
Advances in Science, Technology and Engineering Systems Journal
Vol. 3, No. 3, 80-91 (2018)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Towards Process Standardization for Requirements Analysis
of Agent-Based Systems

Khaled Slhoub*, Marco Carvalho

Florida Institute of Technology, School of Computing, Florida, 32901, United States

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 18 April, 2018
Accepted: 11 May, 2018
Online: 31 May, 2018

Keywords:
IEEE Std 830
Agent-Oriented Specification
Agent-Based Systems
Multi-Agent Systems
MAS
ABS
Software Engineering
Software Requirements Speci-
fication
SRS
Software Standards
Software Quality

The development of agent-based systems is negatively impacted by the
lack of process standardization across the major development phases,
such as the requirements analysis phase. This issue creates a key barrier
for agent technology stockholders regarding comprehending and ana-
lyzing complexity associated with these systems specifications. Instead,
such fundamental low-level infrastructure is loosely attended to in an
ad-hoc fashion, and important aspects of requirements analysis are often
neglected altogether. The IEEE Std 830 model is a recommended practice
aimed at describing how to write better quality requirement specifica-
tions of conventional software. Knowing that agent-based computing is a
natural and logical evolution of the conventional approaches to software
development, we believe that the requirements phase in agent-based sys-
tems can benefit from applying the IEEE Std 830 model which results in
high-quality and more accepted artifacts. This article provides a criteria-
based evaluation that is derived from the software engineering body
of knowledge guide to assessing the adoption degree of agent-oriented
methodologies to software requirements standards. Then, it proposes a
model-driven approach to restructuring and extending the IEEE Std 830-
2009 standard model to specify requirements of agent-based systems. To
evaluate the applicability and usefulness of the updated model, we design
a research study that allows practicing the model with simple real-world
problem scenarios and conducting a summative survey to solicit feedback
on the model usages.

1 Introduction

This article is an extension of work initially presented
in 2017 at the IEEE 8th Annual Ubiquitous Computing,
Electronics and Mobile Communication Conference
(UEMCON) [1].

Agent-based systems (ABS) have proliferated in re-
cent years into what is now one of the most active
research areas in computing. This intensity of inter-
est is increased not only because these complex sys-
tems impose a new promising means of developing
software, but also because the agent community has
become aware of the necessity to cast ABS as a software
engineering paradigm (SE). This becomes important
in order to assist ABS development to be more formal
and efficient. Agent-Oriented Software Engineering

(AOSE) is a new independent SE mainstream that aims
to either extend or adapt existing SE methodologies to
facilitate and improve the ABS complex development.
SE practices have become a vital prerequisite of run-
ning successful software products and have been ex-
tensively used for decades to support the conventional
ways of building software, such as object-oriented de-
velopment which is currently the most popular pro-
gramming paradigm [2].

Like other conventional software, software require-
ments specification (SRS) is an essential aspect in agent-
based systems, and numerous agent-oriented method-
ologies demand it as an initial primary phase in their
development process life-cycles. SRS describes how an
agent system is expected to behave and extends the re-

*Corresponding Author: Khaled Slhoub, Email: kslhoub2014@my.fit.edu

www.astesj.com 80
https://dx.doi.org/10.25046/aj030311

http://www.astesj.com
http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

quirements analysis phase to in-depth detail, detailed
blueprints, used extensively by different stakehold-
ers of agent systems. However, the complexity associ-
ated with ABS development and its target application
domains often drives the complexity of ABS require-
ments phase. This results in poor quality SRS artifacts
that have a genuine and significant negative impact on
the entire ABS development life-cycle and create fur-
ther technical problems to the stakeholders. With the
emergence of industry willingness for agent systems,
there is a real demand to develop a high-quality agent-
oriented specification in such a way that makes ABS
development easier, more formal, more disciplined,
and more accepted industry-wide.

Over the past three decades, software standards
have played a key role in improving quality of conven-
tional software development. For instance, SE prac-
tices like the UML modeling language and IEEE/ISO
standards have been widely used in the software in-
dustry to formalize the entire software development
life-cycle. More specifically, the International Recom-
mended Practice for Software Requirements Specifica-
tions model (IEEE Std 830-2009) has been commonly
employed to help developers toward constructing high-
quality and well-organized SRS artifacts [3]. Agent
technology as another approach for software devel-
opment can undoubtedly benefit from the IEEE Std
830-2009 model to standardize the SRS process which
will mitigate the complexity of the requirements anal-
ysis and, as a result, produce more accepted SRS ar-
tifact. To do so, the IEEE Std 830-2009 model needs
to be reconstructed and updated with new additional
extensions to make it more suitable to handle the nat-
ural complexity of ABS and their target application
domains.

In the original work, the intent was to restructure
the IEEE Std 830-2009 model in such a way that makes
it more suitable to handle ABS requirement specifi-
cations. We first explored the requirement phases in
different well-known AOSE methodologies, described
in [4], [5], and hence we identified five data models
which need to be specified and incorporated into the
ABS analysis process. Then, we checked the suitability
of these data models according to the original IEEE
Std 830-2009 sections and proposed rewriting some
subsections, extending others, and adding more new
extensions to the IEEE Std 830-2009 model to comple-
ment the process standardization in the ABS require-
ment phase. In this extended article, we explain in
detail evaluation criteria used to determine the cover-
age degree of the agent-oriented methodologies with
respect to the requirement standards. Also, we conduct
an external evaluation study by asking participants to
go through the updated model sections using a few
simple real-world problem scenarios, and then take an
online survey to provide feedback on their experience
using the updated model.

The rest of this paper is organized as follows: sec-
tion 2 gives the necessary overview of software agent

concepts and goals, the agent-oriented specification
process with some related work, and the structure of
the original IEEE Std 830-2009 standard model along
with some related work. Section 3 presents an evalua-
tion matrix used to asses the coverage degree of agent-
oriented methodologies with respect to requirement
standards. Section 4 describes our proposed approach
to restructuring the IEEE Std 830-2009 standard model
in such a way that makes it more capable to address
agent-oriented specification. Section 5 summarizes our
evaluation method and results for the updated IEEE
Std 830-200 model. 6 concludes.

