

www.astesj.com 265

Parallelizing Combinatorial Optimization Heuristics with GPUs

Mohammad Harun Rashid*, Lixin Tao

Pace University, New York, USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 12 August, 2018
Accepted: 09 November, 2018
Online: 18 November, 2018

 Combinatorial optimization problems are often NP-hard and too complex to be solved
within a reasonable time frame by exact methods. Heuristic methods which do not offer a
convergence guarantee could obtain some satisfactory resolution for combinatorial
optimization problems. However, it is not only very time consuming for Central Processing
Units (CPU) but also very difficult to obtain an optimized solution when solving large
problem instances. So, parallelism can be a good technique for reducing the time
complexity, as well as improving the solution quality. Nowadays Graphics Processing Units
(GPUs) have evolved supporting general purpose computing. GPUs have become many
core processors, multithreaded, highly parallel with high bandwidth memory and
tremendous computational power due to the market demand for high definition and real
time 3D graphics. Our proposed work aims to design an efficient GPU framework for
parallelizing optimization heuristics by focusing on the followings: distribution of data
processing efficiently between GPU and CPU, efficient memory management, efficient
parallelism control. Our proposed GPU accelerated parallel models can be very efficient
to parallelize heuristic methods for solving large scale combinatorial optimization
problems. We have made a series of experiments with our proposed GPU framework to
parallelize some heuristic methods such as simulated annealing, hill climbing, and genetic
algorithm for solving combinatorial optimization problems like Graph Bisection problem,
Travelling Salesman Problem (TSP). For performance evaluation, we’ve compared our
experiment results with CPU based sequential solutions and all of our experimental
evaluations show that parallelizing combinatorial optimization heuristics with our GPU
framework provides with higher quality solutions within a reasonable time.

Keywords:
GPU
Combinatorial
Optimization
Parallel
Heuristics

1. Introduction

Combinatorial optimization is a topic that consists of finding
an optimal solution from a finite set of solutions. Combinatorial
optimization problems are often NP hard. It is often time
consuming and very complex for Central Processing Unit (CPU)
to solve combinatorial optimization problems, especially when the
problem is very large. Metaheuristic methods can help finding
optimal solution within a reasonable time.

Nowadays efficient parallel metaheuristic methods have
become an interesting and considerable topic. Local search
metaheuristics (LSMs) are single solution-based approaches, as
well as one of the most widely researched metaheuristics with
various types such as simulated annealing (SA), hill climbing,
iterated local search, tabu search, and genetic algorithm etc. A
common feature that local search metaheuristics can share is, a
neighborhood solution is selected iteratively as a candidate

solution. We can use local search metaheuristics to solve
combinatorial optimization problems such as graph bisection
problem, Travelling Salesman Problem (TSP) etc. Many works
have been done by using parallel computing technology to improve
its performance from iteration level, algorithmic level and solution
level. Therefore, parallelism is a good technique for improving the
solution quality as well as reducing the time complexity.

Recently, Graphics Processing Units (GPUs) have been
developed gradually to parallel/programmable processors from
fixed function rendering devices. GPUs motivated by high
definition 3D graphics from real time market demand have become
many core processors, multithreaded, highly parallel with high
bandwidth memory and tremendous computational power. So,
more transistors are devoted to design GPU architecture in order
to do more data processing than data caching/flow control. With
the fast development of general purpose Graphics Processing Unit
(GPGPU), some companies have promoted GPU programming

 ASTESJ

ISSN: 2415-6698

*Mohammad Harun Rashid, E-mail: harun7@yahoo.com

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj030635

http://www.astesj.com/
https://en.wikipedia.org/wiki/Finite_set
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030635

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 266

frameworks such as OpenCL (Open Computing Language),
CUDA (Compute Unified Device Architecture), and direct
Compute. GPU based metaheuristics have become much more
computational efficient compared to CPU based metaheuristics.
Furthermore, making local search algorithms optimized on GPU is
an important problem for the maximum efficiency.

