

www.astesj.com 140

SDN-based Network Control Method for Distributed Storage Systems

Luis Guillen*,1, Satoru Izumi1, Toru Abe1,2, Hiroaki Muraoka3,4, Takuo Suganuma1,2

1Graduate School of Information Sciences, Tohoku University, 980-8577, Japan

2Cyberscience Center, Tohoku University, 980-8577, Japan

3Tohoku University, 980-8577, Japan

4Tohoku Institute of Technology, 982-8588, Japan

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 August, 2018
Accepted: 12 September, 2018
Online: 28 September, 2018

 With the increasing need for effective storage management due to ever-growing content-
generation over the Internet, Distributed Storage Systems (DSS) has arisen as a valuable
tool. Although DSS has considerably improved in the past years, it still leverages legacy
techniques in its networking. To cope with the demanding requirements, Software Defined
Networking (SDN) has revolutionized the way we manage networks and can significantly
help in improving DSS network management. In this paper, we propose an SDN-based net-
work control method that is capable of handling DSS network management and improving
its performance. This paper presents the design, implementation, and evaluation using an
emulated environment of a typical Data Center Network (DCN) deployment. The experi-
ment results show that by applying the proposed method, DSS can increase the performance
and service resilience compared to existing solutions.

Keywords:
SDN
Distributed Storage Systems
Network Management

1. Introduction

This paper is an extension of a previous work originally
presented at the 2017 International Conference on Network and
Service Management (CNSM2017) [1]. User-generated content is
growing exponentially. From 30 Zettabytes (ZB) of content
generated in 2017, it is foreseen to reach 160 ZB by 2025 [2].
Although end-users create most of this content, with the
widespread use of the Internet of Things (IoT) and the advances in
cloud technologies, content generation will also increase at the
core of the network. It is also worth noting that in 2017
approximately 40% of the content was stored in enterprise storages
[2], but due to the paradigm shift from expensive and large data-
centers to cloud-based virtualized infrastructures, it is also
projected to increase to 60% by 2025. The massive scaling and
flexibility required in those infrastructures will demand more
efficient ways to handle the additional traffic.

At the outlook of such demanding requirements, Distributed
Storage Systems (DSS) became more popular, since they provide
highly reliable services by networking nodes to provide enhanced
storage [3]. Over the years, DSS has progressively achieved better

performance by improving propagation and recovery methods,
from simple replication to more advanced techniques [4,5].
However, little attention has been paid to improvements at the
network level, as they still rely on legacy techniques.

To cope with the increasing need for efficient storage managed by
DSS, in this paper, we propose a network control method that is
capable of handling the generated traffic by specific DSS tasks.
The proposed method is based on Software Defined Networking
(SDN) [6], which separates the control plane from the data plane
and will allow a more flexible programmable network. The con-
tribution of this paper is to show the potential of applying this
paradigm to improve DSS performance. Furthermore, we describe
the inherent problems of DSS when using legacy techniques in
Section 2, and the minimum requirements that DSSs demand from
the network perspective, namely aggregated bandwidth and
practical use of resource. Based on those requirements, we
designed the proposed method as described in Section 3, whose
main strength is its simplicity. More concretely, we define a
solution to handle the bandwidth aggregation called on-demand
inverse multiplexing, and we detail the solution for the practical
use of resources called multipath hybrid load balancing.

ASTESJ

ISSN: 2415-6698

* Corresponding Author: Luis Guillen, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577,
Japan, +810222175080, Email: lguillen@ci.cc.tohoku.ac.jp

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030518

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030518

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 141

To test the feasibility of the proposed method, in Section 4 we
evaluated the implementation of typical DSS scenarios, the results
showed that our method outperforms traditional ones, and is capa-
ble of delivering the required features by DSS.

Figure 1: Programmability problem with LAG

2. Related Work

2.1. Problem Description with Legacy Networking Techniques

To the best of our knowledge, solutions that combine features
of both technologies (DSS and SDN) have not been fully explored
yet, however, in this section we present related work on individual
features.

Initially, we should mention that there are two minimum
requirements DSS will need from the networking perspective,
namely: aggregated bandwidth and practical use of resources. In
this sub-section, we describe the specific problems with legacy
techniques when applied to DSS regarding these two aspects.

In the case of bandwidth aggregation, since DDS nodes might
be allocated in different storage servers, a bottleneck is created at
the server gateway when various clients try to access it at the same
time, due to the limited bandwidth of a single link. Kaneko et al.
[7] tried to overcome this problem by using Link Aggregation
(LAG) [8], which allows bandwidth aggregation by grouping a
limited number of physical links as a single logical bundle. LAG
offers communication resilience by redirecting the incoming
traffic to another active link in case of failure. However, there is
no control on the selection process, e.g., in the simple LAG
deployment depicted in Figure 1, three links (L1, L2, and L3) are
grouped in a single bundle, if L1 fails then the protocol redirects
the traffic to another link, but the traffic may well be sent through
the most congested link (L2) instead of the L3 which has less
traffic. Moreover, for a link to be part of a bundle, all of them need
to have the same configuration, and it is limited to a hard-coded
number of links, which significantly limits the flexibility of the
system.

In the second case, namely the practical use of resources, DSSs
are typically deployed on Data Center Networks (DCNs) using
common topologies, such as a three-layer non-blocking fully
populated network (FPN) or three-layer fat-tree network (FTN)
[9]. In these environments, network traffic management is usually
leveraged to techniques such as Equal Cost Multipath (ECMP)
[10]. However, ECMP is not efficient regarding resource usage,
and since DSS clients access several storages concurrently,
congestion mostly occurs at some segments of the network.
Additionally, since it is limited to legacy protocols such as
Spanning Tree Protocol (STP), it will prune redundant links, which
can be used for creating alternative paths. For example, in the
topology shown in Figure 2, if two flows go from H1 and H2 to
H3, some routes might be preferred (e.g., the red dashed path),

despite the availability of other paths. Moreover, as shown in
Figure 3, a bottleneck is generated at the segment nearest to the
end-device, for instance, if H5 have to reply flows from requests
send by H1-H4, the link connected to the nearest switch will be
highly congested (i.e., red dashed path). Apart from the number of

flows going through a single link, that particular segment of the
topology the connection speeds are not as fast as they are in the
core, we call this problem “last-mile bottleneck.”