2 Background and Related Work

2.1 Agent-Based Systems: What and Why

Over the past two decades, computing systems have be-
come more complex. There are several reasons behind
such complexity. First, numerous computing systems
are now becoming concurrent and distributed. They
are often configured and distributed over multiple
locations with the use of multiple networks, tens of
servers, and hundreds of different machines. Such sys-
tems also comprise a considerable number of software
applications that extensively communicate with one
another. Second, many computing systems operate in
dynamic environments which are flexible enough to
permit unpredictable changes to their contents and
settings. Third, many computing systems now need
to be continuously active and to provide services on
an on-going basis [6]. Indeed, the explosive growth
of the web and mobile technologies present a twofold
problem in terms of the vast availability, wide variety,
and heterogeneity of datasets [7]. Moreover, there has
been a natural tendency to rely more on technology
to resolve certain classes of complex real-world prob-
lems. People want computer systems to do more for
them and, if possible, substitute them for performing
costly and complex tasks. More than this, consumers
demand systems to operate without their intervention
and take the initiative when necessary. To do so, people
build software components, known as agents, to act
on behalf of users to achieve specific delegated goals.
The intent is to develop sophisticated agents that are
“capable of human-like reasoning and acting” [8], [9].

As a result of the above demands, new software
characteristics and expectations have arisen and made
current software development paradigms struggling
to handle such complex development. These demands
have also triggered a need to focus more on devel-
oping complex, real-time and distributed intelligent
systems. Thus, this has prompted researchers to look
for some effective alternative approaches to address
the new demands of software development. Currently,
agent-based computing is becoming the most promis-
ing development approach for handling such issues
[5], [10], [11], [12], [13].

A software agent, another popular term used in-

www.astesj.com 81

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

terchangeably with an agent in the agent community,
could be defined in several different ways depending
on its usage and dimensions, we came across at least
12 formal definitions for the software agent. To more
clearly understand the software agent, we can think of
it as a role-playing smart or active software object that
can interact with other agents object despite the fact
that “agents are not simply objects by another name”
[14]. Wooldridge highlights that “agents are simply
software components that must be designed and im-
plemented in much the same way that other software
components are. However, AI techniques are often the
most appropriate way of building agents” [14]. Jen-
nings also supports this by stating that “an agent is
an encapsulated computer system that is situated in
some environment, and that is capable of flexible, au-
tonomous action in that environment in order to meet
its designed objectives” [15]. In fact, researchers con-
sider agent-oriented development as a natural and log-
ical evolution of the current software development
paradigms like structured and object-orientated ap-
proaches as it presents a higher-level of abstraction
and encapsulation [11], [16].

Actually, agent orientation represents not only
a higher-level of abstraction and encapsulation that
is more flexible than the other prior programming
paradigms but also offers some unique dimensions
or characteristics of agenthood such as autonomy, ca-
pability of deciding for itself how best to achieve dele-
gated goals; intelligence, capacity of learning, reason-
ing and making educated decisions; and socialability,
capability of interacting and coordinating with other
agents. Such characteristics allow software agents to
simulate human-like reasoning capability and to act
rationally and flexibly to attain delegated goals. Yu
highlights that “Agent orientation is emerging as a
powerful new paradigm for computing” [17]. Jennings
also states that “agent-oriented approaches can signifi-
cantly enhance our ability to model, design and build
complex, distributed software systems” [15].

Despite the success of several single-agent systems,
a software agent as a computational entity rarely func-
tions in isolation [18]. Any individual agent is pri-
marily restricted by the limitation of its knowledge,
resources, and potential which make it often useless on
its own [15], [19]. With the current complex real-world
problems, it is necessary to develop capable, intelligent
distributed systems that employ a group of individual
agents to resolve a combination of issues. Multi-agent
systems (MAS) are constructed around this concept
of embedding groups of agents that collaborate with
one another, and, to do so, these individual agents
require the ability to cooperate, coordinate, and nego-
tiate with each other, much as people do. One broad
definition for MAS is “a collection of interacting agents
which are highly autonomous, situated and interactive
software components. They autonomously sense their
environment and respond accordingly. Coordination
and cooperation between agents that possess diverse
knowledge and capabilities facilitate the achievement

of global goals that cannot be otherwise achieved by
a single agent working in isolation” [20]. As shown in
Figure 1, software agents in MAS are organized into
teams or groups, each side with specific tasks to per-
form. The agent in its squad strategically partners with
other agents and efficiently cooperates, coordinates, ne-
gotiates, and competes to fulfill the best outcome for
itself and its team. Such collective interactions among
the groups result in pursuing the entire delegated sys-
tem goals which are beyond the limits of a single agent
to accomplish [15]. In a study carried out in 2014
[21], Muller and Fischer investigated and analyzed 152
agent applications all over the world created by par-
ties from 21 countries. They were able to demonstrate
that MAS have attracted much more attention than
other agent type applications (125 MAS applications
corresponding to 82 % of all agent applications in the
study).

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Agent 

Interaction 
Organizational 
relationship 

Sphere of visibility 
and influence 

Environment 

Figure 1: High-level structure of agent-based systems

2.2 The Requirements Analysis Process
in Agent-Based Systems

The requirements analysis process is a significant de-
velopment phase in large and complex conventional
software. It is a description that leads to an under-
standing of the system and its structure prior to im-
plementation, provides the foundation for the rest of
development phases like design and testing, and acts
as a reference point for the system stakeholders. ABS,
which are structured based on communicating soft-
ware agents, are not an exception as various existing
agent-oriented development methodologies identify
the requirements analysis phase as the initial phase
that developers of agent systems need to fulfill. How-
ever, unlike conventional software, the requirements
phase in agent systems requires to cover more addi-
tional complex details of software agents, their roles,
their dynamics interactions, their cooperation patterns,
and internal behaviors combined with other informa-
tion of their surrounded physical/virtual and operat-
ing environments, and the target application domain.

To deal with such complexity, Ferber et al. de-

www.astesj.com 82

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

scribe the ABS requirements from the organizational
point of view by using the notions of agent, group, and
role models. Based on this structure, requirements
are classified into four types: single role behavior re-
quirements, intragroup interaction requirements, in-
tragroup communication successfulness requirements,
and intergroup interaction requirements [22]. Simi-
larly, Hilaire et al. aim to analyze complex agent com-
munications by proposing an organizational model
centered around agent interaction patterns that are
composed of roles [23]. Instead, Herlea et al. introduce
three levels of abstraction for the ABS requirement:
requirements for the multi-agent system as a whole, re-
quirements for an agent within the system, and require-
ments for a component within an agent [24]. Miller et
al. indicate the need for adequate elicitation methods
of agent-oriented requirements to mitigate complexity.
They propose an elicitation approach that provides a
list of questions to be answered by stakeholders and
then map the answers to the ABS requirements [25].