In the recent years, GPU computing has emerged as a very
important challenge in the research areas for parallel computing.
GPU computing is believed as an extremely useful technology for
speeding up so many complex algorithms in order to improve
solution quality. However, rethinking of existing parallel models
as well as programming paradigms for allowing their deployment
on GPU accelerators is one of the major challenges for
metaheuristics. In fact the issue is, revisiting the parallel models as
well as programming paradigms for efficiently considering the
GPUs characteristics. However, some issues related to memory
hierarchical management of GPU architecture need to be
considered.

The contribution of this research is, to design a GPU
framework which can efficiently deal with the following important
challenges while parallelizing metaheuristics methods to solve
large optimization problems:

1. Distribution of data processing between GPU and CPU with

efficient CPU-GPU cooperation.
2. Thread synchronization and efficient parallelism control.
3. Data transfer optimization among various memories and

memory capacity constraints with efficient memory
management.

Our proposed parallel models on GPU architecture can be

very useful and efficient in finding better optimized solution for
large scale combinatorial optimization problems. We have made a
series of experiments with our proposed GPU framework to
parallelize some heuristic methods such as simulated annealing,
hill climbing, genetic algorithm etc. for solving combinatorial
optimization problems like Graph Bisection problem and
Travelling Salesman Problem (TSP). All of our experimental
evaluation shows that parallelizing heuristics methods with our
GPU framework provides higher quality solutions in a reasonable
computational time.

2. Background

As we contribute to the parallelization of heuristics methods
for combinatorial optimization problems with GPU, below we
discuss about combinatorial optimization problems, some
optimization heuristics methods (hill climbing and simulated
annealing), graph bisection problem/ travelling salesman problem
as example optimization problems and GPU architecture/
computing.

2.1 Significance of Combinatorial Optimization

Combinatorial optimization can be defined as a mathematical
discipline with the interplay between computer science and
mathematics [1]. Very roughly, it deals with the problem of
making optimal choices in huge discrete sets of alternatives.
Combinatorial optimization is a way to search through a large

number of possible solutions for finding the best solution from
them. When the number of possible solutions is really too large
and it is impractical to search through them, we can apply different
techniques to narrow down the set and speed up the search.

Many combinatorial optimization problems are known as NP
hard. That means, the time needed for solving a problem instance
to optimality grows exponentially with the size of the problem in
the worst case. Hence, these problems are easy to understand and
describe, but very hard to solve. Even it is practically impossible
to determine all possibilities for problems of moderate size in order
to identify the optimum. Therefore, heuristic approaches are
considered as the reasonable way to solve hard combinatorial
optimization problems. Hence, the abilities of researchers to
construct and parameterize heuristic algorithms strongly impact
algorithmic performance in terms of computation times and
solution quality.
2.2 Combinatorial Optimization Heuristics

To deal with combinatorial optimization problems, the goal is
to finding such an optimal/optimized solution, which can minimize
the given cost function. The cost of the algorithms can
exponentially increase while the complexity of the search space is
growing up, and this can make the search of a solution not feasible.

Finding a suboptimal solution within a reasonable time is
another way to address these problems. In some cases, We might
even find the optimal solution in some cases. These techniques can
be divided into two main groups: heuristics and metaheuristics.

A heuristic is an algorithm that tries to find optimized
solutions to complex combinatorial problems, but there is no
guarantee for its success. Most of the heuristics are based on
human perceptions, understanding the problem characteristics and
experiments, but they are not based on fixed mathematical
analysis. The heuristic value should be based on comparisons of
performance among the competing heuristics. The most important
metrics for performance are quality of a solution, as well as the
running time. The implementation of heuristic algorithms is easy
and they can find better solutions with relatively small
computational effort. However, a heuristic algorithm can rarely
find the best solution for large problems.