To sum up, legacy techniques cannot provide DSS with neither
aggregated bandwidth or efficient use of resources due to the last-
mile bottleneck issue, and limitations with end-to-end routing pro-
grammability with techniques such as ECMP.

2.2. Related work on SDN-based Multipath Load-balancing

The primary task towards a resource-efficient method is to
balance the load among the available resources, and using multiple
paths is a practical way to relieve the network traffic. Thus, in this
section, we present load balancing solutions that focus on multi-
path solutions using SDN.

Initially, it is worth noting that load balancing is a topic that
has been extensively explored for decades, but SDN-based solu-
tions are relatively more recent. SDN-based load balancing can be

Figure 2: Traffic congestion issue in DCNs

Figure 3: The last-mile bottleneck issue in DCNs

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 142

categorized depending on their architecture in Centralized and
Distributed [11], we focus on the centralized architectures wherein
the management is performed in the data plane by a central con-
troller that has an overview of the entire network. In this context,
a pioneer work was Hedera, a dynamic flow scheduling for DCN
capable of balancing the load among the available routes. The main
contribution of the authors is the introduction of two placement
heuristics to allocates flows, and the estimation of flow demands
that uses OpenFlow (OF) for routing control. However, the authors
did not consider last-mile bottlenecks nor the load on the server
side.

OLiMPS [13] is a real implementation of Multipath TCP
(MPTCP) [14] in an intercontinental OF-network that achieved
high throughput. The drawback of this work is that, as other solu-
tions [15, 16], they rely on MPTCP, which is an experimental pro-
tocol capable of handling resource pooling using multiple paths.
However, the inherent problem is that it needs modifications in the
end-point kernel. To avoid this restriction, Banfi et al. [17] pre-
sented MPSDN, a multipath packet forwarding solution for aggre-
gated bandwidth, and load balancing that achieves similar results
to MPTCP with the added value of not requiring end-point modi-
fications. Their main contribution is the idea of including a thresh-
old called Maximum Delay Imbalance (MDI), used to place flows
in paths. However, even if they do not require end-point modifica-
tion, they need to modify Open Virtual Switch (OVS).

DiffFlow [18] used a selection mechanism to handle flows in a
DCN, so that short flows will be handled by ECMP and long ones
using a process called Random Packet Spraying (RPS). However,
by partially relying on ECMP they inherit the same issues concern-
ing the use of resources.

Li and Pan [19] proposed a dynamic routing algorithm with
load balancing for Fat-tree topology in OpenFlow based DCN.
Their flow distribution strategy provided multiple alternative paths
from a pair of end nodes and placed the flow to the one with the
highest bandwidth. However, the hop-by-hop recursive calculation
overlooked the available bandwidth of the entire network. A simi-
lar approach was presented by Izumi et al. [20], who proposed a
dynamic multipath routing to enhance network performance, they
introduce an index based on the risk and the use parallel data trans-
mission and distribute the traffic using multiple paths. Dinh et al.
[21] also presented a dynamic multipath routing, capable of select-
ing k-paths to distribute the traffic based on the load of the links;
however, they only handled the initial assignment, and the selec-
tion of the number of paths is unclear.

Finally, Tang et al. [9] present an OF-based scheduling scheme
that dynamically balances the network load in data centers. Their
approach aimed to maximize the throughput by designing a heu-
ristic based on the available resources in the network. A significant
contribution of their work is that they present a theoretical model
for load-balancing and specific metrics for network utilization and
load imbalance. The drawback, however, is that they heavily rely
on the use of a pre-calculated table (ToR Switch-to-ToR Switch
Path Table S2SPT) for path selection, which dramatically limits
the dynamicity in case of real implementation, as the computation
time will increase if the number of links is relatively high. Moreo-
ver, they are still subject of the last-mile bottleneck problem due
to the limitation in the DCN topology.

2.3. Target Issues

From the related work presented in the preceding sub-sections,
and considering DSS requirements, we summarize our target is-
sues as follows.

(P1) Last-mile bottleneck: Links have lower connection speeds
at layers closer to the end-device in a DCN topology causes a net-
work bottleneck. Therefore, DSS performance will be limited
when performing parallel tasks.

(P2) Limited use of multipath routing: Despite the available re-
dundant links in the topology, paths from end-to-end nodes are
usually mapped as single-paths via some preferred routes, this pro-
vokes unnecessary congestion in specific segments of the network.

 (P3) Load Imbalance: Due to the limited use of the available
resources DSS neither the network nor the servers are used in a
balanced manner. The existing solutions focus on either one of
those aspects, which leads to overlooking the importance of both
variables for an effective control method.

3. SDN-based Network Control Method for Distributed
Storage Systems

3.1 Motivating example

We describe the proposed SDN-based network control method
to solve the problems described above. However, before describ-
ing the proposed approach, let us consider a simple scenario of a
DSS process.

Suppose we have a DSS that uses network codes [3] to recover
failed nodes. In this scenario, the information of a node (D) is
fragmented into p=4 pieces (p1, p2, p3, p4) stored in different nodes
from the set of nodes (N), such that any piece can be reconstructed
from any k=3 pieces in N, but it needs the four pieces to recover
D. If a node fails, the DSS needs to conduct two processes, namely,
regenerate the piece and resume the primary data transmission.

The recovery process is described in Figure 4. Initially, D col-
lects information from p1, p2, p3, and p4, but imagine p4 fails; then
the system needs to identify and locate the other pieces (p1, p2, and
p3), establish the corresponding recovery links (marked with
dashed lines) and transfer the recovery data from the surviving
pieces to a new node (p4’). Once the transmission of the regener-
ated piece is over, the newly created piece (p4’) will need to con-
tinue the primary data transmission, to do so, the system needs to
identify the location of the new piece, establish the new link (blue
line), and resume.