Most of the existing agent-oriented development
methodologies are derived originally from some soft-
ware engineering processes models used in support-
ing the development of conventional software such
as waterfall, evolutionary, and RUP [26], [27]. Such
process models give significant attention to the require-
ments engineering phase to delineate the complexity
issue and avoid situations like poor time and budget
estimations, unpredictable outcomes, and customer
dissatisfaction [28]. To do so, the phase is often sup-
ported by sets of standards, diagrammatic notations,
and various CASE tools. Similarly, agent-based sys-
tems are basically software components that need to
be developed in much the same ways of developing
conventional software [15], [16]. Thus, these systems
can also benefit from the existing SE practice in im-
proving the requirements analysis phase. One essential
improvement, for instance, is to apply different types
of software documentation standards to increase the
quality of software development. IEEE/ISO/IEC stan-
dards have been widely used to support conventional
software development. For example, the IEEE Std 830
documentation model is widely used to support soft-
ware requirements specification and can also play a
key role not only in improving and formalizing the
requirement analysis process in agent systems but also
in giving a better signal to the industry to better un-
derstand the ABS concepts and realize their benefits.

2.3 The IEEE Std 830-2009 Standard Prac-
tice Model

Very little work has been reported in the literature
to standardize and formalize agent-based systems de-
velopment. For example, Foundation for Intelligent
Physical Agents (FIPA) [29], accepted as a standard
committee of the IEEE Computer Society in 2005, is
proposed to facilitate agent aspects like agent platform,
protocols, and communication languages. However,
FIPA standard templates are large, complex, and hard

to follow. Such templates are considered more appro-
priate to address the agent systems design phase but
not the requirements phase [29], [30]. Agent modeling
languages are another example proposed by extending
the UML metamodel to meet the structural aspects of
agent systems like TAO [31], AML [32] and Agent UML
[33]. Such modeling languages are, however, restricted
by object-oriented concepts and cannot tackle the re-
quired additional complex details of software agents
mentioned in section 2.2.

Meanwhile, the International Recommended Prac-
tice for Software Requirements Specifications model
(IEEE Std 830-2009) demonstrates a simple generic
model to guide developers in the requirements anal-
ysis process [3]. IEEE Std 830 was specifically devel-
oped to standardize the process of software require-
ments specifications (SRS) in conventional software,
also known as the high-level design of the system, and
to drive developers towards producing high-quality
and well-organized SRS artifacts. In addition, it aims
to establish the basis for agreement between customers
and suppliers of as to what the final software prod-
uct should deliver; reduce the development time and
effort; estimate efficiently project cost and schedul-
ing; facilitate the smooth transactions between projects
stages; ensure continuity of work; enhance software
maintenance and reuse; and provide the baseline for
testing [3]. The IEEE Std 830 model frequently serves
as a reference for developers during software devel-
opment processes and as a contract between project
customers and suppliers. In fact, it has been widely
used in software industry especially in supporting the
object-oriented development, and it is recognized ac-
cording to IEEE as the most popular and universal
standard among all other IEEE standards with 50,925
full-text views in 20 years [3], [34]. As shown in Fig-
ure 2, the IEEE Std 830 model is divided into four
main sections composed of subsections that support
achieving specific objectives. Refer to [3] for more
information.

IEEE Std 830 - 2009

1.  Introduction
2.  Overall

Description

3.  Specific 

Requirements

4.  Supporting

Information

1.1  Purpose

1.2  Scope

1.3  Definition,

Acronyms and

Abbreviations

1.4  References

1.5  Overview

2.1  Product 

Perspective

2.2  Product

Functions

2.3  User

Characteristics

2.4  Constraints

2.5  Assumptions

and

Dependencies

2.6   Apportioning

of

Requirements

3.1  External

Interfaces

3.2  Functions

3.3  Performance

Requirements

3.4  Logical    

Database

Requirements

3.5  Design

Constraints

3.6  Software

System Quality

Attributes

3.7  Organizing the

Specific

Requirements

4.1  Table of 

Contents

4.2  Index

4.3  Appendixes

Figure 2: The IEEE Std 830-2009 model structure

www.astesj.com 83

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

3 Evaluating the Adoption of ABS
Requirements to Software Stan-
dards

ABS development methodologies pay a great deal of at-
tention to the requirements analysis process and iden-
tify it as an initial phase that ABS developers need to
fulfill. We deeply explored the requirement phases
in a large number of agent-oriented methodologies
searching for evidence of implementing sound soft-
ware standards. We wanted to determine how well the
requirement phases adopt and practice software stan-
dards. To do so, we provided a simple criteria-based
evaluation matrix that is basically derived from the
software engineering body of knowledge (SWEBOK-
V3.0) guide. SWEBOK-V3.0 is a well-defined, struc-
tured set of SE attributes used to deliver one of the
essential benchmarks underlying the software engi-
neering baseline [35]. Then, we used the evaluation
matrix as a checklist to assess the coverage degree of
an agent-oriented methodology with respect to require-
ment standards. Table 1 illustrates the evaluation ma-
trix checklist combined with a set of agent-oriented
development methodologies that were inspected for
requirements standardization.

As shown in Table 1, the evaluation matrix was ap-
plied to more than 20 methodologies defined in [4],
[5]. These methodologies were selected in light of the
ongoing flow of publications, the remarkable impact
on the AOSE community, the ease of understanding,
and the profusion of supported guidance and tools.
Despite the fact that all the inspected methodologies
describe requirements analysis in sufficient detail, we
found that the standards practice is often negated or
rarely mentioned in these processes. In fact, to the best
of our knowledge, no well-structured process stan-
dardization has been proposed and incorporated into
any requirements analysis phase in the existing ABS
development methodologies. We argue that the lack
of process standardization in requirements analysis
is linked to several AOSE challenges, such as imma-
ture ABS development methodologies, the absence of
unified ABS methodologies and notation, and weak
industrial acceptance of the AOSE paradigm.

