 7 rounds, 
8 rounds, and 9 rounds for 128-bit keys, 192-bit keys, and 256-bit 
keys respectively [2]. However, in the recent time, many attacks 
are close to successful on AES. For the reduced 8-round version 
of AES-128, the first known-key distinguishing attack was 
released as a preprint in November 2009 [3]. It works with a 
memory complexity of 232, and a time complexity of 248. In 2011 

[4], the first key-recovery attack on full AES was developed. This 
biclique attack is four times faster than the brute force attack. It 
requires 2126.2, 2190.2 and 2254.6 operations to recover an AES-128, 
AES-192 and AES-256 key respectively. This result has been 
further improved to 2126.0, 2189.9 and 2254.3 operations for AES-128, 
AES-192 and AES-256 key respectively [5], which are the current 
best results in key recovery attack against AES. 

As intended to develop AES with extended key sizes for more 
security against recently developed attacks by keeping the 
performance almost similar to that of AES. Thus proposed 
algorithm becomes more complex for Interpolation attack, Basic 
attack, and Square attack. Differential and Linear cryptanalysis 
will be inefficient for this algorithm too. Since this algorithm uses 
two different keys derived from one key, it will be more complex 
and impossible to crack in spite of having known plaintext-
ciphertext pairs available. The throughput of the proposed 
algorithm is nearly similar to that of AES. It is shown that for a 
100KB text file, encryption time taken by AES-128 is 0.100s 
where for EAES-256 it is the same amount of time.  Performances 
of other versions of EAES are evaluated and they are effective too. 

The rest of the paper is organized as follows: Section 2 briefly 
explain related research works, Section 3 describes the proposed 
EAES algorithm, Section 4 shows the performance analysis of 
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EAES, Section 5 describes the strength of EAES against different 
types of attacks and Finally, Section 6 concludes the paper. 

2. Background 

After the proposal of AES encryption by Rijndael, a large 
number of research works has been done on it. An FPGA based 
architecture for a new version of 512-Bit Advanced Encryption 
Standard algorithm design and evaluation was proposed in [6]. It 
(AES-512) uses both input and key block size of 512-bits which 
makes it more resistant to cryptanalysis against the break of its 
security. Throughput increased by 230% when compared with the 
implementation of the original AES-128. But requires more 
control logic blocks (CLBs) in implementation prospect than 
existing AES. 

An efficient parallel implementation and optimization of the 
Advanced Encryption Standard (AES) algorithm based on the 
Sunway TaihuLight was proposed in [7]. The Sunway TaihuLight 
is a China’s independently developed heterogeneous 
supercomputer [8] with peak performance over 100 Petaflops. 
Specifically, they expanded the scale to 1024 nodes and achieved 
the throughput of about 63.91 GB/s (511.28 Gbits/s). But with the 
increase of input data the throughput grows from quick to slow 
pattern. 

A new efficient and novel approach to protect AES against 
differential power analysis was proposed in 2015 [9]. The 
implementation of this approach provides a significant 
improvement in strength against differential power analysis with 
a minimal additional hardware overhead. The efficiency of their 
proposed technique was verified by practical results obtained 
from real implementation on a Xilinx Spartan-II FPGA. 

In 2016, an implementation of AES algorithm to overt fake 
keys against counter attacks was proposed [10]. An approach to 
overt the cryptographic key, when there is any counter attacks so-
called side-channel attacks (SCAs) are applied in order to break 
the security of AES-128. Experimental results make sure the 
strength of the proposed approach to successfully hide the true 
cryptographic key. But it is more time consumptive than existing 
AES. 

Constructing key dependent dynamic S-box for AES block 
cipher system was proposed in 2016 [11]. A new approach to 
generating dynamic S-box which was constructed centered on 
round key. Predefined static S-boxes pose a weak point for the 
attackers to analyze certain ciphertext pairs. The new S-boxes 
created were additionally dynamic, random and key dependent 
which attempts to escalate the complexity of the algorithm and 
furthermore mark the cryptanalysis more challenging. However, 
the performance in terms of time and power consumption is not 
examined and showed in this paper. 

An implementation of AES-128 and AES-512 on 
Apple mobile processor [12] was proposed in 2017 that uses 512 
bits of data block size using key sizes of 128, 192, 256, 512 and 
1024 bits. However, again the performance degrades with the 
extension of key lengths. 