Figure 4: Sample process in DSS

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 143

As observed, even in this small example, various processes
occur from the networking point of view. Needless to say that the
efficiency of the DSS will depend on how fast a node can be
recovered and how efficiently uses the resources.

Figure 5: Overview of the Proposed Method

3.2 Overview of the Proposal

To solve the target issues, we describe the proposed SDN-
based Network Control Method for DSS. The overall scheme is
depicted in Figure 5. As observed, the architecture consists of a
centralized SDN controller that is comprised by three internal
modules: Network Statistics, Load Balancer, and Flow Scheduler;
additionally, an external module (Service Discovery) interacts with
the controller and the storage servers connected in the underlying
network. The role of each of these modules is described as follows:

• Service Discovery - this module is in charge of tracking
the status of all the storage servers. This information in-
cludes the physical load of each of the servers (e.g.,
memory, CPU, number of processes being served), and the
specific DSS configuration (i.e., the number of pieces and
their location). The interaction with the SDN Controller is
direct, and the status is sent when requested.

• Network Statistics - periodically collects network statistics
of the entire network, i.e., network topology changes,
transmitted and received packets per port. This polling
process will allow having an overview of the whole net-
work infrastructure before calculating the appropriate
paths. Although the polling happens periodically, it can
also be triggered directly by request. We use this infor-
mation to calculate parameters such as the available band-
width (1)

 𝑏𝑏𝑖𝑖,𝑗𝑗 = (𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − (𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅)𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝
𝛥𝛥𝛥𝛥

 (1)

• Load Balancer - this is the central module in charge of cal-
culating the paths based on the information collected by
the Service Discovery and Network Statistics modules. The
primary goal of this module is to distribute the traffic
among the available paths based on not only the state of
the network but also the load of the storages containing the
required pieces. The overall process is subdivided into
three phases, namely Discovery, Load Balancing, and

Adaption (as depicted in Figure 6). In brief, once the re-
quest is sent from a source, in the Discovery phase, this
module calculates the available paths from source to des-
tination with a process we call on-demand inverse multi-
plexing (described in Section 3.3). Then, based on the cur-
rent status of both network and storage servers, in the
Load-balancing phase, a process we call hybrid Multipath
Load-balancing assigns the paths that best suit the request.
Finally, in the Adaption phase, once the transmission has
started the status is updated periodically in case better
routes become available or if any change occurred in the
topology. The main load-balancing procedure is described
in Algorithm 1, where a control loop checks if there has
been any change in the topology within a fixed period. As
observed, the function adjustWeights() in line 8, requests
an update from the Network Statistics module, and in line
9 the function balanceTraffic() is in charge of performing
the load-balancing.

• Flow Scheduler - once the most suitable paths have been
selected, this module writes the flow rules into the specific
network devices that take part in the transmission process.

Algorithm 1: Topology Monitor

1: function monitorTopology ();
2: startTimer(t);
5: do
6: if hasTimeElapsed() then
7: if hasTopologyChanged() then
8: adjustWeights(),
9: balanceTraffic(client, Servers, NW),
10: else restartTimer() then
11: end
12: else addTimeSpan();
13: end
14: While true;

Figure 7: On-demand Inverse Multiplexing

Figure 6: Load Balancing Steps

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 144

3.3 On-demand Inverse Multiplexing

As mentioned in the previous subsection, the initial step to-
wards an effective network control is the path discovery and traffic
distribution. In this section, we describe a process we called On-
demand Inverse Multiplexing. Initially, it is worth noting that in-
verse multiplexing was explored in the past [22] and mainly used
for bandwidth aggregation. It refers to the simple process of send-
ing traffic over multiple paths. In essence, our particular contribu-
tion is the idea of distributing the traffic among a specific number
of paths (k), which depend on the requirements in a particular DSS
configuration. However, in a typical DCN deployment only single
links are assigned from device-to-device; moreover, connections
at the last layer in the topology are usually low-speed connections,
which create a phenomenon we call a last-mile bottleneck. To
solve this problem, we propose to augment the topology by using
parallel connections from the layer closest to the end-devices (edge
layer) to the next hop (aggregation layer). This topology augmen-
tation is central for our overall proposal and would involve the
overprovision of links according to the particular configuration of
the DSS, i.e., setup n links if the system split data in a maximum
of n pieces. Although it is not a common suggestion, organizations
still prefer to use various cheap links instead of expensive limited
services, such as MPLS or single fat-line [23] due to the cost
constraints. Note that, by performing this augmentation, the power
consumption of the involved network devices will increase propor-
tionally to the number of parallel connections, therefore, it is nec-
essary to think of a strategy that is capable of reaching a tradeoff
between the performance and the power consumptions, however,
such a strategy is out of the scope of this paper.

To illustrate the implementation of the on-demand inverse mul-
tiplexing process, let us consider the scenario depicted in Figure 7,
in this simple deployment, a Fat-tree fully-connected topology
comprises three layers (Edge, Aggregation, and Core). Further-
more, assume the particular DSS uses four pieces out of 5 to re-
generate as the maximum level of division. In this case, the number
of links that the network needs to provision from the edge to the
aggregation layer is four. Of course, the augmentation need not be
among each device, but only in those particular segments wherein
the requirements are higher and can be configured statically or cal-
culated on-demand based on the configuration in the DSS gathered
by the Service Discovery module.

Once we have the infrastructure prepared, the remaining pro-
cess works as follows. Consider again the scenario depicted in Fig-
ure 7, where we emulate the data recovery which will be allocated
in a storage server (C0), the pieces needed for recovery are located
in different servers (D0, D1, D2, D3). Therefore, in this simple
example, the number of parallel links needed are k=4 paths. When
the request arrives at the multiplexing point (the closest Top of
Rack TOR switch), the controller calculates the appropriate num-
ber of paths (k) based on the information at the Service Discovery
module and the current state of the network captured by the Net-
work Statistics module.

