
 

www.astesj.com     265 

 

 

 

 
Parallelizing Combinatorial Optimization Heuristics with GPUs 

Mohammad Harun Rashid*, Lixin Tao 

Pace University, New York, USA 

A R T I C L E  I N F O  A B S T R A C T 
Article history: 
Received: 12 August, 2018 
Accepted: 09 November, 2018 
Online: 18 November, 2018 

 Combinatorial optimization problems are often NP-hard and too complex to be solved 
within a reasonable time frame by exact methods. Heuristic methods which do not offer a 
convergence guarantee could obtain some satisfactory resolution for combinatorial 
optimization problems. However, it is not only very time consuming for Central Processing 
Units (CPU) but also very difficult to obtain an optimized solution when solving large 
problem instances. So, parallelism can be a good technique for reducing the time 
complexity, as well as improving the solution quality. Nowadays Graphics Processing Units 
(GPUs) have evolved supporting general purpose computing. GPUs have become many 
core processors, multithreaded, highly parallel with high bandwidth memory and 
tremendous computational power due to the market demand for high definition and real 
time 3D graphics. Our proposed work aims to design an efficient GPU framework for 
parallelizing optimization heuristics by focusing on the followings: distribution of data 
processing efficiently between GPU and CPU, efficient memory management, efficient 
parallelism control. Our proposed GPU accelerated parallel models can be very efficient 
to parallelize heuristic methods for solving large scale combinatorial optimization 
problems. We have made a series of experiments with our proposed GPU framework to 
parallelize some heuristic methods such as simulated annealing, hill climbing, and genetic 
algorithm for solving combinatorial optimization problems like Graph Bisection problem, 
Travelling Salesman Problem (TSP). For performance evaluation, we’ve compared our 
experiment results with CPU based sequential solutions and all of our experimental 
evaluations show that parallelizing combinatorial optimization heuristics with our GPU 
framework provides with higher quality solutions within a reasonable time. 
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1. Introduction  

Combinatorial optimization is a topic that consists of finding 
an optimal solution from a finite set of solutions. Combinatorial 
optimization problems are often NP hard. It is often time 
consuming and very complex for Central Processing Unit (CPU) 
to solve combinatorial optimization problems, especially when the 
problem is very large. Metaheuristic methods can help finding 
optimal solution within a reasonable time.  

Nowadays efficient parallel metaheuristic methods have 
become an interesting and considerable topic. Local search 
metaheuristics (LSMs) are single solution-based approaches, as 
well as one of the most widely researched metaheuristics with 
various types such as simulated annealing (SA), hill climbing, 
iterated local search, tabu search, and genetic algorithm etc. A 
common feature that local search metaheuristics can share is, a 
neighborhood solution is selected iteratively as a candidate 

solution. We can use local search metaheuristics to solve 
combinatorial optimization problems such as graph bisection 
problem, Travelling Salesman Problem (TSP) etc. Many works 
have been done by using parallel computing technology to improve 
its performance from iteration level, algorithmic level and solution 
level. Therefore, parallelism is a good technique for improving the 
solution quality as well as reducing the time complexity. 

Recently, Graphics Processing Units (GPUs) have been 
developed gradually to parallel/programmable processors from 
fixed function rendering devices. GPUs motivated by high 
definition 3D graphics from real time market demand have become 
many core processors, multithreaded, highly parallel with high 
bandwidth memory and tremendous computational power. So, 
more transistors are devoted to design GPU architecture in order 
to do more data processing than data caching/flow control. With 
the fast development of general purpose Graphics Processing Unit 
(GPGPU), some companies have promoted GPU programming 
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frameworks such as OpenCL (Open Computing Language), 
CUDA (Compute Unified Device Architecture), and direct 
Compute. GPU based metaheuristics have become much more 
computational efficient compared to CPU based metaheuristics. 
Furthermore, making local search algorithms optimized on GPU is 
an important problem for the maximum efficiency. 
 

In the recent years, GPU computing has emerged as a very  
important challenge in the research areas for parallel computing. 
GPU computing is believed as an extremely useful technology for 
speeding up so many complex algorithms in order to improve 
solution quality. However, rethinking of existing parallel models 
as well as programming paradigms for allowing their deployment 
on GPU accelerators is one of the major challenges for 
metaheuristics. In fact the issue is, revisiting the parallel models as 
well as programming paradigms for efficiently considering the 
GPUs characteristics. However, some issues related to memory 
hierarchical management of GPU architecture need to be 
considered. 
 

The contribution of this research is, to design a GPU 
framework which can efficiently deal with the following important 
challenges while parallelizing metaheuristics methods to solve 
large optimization problems: 
 
1. Distribution of data processing between GPU and CPU with 

efficient CPU-GPU cooperation. 
2. Thread synchronization and efficient parallelism control. 
3. Data transfer optimization among various memories and 

memory capacity constraints with efficient memory 
management. 

 
Our proposed parallel models on GPU architecture can be 

very useful and efficient in finding better optimized solution for 
large scale combinatorial optimization problems. We have made a 
series of experiments with our proposed GPU framework to 
parallelize some heuristic methods such as simulated annealing, 
hill climbing, genetic algorithm etc. for solving combinatorial 
optimization problems like Graph Bisection problem and 
Travelling Salesman Problem (TSP). All of our experimental 
evaluation shows that parallelizing heuristics methods with our 
GPU framework provides higher quality solutions in a reasonable 
computational time. 

2. Background 

As we contribute to the parallelization of heuristics methods 
for combinatorial optimization problems with GPU, below we 
discuss about combinatorial optimization problems, some 
optimization heuristics methods (hill climbing and simulated 
annealing), graph bisection problem/ travelling salesman problem 
as example optimization problems and GPU architecture/ 
computing. 

2.1 Significance of Combinatorial Optimization 

Combinatorial optimization can be defined as a mathematical 
discipline with the interplay between computer science and 
mathematics [1]. Very roughly, it deals with the problem of 
making optimal choices in huge discrete sets of alternatives. 
Combinatorial optimization is a way to search through a large 

number of possible solutions for finding the best solution from 
them. When the number of possible solutions is really too large 
and it is impractical to search through them, we can apply different 
techniques to narrow down the set and speed up the search. 

Many combinatorial optimization problems are known as NP 
hard. That means, the time needed for solving a problem instance 
to optimality grows exponentially with the size of the problem in 
the worst case. Hence, these problems are easy to understand and 
describe, but very hard to solve. Even it is practically impossible  
to determine all possibilities for problems of moderate size in order 
to identify the optimum. Therefore, heuristic approaches are 
considered as the reasonable way to solve hard combinatorial 
optimization problems. Hence, the abilities of researchers to 
construct and parameterize heuristic algorithms strongly impact 
algorithmic performance in terms of computation times and 
solution quality.  
2.2 Combinatorial Optimization Heuristics 

To deal with combinatorial optimization problems, the goal is 
to finding such an optimal/optimized solution, which can minimize 
the given cost function. The cost of the algorithms can 
exponentially increase while the complexity of the search space is 
growing up,  and this can make the search of a solution not feasible. 