3. Proposed Extended AES (EAES) 

Advanced Encryption Standard (AES) is the most used and 
most secure algorithm at present among other symmetric cipher 
algorithms. But recently some sorts of attack such as biclique 
attack are threatening for AES. AES uses key sizes of 128 bits, 
192 bits and 256 bits [13]. The authors have developed an 
algorithm almost similar to AES with some exceptions and double 
in key sizes (i.e., key sizes of 256, 384 and 512 bits) and highly 
secure than AES. 

The proposed EAES algorithm has four parts: encryption, 
decryption, key division and key expansion. It takes plaintext 
block length of 128 bits as the existing AES. Every encryption 
and decryption process goes through several numbers of rounds 
according to their key sizes. This algorithm is named depending 
on its key lengths as EAES-256, EAES-384, and EAES- 512. Key 
sizes with corresponding round numbers are given in Table 1. 

Table 1. Key sizes with corresponding round numbers of the cipher 

Key Size ( bits/bytes/words ) Round Number ( Nr ) 

256/32/8 10 

384/48/12 12 

512/64/16 14 

 
3.1. Key Division 

This part of the algorithm takes a cipher key and divides it into 
two equal sub-keys in a simple way. The resulting two sub-keys 
are named FirstKey and SecondKey. Size of both sub-keys can be 
128, 192 and 256 bits since the cipher key can be 256, 384 and 
512 bits. FirstKey has byte values that are in odd positions in the 
cipher key and SecondKey has byte values that are in even 
positions in the cipher key. Figure 1 shows an example of this key 
division process where each letter is identified as a byte and the 
cipher key is 256 bits or 32 bytes. 

 
Figure 1 Key division example of the cipher key expansion 

Two different key expansions are used for two sub-keys. Since 
sub-key sizes are 128, 192 and 256 bits for cipher key sizes of 256, 
384 and 512 bits respectively, the values of 𝑁𝑁𝑁𝑁 for both sub-keys 
will be same as defined in AES. Sub-key expansions can be 
described as follows: 

1. At first, the sub-key is copied into the first 𝑁𝑁𝑁𝑁 words of 
the array of expanded sub-key. In other words, the first 
𝑁𝑁𝑁𝑁 words of the expanded sub-key are filled with the 
sub-key which is also 𝑁𝑁𝑁𝑁 words long. 
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2. Words in positions that are a multiple of 𝑁𝑁𝑁𝑁 go through 
a more complex function which is denoted by 𝑔𝑔. 

3. Every following word w[i] is equal to the XOR of the 
previous word w[i – 1] and the word 𝑁𝑁𝑁𝑁 position earlier 
w[i – 𝑁𝑁𝑁𝑁]. Note that i starts with 1, not 0. 

4. The complex function 𝑔𝑔 takes a single word or 4 bytes 
as input then passes it through the following three 
subsequent operations: 

a. RotWord: If the sub-key is FirstKey, it 
performs a one-byte circular left shift on a 
word. This means an input word [B1, B2, B3, B4] 
transformed into [B2, B3, B4, B1]. If the sub-key 
is SecondKey, it performs a one-byte circular 
right shift on a word. This means an input word 
[B1, B2, B3, B4] transformed into [B4, B1, B2, 
B3]. 

b. SubWord: It performs a byte substitution on 
each byte of its input word using the S-box used 
for AES. 

c. The result of operation b is XORed with a round 
constant Rcon[i]. The round constant is a word 
in which the first byte is different for different 
round values but the rightmost three bytes 
always remain constant. Round Constants are 
different for FirstKey and SecondKey. Rcon[i] 
values for FirstKey and SecondKey expansions 
are given in Table 2. For FirstKey expansion, 
the rightmost three bytes of the Round Constant 
are always 0. Rcon[i] = (RC[i], 0, 0, 0) with 
RC[1] = 1, RC[i] = 2  • RC[i – 1]. For 
SecondKey expansion, among the right most 
three bytes of the Round Constant, the first and 
third bytes are equal to hexadecimal value {FF}  
that means all bits of these two bytes are 1. The 
second byte is equal to {00} that means all bits 
of the second byte are 0. Rcon[i] = (RC[i], {FF}, 
0, {FF}) with RC[1] = 1, RC[i] = 3 • RC[i – 1] 
= [2 ⊕ 1] • RC[i – 1] = (2 • RC[i – 1]) ⊕ RC[i 
– 1]. The symbol “ • ” denotes multiplication 
over the field 𝐺𝐺𝐺𝐺(28). The values of RC[i] in 
hexadecimal form are shown below where the 
value of “i” denotes round number. 