To solve the initial path discovery, we calculate the Maximum
Disjoint Paths (MDP) by a process described in Algorithm 2. This
process, which is the initial step of this work and was introduced
in [1], calculates the MDPs by an adapted version of the Suur-
balle’s [24] algorithm which calculates the path candidates. Note

that we use a multigraph G = (V, E), where V is the set of network
devices (switches), and E is the set of links. Since it is a multigraph,
more than a single link can connect two nodes in the set V. We
assume that the bandwidth (bi) for each edge is symmetric, which
means that both the uplink and the downlink are the same. Moreo-
ver, each edge has a cost µu, v as shown in (2), where B is the set of
all individual bandwidths bi. This value is updated periodically by
the Network Statistics module.

 µ𝑢𝑢,𝑣𝑣 = 𝑏𝑏𝑝𝑝
𝑚𝑚𝑚𝑚𝑅𝑅(𝐵𝐵)

 (2)

Algorithm 2: Path selection algorithm to find the
kmax disjoint paths from source to destination

1: function selectKPaths (s, t, k, G);
Input : s, t, k, G(the Vthe ,E)
Output: Set of k path candidates P

2: P ← Ø;
3: currentPath ← Ø;
4: nPath ← 1;
5: do
6: if nPath > 1 then
7: adjustWeights (P[nPath-2]),
8: end
9: currentPath ← getDijkstraShortestPath(s,t)
10: if currentPath ≠ Ø then
11: nPath++;
12: P.add(currentPath);
13: end
14: While currentPath ≠ Ø and nPath ≤ k
15: return P

3.4 Hybrid Multipath Load-balancing

This part of the paper was partially presented in a previous
work [25]. Usually, load-balancing techniques focus on either
server or network load. In the proposed method, we consider both
variables to balance the traffic, and that is why we call it hybrid.
Moreover, since the topology was augmented with parallel links,
it is necessary to take into account multiple paths to balance the
traffic. The main procedure is described in Algorithm 3. Initially,
from a pool of servers S, the lookupServers function (line 2)
searches for the server candidates which can provide the required
service (e.g., in the case of a regeneration process in DSS, it locates
the nodes containing the pieces necessary to regenerate the current
piece), which are then ordered based on the load of the node. In
line 8, we search k alternative paths from the source c to each of
the server candidates s that can provide the service. In line 9, the
function assignPaths calculates the minimum combination of
server and path cost. It is worth noting that, based on initial exper-
imentation, the difference in overall cost from all the paths should
be less than 25% otherwise the transmission will be delayed in the
paths that have costs with the higher difference. This process will
guaranty that the distribution is homogeneous in both, the network
and servers. Finally, once the destination servers have been
identified and the paths selected, the function writeFlows in line
11 will send the balanced paths to the Flow Scheduler module,
which sends the instructions to the network devices involved in the
path.

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 145

Algorithm 3: Hybrid Load Balancing Algorithm to
calculate the best paths

1: function balanceTraffic (c, S, G);
Input : Source, set of Servers, G(V,E)

2: serverCandidates ← lookupServers(c,S);
5: if isNotEmpty(serverCandidates) then
6: foreach s in serverCandidates do
7: k← s.lenght
8: Candidates ← selectKPaths(c,s,k,G)
9: BalancedPaths←assignPaths(c,Candidates),
10: end
11: writeFlows (BalancedPaths);
14: end

To illustrate the selection process, consider the contrived topol-
ogy depicted in Figure 8. In this particular example, the features of
the system are as follows:

• C0 is a newly created node that needs to restore the data, to
do so, it requires four pieces (p1, p2, p3, and p4)

• From the edge layer, there are two connections to the ag-
gregation layer

• All links in the topology have weight=1

• None of the servers have any activity yet, and therefore the
load is 0%.

• The storage servers that contain the replicas, among others,
C0 are S1, S2, S3, S4

• Each request consumes 25% of the server resources, and
100% of the link capacity, and therefore only one of the
request can be served per path

When the recovery process starts, the lookupServers function
will identify that S1-S4 have the pieces and their location, and all
the candidates will be generated in pairs {(C0, S1), (C0, S2), (C0,
S3), (C0, S4)} and since there are four pieces (p1, p2, p3, and p4) the
function selectKPaths will search for four paths between each pair.
Then the selection process in function assignPaths will start
assigning the appropriate paths. For example, p1 in C0 to S1, via the
path: a →b→ e→ h→ g, adjust the weights and the load
percentages and continue the process recursively until all the
pieces have a service provider; the final result will look as shown
in Figure 9, in which all the servers have a perfect balance, and the
network traffic is evenly distributed among the available paths. Of
course, this is not the unique process, neither are the request ho-
mogeneous, therefore, in case another process starts, i.e., from
sources X, Y, or Z the values will vary in the service providers and
the network load.

Note that this is just the initial assignment, but in case there is
a change in the topology (e.g., a link disconnection, or a network
device fails), the whole process needs to adapt and restart the pro-
cess. In the proposed method, the adaption can happen proactively
and reactively. In the first case, as shown in Algorithm 1 in Section
3.2, a timer determines how frequent the system needs to control
the changes. Although fail-tolerance is not the focus of this paper,
the value needs to have a trade-off between performance and

service resilience, since having a small refresh time in the order of
milliseconds would offer better service resilience at the cost of
performance due to the constant polling. In case of reactive adap-
tion, which is an event-based procedure triggered by any change
in the topology during the transmission, the system needs to recal-
culate all the paths in the affected segments.

3.5 Implementation

Based on the overall scheme presented in the previous sub-sec-
tions, we implemented the proposed approach using a commonly

Figure 8: Sample hybrid load balancing (Initial state)

Figure 9: Sample hybrid load balancing (Final state)

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 146

used SDN controller OpenDaylight1 Belirium-SR3 (ODL), OF 1.3
as the communication protocol, and OVS as the back-end deploy-
ment.