Figure 1: Different classifications of metaheuristics

http://www.astesj.com/
http://en.wikipedia.org/wiki/Combinatorial_optimization

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 267

Over the last couple of decades many researchers have been
studying optimization heuristics for solving many real life NP hard
problems, and some of the common problem solving
techniques/methods underlying these heuristics came up as meta
heuristics. A meta heuristic can be defined as a pattern or the major
idea for a class of heuristics. Reusable knowledge in heuristic
design can be represented by Meta-heuristics, which can provide
us with important starting points in designing effective new
heuristics for solving new NP hard problems.

Meta heuristics are not algorithms, nor based on theory. To
effectively solve a meta heuristic based problem, we must have
better understanding of the problem characteristics, and creatively
designing as well as implementing the major meta heuristic
components. So, it has become an action of research to use a meta
heuristic for proposing an effective heuristic to solve an NP hard
problem.

Another classification dimension is population based searches
(P-Metaheuristics) vs single solution (S-Metaheuristics). P-
Metaheuristics approaches maintain/ improve multiple candidate
solutions, often using population characteristics to guide the
search. P-Metaheuristics include genetic algorithms, evolutionary
computation, and particle swarm optimization. S-Metaheuristics
approaches focus on modifying/improving a single candidate
solution. S-Metaheuristics include iterated local search, simulated
annealing, hill climbing, variable neighborhood search etc. Below
are some of the heuristics methods to solve combinatorial
optimization problems:

2.2.1 Hill Climbing

Hill climbing is a mathematical optimization technique that
belongs to the local search family and can be used for solving
combinatorial optimization problems. The best use of this
technique is in problems with “the property that the state
description itself contains all the information needed for a
solution”. Hill climbing algorithm is memory efficient, since it
does not maintain any search tree. This algorithm mainly looks into
the present state and the immediate future states only. By using an
evaluation function, it tries to improve the current state iteratively.

Hill climbing can encounter a problem called “local maxima”.
When the algorithm stops making progress towards an optimal
solution, local maxima problem can occur because of the lack of
immediate improvement in adjacent states. There are variety of
methods to avoid Local maxima. Repeated explorations of the
problem space could be one of the methods for solving this
problem.

Hill Climbing Algorithm:

Figure 2: global solutions vs local solutions.

This algorithm starts from a random initial solution and then
it keeps looking in the solution space in order to migrate to better
neighbor solution. We might need to compare the current partition
with all the neighbor’s solutions before the algorithm is terminated.
The algorithm terminates when all the neighbors’ solutions are
worse compared with the current partition. This technique can only
find the local optimum solutions which are better solutions than all
the neighbors, but the found solutions might not be global optimum
solutions. The figure 2 shows difference between global and local
solutions.

It is a time consuming process to maintain the visited
neighbors of the current partition. That is why, it is necessary to
parallelize the hill climbing algorithm for finding the best
optimized solution.

2.2.2 Simulated Annealing

For graph bisection, simulated annealing heuristic starts with
a high temperature t and a randomly selected initial partition as its
current partition. After that, this heuristic starts the iterations with
the same temperature and at each iteration, a neighbor partition is
randomly generated. If the cost of the neighbor partition is better
than the current cost, then the neighbor partition becomes the new
current partition for the next iteration. If the neighbor partition
does worsen the current cost, it can still be accepted with a
probability as the new current partition. In case of high
temperature, the probability is not sensitive to bad neighbor
partition. But in case of low temperature, the probability for
accepting a worsening neighbor will diminish with the extent of
the worsening. The temperature is reduced by a very small amount
after certain iterations are completed with the same temperature,
and then, the iterations continue with the reduced temperature. The
iteration process terminates once the termination criteria is met.

Many combinatorial optimization problems can be solved by
applying simulated annealing heuristic. Unlike other meta
heuristics, it has been mathematically proven that simulated
annealing converges to the global optimum with sufficiently slow
reduction of the temperature. As very few real world problems can
afford such excessive execution time, this theoretical result does
not interest much the practitioners. Below is the pseudocode for
simulated annealing heuristic.