5. If 𝑁𝑁𝑁𝑁 = 8 and (i – 4) is a multiple of 𝑁𝑁𝑁𝑁 then SubWord 
is applied to w[i – 1] prior to the XOR. 

Table 2. Rcon[i] values for FirstKey and SecondKey expansion 

i 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

RC[i] 
(for FirstKey) 01 02 04 08 10 20 40 80 1B 36 6C D8 AB 4D 

RC[i] 
(for 

SecondKey) 
01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8 

Two different complex functions𝑔𝑔  used in the expansions of 
FirstKey and SecondKey are shown in Figure 2. 

 
Figure 2 Complex function g for a) FirstKey expansion and b) SecondKey 

expansion 

After successful expansion of the FirstKey and SecondKey, 
each of the expanded FirstKey and SecondKey has a total of  
𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 + 1) words. From these, every four words were used for 
each round. The expanded FirstKey and SecondKey of 𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 +
1) words are shown in Figure 3. 

 
Figure 3 Expanded a) FirstKey and b) SecondKey 

3.2. Encryption or Cipher 

The encryption process takes the plaintext input into the state 
and passes it through a single stage at the beginning of the cipher 
named AddFirstRoundKey. Then the state passed through 𝑁𝑁𝑁𝑁 
rounds to get the expected ciphertext as output. Each of first 𝑁𝑁𝑁𝑁 −
1  rounds has five consecutive stages that are: SubBytes, 
AddSecondRoundKey, ShiftRows, MixColumns, and 
AddFirstRoundKey. The last round that means 𝑁𝑁𝑁𝑁th round has all 
four stages except the MixColumns stage. Figure 6 shows full 
encryption process with all 𝑁𝑁𝑁𝑁 rounds. 

3.2.1 SubBytes, ShiftRows and MixColumns Transformation 

These stages do the exact similar transformations as AES. 

3.2.2 AddFirstRoundKey Transformation 

In this stage, an 𝑁𝑁𝑁𝑁-word FirstRoundKey is added to the state 
by simple bitwise XOR operation. A FirstRoundKey is 𝑁𝑁𝑁𝑁 words 
length as the state. The FirstRoundKey is provided from the 
FirstKey expansion function that expands the 𝑁𝑁𝑁𝑁 words FirstKey 
into 𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 + 1) words expanded FirstKey. This addition could 
be described as a column-wise addition of the state matrix and the 
FirstRoundKey. The following figure shows the addition of a 
column of four bytes of the state and a word of the FirstRoundKey, 
where i indicates the value𝑖𝑖 = (𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁). The lowest value of 
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𝑁𝑁𝑁𝑁 is zero which indicates the first AddRoundKey stage without 
round and the highest value is the last round number. Figure 4 
shows the AddFirstRoundKey transformation. 

 
Figure 4 Addition between FirstRoundKey and state 

3.2.3 AddSecondRoundKey Transformation 

In this stage, a 𝑁𝑁𝑁𝑁-word SecondRoundKey is added to the 
state by simple bitwise XOR operation as like AddFirstRoundKey 
stage but the only exception is that first 𝑁𝑁𝑁𝑁 words of the expanded 
SecondKey are not added to the state. Figure 5 shows the 
AddSecondRoundKey transformation. 

 
Figure 5 Addition between SecondRoundKey and state 

Encryption and decryption process of proposed algorithm are 
shown in Figure 6. 

 
Figure 6 Full round encryption and decryption process of proposed EAES 

algorithm 

3.3. Decryption or Inverse Cipher 

Decryption process takes the ciphertext input into the state and 
passes it through a single stage at the beginning of the inverse 
cipher named AddFirstRoundKey. Then the state passed through 
𝑁𝑁𝑁𝑁 rounds to get the expected plaintext as output. Each of first 
𝑁𝑁𝑁𝑁 − 1 rounds has five consecutive stages that are: InvShiftRows, 
AddSecondRoundKey, InvSubBytes, AddFirstRoundKey and 
InvMixColumns. The last round that means 𝑁𝑁𝑁𝑁th round contains 
all four stages except the InvMixColumns stage. Figure 6 shows 
the total decryption process. 

3.3.1 InvShiftRows, InvSubBytes and InvMixColumns 
Transformation 

These stages do the same transformations as AES. 

3.3.2 AddFirstRoundKey and AddSecondRoundKey 
Transformation 

These two stages perform the similar operation as described 
for encryption process except that they add the expanded round 
keys to the state from the end of the expanded key.  