4 Using the IEEE Std 830-2009
Model to Standardize Agent-
Oriented Specification

Agent-based systems can be seen as a natural evolu-
tion from the object orientation paradigm in that they
offer a higher-level of abstraction and encapsulation
[11], [15], [16]. ABS are basically software components
combined with additional dimensions or characteris-
tics like autonomy, intelligence, and socialability that
make ABS more flexible and suitable to address cer-
tain classes of complex real-world problems. ABS need
to be developed in much the same ways as other con-
ventional software components are developed. Thus,
adopting the IEEE Std 830-2009 model, used with con-
ventional software, in the requirement analysis phase
of ABS development could become a core motif in pro-
moting the entire ABS development quality and also
map the way for the industry to accept and recognize
the benefits of agent technology. To do so, The IEEE Std
830-2009 model needs to be restructured and extended
to cover all agent-oriented specifications.

Domain

Model

Knowledge 

Model

Role

Model

Agent 

Model

Interaction 

Model Testing

Standards

Figure 3: The five data sets required to meet agent-
oriented specification [1]

As mentioned in section 2.3, the IEEE Std 830-
2009 model was designed to provide recommended ap-
proaches for handling the software requirements spec-
ification. ABS can benefit from this standard model to

Evaluation Factor Agent-Oriented Methodology 

define clearly a process to elicitation, analysis, specification, and 

validation of requirements 
PASSI, MaSE, Prometheus, 

Tropos, MAS-CommonKADS, Gaia, 

ADELFE, MESSAGE, INGENIAS, 

AOR, SODA, DESIRE, Agent Factory, 

MADE, AOSM, Agent OPEN, FIPA, 

ODAM, MASSIVE, Roadmap 

monitor the quality and improvement of the requirements process like 

using quality standards and metrics 

establish software and system requirements documents 

use quality indicators to improve SRS 

provide an information basis for transferring work and software 

enhancement 

review the deviation from standard practice 

 
Table 1: The evaluation matrix used to determine the adoption degree of ABS requirements to standards

www.astesj.com 84

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

shape and formalize the requirements analysis process
in such a way that results in more accepted specifica-
tion document. Thus, we attempt in this section to
specify ABS requirements by means of utilizing the
IEEE Std 830-2009 model and proposing several new
extensions to it. Accordingly, we first identified the
main data models in the SRS process of ABS by in-
vestigating the analysis processes in several different
AOSE development methodologies such as PASSI [36],
ADELFE [37], MaSE [38], Gaia [39], and Tropos [40].
Then, we checked the fitness of these data models
according to the IEEE Std 830-2009 model. Conse-
quently, we were able to identify the data models that
are not covered by the original IEEE Std 830-2009
model and proposed rewriting some subsections, ex-
tending others, and adding more new extensions to the
model that can facilitate the agent-oriented specifica-
tion. Figure 3 illustrates the identified 5 data models
that carry the required information for specifying the
ABS requirements. The 5 data models are described in
the following list:

1. The Domain model is concerned with the anal-
ysis of a specific real world that an agent-based
system is intended to work in and interact with.
This model consists of three types of information:

• Operating Environment includes descrip-
tions of the general characteristics of the
operating environment of ABS. Such envi-
ronment provides the necessary infrastruc-
ture in which agents deployed and live. It
also manages these agents while perform-
ing their tasks and delivers the most cur-
rent information about them. Moreover, it
is responsible for providing the structure of
the agent communication language and the
agent semantic language.

• Physical/Virtual Environment includes de-
scriptions of the world that software agents
perceive and interact with. ABS are often
executed in challenging environments that
are dynamic, unpredictable, and unreliable.
Such environments could be virtual like the
web world or physical like a self-driving car
and a train control system.

• Application Domain includes information
about the field in which the system oper-
ates. Such information may involve certain
domain terminology or reference to domain
concepts and policies.

2. The Role model is concerned with describing
the ABS requirements in terms of agent tasks
or services. Agents are the core actors that are
responsible for performing tasks and achieving
delegated goals. The descriptions may include
information about the role responsibilities, pre-
requisites, and constraints.

3. The Agent model is concerned with identifying
and classifying agent types that are instantiated

later at ABS run-time, and it is directly linked
to the Role model. The Agent model should also
include descriptions of characteristics for every
agent type which may include at least descrip-
tions of the essential characteristics of agents
such as autonomy, reactiveness, proactiveness,
and socialability [15], [16].

4. The Interaction model is concerned with de-
scribing the agents behavior in terms of cooper-
ating, collaborating, negotiating with users, sys-
tem resources, and other agents. It should also
specify the agents messaging protocols and inter-
action patterns along with the use of ontologies
or conceptual means for describing the message
contents. For instance, an agent can request an-
other agent to perform some action, and the other
agent may refuse or accept the request. It may
also confirm to other agents that given proposi-
tion is true.

5. The Knowledge model is concerned with de-
scribing a repository of knowledge that agents
may use to provide explanations, recovery in-
formation, or optimize their performance. For
instance, some agent types, like reflex agents and
learning agents, require some particular rules in
order perform actions, so such rules need to be
specified and stored in the system. The Knowl-
edge model, also, should briefly describe agent
architectures which underlying the concepts for
building rational agents and their characteris-
tics. Such information is important to design any
agent-based system later. For instance, Belief-
Desires-Intentions (BDI) architecture is probably
the best-known agent architecture that agents
rely on to reason about their actions [41].