Figure 10: Testbed Experiments

Each of the modules was implemented as part of the controller
as follows. The Service Discovery module provides a global record
of servers’ status so that every time a new request arrives at the
controller it verifies and updates the status of all the servers in-
volved, and when the transmission is over the status is once again
updated. This module could keep track of various parameters, but
for simplicity in the current implementation, we only use the
following attributes.

ServerID, MaxLoad, Ports[ID, CurrentRequest, Location]

MaxLoad is the maximum number of requests that the server
can handle, which we then use to calculate the server load based
on the individual requests, and finally the parameter Ports is an
array of ports that represent a different service, note that for each
of the ports we store the current state and where they can be
located.

The Network Statistics module, collects the network variables
every 10 seconds in the current implementation, although the poll-
ing time can be configured directly in the controller if the time is
too short; correspondingly, the number of control messages in-
creases. The initial topology discovery is conducted by L2Switch,
which is a feature available in ODL that handles, among others,
the ARP handling, host tracking, and so forth. However, once the
initial connectivity is ensured, all path decisions will be made by
the Load Balancer module.

Finally, the Load Balancer is integrated a separate feature and
is triggered every time a new request arrives at the controller. Once

1 https://www.opendaylight.org/
2 http://mininet.org/
3 https://iperf.fr/

the paths are selected, the Flow writer module will send the
flow_mod messages to the devices and set up the proper flow rules
with an expiration time equal to the refreshing time, so that in case
the flows are not in use in a cycle they will be deleted from the
table.

4. Evaluation

4.1. Overview

To evaluate the proposed approach, we used an emulated envi-
ronment created using Mininet2 v.2.2.2, ODL Beryllium-SR3 as
the controller, iperf 3 to create the network traffic, and Wireshark
to analyze the results. Initially, we explored the correctness and
behavior in controlled conditions in which the only traffic is the
stream being tested. Then, we performed measurements on envi-
ronments where other transmissions are happening concurrently
and compare the performance with existing solutions.

4.2. Transmission without Background Traffic

In this section, we describe a set of experiments that demon-
strate the correctness and effectiveness in conditions where there
is no background noise, which means that no other transmissions
are happening at the same time. Figure 10 depicts the evaluation

(a) Average throughput one-to-one test

(b) Average throughput one-to-many test

Figure 11: Results average throughput

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 147

setup of the testbed used in the evaluation. As observed, a DCN is
deployed in a fully connected Fat-Tree-based topology with eight
servers, each containing four pieces represented as TCP ports.
Each of the links connecting the edge to the aggregation layer was
configured with 100Mbps, whereas the links connecting the aggre-
gation to the core layer were set up at 1Gbps. Note that the topol-
ogy was augmented by four parallel links which connect the de-
vices from the edge layer as the number of pieces is also four, each
of them will be named as the assigned letter and a subscript index
based on the connection port, e.g., the link a1 means OVS a port 1.
Also, the SDN application and the emulated network were hosted
in the same Virtual Machine using Ubuntu 16.04 LTS, with two
2.60GHz CPUs and 4 GB of memory.

• One-to-One Transmission Test

The goal of this first experiment is to test the correctness of the
proposal when the traffic distribution is continuous from a single
source to a single destination. In DSS, this case applies when peer-
to-peer storages share the same information as simple replication.
To conduct this experiment, we used iperf to send a continuous
TCP stream to four different TCP ports from H1 to H8 for 100s.
Note that just for testing purposes no delay was set up for any of
the links in mininet.

Initially, the path discovery assigned the following paths
{[a1→b1→ e→ h3→ j3], [a2→b2→ f→ i3→ j3], [a3→c1→ e→ h4→

j4], [a4→c2→ f→ i4→ j4]}, which is the ideal distribution this par-
ticular case. Figure 11a shows the throughput achieved by each of
the flows, note the linear trend (in red) is within the best theoretical
threshold for each link. Then, we also measured the average RTT
of the entire stream, the results are shown in Figure 12a which is
relatively high at the beginning of the stream as there is a single
destination, but it is still within the boundaries of the standard pa-
rameters.

Table 1 shows a summary of the obtained results. From all the
flows a total of 4.5Gbytes were transmitted in the 100s period, and
the average of throughput was 96.6 Mbps with an average overall
RTT of 0.07ms as expected since most of the lines were expedited.

• One-to-many Transmission Test

In this experiment, the continuous stream was sent from a sin-
gle source to multiple destinations. In DSS, this case applies when
a recovering a failed node or when reconstructing the data. To con-
duct this experiment, we sent an iperf request from H1 to a differ-
ent TCP port in H5-H8 for 100s. A summary of the obtained results
is described in Table 2. The discovered paths were {[a1→b1→ e→
h1→ g1] for H1, [a3→c1→ f→ i1→ g3] for H2, [a4→c2→ e→ h3→
j1] for H7, and [a1→b1→ f→ i4→ j4] for H8}, note that there is an
overlap in the first segment of the paths which affected the overall
throughput, as shown in Figure 11b, note the linear trend (in red)
achieved 25% less than in the previous case. After tracing the costs
of the paths, we found out that there were two paths with the same
cost and the algorithm assigned the one first discovered, which
shared common segments. Nonetheless, the loss in throughput and
the amount of data transferred (see Table 2) was compensated with
a more homogeneous overall RTT, as seen in Figure 12b.