Finding a suboptimal solution within a reasonable time is 
another way to address these problems. In some cases, We might 
even find the optimal solution in some cases. These techniques can 
be divided into two main groups: heuristics and metaheuristics. 

A heuristic is an algorithm that tries to find optimized 
solutions to complex combinatorial problems, but there is no 
guarantee for its success. Most of the heuristics are based on 
human perceptions, understanding the problem characteristics and 
experiments, but they are not based on fixed mathematical 
analysis. The heuristic value should be based on comparisons  of 
performance among the competing heuristics. The most important 
metrics  for performance are quality of a solution, as well as the 
running time. The implementation of heuristic algorithms is easy 
and they can find better solutions with relatively small 
computational effort. However, a heuristic algorithm can rarely 
find the best solution for large problems. 

 
Figure 1: Different classifications of metaheuristics  
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Over the last couple of  decades many researchers have been 
studying optimization heuristics for solving many real life NP hard 
problems, and some of the common problem solving 
techniques/methods underlying these heuristics came up as meta 
heuristics. A meta heuristic can be defined as a pattern or the major 
idea for a class of heuristics. Reusable knowledge in heuristic 
design can be represented by Meta-heuristics, which can provide 
us with important starting points in designing effective new 
heuristics for solving new NP hard problems. 

Meta heuristics are not algorithms, nor based on theory. To 
effectively solve a meta heuristic based problem, we must have 
better understanding of the problem characteristics, and creatively 
designing as well as implementing the major meta heuristic 
components. So, it has become an action of research to use a meta 
heuristic for proposing an effective heuristic to solve an NP hard 
problem. 

Another classification dimension is population based searches 
(P-Metaheuristics) vs single solution (S-Metaheuristics). P-
Metaheuristics approaches maintain/ improve multiple candidate 
solutions, often using population characteristics to guide the 
search. P-Metaheuristics include genetic algorithms, evolutionary 
computation, and particle swarm optimization. S-Metaheuristics 
approaches  focus on modifying/improving a single candidate 
solution. S-Metaheuristics include iterated local search, simulated 
annealing, hill climbing, variable neighborhood search etc. Below 
are some of the heuristics methods to solve combinatorial 
optimization problems: 

2.2.1 Hill Climbing 

Hill climbing is a mathematical optimization technique that 
belongs to the local search family and can be used for solving 
combinatorial optimization problems. The best use of this 
technique is in problems with “the property that the state 
description itself contains all the information needed for a 
solution”. Hill climbing algorithm is memory efficient, since it 
does not maintain any search tree. This algorithm mainly looks into 
the present state and the immediate future states only. By using an 
evaluation function, it tries to improve the current state iteratively. 

Hill climbing can encounter a problem called “local maxima”. 
When the algorithm stops making progress towards an optimal 
solution, local maxima problem can occur because of the lack of 
immediate improvement in adjacent states. There are variety of 
methods to avoid Local maxima. Repeated explorations of the 
problem space could be one of the methods for solving this 
problem.  

Hill Climbing Algorithm:  

 

 
Figure 2: global solutions vs local solutions. 

This algorithm starts from a random initial solution and then 
it keeps looking in the solution space in order to migrate to better 
neighbor solution. We might need to compare the current partition 
with all the neighbor’s solutions before the algorithm is terminated. 
The algorithm terminates when all the neighbors’ solutions are 
worse compared with the current partition. This technique can only 
find the local optimum solutions which are better solutions than all 
the neighbors, but the found solutions might not be global optimum 
solutions. The figure 2 shows difference between global and local 
solutions. 

It is a time consuming process to maintain the visited 
neighbors of the current partition. That is why, it is necessary to 
parallelize the hill climbing algorithm for finding the best 
optimized solution. 

2.2.2  Simulated Annealing 

For graph bisection, simulated annealing heuristic starts with 
a high temperature t and a randomly selected initial partition as its 
current partition. After that, this heuristic starts the iterations with 
the same temperature and at each iteration, a neighbor partition is 
randomly generated. If the cost of the neighbor partition is better 
than the current cost, then the neighbor partition becomes the new 
current partition for the next iteration. If the neighbor partition 
does worsen the current cost, it can still be accepted with a 
probability as the new current partition. In case of high 
temperature, the probability is not sensitive to bad neighbor 
partition. But in case of low temperature, the probability for 
accepting a worsening neighbor will diminish with the extent of 
the worsening. The temperature is reduced by a very small amount 
after certain iterations are completed with the same temperature, 
and then, the iterations continue with the reduced temperature. The 
iteration process terminates once the termination criteria is met. 

Many combinatorial optimization problems can be solved by 
applying simulated annealing heuristic. Unlike other meta 
heuristics, it has been mathematically proven that simulated 
annealing converges to the global optimum with sufficiently slow 
reduction of the temperature. As very few real world problems can 
afford such excessive execution time, this theoretical result does 
not interest much the practitioners. Below is the pseudocode for 
simulated annealing heuristic.  

The simulated annealing and local optimization differ with the 
characteristics whether worsening neighbors will be accepted. 

http://www.astesj.com/
https://en.wikipedia.org/wiki/Genetic_algorithms
https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Iterated_local_search
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Variable_Neighborhood_Search


M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018) 

www.astesj.com     268 

Simulated annealing heuristic starts with random walk in the 
solution space. If a random neighbor is better than the current 
solution, simulated annealing always accepts it. But, when the 
random neighbor is worse, the chance of accepting the worsen 
neighbor is slowly reduced. Simulated annealing can be reduced to 
local optimization with a very low temperature. 

 
Figure 3: Simulated Annealing Algorithm 

2.3 Optimization Problems 

2.3.1 Graph Bisection Problem 

The graph bisection  problem can be defined as a data 
representation of a graph G = (V,E) with  a number of vertices=V  
and a number of edges=E, such that the graph G can be partitioned 
into smaller sections with some particular properties. For example, 
a k-way partition can divide the vertices into k smaller sections. 
When the number of edges between the separated components is 
relatively very small, it can be defined as a good partition. We can 
call a graph partitioning as uniform graph partition which divides 
the graph into smaller components in such a way that all the 
components are almost the same size as well as there are only small 
number of connections between the components. The important 
applications for graph partitioning include, but not limited to  
partitioning different stages for VLSI circuit design, scientific 
computing, clustering, task scheduling for multi-processing 
systems, and cliques detection in social networking etc. 
 

 

 
Figure 4: An optimal graph bisection 

2.3.2 Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a combinatorial 
optimization problems which can be described easily, but it is very 
difficult to solve. A salesman starts with one city and will be 
visiting a number of cities with the condition that the salesman 
must visit each and every city only once and finally returns to first 
city. Selecting the sequence of the cities to be visited is the 
problem, because the salesman has to take the shortest path from a 
set of possible paths to minimize the path length. Exhaustive 
search can be used to find an optimal solution for a small instances 
(a few cities only) of TSP. But the problem is really critical for 
large number of cities, since with the increase in the number of 
cities, the number of possible paths increases exponentially. The 
number of possible paths for visiting n number of cities is the 
permutation of n which is n!. If the number of cities is increased 
by 1 only, the number of possible paths will become (n+1)!. 
Therefore, it will take too much time to compute the cost for all 
possible paths and find out the shortest path from them. TSP in 
known as a typical NP-hard problem. 