After identifying the five main data models for
agent-oriented specification, we carefully reviewed the
four main sections of the original IEEE Std 830-2009
model to check the suitability of the 5 data models ac-
cording to these sections. As a result, we were able to
propose adding more new subsections, rewriting oth-
ers, and extending other subsections to formulate the
ABS requirements specification. Figure 4 illustrates
the updated structure of the IEEE Std 830-2009 model
by highlighting the new and edited subsections. Also,
full descriptions are provided for all new information
added to the updated model as follows:

1. The first section “Introduction” contains subsec-
tions that provide an overview of the entire SRS
document, so we consider this information suit-
able for the five data models of ABS [3]. We only
suggest the following change in the following
subsection:

• An existing subsection (1.5 Overview): this
subsection should provide a brief descrip-
tion of the contents of the rest of SRS docu-
ment, so it should also include a description

www.astesj.com 85

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

IEEE Std 830 - 2009

1.  Introduction
2.  Overall

Description

3.  Specific 

Requirements

4.  Supporting

Information

1.1  Purpose

1.2  Scope

1.3  Definition,

Acronyms and

Abbreviations

1.4  References

1.5  Overview

2.1  Product 

Perspective

2.2  Domain

Perspective

2.3  Product

Functions

2.4  Agent

Perspective

2.5  User

Characteristics

2.6  Constraints

2.7  Assumptions

and

Dependencies

2.8   Apportioning

of

Requirements

3.1  Agent

Properties

3.2  External

Interfaces

3.3  Functions

3.4  Performance

Requirements

3.5  Logical    

Database

Requirements

3.6  Design

Constraints

3.7  Software

System Quality

Attributes

3.8  Organizing the

Specific

Requirements

4.1  Table of 

Contents

4.2  Index

4.3  Appendixes

Figure 4: The updated structure of the IEEE Std 830-2009 model [1]

of how analyses of the five ABS data mod-
els are organized and presented in the SRS
model.

2. The second section “Overall Description” con-
tains subsections that describe the general fac-
tors that could affect the product and its require-
ments specifications [3]. We suggest the follow-
ing changes to this section:

• A new defined subsection (2.2 Domain Per-
spective): based on the provided description
of this section, the Domain model should be
described after (2.1 Product Perspective) for
an organizational purpose. The domain ap-
plication often has a great influence on ABS,
ABS are considered as environment-driven
business development. So, the potential fea-
tures of the three sections of the Domain
model are described in this subsection.

• An existing subsection (2.2 Product Func-
tions): this subsection is renumbered to sub-
section (2.3), and it is described in terms of
both: the Role model and the user functions.
Thus, it should provide a summary of the
key roles that agents in ABS will perform.
Notice that this only include a high-level
summary of the Role model that defines the
major functional roles for each listed agent.

• A new defined subsection (2.4 Agent Per-
spective): based on the provided descrip-

tion of this section, the Agent model should
be summarized in section 2. It should in-
clude a description that lists and defines
the potential software agent categories and
their main characteristics.

• An existing subsection (2.6 Apportioning
of Requirements): this subsection is renum-
bered to subsection (2.8), and it should iden-
tify functional agent roles and user func-
tions that may be delayed until future ver-
sions of the agent-based system.

3. The third section “Specific Requirement” con-
tains subsections that describe in sufficient tech-
nical details all ABS requirements. This includes
all functional roles concerning all inputs and
outputs to/from the agent-based system and all
required nonfunctional requirements [3]. We
suggest the following changes to this section as
follows:

• A new defined subsection (3.1 Agent Prop-
erties): this subsection should extend the
subsection (2.4 Agent Perspective). It is
concerned with agent properties/ dimen-
sions to a level of sufficient detail that will
help ABS designers to construct the internal
states for every agent type in ABS.

• An existing subsection (3.1 External Inter-
faces): this subsection is renumbered to sub-
section (3.2). One goal of the third section is

www.astesj.com 86

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

to provide detailed descriptions of software
interfaces. So, the Interaction model should
be described in this subsection in such a way
that presents communication mechanisms
and messages between all agent types.

• An existing subsection (3.2 Functions): this
subsection is renumbered to subsection
(3.3). It is concerned with all ABS require-
ments specifications to a level of detail. This
should extend the subsection (2.2 Product
Functions) and include sufficient detailed
specifications for every functional agent
role and user functions. Also, this sub-
section should extend the subsection (2.4
Agent Perspective) and include sufficient
detailed specifications of software agents. It
is critical also to explicitly link listed pro-
posed agents to their functional roles. An
agent-role list is an effective technique to
use here.

• An existing subsection (3.4 Logical
Database Requirements): this subsection
is renumbered to subsection (3.5). It is
concerned with any information that is to
be stored in a database. Thus, the knowl-
edge model should be described in such a
way that shows how some types of agents,
like the reflex and learning agents, can use
it. Also, the agent architectures should be
briefly outlined in this subsection.

• An existing subsection (3.7 Organizing the
Specific Requirements): this subsection is
renumbered to subsection (3.8). The agent-
oriented specification is detailed and tends
to be extensive. So, it is important to give
special attention to organizing this informa-
tion to ensure clarity and understandability.
This section should include an additional or-
ganization which organizing by agent class.
Associated with each agent class is a set of
agent roles and characteristics.

4. The fourth section “Supporting Information”
contains subsections that make the SRS docu-
ment easier to use, for example, using the table
of contents, index, and appendixes [3]. We sug-
gest no change to this section and consider this
information suitable for the five data models of
ABS.

5 Evaluation Analysis

In the original published paper, we conducted two
types of evaluation to assess the utility and effective-
ness of the proposed restructured IEEE Std 830 model:
1) we specified requirements of a small multi-agent
system by using both the new proposed model and the
original model, and then we compared the outcomes
of both models. 2) we used our proposed model to
specify requirements of some previous agent systems

that were already specified by using the original model,
and we analyzed the outcomes of the different mod-
els based on the SRS quality attributes described in
the IEEE Std 830-2009 model. Refer to [1] for more
information about both assessments.

This article summarizes results from an indepen-
dent and external research study that was conducted
to assess the suitability and validity of the updated
IEEE Std 830. The aim of the study was to determine
whether the updated model satisfies ABS requirements
specification and to solicit feedback on any possible
missing details or weaknesses in the model structure.
Several experts in software engineering and agent-
oriented systems were invited to participate in the
research study. They were asked to go through the
proposed model sections with a few simple real-world
problem scenarios (requirements specification of a sim-
ple small agent-based system: Item-Trading Agent-Based
System (ITABS) that enables users to create and em-
ploy agents to act on behalf of them to trade items).
Then, the participants conduct an online survey to pro-
vide feedback on their experience using the proposed
model in specifying ITABS. The survey consisted of 12
statements as shown in Table 2. These statements were
organized into 3 sets to determine participants’ accep-
tance of the proposed model, their satisfaction with us-
ing the various added and updated agent information
to the model, and the quality of the proposed model.
The participants were asked to indicate their level of
agreement or disagreement with each statement. We
were able to collect and analyze 13 responses from the
participants as shown in the following charts.