The simulated annealing and local optimization differ with the
characteristics whether worsening neighbors will be accepted.

http://www.astesj.com/
https://en.wikipedia.org/wiki/Genetic_algorithms
https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Evolutionary_computation
https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Iterated_local_search
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Variable_Neighborhood_Search

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 268

Simulated annealing heuristic starts with random walk in the
solution space. If a random neighbor is better than the current
solution, simulated annealing always accepts it. But, when the
random neighbor is worse, the chance of accepting the worsen
neighbor is slowly reduced. Simulated annealing can be reduced to
local optimization with a very low temperature.

Figure 3: Simulated Annealing Algorithm

2.3 Optimization Problems

2.3.1 Graph Bisection Problem

The graph bisection problem can be defined as a data
representation of a graph G = (V,E) with a number of vertices=V
and a number of edges=E, such that the graph G can be partitioned
into smaller sections with some particular properties. For example,
a k-way partition can divide the vertices into k smaller sections.
When the number of edges between the separated components is
relatively very small, it can be defined as a good partition. We can
call a graph partitioning as uniform graph partition which divides
the graph into smaller components in such a way that all the
components are almost the same size as well as there are only small
number of connections between the components. The important
applications for graph partitioning include, but not limited to
partitioning different stages for VLSI circuit design, scientific
computing, clustering, task scheduling for multi-processing
systems, and cliques detection in social networking etc.

Figure 4: An optimal graph bisection

2.3.2 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a combinatorial
optimization problems which can be described easily, but it is very
difficult to solve. A salesman starts with one city and will be
visiting a number of cities with the condition that the salesman
must visit each and every city only once and finally returns to first
city. Selecting the sequence of the cities to be visited is the
problem, because the salesman has to take the shortest path from a
set of possible paths to minimize the path length. Exhaustive
search can be used to find an optimal solution for a small instances
(a few cities only) of TSP. But the problem is really critical for
large number of cities, since with the increase in the number of
cities, the number of possible paths increases exponentially. The
number of possible paths for visiting n number of cities is the
permutation of n which is n!. If the number of cities is increased
by 1 only, the number of possible paths will become (n+1)!.
Therefore, it will take too much time to compute the cost for all
possible paths and find out the shortest path from them. TSP in
known as a typical NP-hard problem.

TSP has a lot of applications in real world in different areas,
like electronic maps, computer networking, Mailman’s job, VLSI
layout, traffic induction, electrical wiring, etc.

TSP Algorithms:

http://www.astesj.com/
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
https://en.wikipedia.org/wiki/VLSI

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 269

2.4 GPU Architecture/Computing

Just a while ago, the conventional single core or multicore
CPU processor was the only viable choice for parallel
programming. Usually some of them were either loosely arranged
as multicomputer in which the communication among them were
done indirectly because of the isolated memory spaces, or tightly
arranged as multiprocessors that shares a single memory space.
CPU has a large cache as well as an important control unit, but it
doesn’t have many arithmetic logic units. CPU can manage
different tasks in parallel which requires a lot of data, but data are
stored in a cache for accelerating its accesses. Nowadays most of
the personal computers have GPUs which offer a multithreaded,
highly parallel and many core environments, and can potentially
reduce the computational time. The performance of the modern
GPU architecture is wonderful in regards to cost, power
consumption, and occupied space.

Figure 5: GPU architecture.

Figure 6: GPU thread blocks

A GPU includes a number of Streaming Multiprocessors
(SMs). Each streaming multiprocessor contains a number of
processing units which can execute thousands of operations
concurrently. The warps inside a SM consist of a group of threads.
A warp can execute 32 threads in a Single Instruction Multiple

Data (SIMD) manner, which means all the threads in a warp can
execute same operation on different data points. GPUs have at
least two kinds of memory: global memory and shared memory.
Global memory allows to store a large amount of data (such as
8GB), whereas shared memory can usually store only few
Kilobytes per SM.