4. Performance Analysis 

Before the performance comparison of the proposed EAES 
and original AES, AES algorithms were tested with the input-
output vector combination provided by National Institute of 
Standards and Technology (NIST) [14]. Then times taken by AES 
and the proposed algorithm for encryption and decryption of 
different fixed plaintext sizes with their different key lengths were 
measured. The authors used a system of the configurations listed 
in Table 3 to test both of AES and proposed EAES algorithm. 

Table 3. System configuration used for performance measurement 

Device Name 
Company: Acer, Model: Aspire 

4749z (Laptop) 
CPU Clock Rate 2.20 GHz, 2200MHz 

RAM Size 4.00 GB 

Hard Drive Size 1.00 TB 

Processor Name Intel(R) Pentium(R) CPU B960 @ 2 Core(s)  

Processor Generation 2nd Generation 

Operating System Microsoft Windows 10 pro, Version: 
10.0.10586  Build 10586. 

Compiler Name: Code::Blocks, Type: GNU GCC 

Programming Language used C 

Plaintext and Ciphertext File Type .txt 

Two plaintext files (i.e., .txt) were taken for performance 
measurements. Sizes of chosen files are 100KB and 200KB. The 
encryption and decryption process was done for three times and 
then the time averaged. Table 4 shows the time taken for AES and 
the proposed EAES algorithm with different key size to encrypt 
and decrypt 100KB text file. 

The time comparison between AES-128 and EAES-256; AES-
192 and EAES-384; AES-256 and EAES-512 shows that 
encryption and decryption times are almost same between AES 
and EAES for 100KB text file. However, EAES versions are 
nearly some milliseconds slower than existing AES. 

Table 4. Time taken to encrypt and decrypt 100KB text file 
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Alg. AES-128 AES-192 AES-256 EAES-256 EAES-384 EAES-
512 

Time(s) 

Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. 

0.069 0.278 0.069 0.332 0.084 0.393 0.062 0.285 0.062 0.354 0.084 0.401 

0.053 0.285 0.069 0.332 0.069 0.400 0.062 0.285 0.069 0.352 0.069 0.416 

0.053 0.279 0.053 0.332 0.079 0.384 0.052 0.285 0.062 0.354 0.084 0.401 
Average 
Time(s) 0.058 0.280 0.064 0.332 0.077 0.392 0.059 0.285 0.064 0.353 0.079 0.406 

Table 5. Time taken to encrypt and decrypt 200KB text file 

Alg AES-128 AES-192 AES-256 EAES-256 EAES-384 EAES-512 

Time(s) 

Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. 

0.100 0.554 0.147 0.670 0.132 0.791 0.100 0.599 0.115 0.707 0.147 0.809 

0.100 0.577 0.100 0.693 0.138 0.793 0.100 0.601 0.122 0.707 0.138 0.817 

0.084 0.583 0.122 0.664 0.131 0.791 0.100 0.602 0.125 0.702 0.131 0.822 

Average 
Time(s) 0.095 0.571 0.123 0.676 0.134 0.792 0.100 0.600 0.120 0.705 0.139 0.816 

Table 5 compares the time taken between AES-128 and 
EAES-256; AES-192 and EAES-384; AES-256 and EAES-512; 
and again shows that encryption and decryption times are almost 
same between AES and EAES for 200KB text file while EAES 
versions are some milliseconds slower than AES. Moreover, for a 
200KB text file, the encryption and decryption time is clearly 
greater than the time taken for 100KB text file for all versions of 
AES and EAES as expected. Parallel Execution of AES-CTR 
Algorithm Using Extended Block Size [15] was proposed in 2011 
that can be used to increase the performance of real-time uses of 
proposed EAES.  

5. Strength of Proposed EAES Algorithm 

The number of alternative keys and times taken by the brute-
force attack to get the original cipher key are listed in Table 6. The 
authors have proposed an approach [16] that uses genetic 
algorithm and neural network in S-box. This feature can also be 
used to increase the security of proposed EAES.  