Table 1: Results Experiment 1 (one-to-one)

Flow# Data [Gb] AVG TP [Mbps] AVG RTT[ms]
Flow 1 1.13 96.6 0.09
Flow 2 1.12 96.7 0.05
Flow 3 1.13 96.6 0.07
Flow 4 1.13 96.7 0.07

Table 2: Results Experiment 2 (one-to-many)

Flow# Data [Gb] AVG TP [Mbps] AVG RTT[ms]
Flow 1 0.65 53.0 0.04
Flow 2 1.13 96.5 0.08
Flow 3 1.12 96.5 0.08
Flow 4 0.52 42.8 0.04

• Path Adaption Test

In this experiment, we test the resilience of the service by send-
ing a continuous iperf request to a single server for 60s from H1 to
H8, and after a random period, one of the links was shut down,
Table 3 shows the results obtained. As observed, in the 60s a total
of 624Mbytes were transmitted, with an average throughput of
85.6Mbps. Moreover, Figure 13 depicts the transmission trend,
which was relatively stable. The initial path was calculated as fol-
lows a1→b→e→h4→j2, then the link h4→j2 failed and recovered
later on to a new path a4→c→f→i4→j4, the outage time (shown in
the red shaded part in the figure) was approximately 5s. Although
the time could be reduced if only part of the path was modified, in
practice it is more efficient to recalculate the whole path than look
for the part that is affected as the time to add a flow is much lower

 (a) Average RTT one-to-one test

(b) Average RTT one-to-many test

 Figure 12: Results average RTT

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 148

than when it is updated [26]. Moreover, since the other flows will
not have activity anymore, they will be removed in the next refresh
cycle.

4.3. Transmission with Background Traffic

In this section, we compare the approach with existing related
work. Figure 14 shows the evaluation environment, which consists
of a k-ary Fat-tree topology with K=4 pods. Eight servers (Pod 3
and Pod 4) will provide four storages represented as TCP ports.
Without losing generality, for testing purposes, all of the links were

4 https://github.com/Huangmachi/ECMP/blob/master/fattree4_ecmp.py
5 https://github.com/dariobanfi/multipath-sdn-controller
6 https://osrg.github.io/ryu/

configured to 100Mbps with a max_queue_size of 1000. Note that
the topology was not augmented for this test, as the traditional
techniques and the existing solutions could not handle the in-
creased amount of redundancy, as the percentage of loss and drop
packets was high. However, in the comparison, we also include the
results in the case where the topology was augmented.

Table 3: Results Experiment 3 (one-to-many)

Flow# Data
[Mbytes]

AVG
Throughput

[Mbps]

AVG
RTT
[ms]

Flow 1 624 85.7 0.06

To benchmark the approach, we compared the results with the
following:

• Single path; the deployment was entirely handled by the
L2Switch project in ODL, which uses the STP protocol
and Dijkstra’s algorithm to calculate the shortest path for
full connectivity.

• ECMP; An implementation of ECMP using a modified
version of a publicly available code4, that uses OF group
rules to switch traffic when there are multiple paths.

• MPSDN [17]; the code is also publicly available5, both the
controller (Ryu6) and the mininet were hosted in the same
virtual machine using Ubuntu 14.04 LTS (as the modified
version of OVS was initially designed for a particular ver-
sion of the kernel). We selected this work, as they proved
that for certain conditions their performance equals the
one of MPTCP, and thus, we implicitly benchmark our ap-
proach against this experimental protocol as well.

• Our approach; The deployment for our approach without
modifying the topology, which means that no extra links
were setup between the edge and aggregation layer in the
topology. Moreover, the initial paths remained the same
for the entire transmission, with no adaption.

• Extended version of our approach; For the extended ver-
sion of the proposed approach, we modified the original
Three-layer non-blocking FTN by adding an extra parallel
link from the edge to the aggregation layer, and the paths
were adapted after every 10s (refresh cycle) based on the
information given by the Network Statistics module.

In the benchmark test, each host in Pod 3 and Pod 4 were
listening to TCP ports {6001, 6002, 6003, and 6004}. Moreover,
random UDP background traffic continuously sent from all host in
Pod 1 and Pod 2 to all hosts in pods 3 and 4, i.e., H1 to H9, H2 to
H10, H3 to H11 and so forth. We used continuous UDP iperf
requests with bandwidths ranging from 1 to 10Mbps using the
default paths and values. Then a request consisting of four parallel
100Mbps TCP iperf of were sent from both H1 and H5 (recovery
nodes) which will be handled by the servers in Pod 3 and Pod 4
respectively. Therefore, the total amount of data sent was

Figure 14: Evaluation testbed 4-ary Fat-tree topology

 (a) Average throughput single source and destination

 (b) Average RTT single source and destination

Figure 13: Results path adaption test

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 149

800Mbps, and we measured the time in which all the transmissions
finished.

- Completion time

The first metric we measured was the completion time. The
results are depicted in Figure 15; as can be seen, the slowest
solution was the single path approach, which completed all the data
transferences in 275 seconds with a standard deviation of 16s. By
contrast, the fastest one was the proposed approach in both of the
cases, with and without topology augmentation, completing all the
transference in a total of 30s with a standard deviation of 7.8s. In
the case of the extended version of the proposal, the standard
deviation was only of 4.8s which is the lowest among the
benchmarked solutions. Note that ECMP completion time is also
relatively low, 36.5s was the completion time of the last flow with
a standard deviation of 6.4s. Finally, note that although MPSDN
had a long completion time, 114s for the last flow, the variation of
flow arrival was slightly higher than ours, which is due to the
condition they use to ensure paths with compatible delays.

- Throughput

The second metric we measured was the average throughput
per flow. As shown in Figure 16, MPSDN and the simple path ap-
proach showed a steady average throughput in all the flows. How-
ever, the overall maximum performance was low, which affected
the completion time. In the other cases, even though the distribu-
tion was not as regular, the overall performance was much higher.
Also, it is also worth noting that since the UDP traffic was sent at
random bandwidths, some of the paths were more saturated than
others, which might have caused the irregular distribution. Never-
theless, as can be seen in Figure 17, in our approach, the aggre-
gated throughput was much higher than the other approaches. In
the case of the augmented version, consider that although the num-
ber of links was duplicated from the edge to the aggregation layer,
the increase was not linear.