TSP has a lot of applications in real world in different areas, 
like electronic maps, computer networking, Mailman’s job, VLSI 
layout, traffic induction, electrical wiring, etc. 

TSP Algorithms: 
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2.4 GPU Architecture/Computing 

Just a while ago, the conventional single core or multicore 
CPU processor was the only viable choice for parallel 
programming. Usually some of them were either loosely arranged 
as multicomputer in which the communication among them were 
done indirectly because of the isolated memory spaces, or tightly 
arranged as multiprocessors that shares a single memory space. 
CPU has a large cache as well as an important control unit, but it 
doesn’t have many arithmetic logic units. CPU can manage 
different tasks in parallel which requires a lot of data, but data are 
stored in a cache for accelerating its accesses. Nowadays most of 
the personal computers have GPUs which offer a multithreaded, 
highly parallel and many core environments, and can potentially 
reduce the computational time. The performance of the modern 
GPU architecture is wonderful in regards to cost, power 
consumption, and occupied space. 

 
Figure 5: GPU architecture. 

 
Figure 6: GPU thread blocks 

A GPU includes a number of Streaming Multiprocessors 
(SMs). Each streaming multiprocessor contains a number of 
processing units which can execute thousands of operations 
concurrently. The warps inside a SM consist of a group of threads. 
A warp can execute 32 threads in a Single Instruction Multiple 

Data (SIMD) manner, which means all the threads in a warp can 
execute same operation on different data points. GPUs have at 
least two kinds of memory: global memory and shared memory. 
Global memory allows to store a large amount of data (such as 
8GB), whereas shared memory can usually store only few 
Kilobytes per SM.  

A GPU thread can be considered as a data element to be 
processed. GPU threads are very lightweight in comparison with 
CPU threads. So, it is not a costly operation when two threads 
change the context among each other. GPU threads are organized 
in blocks. Equally threaded multiple blocks execute a kernel. Each 
thread is assigned a unique id. The advantage for grouping of 
threaded blocks is that simultaneously processed blocks are linked 
closely to hardware resources. The threads within the same block 
are assigned to a single multiprocessor as a group. So, different 
multiprocessors are assigned to different threaded blocks. 
Therefore, controlling the threads parallelism can be a big issue 
for meeting memory constraints. As multiprocessors are mainly 
organized based on the Single Program Multiple Data (SPMD) 
model, the threads can access to different memory areas as well 
as can share the same code. 

 
Figure 7: CPU - GPU communications. 

GPU is used as a device coprocessor and CPU is used as a 
host. Each GPU has its own processing elements and memory 
which are separate from the host computer. Data is transferred 
between the host memory and the GPU memory during the 
execution of programs. Each device processor on GPU supports 
SPMD model, which means same program can simultaneously be 
executed on different data by multiple autonomous processors. To 
achieve this, we can define kernel concept. The kernel is basically 
a method or function which is executed by several processors 
simultaneously on the specified device in parallel and callable 
from the host as well. The Communications between CPU host 
and the device coprocessors are accomplished via the global 
memory.  
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3. Literature Review 

In [2, 3, 4], the author proposed GPU based works with 
genetic algorithms. They proposed that the population evaluation 
as well as a specific mutation operator are to be performed in 
GPU. They implemented the selection and replacement operators 
in CPU. So, huge data transfers are performed between GPU and 
CPU. This kind of techniques can limit the performance of the 
solution.  

In [5], the author proposed evolution strategy algorithm for 
solving continuous problems. According to his suggestions, 
multiple kernels can be designed for some of the evolutionary 
operators like selection, evaluation, crossover, mutation etc. and 
CPU can handle the rest of the search process.  Later on, in [6], 
the author presented similar implementation with genetic 
algorithms. The additional contribution of their work was 
investigating the effect of problem size/ thread size /population 
size on GPU implementation comparing with sequential genetic 
algorithm. 

In [7], the author proposed a memory management concept 
for an optimization problem. They implemented the concept for 
quadratic assignment problem where the global memory accesses 
were coalesced, the shared memory was used for storing as many 
individuals as possible, and the constant memory associated with 
matrices. For dealing with data transfers, their approach was a full 
parallelization based search process. In this regards, they divided 
the global genetic algorithm into multiple individual genetic 
algorithms, such that a thread block is represented by each sub 
population. Because of the poor management of data structures, 
the speed-ups obtained in their solution for combinatorial 
problems are not convincing. 

In [8], the author proposed a framework of the automatic 
parallelization with GPU for the evaluation function. Only the 
evaluation function code need to be specified in their approach 
and the users don’t need to know CUDA keywords. This approach 
allows evaluating the population on GPU in a transparent way. 
But, this strategy has some problems, such as it lacks flexibility 
because of transferring the data and nonoptimized memory 
accesses. In addition, the solution is limited to the problems where 
no data structure is required. 

In [9], the author proposed an implementation of an 
evolutionary algorithm which is a GPU based full parallelization 
of the search process. Without any problem structures they 
implemented this approach to make an application for continuous 
and discrete problems. Later on, the authors also submitted an 
implementation of their algorithm with multi GPUs [10]. 
However, since there are some challenging issues of the context 
management such as global memories of two separate GPU, their 
implementation with multiple GPUs does not really provide with 
any significant performance advantages. 

In [11], the author implemented a model for continuous 
optimization problems in which is very similar to the previous 

model. In this model, shared memory is used to store each sub 
population and organized based on ring topology. Although the 
speed-ups for the obtained solution are better compared with a 
sequential algorithm, the implementation of this model was 
dedicated to few continuous optimization problems only. As by 
considering the two previous models no general methods were 
outlined, in [12], the author made some investigation on the 
parallel island model on GPU. By involving different memory 
managements, they designed three parallelization strategies and 
were able to address some issues.  

In [13], the author proposed a multi start tabu search 
algorithm and implemented to the TSP as well as the flow shop 
scheduling problem. The parallelization is performed on GPU by 
using shared libraries, and one tabu search associated with each 
thread process. However, this approach requires so many local 
search algorithms for covering the memory access latency and so, 
this type of parallelization is not much effective. In [14], the 
author proposed similar approach with CUDA. In this approach, 
the memory management for optimization structure is done in the 
global memory and they implemented this to the quadratic 
assignment problem. However, as one local search associated 
with each thread, the solution performance is limited to the size 
of instance. 

For designing of multi-start algorithms, in [15], the author 
provided general methodology which are applicable to local 
search methods like simulated annealing, hill climbing, or tabu 
search. They also have contribution regarding the relationship 
between available memories and data mostly used for the 
algorithms. But, the application of the GPU accelerated multistart 
model is very limited, because it requires so many local search 
algorithms at run time to become effective. In [16], the author 
proposed a GPU based hybrid genetic algorithm. In their 
approach, they implemented an island model where a cellular 
genetic algorithm is represented by each population. Also, the 
mutation step in their hybrid genetic algorithm is followed by hill 
climbing algorithm. They performed their implementation for the 
maximum satisfiability problem.  