A GPU thread can be considered as a data element to be
processed. GPU threads are very lightweight in comparison with
CPU threads. So, it is not a costly operation when two threads
change the context among each other. GPU threads are organized
in blocks. Equally threaded multiple blocks execute a kernel. Each
thread is assigned a unique id. The advantage for grouping of
threaded blocks is that simultaneously processed blocks are linked
closely to hardware resources. The threads within the same block
are assigned to a single multiprocessor as a group. So, different
multiprocessors are assigned to different threaded blocks.
Therefore, controlling the threads parallelism can be a big issue
for meeting memory constraints. As multiprocessors are mainly
organized based on the Single Program Multiple Data (SPMD)
model, the threads can access to different memory areas as well
as can share the same code.

Figure 7: CPU - GPU communications.

GPU is used as a device coprocessor and CPU is used as a
host. Each GPU has its own processing elements and memory
which are separate from the host computer. Data is transferred
between the host memory and the GPU memory during the
execution of programs. Each device processor on GPU supports
SPMD model, which means same program can simultaneously be
executed on different data by multiple autonomous processors. To
achieve this, we can define kernel concept. The kernel is basically
a method or function which is executed by several processors
simultaneously on the specified device in parallel and callable
from the host as well. The Communications between CPU host
and the device coprocessors are accomplished via the global
memory.

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 270

3. Literature Review

In [2, 3, 4], the author proposed GPU based works with
genetic algorithms. They proposed that the population evaluation
as well as a specific mutation operator are to be performed in
GPU. They implemented the selection and replacement operators
in CPU. So, huge data transfers are performed between GPU and
CPU. This kind of techniques can limit the performance of the
solution.

In [5], the author proposed evolution strategy algorithm for
solving continuous problems. According to his suggestions,
multiple kernels can be designed for some of the evolutionary
operators like selection, evaluation, crossover, mutation etc. and
CPU can handle the rest of the search process. Later on, in [6],
the author presented similar implementation with genetic
algorithms. The additional contribution of their work was
investigating the effect of problem size/ thread size /population
size on GPU implementation comparing with sequential genetic
algorithm.

In [7], the author proposed a memory management concept
for an optimization problem. They implemented the concept for
quadratic assignment problem where the global memory accesses
were coalesced, the shared memory was used for storing as many
individuals as possible, and the constant memory associated with
matrices. For dealing with data transfers, their approach was a full
parallelization based search process. In this regards, they divided
the global genetic algorithm into multiple individual genetic
algorithms, such that a thread block is represented by each sub
population. Because of the poor management of data structures,
the speed-ups obtained in their solution for combinatorial
problems are not convincing.

In [8], the author proposed a framework of the automatic
parallelization with GPU for the evaluation function. Only the
evaluation function code need to be specified in their approach
and the users don’t need to know CUDA keywords. This approach
allows evaluating the population on GPU in a transparent way.
But, this strategy has some problems, such as it lacks flexibility
because of transferring the data and nonoptimized memory
accesses. In addition, the solution is limited to the problems where
no data structure is required.

In [9], the author proposed an implementation of an
evolutionary algorithm which is a GPU based full parallelization
of the search process. Without any problem structures they
implemented this approach to make an application for continuous
and discrete problems. Later on, the authors also submitted an
implementation of their algorithm with multi GPUs [10].
However, since there are some challenging issues of the context
management such as global memories of two separate GPU, their
implementation with multiple GPUs does not really provide with
any significant performance advantages.

In [11], the author implemented a model for continuous
optimization problems in which is very similar to the previous

model. In this model, shared memory is used to store each sub
population and organized based on ring topology. Although the
speed-ups for the obtained solution are better compared with a
sequential algorithm, the implementation of this model was
dedicated to few continuous optimization problems only. As by
considering the two previous models no general methods were
outlined, in [12], the author made some investigation on the
parallel island model on GPU. By involving different memory
managements, they designed three parallelization strategies and
were able to address some issues.