- Network Load

The last variable we measured was the overall network load.
Although the proposed approach can handle the dynamic load
balance of servers and network at the same time as shown in [25],

since the existing solutions focus mainly on the network load
balancing we measured only that parameter. To perform this cal-
culation, we used Tang’s [9] formula to calculate the network
bandwidth utilization ratio 𝜆𝜆(𝑡𝑡), which gives the total bandwidth
utilization in a time t and is expressed as in (3)

 𝜆𝜆(𝑡𝑡) =
∑ 𝜆𝜆𝑝𝑝,𝑗𝑗(𝛥𝛥)1≤𝑝𝑝,𝑗𝑗≤𝑁𝑁

𝑁𝑁
 (3)

Where N is the number of links, and λi,j is the link bandwidth
utilization ratio defined as in (4), where bi,j is the used bandwidth
and Bi,j is the capacity of the link.

 𝜆𝜆𝑖𝑖,𝑗𝑗(𝑡𝑡) =
𝑏𝑏𝑝𝑝,𝑗𝑗
𝐵𝐵𝑝𝑝,𝑗𝑗

 (4)

To make a fair comparison, we only measured the time until
the time the first flow finished, which was about 30s from the be-
ginning of the experiment. Figure 18 shows the Normalized the
Cumulative Load over those 30s. As observed, ECMP was the so-
lution that generated the most load over that time and across the
whole network. However, the proposed approach used slightly
more than the load of the single path solution with the added value
of having a faster completion time and better overall throughput.
Note that in our case, the load was not concentrated in a specific
part of the network as in the other solutions, but spread among the

Figure 15: Completion time of 800Mbytes in a 4-ary FTN

Figure 16: Average throughput per flow

Figure 17: Aggregated throughput at eight 100Mbps flows

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 150

discovered paths. Moreover, the results for the augmented version
of the topology shows better traffic distribution, which will allow
more concurrent operations to be performed in less time, a
condition that is desirable for DSS.

Finally, Table 4 shows a summary of the results per flow. As
observed, the proposed approach outperformed the others in most
of the cases. Moreover, the overall load of the entire network is
compared to the one on a single path, but the traffic is more evenly
distributed. Note that the network load in ECMP and MPSDN per
flow is relatively high, in the case of MPSDN, it might be due to
the high amount of control messages sent by the controller, but in
the case of ECMP, the use of multiple paths caused several retrans-
missions due to packet loss.

Table 4: Average benchmark results per flow

Metric Single
Path ECMP MPSDN Our

App.
Our App.
(extended)

Completion
Time [s] 256.5 27.5 113.6 26 24.4

Throughput
[Mbps] 3.02 31.24 7.41 35.28 26.61

Network
Utilization

[%]
0.05% 2.06% 1.45% 0.11% 0.05%

5. Conclusions

Due to the restrictiveness of using legacy network techniques
for DSS, it may not be possible to cope with the ever-increasing
user content-generation in the future. Therefore, in this paper, we
presented a network control method to improve DSS performance
by using SDN. The proposed approach used pragmatic and
straightforward solutions to handle DSS’s main requirements,
namely aggregated bandwidth and effective use of resources. We
have evaluated the proposal in various scenarios, and compared it
with both network legacy techniques and existing solutions. Ex-
perimental results show that our method could achieve faster data
transference and maintain balanced network and server loads. Ad-
ditionally, in contrast to other proposals, our method does not re-

quire protocol or end-point modification but instead a topology en-
hancement based on the system demands. We showed that the
overall performance of routinely DSS tasks can be dramatically
increase by augmenting the DCN using parallel links, a proper path
discovery, and dynamic adaption based on the network and servers
load. As a future work, we still have to test the solution in large-
scale and real DSS deployments. Furthermore, with the rise of new
multipath transport protocols, such as QUIC [27] it might be inter-
esting to study the impact on the way traffic is handled in non-
traditional transport protocols in future networks. Likewise, we
have not fully exploited the adaptive aspect of the proposal, which
can be used to solve problems concerning resilient and fail-tolerant
networks. Finally, it is also important to find a mechanism that
achieves a tradeoff between high-performance and energy-effi-
ciency of the whole network to cope with the proposed overprovi-
sioned infrastructure.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] L. Guillen, S. Izumi, T. Abe, T. Suganuma, H. Muraoka, "SDN implementa-
tion of multipath discovery to improve network performance in distributed
storage systems" in 13th International Conference on Network and Service
Management, Japan, 2017. https://doi.org/10.23919/CNSM.2017.8256054

[2] D. Reinsel, J. Gantz, J. Rydning, "Data Age 2025: The evolution of data to
life-critical - Don't focus on big data; focus on the data that's big", IDC White
Paper, 1–25, 2017.

[3] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, K. Ramchandran, “Network
coding for distributed storage systems” IEEE Transactions on Information
Theory, 56(9), 4539–4551. 2010. https://doi.org/10.1109/TIT.2010.2054295

[4] C. Suh, K. Ramchandran, "Exact-Repair MDS Code Construction Using In-
terference Alignment" in IEEE Transactions on Information Theory, 57(3),
1425–1442, 2011. https://doi.org/10.1109/TIT.2011.2105003

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar, K. Ramchandran, "Distributed stor-
age codes with repair-by-transfer and nonachievability of interior points on
the storage-bandwidth Tradeoff" in IEEE Transactions on Information The-
ory, 58(3), 1837–1852, 2012. https://doi.org/10.1109/TIT.2011.2173792

[6] Open Networking Foundation (ONF) Software-Defined Networking (SDN)
Definition Available at https://www.opennetworking.org/sdn-definition/ Ac-
cessed on 2018-07-20

[7] S. Kaneko, T. Nakamura, H. Kamei, and H. Muraoka, "A Guideline for Data
Placement in Heterogeneous Distributed Storage Systems" in 5th Interna-
tional Congress on Advanced Applied Informatics, Kumamoto Japan, 942–
945, 2016. https://doi.org/10.1109/IIAI-AAI.2016.162

[8] IEEE Std. 802.3ad "IEEE Standard for Local and metropolitan area networks
- Link Aggregation," available at http://www.ieee802.org/3/ad/ Accessed on
2018-06-10