According to the previous work, the hill climbing need to be 
integrated with the island model as per the investigation of the full 
parallelization. In this regard, in [17] the author proposed the 
redesign of GPU based hybrid evolutionary algorithms which 
performs a hybridization with a local search. Their focus was on 
different neighborhoods generation on GPU, correlating to each 
individual to be mutated in the evolutionary process. This kind of 
mechanism may guarantee more flexibility. 

In [18], the author introduced a GPU accelerated multi 
objective evolutionary algorithm. In his approach, he 
implemented some of the multi objective algorithms on GPU, but 
not with the selection of non-dominated solutions. There are more 
works on P-metaheuristics for GPU parallelization are proposed. 
The parallelization strategies used for these implementations are 
similar to the prior techniques mentioned above. These works 
include particle swarm optimization [19, 20, 21], genetic 
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programming [22, 23, 24, 25] and other evolutionary computation 
techniques [26, 27, 28].  

3.1 Research issues and contributions 
Most of the approaches in the literature are mainly based on 

either iteration level or algorithmic level. In other words, the 
approaches are based on basically either the simultaneous 
execution of cooperative/independent algorithms, or GPU 
accelerated parallel evaluation of solutions. Regarding the 
cooperation between CPU and GPU, there are some 
implementations which also consider the GPU parallelization of 
other treatments such as selection/variation operators for 
evolutionary algorithms. We may argue on the validity of these 
choices, since an execution profiling may show that such 
treatments are negligible compared to the evaluation of solutions. 
As mentioned above, for reducing the data transfer between GPU 
and CPU, a full GPU parallelization of metaheuristics may also 
be performed. The original semantics of the metaheuristic are 
altered in this case to fit the GPU execution model. 

Regarding the control of parallelism, a single thread with one 
solution are associated in most of the implementations. Besides, 
some of the cooperative algorithms associate one threads block 
with one sub population and may take advantage of the threads 
model. However, so far we’ve not found any work that has been 
investigated for managing parallelism of the threads efficiently to 
meet the memory constraints. The previous implementations may 
not be robust while dealing with large problem instances or a large 
set of solutions. In Chapter 4, we will show how an efficient 
control of thread may allow introducing fault tolerance 
mechanism for GPU applications. 

For the memory management, so far there is no explicit 
efforts made in most of the implementations for memory access 
optimizations. For example, one of the most important elements 
for speeding up is memory coalescing, and additionally, could 
consider local memories for reducing non coalesced accesses. 
However, some of the authors proposed the simple way of using 
the shared memory to cache, but there is no performance 
improvement guarantee in those approaches. Some other authors 
also put some explicit efforts for handling optimization structures 
with the different memories, but still there is no general 
guideline/outline from those works. In fact, a lot of time, the 
associations of memory strictly depend on the target optimization 
problem such as small problem instances and/or no data inputs. 

The contribution of this research is: to design a GPU 
framework with a set of efficient algorithms which can efficiently 
address the above mentioned challenges by parallelizing major 
metaheuristics for combinatorial optimization problems on the 
CPU-GPU architecture and also, to validate the solution quality 
with graph bisection problem as well as Travelling Salesman 
Problem (TSP). 
4. Proposed Method and Contribution 

Below are the research methodologies that we followed for 
proposing our methods and adding contributions to our GPU 
framework. 

• Studying data processing distribution between CPU and 
GPU, and finding the challenges for efficient CPU-GPU 
cooperation. 

• Studying thread synchronization, parallelism control on GPU 
threads, and finding the challenges for efficient parallelism 
control. 

• Designing algorithms to optimizing data transfer between 
various memories and memory capacity constraints with 
efficient memory management. 

• Developing parallel combinatorial optimization 
algorithms/frameworks for the CPU-GPU architecture to 
efficiently deal with the above mentioned GPU challenges. 

• Validating the solution quality and efficiency of the proposed 
frameworks/algorithms relative to those of the best sequential 
meta-heuristics with extensive experimental design for graph 
bisection problem and TSP. 

4.1  Difficulties in parallelizing optimization heuristics on GPU 

Most of the time the performance of a parallel algorithm may 
depend on how well the communication structure of the target 
parallel system is matched with the communication structure of 
the algorithm. Nowadays one class of parallel processing systems 
consists of a number of processors, each with its own private 
memory. In addition, each of these processor memory pairs are 
connected to a small number of other pairs in a fixed topology. In 
these systems, if two processor-memory pairs must share data, a 
message is constructed and sent through the interconnection 
network. Such a message must be forwarded through one or more 
intermediate processors in the network. This forwarding 
introduces delay and hence reduces the amount of speedup 
achieved. 

In science and industry, local search methods are heuristic 
methods for solving very large optimization problems. Even 
though these iterative methods can reduce the computational time 
significantly, the iterative process can still be costly when dealing 
with very large problem instances. Although local search 
algorithms can also reduce the computational complexity for the 
search process, still it is very time consuming for CPU in case of 
objective function calculations, especially when the search space 
size is too large. Therefore, instead of traditional CPUs the GPUs 
can be used to find efficient alternative solutions for calculations. 
 

It is not straightforward to parallelize combinatorial 
optimization heuristics on GPU. It requires a lot of efforts at both 
design level and implementation level. We need to achieve few 
scientific challenges which are mostly related to the hierarchical 
memory management. The major challenges are: the CPU-GPU 
data processing with efficient distribution, synchronization of 
different threads, the data transfer optimization between different 
memories and their capacity constraints. Such challenges must be 
considered in redesigning of parallel metaheuristic models on 
GPU-CPU architectures for solving large optimization problems.  

The following major challenges are identified for designing 
parallel combinatorial optimization algorithms efficiently on 
CPU-GPU architecture:  
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1. CPU-GPU Cooperation: It is important to optimize the data 
transfer between GPU and CPU to achieve the best 
performance. For efficient CPU-GPU cooperation, reparation 
of task must be defined in metaheuristics. 

2. Parallelism control on GPU threads: In order to satisfy the 
memory constraints, it is important to apply the control of 
threads efficiently, since the order of the threads’ execution 
is unknown for parallel multithreading in GPU computing. 
Also, it is important to define the mapping efficiently 
between each of the candidate solutions and a single GPU 
thread which is designated with a unique thread ID assigned 
at runtime. 

3. Management of different memories: The performance 
optimization of GPU accelerated applications sometimes 
depend on data access optimization that includes the proper 
use of different GPU memory spaces. In this regard, it is 
important to consider the sizes and access latencies of 
different GPU memories for efficient placement of different 
optimization structures on different memories. 

Below are the contributions of this research that address the 
challenges mentioned in section 4.1: 
4.2   Efficient cooperation between GPU and CPU 
 

An efficient GPU-CPU cooperation requires sharing the 
work as well as optimizing data transfer between two components.  
 