In Figure 5, our concern was focused on whether or
not the participants think that the proposed standards
model is capable of specifying ABS requirements. The
participants were all in favor of the model as no one
disagreed with the statements S1 and S2.

In Figure 6, the participants provided their feed-
back about the added and updated agent information
to the original IEEE Std 830 model. We believe that
the existence of such information makes the IEEE Std
830-2009 model more suitable to handle the agent-
oriented specification. The positive responses actually
confirmed our belief as all participants agreed with the
statements S3 and S4, and only 4 persons disagreed
with the statement S5. The proposed model is required
to briefly outline agent architectures which support the
concepts for building rational agents and their charac-
teristics. This information is essential to start any ABS
design later, but it seems that some participants dis-
agree with referring to implementation details, like re-
ferring to agent architectures in the requirement phase.

In Figure 7, the participants gave their opinions
about the quality of the proposed model after using it
in specifying small agent-based system requirements.
They rated the model based on the IEEE seven quality
attributes of good software requirements, described in
the original IEEE Std 830 model, by indicating how
well they feel that the requirements meet the quality

www.astesj.com 87

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

 

 

 

 

S1 
The updated IEEE 830 model helps the developers to identify an agent-based system to be developed 

along with its requirements. 

S2 
The updated IEEE 830 model describes what the agent-based system will do and how it will be 

expected to perform. 

S3 

Information regarding domain perspective which includes application domain, operating environment, 

and physical/virtual environment needs to be specified in the IEEE 830 model and will be used to 

build an agent-based system. 

S4 
Information regarding agent classification, characteristics, functions, and communications needs to be 

specified in the IEEE 830 model and will be used to build an agent-based system. 

S5 
Information regarding agent architectures and agent repository of knowledge, if there's any, needs to 

be briefly outlined in the IEEE 830 model and will be used to build an agent-based system. 

S6 
The functional requirements described in the model were unambiguous: there was only one 

interpretation for every stated requirement. 

S7 
The functional requirements described in the model were complete: all significant requirements 

concerning function, performance, interfaces, design constraints, and quality factors were included. 

S8 
The functional requirements described in the model were consistent: no subset of individual 

requirements characteristics, actions, or terms conflicted. 

S9 
The functional requirements described in the model were verifiable (Testable): requirements were 

stated in concrete terms that can be verified through testing or other objective means. 

S10 
The functional requirements described in the model were modifiable: the specification was structured 

and annotated so that changes may be made easily, completely, and consistently. 

S11 
The functional requirements described in the model were traceable: the origin of each requirement 

was clear and the format should aid in tracing forward and backward. 

S12 
The functional requirements described in the model were usable: the specifications should be useful 

during development and in later identifying maintenance requirements and constraints. 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S6 S7 S8 S9 S10 S11 S12

8

9

12

10

11

9

11

P
ar
ti
ci
p
an

ts

Feedback

Table 2: The online survey statements given to the participants to scale

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strongly Disagree

Disagree

Agree

Strongly Agree

S1 S2

0 0

0 0

7

8

6

5

P
ar

ti
ci

p
an

ts

Feedback

Figure 5: The degree of acceptance of the updated IEEE Std 830-2009 model

attributes on a scale from Strongly Agree to Strongly
Disagree. Generally, the responses were positive with
a range from 62% to 93% of the participants agreed or
strongly agreed with each quality attribute applied to
the updated model.

Figure 8 represents a straightforward view that
only illustrates the summary of users’ views who
agreed with each quality attributes applied to the pro-
posed standard model.

6 Conclusion

A strong demand desires to apply agent-based sys-
tems in complex and large real-world applications be-
cause of their capability to act rationally and flexibly
to attain delegated goals. ABS development requires
the inclusion of sound software engineering practices

in order to be more formal, efficient, and adopted in
the industry. Software standards as an SE key prac-
tice are widely applied in the software industry to
support the entire software development life-cycle.
Based on our evaluation applied to a large number
of agent-oriented methodologies, we believe that no
well-structured process standardization has been pro-
posed and incorporated into any requirements anal-
ysis phase in the existing agent-oriented methodolo-
gies.This paper addresses the process standardization
for requirements specification of agent-based systems
by proposing a model-driven approach to restructure
and update the IEEE Std 830-2009 model to make it
more suitable to handle the ABS requirement specifi-
cations.

The updated IEEE Std 830-2009 model proposed
adding new extensions and updating others in the orig-

www.astesj.com 88

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strongly Disagree

Disagree

Agree

Strongly Agree

S3 S4 S5

0 0 0

0 0

4

7

5

4

6

8

5

P
ar

ti
ci

p
an

ts

Feedback

Figure 6: The degree of user satisfaction after applying the updated IEEE Std 830-2009 model

 

 

 

 

 

 

 

 

 

 

S6 S7 S8 S9 S10 S11 S12

0 0 0 0 0 0 0

3 3

0

2 2

3

2

5 5

6

5 5

6

4

3

4

6

5

6

3

7

2

1 1 1

0

1

0

P
ar

ti
ci

p
an

ts

Feedback

Strongly Disagree Disagree Agree Strongly Agree Not Applicable

Figure 7: The summary of users’ views regarding the given quality attributes as applied to the updated model

 

 

 

 

 

 

 

 

 

 

 

 

S1 
The updated IEEE 830 model helps the developers to identify an agent-based system to be developed 

along with its requirements. 

S2 
The updated IEEE 830 model describes what the agent-based system will do and how it will be 

expected to perform. 

S3 

Information regarding domain perspective which includes application domain, operating environment, 

and physical/virtual environment needs to be specified in the IEEE 830 model and will be used to 

build an agent-based system. 

S4 
Information regarding agent classification, characteristics, functions, and communications needs to be 

specified in the IEEE 830 model and will be used to build an agent-based system. 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

S6 S7 S8 S9 S10 S11 S12

8

9

12

10

11

9

11

P
ar
ti
ci
p
an

ts

Feedback

Figure 8: The summary of users’ views who agreed with each quality attribute

inal model to complement the process standardization
in ABS requirement specifications. We demonstrated
the value of using the updated model by conducting
several different types of evaluations. This paper de-

scribes an independent and external approach to eval-
uate the proposed model by asking expert participants
to walk through the proposed model sections with
a few simple real-world problem scenarios and then

www.astesj.com 89

http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

take an online survey to provide feedback on their
experience using the model. The feedback was very en-
couraging as all participants agreed that the proposed
model was capable of handling the ABS requirements,
and were satisfied with using the model along with
all updated and added agent information to it. Also,
The summary of users’ views with respect to the given
quality attributes as applied to the updated model
were positive and reflected how well the agent-oriented
specification in the updated model met these quality
attributes.