[9] F. Tang, L. Yang, C. Tang, J. Li, M. Guo, "A Dynamical and Load-Balanced
Flow Scheduling Approach for Big Data Centers in Clouds" IEEE Transac-
tions on Cloud Computing, 2016. https://doi.org/10.1109/TCC.2016.2543722

[10] IETF RFC2992 "Analysis of an Equal-Cost Multi-Path Algorithm" available
at https://tools.ietf.org/html/rfc2992, Accessed on 2018-01-30

[11] L. Li, Q. Xu, "Load Balancing Researches in SDN: A Survey," in 7th IEEE
Int. Conference on Electronics Information and Emergency Communication,
403–408, Macau China, 2017. https://doi.org/10.1109/ICEIEC.2017.8076592

[12] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, "Hedera:
Dynamic flow scheduling for data center networks," In 7th Conference on
Networked Systems Design and Implementation, 19–34, San Jose CA USA,
2010. http://dl.acm.org/citation.cfm?id=1855711.1855730

Figure 18: Normalized Cumulative Network Load in 30s

http://www.astesj.com/

L. Guillen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 5, 140-151 (2018)

www.astesj.com 151

[13] R. van der Pol, M. Bredel, A. Barczyk, B. Overeinder, N. van Adrichem, O.
Kuipers, "Experiences with MPTCP in an Intercontinental OpenFlow Net-
work," In 29th Trans European Research and Education Networking Confer-
ence,1–8, Amsterdam The Netherlands, 2013.

[14] IETF RFC 6182 "Architectural Guidelines for Multipath TCP Development,"
available at https://datatracker.ietf.org/doc/rfc6182/, Accessed on 2017-06-15

[15] J.P. Sheu, L. Liu, R.B. Jagadeesha, Y. Chang, "An Efficient Multipath Rout-
ing Algorithm for Multipath TCP in Software-Defined Networks," in Euro-
pean Conference Networks and Communications, 1–6, Athens Greece, 2016.
https://doi.org/10.1109/EuCNC.2016.7561065

[16] D. J. Kalpana, K. Kataoka, "SFO: SubFlow Optimizer for MPTCP in SDN,"
in 26th Int. Telecommunication Networks and Applications Conference, Dun-
edin New Zealand, 2016. https://doi.org/10.1109/ATNAC.2016.7878804

[17] D. Banfi, O. Mehani, G. Jourjon, L. Schwaighofer, R. Holz, "Endpoint-trans-
parent Multipath Transport with Software-defined Networks," in IEEE 41st
Conference on Local Computer Networks, 307-315, Dubai UAE, 2016.
https://doi.org/10.1109/LCN.2016.29

[18] F. Carpio, A. Engelmann, A. Jukan, "DiffFlow: Differentiating Short and
Long Flows for Load Balancing in Data Center Networks," in IEEE Global
Communications Conference, 1–6, Washington DC USA, 2016.
https://doi.org/10.1109/GLOCOM.2016.7841733

[19] Y. Li, D. Pan, "OpenFlow based Load Balancing for Fat-Tree Networks with
Multipath Support," In 12th IEEE International Conference on Communica-
tions, Budapest Hungary, 2013.

[20] S. Izumi, M. Hata , H. Takahira, M. Soylu, A. Edo,T. Abe and T. Suganuma,
"A Proposal of SDN Based Disaster-Aware Smart Routing for Highly-avail-
able Information Storage Systems and Its Evaluation," International Journal
of Software Science and Computational Intelligence, 9(1), 68–82, 2017.
https://doi.org/10.4018/IJSSCI.2017010105

[21] K.T. Dinh, S. Kuklinski, W. Kujawa, M. Ulaski, "MSDN-TE: Multipath
Based Traffic Engineering for SDN," in 8th Asian Conference on Intelligent
Information and Database Systems, 630–639, Da Nang, Vietnam 2016.
https://doi.org/10.1007/978-3-662-49390-8_61

[22] P.H. Fredette, "The past, present, and future of inverse multiplexing," in IEEE
Com. Magazine, 32(4), 42–46, 1994. https://doi.org/10.1109/35.275334

[23] R. Toghraee, Learning OpenDaylight - The Art of Deploying Successful Net-
works, Packt Publishing Ltd., 2017.

[24] J. W. Suurballe, R. E. Tarjan "A quick method for finding shortest pairs of
disjoint paths," in Networks, 14(2), 325–336, 1984.
https://doi.org/10.1002/net.3230140209

[25] L. Guillen, S. Izumi, T. Abe, T. Suganuma, H. Muraoka "SDN-based hybrid
server and link load balancing in multipath distributed storage systems" in
2018 IEEE/IFIP Network Operations and Management Symposium, Taipei
Taiwan, 2018. https://doi.org/10.1109/NOMS.2018.8406286

[26] M. Kuźniar, P. Perešíni, D Kostić "What You Need to Know About SDN
Flow Tables," in: Mirkovic J., Liu Y. (eds) Passive and Active Measurement.
PAM 2015. Lecture Notes in Computer Science, 347–359, 2015.
https://doi.org/10.1007/978-3-319-15509-8_26

[27] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, et al "The QUIC
Transport Protocol: Design and Internet-Scale Deployment." in Proc. of the
ACM Conference of Special Interest Group on Data Communication, 183–
196, New York USA, 2017. https://doi.org/10.1145/3098822.3098842

http://www.astesj.com/

	2. Related Work
	2.1. Problem Description with Legacy Networking Techniques
	2.2. Related work on SDN-based Multipath Load-balancing
	2.3. Target Issues

	3. SDN-based Network Control Method for Distributed Storage Systems
	3.1 Motivating example
	3.2 Overview of the Proposal
	3.3 On-demand Inverse Multiplexing
	3.4 Hybrid Multipath Load-balancing
	3.5 Implementation

	4. Evaluation
	4.1. Overview
	4.2. Transmission without Background Traffic
	4.3. Transmission with Background Traffic

	5. Conclusions
	Conflict of Interest
	References