4.2.1 Task repartition on GPU 

The iteration level parallel model focuses on the 
parallelization of each iteration of metaheuristics. Indeed, the 
most time consuming task in a metaheuristic is the evaluation of 
the generated solutions. The concerns for the parallelization is the 
search techniques/mechanisms which are problem independent 
operations (For example, the evaluation of successive populations 
for P-metaheuristics and the generation/evaluation of the 
neighborhood for S-metaheuristics). As the iteration level model 
does not change heuristic’s behavior, it can be defined as a low 
level Master Worker model. The following Figure 8 illustrates this 
Master Worker model. A set of solutions generated by the master 
at each iteration need to be evaluated. Each worker receives a 
partition of the solutions set from the master. The solutions are 
then evaluated by the worker and sent back to the master. In case 
of S-metaheuristics, the workers can generate the neighbors. Each 
worker receives the current solution from the master, generates 
neighbors for evaluation and then return this to master. This 
model is generic and reusable, since it is problem independent. 

 
Figure 8: The parallel evaluation of iteration-level model. 

As mentioned above, the most time consuming task of 
metaheuristics is often the evaluation of solution candidates. So, 
in regards with the iteration level parallel model the evaluation of 
solution candidates should be performed in parallel. According to 
the Master Worker model, the solutions can be evaluated in 
parallel with GPU. We can design the iteration level parallel 
model based on the data parallel SPMD (single program multiple 
data) model to achieve this. As showed in Figure 9, the main 
concept for GPU-CPU task partitioning is that CPU is responsible 
to host as well as execute the whole sequential part of the handled 
metaheuristic. On the other hand, the GPU is responsible for the 
solutions’ evaluation at each iteration. The function code in this 
model called “kernel” to be executed on a number of GPU threads 
is sent to GPU. The number of threads per block determines the 
granularity of each partition. 

 
Figure 9: The parallel evaluation of solutions on GPU 

4.2.2  Optimization of data transfer 

Both GPU and the host computer have their own separate 
memories and processing elements. So, data transfer between 
GPU and CPU via PCI bus can be performance bottleneck for 
GPU applications. A higher volume of data to be copied while 
repeating the process thousands of times, definitely has a big 
impact on the execution time. For metaheuristics, the data to be 
copied are basically the solutions to be evaluated as well as their 
resulting fitnesses. For most of the P-metaheuristics, the solutions 
at hand are usually uncorrelated, but for S-metaheuristics each 
neighboring solution varies slightly compared to the initial 
candidate solution. So, for parallelization, the data transfers 
optimization is more prominent in case of S-metaheuristics. 

In deterministic S-metaheuristics (such as hill climbing, 
variable neighborhood search, tabu search), the generation as well 
as evaluation of the neighborhood can be performed in parallel, 
which is indeed the most computation intensive. One challenge 
for data transfer optimization between GPU and CPU is to define 
where in S-metaheuristics the neighborhood should be generated. 
Below are two fundamental approaches for this challenge: 
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• Neighborhood generation on CPU, but evaluation on 
GPU: The neighborhood is generated on the CPU at each 
iteration of the search process, and the structure associated 
with this to store the solutions is then copied to GPU. It is 
pretty straightforward, as a neighbor representation of a 
thread is associated automatically with it. Usually this is 
something that can be done to parallelize P-metaheuristics 
with GPU. So, in this approach the data transfers are 
basically: 1) Copying neighbor solutions from CPU to GPU 
2) Copying fitnesses structures from GPU to CPU. 

• Both neighborhood generation and evaluation on GPU: 
The generation of neighborhood happens dynamically on 
GPU and thereby, there is no need to allocate any explicit 
structures. A little variation with the candidate solution that 
generates the neighborhood can be considered as a neighbor. 
So in this case, only the candidate solution is copied from 
CPU into GPU. The main advantage is that the data transfers 
is reduced drastically because only the resulting fitnesses 
structure need to be copied back from GPU to CPU, but the 
entire neighborhood does not need to be copied. However, 
this approach has a problem of determining the mapping 
between a thread and a neighbor which might be challenging 
in some cases.  

Although the first approach is straightforward, 
implementing this in S-metaheuristics with GPU will require a 
large volume of data transfers in case of large neighborhood. This 
approach can be implemented in P-metaheuristics because the 
whole population is generally copied from the CPU to the GPU. 
The first approach might affect the performance because of the 
external bandwidth limitation. That is why, we consider the 
second approach i.e. both generation of neighborhood and 
evaluation on GPU. 
The Proposed GPU accelerated Algorithm: 

It is not a simple task to adapt traditional S-metaheuristics to 
GPU. We propose an algorithm 4.2.2 in a generic way to rethink 
S-metaheuristics on GPU. Memory allocations are made on GPU 
at the initial stage and also, data inputs as well as candidate 
solution are allocated initially. 

 

As previously said, heavy computations are required by 
GPUs with predictable accesses of memory. Hence, we need to 
allocate a structure to store the results for evaluating each 
neighborhood fitness’s structure at different addresses. To 
facilitate the computation of neighbor evaluation, we can also 
allocate additional solution structures that are problem dependent. 
The data inputs of the problem, initial candidate solution and 
additional solution structures need to be copied onto GPU 
(line#4). The data inputs of the problem are read only structure 
which doesn’t change at the time of all executions of the S-
metaheuristic. So, during all the execution their associated 
memories are copied for only once. In the parallel iteration level, 
the neighboring solutions are evaluated and resulting fitnesses are 
then copied to the neighborhood fitnesses structure (line #6 to #9). 
The neighborhood fitnesses structure need to be copied into CPU 
host memory, since it is not defined in which order the candidate 
neighboring solutions are evaluated (line #10). Then, a particular 
strategy for the selection of the solution is implemented on the 
neighborhood fitness’s structure (line #11): CPU explores the 
neighborhood fitnesses structure in a sequential way. Finally, the 
chosen solution and additional structures of solution are copied 
into GPU device memory (#13). This process repeats until some 
stop criteria is met. 
4.2.3 Additional optimization of data transfer 

In some S-metaheuristics, the selection criteria to find the 
best solution are based on maximal or minimal fitness. So, only 
one value (maximal fitness or minimal fitness) can merely be 
copied from GPU to CPU. However, it is not straightforward to 
find the appropriate maximal/minimal fitness’s, as the read/write 
memory operations are performed asynchronously. The 
traditional parallel techniques that strongly suggests the global 
synchronization of hundreds of threads can decrease the 
performance drastically.  Therefore, the techniques for the parallel 
reduction of each thread block should be adapted to address this 
issue. The following algorithm describes the techniques for the 
parallel reduction of each thread block.  

Algorithm: parallel reduction techniques 
Input Parameter: InputFitnesses on Global memory; 
 
1: SharedMem[ThreadId] := InputFitnesses[id] 
2: Synchronize locally 
 
3: for n := NumOfThreadsPerBlock/2 ; n > 0; n := n / 2  
4:  if ThreadId < n  
5:   SharedMem[ThreadId] := 
Compare(SharedMem[ThreadId], SharedMem[ThreadId + n]) 
6:   Synchronize locally 
7:  end if 
8: end for 
9: if ThreadId = 0  
10:  OutputFitnesses[blockId]:= SharedMem[0] 
11: end if 
Output: OutputFitnesses 

One element of input fitnesses from global memory is 
basically loaded into shared memory by each thread (line #1 and 
line #2). The array elements are compared by pairs at each 
iteration of the loop (line #3 to #7). As threads operate on different 
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memory addresses, the maximum/minimum of a given array can 
be found via the shared memory by applying local threads 
synchronizations in a given block. We can find the maximum or 
minimum fitness for all neighbors after a number of iterations are 
operated on GPU reduction kernel.  