In the future, we plan to extend the updated
IEEE Std 830-2009 model to cover more specific sub-
standards for every ABS data model we identified and
for every new central extension we added. This can be
done by studying what sub-standard information is re-
quired to be specified in every extension. For instance,
what ABS sub-standard information in the section 2.2
domain perspective needs to be defined, or what sub-
standard information should be included in the section
3.1 Agent properties.

Conflict of Interest The authors declare no conflict
of interest.

References
[1] K. Slhoub, M. Carvalho, and W. Bond, “Recommended prac-

tices for the specification of multi-agent systems requirements,”
in Ubiquitous Computing, Electronics and Mobile Communication
Conference (UEMCON), 2017 IEEE 8th Annual, pp. 179–185,
IEEE, 2017. doi:10.1109/UEMCON.2017.8249021.

[2] B. Bauer and J. P. Müller, “Methodologies and modeling lan-
guages,” Agent-based Software Development, pp. 77–131, 2004.

[3] IEEE, IEEE Recommended Practice for Software Requirements
Specifications, vol. 2009. IEEE, 1998. doi:10.1109/IEEESTD.
1998.88286.

[4] B. Henderson-Sellers, Agent-oriented methodologies. Idea Group
Inc., 2005.

[5] O. Z. Akbari, “A survey of agent-oriented software engineering
paradigm: Towards its industrial acceptance,” International
Journal of Computer Engineering Research, vol. 1, no. 2, pp. 14–
28, 2010.

[6] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing
multiagent systems: The Gaia methodology,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 12,
no. 3, pp. 317–370, 2003. doi:10.1145/958961.958963.

[7] Q. H. Mahmoud, “Software Agents: Characteristics and Classi-
fication,” School of Computing Science, Simon Fraser University,
pp. 1–12, 2000.

[8] M. Wooldridge and N. R. Jennings, “Pitfalls of agent-oriented
development,” in Proceedings of the second international confer-
ence on Autonomous agents, pp. 385–391, ACM, 1998. doi:10.
1145/280765.280867.

[9] A. Sloman, “What sort of architecture is required for a human-
like agent?,” in Foundations of rational agency, pp. 35–52,
Springer, 1999. doi:10.1007/978-94-015-9204-8_3.

[10] F. Zambonelli and A. Omicini, “Challenges and research di-
rections in agent-oriented software engineering,” Autonomous
Agents and Multi-Agent Systems, vol. 9, no. 3, pp. 253–283, 2004.
doi:10.1023/B:AGNT.0000038028.66672.1e.

[11] L. Padgham and J. Thangarajah, “Agent Oriented Software En-
gineering: Why and How,” VNU Journal of Science: Natural
Sciences and Technology, vol. 27, no. 3, pp. 190–204, 2011.

[12] S. Maalal and M. Addou, “A new approach of designing Multi-
Agent Systems With a practical sample,” CoRR, vol. abs/1204.1,
pp. 148–157, 2012.

[13] O. Shehory and A. Sturm, “A brief introduction to
agents,” in Agent-Oriented Software Engineering: Reflections
on Architectures, Methodologies, Languages, and Frameworks,
vol. 9783642544, pp. 3–11, Springer, 2014. doi:10.1007/
978-3-642-54432-3_1.

[14] M. Wooldridge, “Agent-based software engineering,” IEEE
Proceedings-software, vol. 144, no. 1, pp. 26–37, 1997. doi:10.
1049/ip-sen:19971026.

[15] N. R. Jennings, “On agent-based software engineering,” Arti-
ficial Intelligence, vol. 117, no. 2, pp. 277–296, 2000. doi:10.
1016/S0004-3702(99)00107-1.

[16] M. Wooldridge, An Introduction to MultiAgent Systems. Wiley,
2nd ed., 2009.

[17] E. Yu, “Agent-oriented modelling: Software versus the world,”
in Artificial Intelligence and Bioinformatics, vol. 2222, pp. 206–
225, Springer, 2002. doi:10.1007/3-540-70657-7_14.

[18] Z. Ren and C. J. Anumba, “Multi-agent systems in construction-
state of the art and prospects,” Automation in Construction,
vol. 13, no. 3, pp. 421–434, 2004. doi:10.1016/j.autcon.2003.
12.002.

[19] P. Bogg, G. Beydoun, and G. Low, “When to use a multi-
agent system?,” vol. 5357 LNAI, pp. 98–108, Springer, 2008.
doi:10.1007/978-3-540-89674-6_13.

[20] M. Dastani, “A survey of multi-agent programming languages
and frameworks,” in Agent-Oriented Software Engineering,
vol. 9783642544, pp. 213–233, Springer, 2014. doi:10.1007/
978-3-642-54432-3_11.

[21] J. P. Müller and K. Fischer, “Application impact of multi-agent
systems and technologies: A survey,” in Agent-Oriented Soft-
ware Engineering, pp. 27–53, Springer, 2014. doi:10.1007/
978-3-642-54432-3_3.

[22] J. Ferber, O. Gutknecht, C. M. Jonker, J. P. Müller, and J. Treur,
“Organization models and behavioural requirements specifica-
tion for multi-agent systems,” in Proceedings - 4th International
Conference on MultiAgent Systems, ICMAS 2000, pp. 387–388,
IEEE, 2000. doi:10.1109/ICMAS.2000.858488.

[23] V. Hilaire, A. Koukam, P. Gruer, and J. J.-P. Müller, “Formal
Specification and Prototyping of Multi-agent Systems,” in En-
gineering Societies in the Agents World SE - 9, vol. 1972, pp. 114–
127, Springer, 2000. doi:10.1007/3-540-44539-0_9.

[24] D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E. Wijn-
gaards, “Specification of bahavioural requirements within com-
positional multi-agent system design,” vol. 1647, pp. 8–27,
Springer, 1999. doi:10.1007/3-540-48437-X_2.