Table 6. Average time required for exhaustive key search 

Key Size 
(bits) 

Number of 
Alternative keys 

Time Required at 109 
Decryption/Sec 

Time Required at 
1013 Decryption/Sec 

256 2256≈ 1.2 × 1077 2255 ns = 1.8 × 1060 years 1.8 × 1056 years 
384 2384≈ 3.9 × 10115 2383 ns = 6.2 × 1098 years 6.2 × 1094 years 
512 2512≈ 1.34× 1077 2511 ns = 2.1 × 10137 years 2.1 × 10133 years 

5.1 Strength Against Different Attacks 

     Several cryptanalysis attacks such as linear attack, algebraic 
attack, SAT-solver and hybrid attack, Side channel attack, 
distinguishing and related-keys attack revised in [17] and are very 
important for AES. EAES increases algorithm complexity and 
security against those attacks. 

5.1.1 Biclique Attack 

Still now, the best publicly known single-key attack on AES 
is biclique attack. It uses a computational complexity of 2126.1, 
2189.7 and 2254.4 for AES-128, AES-192, and AES-256 respectively. 
It is the only publicly known single-key attack on AES that attacks 
the full number of rounds. Previous attacks have attacked round 
reduced variants (typically variants reduced to 7 or 8 rounds). This 

attack is only theoretical but not practical because it’s high 
complexity as mentioned above. But it describes many safety 
margins of AES such as round numbers and key sizes. The 
proposed algorithm uses higher key sizes that are two times larger 
than AES which ensures more security for this type attack.   

5.1.2 The Basic Attack 

The authors placed a new stage between SubBytes and 
ShiftRows so that the algorithm becomes obsolete to basic attack. 
The scheme used for the basic attack will not be applicable for 
this algorithm. This extra stage of key addition ensures the 
nonlinearity of this algorithm. 

5.1.3 The Square Attack 

The “Square” attack utilizes the byte-oriented structure of 
Square cipher and is a dedicated attack on Square. This attack is 
also valid for AES, as AES inherits many properties from Square. 
The attack is independent of the multiplication polynomial of 
MixColumns, the key schedule and the specific choice of 
SubBytes and is also known as a chosen plaintext attack. It is 
faster than an exhaustive key search for AES versions of up to 6 
rounds. However, no attacks faster than exhaustive key search 
have been found for 7 rounds or more. The proposed algorithm 
uses two different key schedules and two addition of cipher key 
that ensures high diffusion. So it ensures extra security to this 
algorithm. 

5.1.4 Related-key Attacks 

In this type of attacks, using a chosen relation, the cryptanalyst 
can do cipher operations with different unknown or partly 
unknown keys. The high diffusion and non-linearity key schedule 
of AES makes it very inviolable for this attack. The proposed 
algorithm uses two different key schedules with the same 
complexity as AES that ensures higher security than AES for this 
type of attack. 

6. Conclusion 

Security of this algorithm is higher than any other symmetric 
ciphers at present. In real life this algorithm can be implemented 
and used in applications like smart phone apps, real-time 
multimedia communication, and private network communications, 
SSL communications, ATMs etc with increased security than 
existing AES. The proposed algorithm is implemented using C 
programming language and then tested it with some plaintext 
blocks. It can also be easily implemented by other high level 
languages like C++, JAVA, C#, Python etc. The performance 
results are shown and compared with AES.  Time consumptions 
were approximately same as AES but the security was higher than 
AES. This algorithm has just been developed, implemented and 
tested for performance analysis. The complexity and security of 
this algorithm have been evaluated theoretically. It is found that 
this algorithm is more secure than AES. But it is essential to 
analyze the result of the algorithm for various practical attacks. 
That defines the future works of the proposed algorithm.  

References 

[1] J. Daemen and V. Rijmen, "AES Proposal: Rijndael" in: Proc. first AES 
conference, 1998.   

http://www.astesj.com/


A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018) 
 

www.astesj.com            56 

[2] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D. 
Whiting, “Improved Cryptanalysis of Rijndael” Fast Software Encryption 
Lecture Notes in Computer Science, 213-230, 2001. 
https://doi.org/doi:10.1007/3-540-44706-7_15 

[3] H. Gilbert, T. Peyrin, “Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations” Fast Software Encryption Lecture Notes in Computer 
Science, 365-383, 2010. https://doi.org/doi:10.1007/978-3-642-13858-4_21 

[4] A. Bogdanov, D. Khovratovich, C. Rechberger, “Biclique Cryptanalysis of 
the Full AES” Lecture Notes in Computer Science Advances in Cryptology – 
ASIACRYPT 2011, 344-371, 2011. https://doi.org/doi:10.1007/978-3-642-
25385-0_19 

[5] B. Tao, H. Wu, “Improving the Biclique Cryptanalysis of AES” Information 
Security and Privacy Lecture Notes in Computer Science, 39-56, 2015. 
https://doi.org/doi:10.1007/978-3-319-19962-7_3  