In some S-metaheuristics (such as simulated annealing), 
indeed the best neighbor is selected by the selection of maximal 
fitness or minimal fitness at each iteration. Therefore, the entire 
fitness’s structure doesn’t need to be transferred for these 
algorithms, and also, further optimizations might be possible.  

4.3   Efficient control of parallelism 

The efficient parallelism control on GPU for the iteration 
level is mainly focused here. For parallel multithreading in GPU 
computing, the order for the execution of threads is unknown, 
since it is indeed hyper threading based. First, it is important to 
apply the control of threads efficiently in order to satisfy the 
memory constraints. This allows to improve the overall 
performance by adding some robustness in the developed 
metaheuristics on GPU. Second, it is important for S-
metaheuristics to define the mapping efficiently between GPU 
thread and each neighboring candidate solution. Therefore, at 
runtime each GPU thread is assigned with a unique thread ID for 
this purpose. 

The key components for the parallelism control are the 
heuristic for controlling threads and the efficient mappings of the 
neighborhood structures. New S metaheuristics can be designed 
on GPU by considering these key components. The difficulty 
arises from the sequential characteristics of the metaheuristics that 
are first improvement based. In case of traditional parallel 
architectures, the neighborhood is generally divided into separate 
partitions with equal size. Then the generated partitions are 
evaluated and when an improved neighbor is found, the 
exploration stops. The whole neighborhood doesn’t need to be 
explored, as the parallel model is asynchronous. When the 
computations become asynchronous, GPU computing is not 
efficient to execute such algorithms because GPUs’ execution 
model is basically SIMD. Moreover, as the execution order of 
GPU threads is not defined, no such inherent mechanism exists 
for stopping the kernel in its execution. 

We can deal with this type of asynchronous parallelization by 
transforming these algorithms into a data parallel regular 
application. So, we can consider the previous iteration-level 
parallelization scheme on GPU, which means that instead of 
applying to the entire neighborhood, we can apply to a sub set of 
solutions which need to be generated and evaluated on GPU. A 
specific post treatment on this partial set of solutions is performed 
on CPU after this parallel evaluation. This approach is considered 
as a parallel technic for simulating the first improvement based S-
metaheuristic. Regarding implementation, this is similar to the 
Algorithm 4.2.2 that is proposed in the previous section. The sub 
set that has to be handled is the only difference concerns, in which 
the neighbors are randomly selected. The heuristic of thread 

control can adjust the remaining parameters automatically once 
the number of neighbors are set. 

Although it may be normal to deal with such an asynchronous 
algorithm, but compared to an S-metaheuristic this approach may 
not be efficient, because a full neighborhood exploration is 
performed on GPU in case of S-metaheuristic. Indeed, memory 
accesses need to constitute an adjacent range of addresses to get 
coalesced in order to get a better global memory performance. But 
this cannot be achieved for exploring a partial neighborhood, 
because neighbors are chosen randomly.  

 
Figure 10: Illustration of a memory access pattern for both full exploration and 

partial exploration. 

Figure 10 shows a memory access pattern for both full 
exploration and partial exploration of the neighborhood. In case 
of full exploration (left side of the Figure), all the neighbors are 
generated and many thread accesses get coalesced. In case of 
partial exploration of the neighborhood it does not happen (right 
side of the Figure), because no connection is available between 
the elements to get accessed.  

4.4   Efficient memory management 

For efficient implementation of parallel metaheuristics on 
GPU, it’s important to understand the hierarchical organization of 
different memories. However, global memory coalescing can be 
done for some of the optimization structures which are specific to 
given GPU thread. This is usually the case for the large local 
structures that are used in P-metaheuristics for the evaluation 
function, or organization of data for a population.  

Data accesses optimization that includes proper utilization of 
different memory spaces in GPU is important for optimizing the 
performance of GPU accelerated applications. The texture 
memory can certainly provide an amazing aggregation 
capabilities such as caching global memory. Each unit in texture 
memory gets some internal memory which buffers data from 
global memory. We can consider texture memory like a relaxed 
technique/mechanism of global memory access for the GPU 
threads, since coalescing is not required to accesses to this 
memory. For metaheuristics, the utilization of texture memory 
can be well adapted due to the following reasons: 
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• As no write operations are possible to perform on Texture 
memory, it is considered as a read only memory. This 
memory can be adapted in metaheuristics, because the inputs 
of the problem are read only values as well. 

• In computation of evaluation methods, data accesses are 
frequent. The texture memory can make some high 
performance improvement by reducing the number of 
memory transactions 

• In order to provide the best performance for 2D/1D access 
patterns, cached texture data is laid out. From a spatial 
locality perspective when the threads of a warp read locations 
are close together, then the best performance can be achieved. 
As the inputs of the optimization problems are generally 1D 
solution vectors or 2D matrices, we can bind the optimization 
structures to texture memory. Using of texture memories in 
place of global memory accesses is totally a mechanical 
transformation. 

For parallelizing a metaheuristic, reducing the search time is 
one of the main goals and also, a fundamental aspect when there 
are some hard requirements on search time in some types of 
problems. In this regard, the parallel evaluation of solutions can 
be a concern for the iteration-level model. It can be considered as 
an acceleration model for the evaluation of independent as well as 
parallel computations. This is usually the case of S-metaheuristics 
that improve a single solution iteratively. There is no direct 
interaction between different neighborhood moves in these 
algorithms.  

In case of P-metaheuristics, things are little different. During 
the search process, the solutions that represents a population can 
cooperate. For example, the solutions that compose the population 
are selected/reproduced by using variation operators in evolution 
based P-metaheuristics. A new solution can be constructed with 
different attributions of solutions which belong to the current 
population. Participating in constructing a common or shared 
structure (for example, ant colonies) is another example that 
concerns P-metaheuristics. The main input for generating the new 
population of solutions will be this shared structure, and the 
solutions that are generated previously participate in updating this 
type of common structure. Unlike S-metaheuristics, P-
metaheuristics can provide additional cooperative aspects which 
is much more important while running multiple metaheuristics in 
parallel. The challenging issue here is the exploitation of these 
cooperative properties on GPU architectures. 

To the best of our knowledge, these cooperative algorithms 
are never investigated much for CPU-GPU architecture. For P-
metaheuristic, it is indeed the costliest operation to evaluate the 
fitness for each solution. Therefore, it is important to clearly 
define the task distribution in this scheme: for each cooperative 
algorithm the CPU is responsible for managing the whole 
sequential search process, whereas the GPU is responsible for 
evaluating the populations in parallel. The CPU sends a set of 
solutions through the global memory to be evaluated by GPU, and 
then, these solutions are processed on GPU. The same evaluation 
function kernel is executed on each GPU thread associated with 

one solution. Finally, the results of the evaluation function are sent 
to CPU through global memory. 