[25] T. Miller, B. Lu, L. Sterling, G. Beydoun, and K. Taveter,
“Requirements elicitation and specification using the agent
paradigm: The case study of an aircraft turnaround simula-
tor,” IEEE Transactions on Software Engineering, vol. 40, no. 10,
pp. 1007–1024, 2014. doi:10.1109/TSE.2014.2339827.

[26] P. Giorgini and B. Henderson-Sellers, Agent-Oriented Method-
ologies: an Introduction. Idea Group Inc., 2005.

[27] L. Cernuzzi, M. Cossentino, and F. Zambonelli, “Process mod-
els for agent-based development,” Engineering Applications
of Artificial Intelligence, vol. 18, no. 2, pp. 205–222, 2005.
doi:10.1016/j.engappai.2004.11.015.

[28] E. Ajith Jubilson, P. Joe Prathap, V. Vimal Khanna, P. Dhana-
vanthini, W. Vinil Dani, and A. Gunasekaran, “An empirical
analysis of agent oriented methodologies by exploiting the life-
cycle phases of each methodology,” in Advances in Intelligent
Systems and Computing, vol. 337, pp. 205–214, Springer, 2015.

[29] FIPA, “The standards organization for agents and multi-agent
systems,” 2005.

[30] P. Charlton, R. Cattoni, A. Potrich, and E. Mamdani, “Evalu-
ating the FIPA standards and their role in achieving cooper-
ation in multi-agent systems,” in Proceedings of the 33rd An-
nual Hawaii International Conference on System Sciences, vol. 00,
pp. 1–10, IEEE, 2000. doi:10.1109/HICSS.2000.926996.

www.astesj.com 90

10.1109/UEMCON.2017.8249021
10.1109/IEEESTD.1998.88286
10.1109/IEEESTD.1998.88286
10.1145/958961.958963
10.1145/280765.280867
10.1145/280765.280867
10.1007/978-94-015-9204-8_3
10.1023/B:AGNT.0000038028.66672.1e
10.1007/978-3-642-54432-3_1
10.1007/978-3-642-54432-3_1
10.1049/ip-sen:19971026
10.1049/ip-sen:19971026
10.1016/S0004-3702(99)00107-1
10.1016/S0004-3702(99)00107-1
10.1007/3-540-70657-7_14
10.1016/j.autcon.2003.12.002
10.1016/j.autcon.2003.12.002
10.1007/978-3-540-89674-6_13
10.1007/978-3-642-54432-3_11
10.1007/978-3-642-54432-3_11
10.1007/978-3-642-54432-3_3
10.1007/978-3-642-54432-3_3
10.1109/ICMAS.2000.858488
10.1007/3-540-44539-0_9
10.1007/3-540-48437-X_2
10.1109/TSE.2014.2339827
10.1016/j.engappai.2004.11.015
10.1109/HICSS.2000.926996
http://www.astesj.com


K. Slhoub/ Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 80-91 (2018)

[31] V. T. Da Silva and C. J. P. De Lucena, “Modeling multi-agent sys-
tems,” Communications of the ACM, vol. 50, no. 5, pp. 103–108,
2007. doi:10.1145/1230819.1241671.

[32] I. Trencansky and R. Cervenka, “Agent Modeling Lan-
guage (AML): A comprehensive approach to modeling MAS,”
INFORMATICA-LJUBLJANA-, vol. 29, no. 4, pp. 391–400, 2005.
doi:10.1.1.60.8902.

[33] B. Bauer, J. P. Müller, and J. Odell, “Agent UML: A formalism
for specifying multiagent software systems,” International jour-
nal of software engineering and knowledge engineering, vol. 11,
no. 03, pp. 207–230, 2001. doi: 10.1142/S0218194001000517.

[34] A. Chikh and M. Aldayel, “Reengineering requirements
specification based on IEEE 830 standard and traceabil-
ity,” in Advances in Intelligent Systems and Computing,
vol. 275 AISC, pp. 211–227, Springer, 2014. doi:10.1007/
978-3-319-05951-8_21.

[35] P. Bourque and R. E. Fairley, Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0. Los Alamitos,
CA, USA: IEEE Computer Society Press, 3rd ed., 2014.

[36] M. Cossentino and C. Potts, “PASSI: A process for specifying
and implementing multi-agent systems using UML,” Retrieved
October, vol. 8, p. 2007, 2002.

[37] C. Bernon, M. Gleizes, S. Peyruqueou, and G. Picard, “ADELFE:
A methodology for adaptive multi-agent systems engineer-
ing,” in International Workshop on Engineering Societies in the
Agents World, pp. 156–169, Springer Berlin Heidelberg, 2003.
doi:10.1007/3-540-39173-8_12.

[38] M. Wood and S. Deloach, “An Overview of the Multiagent
Systems Engineering Methodology,” in Proceedings - the First
International Workshop on Agent-Oriented Software Engineering,
vol. 1957, pp. 207–221, Springer, 2001.

[39] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia
methodology for agent-oriented analysis and design,” Au-
tonomous Agents and multi-agent systems, vol. 3, no. 3, pp. 285–
312, 2000. doi:10.1023/A:1010071910869.

[40] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos, “Tropos: An agent-oriented software development
methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203–236, 2004. doi:10.1023/B:AGNT.
0000018806.20944.ef.

[41] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge,
“The Belief-Desire-Intention Model of Agency,” in International
Workshop on Agent Theories, Architectures, and Languages, pp. 1–
10, Springer, 1999. doi:10.1007/3-540-49057-4_1.

www.astesj.com 91

10.1145/1230819.1241671
10.1.1.60.8902
10.1142/S0218194001000517
10.1007/978-3-319-05951-8_21
10.1007/978-3-319-05951-8_21
10.1007/3-540-39173-8_12
10.1023/A:1010071910869
10.1023/B:AGNT.0000018806.20944.ef
10.1023/B:AGNT.0000018806.20944.ef
10.1007/3-540-49057-4_1
http://www.astesj.com

	 Introduction
	 Background and Related Work
	Agent-Based Systems: What and Why
	The Requirements Analysis Process in Agent-Based Systems
	 The IEEE Std 830-2009 Standard Practice Model

	Evaluating the Adoption of ABS Requirements to Software Standards 
	Using the IEEE Std 830-2009 Model to Standardize Agent-Oriented Specification 
	 Evaluation Analysis
	Conclusion