[6] A. Mohd, Y. Jararweh, L. Tawalbeh, “AES-512: 512-bit Advanced 
Encryption Standard algorithm design and evaluation” 7th International 
Conference on Information Assurance and Security (IAS), 2011. 
https://doi.org/doi:10.1109/isias.2011.6122835 

[7] Y. Chen, K. Li, X. Fei, Z. Quan, K. Li, “Implementation and Optimization of 
AES Algorithm on the Sunway TaihuLight” 17th International Conference 
on Parallel and Distributed Computing, Applications and Technologies 
(PDCAT), 2016. https://doi.org/doi:10.1109/pdcat.2016.062 

[8] “Sunway TaihuLight” - Wikipedia. (n.d.). Retrieved March 24, 2018, from 
https://en.wikipedia.org/wiki/Sunway_TaihuLight 

[9] M. Masoumi, M. H. Rezayati, “Novel Approach to Protect Advanced 
Encryption Standard Algorithm Implementation Against Differential 
Electromagnetic and Power Analysis” IEEE Transactions on Information 
Forensics and Security, 10(2), 256-265, 2015. 
https://doi.org/doi:10.1109/tifs.2014.2371237 

[10] S. Savitha, S. Yamuna, “Implementation of AES algorithm to overt fake keys 
against counter attacks” International Conference on Computer 
Communication and Informatics (ICCCI), 2016. 
https://doi.org/doi:10.1109/iccci.2016.7480017 

[11] G. Manjula,  H. S. Mohan, “Constructing key dependent dynamic S-Box for 
AES block cipher system” 2nd International Conference on Applied and 
Theoretical Computing and Communication Technology (iCATccT), 2016. 
https://doi.org/doi:10.1109/icatcct.2016.7912073 

[12] S. Vatchara, K. Piromsopa, “An Implementation of AES-128 and AES-512 
on Apple Mobile Processor” 14th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and Information 
Technology (ECTI-CON), 2017. https://doi.org/doi:10.1109/ 
ecticon.2017.8096255 

[13]  “Advanced encryption standard (AES)” 2001. 
https://doi.org/doi:10.6028/nist.fips.197 

[14] M. J. Dworkin, “Recommendation for block cipher modes of operation” 2001. 
https://doi.org/doi:10.6028/nist.sp.800-38a  

[15] N. Tran, M. Lee, S. hong, S. Lee, “Parallel Execution of AES-CTR Algorithm 
Using Extended Block Size” 14th IEEE International Conference on 
Computational Science and Engineering, 2011. 
https://doi.org/doi:10.1109/cse.2011.43 

[16] K. Kalaiselvi, A. Kumar, “Enhanced AES Cryptosystem by Using Genetic 
Algorithm and Neural Network in S-Box” IEEE International Conference on 
Current Trends in Advanced Computing (ICCTAC), 2016, 
https://doi.org/doi:10.1109/icctac.2016.7567340 

[17] D. M. Alghazzawi, S. H. Hasan, M. S. Trigui, “Advanced Encryption 
Standard - Cryptanalysis Research” International Conference on Computing 
for Sustainable Global Development (INDIACom), 2014, 
https://doi.org/doi:10.1109/indiacom.2014.6828045 

http://www.astesj.com/
https://doi.org/doi:10.1007/978-3-319-19962-7_3
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://doi.org/doi:10.1109/icatcct.2016.7912073
https://doi.org/doi:10.1109/
https://doi.org/doi:10.6028/nist.sp.800-38a
https://doi.org/doi:10.1109/icctac.2016.7567340

	2. Background
	3. Proposed Extended AES (EAES)
	3.1. Key Division
	3.2. Encryption or Cipher
	3.2.1 SubBytes, ShiftRows and MixColumns Transformation
	3.2.2 AddFirstRoundKey Transformation
	3.2.3 AddSecondRoundKey Transformation

	3.3. Decryption or Inverse Cipher
	3.3.1 InvShiftRows, InvSubBytes and InvMixColumns Transformation
	3.3.2 AddFirstRoundKey and AddSecondRoundKey Transformation


	4. Performance Analysis
	5. Strength of Proposed EAES Algorithm
	5.1.1 Biclique Attack
	5.1.2 The Basic Attack
	5.1.3 The Square Attack
	5.1.4 Related-key Attacks

	6. Conclusion
	References