Algorithm: GPU accelerated Cooperative algorithm for the 
parallel evaluation of populations 
1: Select initial populations 
2: Initialize specific variables if needed 
3: Allocate problem data inputs, the different populations, 
fitness’s structures, additional structures of solution on GPU  
4: Copy the problem data inputs to GPU 
5: repeat  
6:  for each P-metaheuristic  
7:   particular pre-treatment 
8:   Copy different populations as well as 
additional structures of solution on GPU device memory
   
9:   for each solution on GPU in parallel  
10:    Evaluating Solution  
11:    Adding resulting fitnesses to 
corresponding fitness’s structure 
12:   end for 
13:   Copy fitness’s structures on CPU (hosts 
memory) 
14:   particular post-treatment 
15:   Population replacement 
16:  end for 
17:  Possible transfers between different P-metaheuristics 
18: until some stop criteria is met 
 

According to the above algorithm, memory allocations on 
GPU are made first i.e. problem data inputs, different populations 
and corresponding fitness’s structures are allocated first (line #3). 
Additional structures of solution that are problem dependent can 
be allocated as well in order to make the computation of solution 
evaluation easier (line #3). Secondly, the data inputs of the 
problem need to be copied onto GPU device memory (line #4). 
The structure of these problem data inputs are read only, and also, 
for all the execution their associated memory need to be copied 
for one time only. Thirdly, the algorithm mainly describes that at 
each iteration different populations as well as the associated/ 
additional structures need to be copied (line #8). Then, the 
solutions are evaluated on GPU in parallel (lines #9 to #12). 
Fourthly, the structures of the finesses need to be copied into CPU 
(#13) and then a particular post treatment as well as population 
replacement are performed (line #14 and #15). Lastly, a possible 
migration can be performed on CPU at the end of each generation 
for information exchange between different P-metaheuristics (line 
#17). This process repeats until some stop criteria is met. 

In this algorithm, GPU is utilized synchronously as a device 
coprocessor. However, as previously mentioned, copying 
operations (like population and finesses structures) from CPU to 
GPU can be a serious performance bottleneck. Accelerating the 
search process is the main goal of this scheme which does not alter 
the meaning of the algorithm. Hence, compared to the classic 
design on CPU, the policy of migration between the P-
metaheuristics remains unchanged. This scheme is essentially 
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devoted to cooperative algorithms (synchronous), as the GPU is 
utilized as a device coprocessor for parallel evaluation of all 
individuals. 
5. Experimental Validation 

For our experimental validation, we have considered the 
following optimization problems to parallelize some heuristic 
methods with our proposed GPU framework in order to find 
higher quality solutions. 
• Graph Bisection Problem 
• Travelling Salesman Problem 

5.1 Graph Bisection Problem 

For Graph Bisection Problem, we have made experiments to 
parallelize hill climbing algorithm as well as simulated annealing 
algorithm with our GPU framework as follows: 
5.1.1 Experimental Environment 

OpenCL programming environment was setup on a NVIDIA 
CUDA GPU using C++ as follows: 
• NVIDIA CUDA GPU (GeForce GTX 1050 Ti) 
• OpenCL Driver for NVIDIA CUDA GPU  
• VISUAL STUDIO 2017 
• Windows 10 (64-bit Ultimate edition) 

Created Visual Studio OpenCL projects (for both Hill Climbing 
and Simulated Annealing) using Visual C++. 
5.1.2 Experimental Data 
We’ve considered the following problem for the experiments: 
Problem:  

 
Also for experimental validations, various problem instances 

(such as 20 vertices, 50 vertices, 100 vertices etc.) for graph 

bisections were used. An example of graph bisections problem for 
20 vertices is given below: 

0 
1 1  
0 0 1  
0 1 0 0  
0 0 0 1 0  
0 1 0 1 0 0  
1 0 0 0 0 1 0  
0 1 0 1 0 0 0 1  
1 0 0 0 0 0 1 1 0  
0 1 0 0 0 0 1 0 1 0  
0 0 0 0 0 0 0 1 0 0 0  
0 0 0 0 0 1 1 1 0 0 0 1  
0 0 0 0 1 0 1 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 1 0 0 1 0  
1 1 0 0 1 1 0 0 0 1 0 1 1 1 0  
1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1  
0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1  
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0  
0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 

5.1.3 Experimental Data Presentation and Analysis 
Below are the experimental presentation and analysis for both 

parallel Hill Climbing and simulated annealing algorithm with our 
GPU framework for Graph Bisection Problem. It is noted that 
we’ve used the following formula for calculating cut size as 
explained in section 2 (background).  

 
Data Presentation and Analysis for parallel Hill Climbing 

 
As we ran both CPU based sequential hill climbing and our 

GPU based parallel hill climbing solution for multiple problem 
instances (For example: 20 vertices, 50 vertices, 100 vertices etc.) 
with the above mentioned scenarios and data, we’ve found the 
following results:   

Table 1: Experiment Results for hill climbing algorithm on GPUs 

Problem 
Instance 

Best Cost for  
Sequential 
Solution 

Best Cost for  
Parallel 
Solution 

Improvement 

Graph10.txt 4 3 25% 
Graph15.txt 18 13 27.77% 
Graph20.txt 25 18 28.00% 
Graph30.txt 21 17 23.52% 
Graph50.txt 18 15 16.66% 
Graph100.txt 30 20 33.33% 

We can see from the above results in Table 1 that for each 
problem instance the GPU based parallel solution got some good 
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improvement on cut size (cost) compared to CPU based sequential 
solution and thus, the average improvement on cut size (cost) for 
multiple problem instances is 25.71%. Therefore, much better 
optimized solution is found for Graph Bisection problem by 
parallelizing hill climbing algorithm on GPUs. 
Data Presentation and Analysis for parallel Simulated Annealing 

As we ran both CPU based sequential Simulated Annealing 
and GPU accelerated parallel Simulated Annealing solution for 
multiple problem instances ((For example: 30 vertices, 100 
vertices etc.)) with the above mentioned scenarios and data, we’ve 
found the following results: 

Table 2: Experiment Results for simulated annealing algorithm on GPUs. 

Problem 
Instance 

Best Cost for  
Sequential 
Solution 

Best Cost for  
Parallel 
Solution 

Improvement 

Graph10.txt 5 5 0% 
Graph15.txt 14 13 7.14% 
Graph20.txt 19 15 21.05% 
Graph30.txt 44 32 27.27% 
Graph50.txt 133 60 54.88% 
Graph100.txt 663 140 78.88% 

 
We can see from the above results in Table 2 that for each 

problem instance the GPU based parallel solution got some good 
improvement on cut size (cost) compared to CPU based sequential 
solution. Thus, the average improvement for multiple problem 
instances on cut size (cost) is 31.53%. This improvement looks 
better when comparatively large problem instances are considered 
(such as: for 100X100 adjacent matrix, the improvement is 
78.88%). Therefore, we can say that we’ve found a better optimal 
solution as we parallelize Simulated Annealing algorithm with 
GPUs. 

5.2 Travelling Salesman Problem 
5.2.1 Experiment Design 

We built an experiment environment with the followings: 

• CUDA programming model 
•  C++ 
•  Visual Studio 2017  
• NVIDIA GPU (GeForce GTX 1050 Ti) 
• CPU (Core i7 9300 quad-core processor) 
• Windows 10 (64-bit Ultimate edition) 

For experimental validation of Travelling Salesman Problem 
(TSP), we’ve considered a CPU based sequential solution [29] 
that we previously proposed at an IEEE conference in 2017. For 
parallelization with our GPU framework, we’ve considered the 
following steps: 

 

It is noted that our Main TSP Greedy-Genetic algorithm that 
we previously implemented for a sequential solution [29] is 
illustrated in background section. We’ve parallelized the same 
proposed heuristics with our GPU framework, used the same data 
and compared the two results to confirm that we find the better 
optimized solution with GPU. 

We developed our simulator by producing the inputs for 
Euclidean TSP and simplified the simulator with the following 
assumptions: 

• The cities are located on the plane 
• The distance between the cities is the Euclidean distance 
• Each city is able to reach all other cities  

We generated the inputs in such a way that the cities were 
uniformly placed on a grid at random with 600 columns and 350 
rows. Then, by using the columns and rows as unit of Euclidean 
distance, the path length was obtained after so many numbers of 
iterations. 

5.2.2 Experimental Data Tabulation and Visualization 

We made 10+ repeated runs with the same instance in order 
to observe the behavior of our GPU accelerated parallel TSP 
solution. Table 3 shows the path lengths for n = 50 cities with 200 
iterations. The input for each of this execution was generated 
randomly as explained above. 

The following visual simulator developed for our previously 
proposed CPU based solution [29] shows the path length in 
different iteration levels which finally provide us with one 
minimum path length after completing all iterations. 

 
We also randomly captured the following GPU thread results 

from our GPU based parallel solution for one single execution. 
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Table 3: Path lengths on different GPU threads for TSP 

 

After 10 times repeated run of our TSP heuristics on both 
GPU and CPU for the same number of cities (n=50), we obtained 
the following results: 

Table 4: Comparison of path lengths between CPU and GPU for TSP 

Run# Path Length 
(CPU) 

Path Length 
(GPU) 

Improvement 

1 2034 1776 12.68% 
2 1965 1702 13.38% 
3 2370 1904 19.66% 
4 1881 1607 14.56% 
5 2018 1780 11.79% 
6 2243 1945 13.28% 
7 1980 1756 11.31% 
8 1777 1578 11.19% 
9 2400 2019 15.87% 
10 2018 1745 13.52% 

5.2.3 Experiment Result Explanation 

In our experimental validation, we involved 200 GPU threads 
to run the same TSP metaheuristics simultaneously by using our 
GPU framework. We captured different thread results which is 
illustrated in Table 4. We can see that the best path length 
calculated by thread 1 is 2086, thread 2 is 2019, ………..., thread 
100 is 1809…………, thread 200 is 2019 and so on. As all the 
thread results are sent to CPU for comparison, CPU finds the best 
path length (shortest) for TSP is 1776. The average path length 
obtained from different threads is 2034 and so, the improvement 
is 12.68% (approximately) because of the parallelization. 

As we made 10 times repeated run of our TSP heuristics on 
both GPU and CPU for the same number of cities (n=50), both 
results are illustrated in Table 4. We can see that for run#3, CPU 
based best path length is 2370, whereas GPU best path length is 
1904 which is much shorter that CPU based path length and thus 
the improvement on run#3 is 19.66%. Similarly, if we also 
observe the results for other repeated runs (#1, #2……...#10), we 

can easily notice that GPU based path length is definitely shorter 
than CPU based path length and thus there are some 
improvements in the solution quality for each execution on GPU.  

The presented results show that the path lengths are shorter 
up to 19.66%, with an average of 13.72%. This improvement for 
finding the shortest path length in TSP is due to GPU 
parallelization with our framework. 

6. Conclusion 

In combinatorial optimization, parallel metaheuristic 
methods can be helpful to improve the effectiveness and 
robustness of a solution. But, their exploitation might make it 
possible to solve real world problems by only using important 
computational power. GPUs are based on high performance 
computing and it has been revealed that GPUs can provide such 
computational power. However, we have to consider that GPUs 
can have many issues related to memory hierarchical management, 
since parallel models’ exploitation is not trivial. In this paper, a 
new guideline is established to design parallel meta heuristics and 
efficiently implement on GPU. 

An efficient mapping of the GPU based iteration level 
parallel model is proposed. In the iteration level, CPU is used to 
manage the entire search process, whereas GPU is dedicated to 
work as a device coprocessor for intensive calculations. In our 
contributions, to achieve the best performance an efficient 
cooperation between CPU and GPU is very important because it 
minimizes the data transfer. Also, the goal for the parallelism 
control is, controlling the neighborhood generation to meet the 
memory constraints and also, finding the efficient mapping 
between the GPU threads and neighborhood solutions. 

The redesigning of GPU based iteration level parallel model 
is suitable for most of the deterministic metaheuristics like Tabu 
search, Hill climbing, Simulated Annealing, or iterative local 
search. Moreover, we applied an efficient thread control to prove 
the robustness of our approach. This allows GPU accelerated 
metaheuristics preventing from crash when a large number of 
solutions are considered for evaluation. Also, this kind of thread 
control can provide some improvements with additional 
acceleration. 

Redesigning of the algorithm for an efficient management of 
the memory on GPU is another contribution. Our contribution is 
basically the redesigning of GPU accelerated parallel 
metaheuristics. More specifically, we proposed multiple different 
general schemes to build efficient GPU based parallel 
metaheuristics as well as cooperative metaheuristics on GPU. In 
one scheme, the parallel evaluation of the population is combined 
with cooperative algorithms on GPU (iteration level). In regards 
to implementation, this approach is a very generic approach 
because we only considered the evaluation kernel. However, the 
performance is little limited in this approach because of data 
transfer between GPU and CPU. To address this issue, GPU based 
two other approaches operate on the complete distribution of 
search process, involving the appropriate use of local memories. 

http://www.astesj.com/
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Applying such a strategy allows to extremely improve the 
performance. This approaches might experience some limitations 
because of the memory limitations with some of the problems 
which can be possibly more demanding with respect to resources. 
We have proved effectiveness of the proposed methods with a set 
of experiments in a general manner. 

Furthermore, our experiments show that not only GPU 
computing exploits the parallelism to improve the solution quality, 
but also it can speed up the search process. In the future, we’ll try 
to extend the framework with further features to be validated on a 
wider range of NP-hard problems in various fields like deep 
neural network, data science, artificial intelligence, computer 
vision, machine learning etc. including current industry 
challenges. 
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Appendix: 

Sample code for Kernel execution: 

  
     

 

 

Sample code for parallel simulated annealing: 

  

 

 

Sample code for parallel hill climbing: 
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