In [13], the author proposed a multi start tabu search
algorithm and implemented to the TSP as well as the flow shop
scheduling problem. The parallelization is performed on GPU by
using shared libraries, and one tabu search associated with each
thread process. However, this approach requires so many local
search algorithms for covering the memory access latency and so,
this type of parallelization is not much effective. In [14], the
author proposed similar approach with CUDA. In this approach,
the memory management for optimization structure is done in the
global memory and they implemented this to the quadratic
assignment problem. However, as one local search associated
with each thread, the solution performance is limited to the size
of instance.

For designing of multi-start algorithms, in [15], the author
provided general methodology which are applicable to local
search methods like simulated annealing, hill climbing, or tabu
search. They also have contribution regarding the relationship
between available memories and data mostly used for the
algorithms. But, the application of the GPU accelerated multistart
model is very limited, because it requires so many local search
algorithms at run time to become effective. In [16], the author
proposed a GPU based hybrid genetic algorithm. In their
approach, they implemented an island model where a cellular
genetic algorithm is represented by each population. Also, the
mutation step in their hybrid genetic algorithm is followed by hill
climbing algorithm. They performed their implementation for the
maximum satisfiability problem.

According to the previous work, the hill climbing need to be
integrated with the island model as per the investigation of the full
parallelization. In this regard, in [17] the author proposed the
redesign of GPU based hybrid evolutionary algorithms which
performs a hybridization with a local search. Their focus was on
different neighborhoods generation on GPU, correlating to each
individual to be mutated in the evolutionary process. This kind of
mechanism may guarantee more flexibility.

In [18], the author introduced a GPU accelerated multi
objective evolutionary algorithm. In his approach, he
implemented some of the multi objective algorithms on GPU, but
not with the selection of non-dominated solutions. There are more
works on P-metaheuristics for GPU parallelization are proposed.
The parallelization strategies used for these implementations are
similar to the prior techniques mentioned above. These works
include particle swarm optimization [19, 20, 21], genetic

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 271

programming [22, 23, 24, 25] and other evolutionary computation
techniques [26, 27, 28].

3.1 Research issues and contributions
Most of the approaches in the literature are mainly based on

either iteration level or algorithmic level. In other words, the
approaches are based on basically either the simultaneous
execution of cooperative/independent algorithms, or GPU
accelerated parallel evaluation of solutions. Regarding the
cooperation between CPU and GPU, there are some
implementations which also consider the GPU parallelization of
other treatments such as selection/variation operators for
evolutionary algorithms. We may argue on the validity of these
choices, since an execution profiling may show that such
treatments are negligible compared to the evaluation of solutions.
As mentioned above, for reducing the data transfer between GPU
and CPU, a full GPU parallelization of metaheuristics may also
be performed. The original semantics of the metaheuristic are
altered in this case to fit the GPU execution model.

Regarding the control of parallelism, a single thread with one
solution are associated in most of the implementations. Besides,
some of the cooperative algorithms associate one threads block
with one sub population and may take advantage of the threads
model. However, so far we’ve not found any work that has been
investigated for managing parallelism of the threads efficiently to
meet the memory constraints. The previous implementations may
not be robust while dealing with large problem instances or a large
set of solutions. In Chapter 4, we will show how an efficient
control of thread may allow introducing fault tolerance
mechanism for GPU applications.

For the memory management, so far there is no explicit
efforts made in most of the implementations for memory access
optimizations. For example, one of the most important elements
for speeding up is memory coalescing, and additionally, could
consider local memories for reducing non coalesced accesses.
However, some of the authors proposed the simple way of using
the shared memory to cache, but there is no performance
improvement guarantee in those approaches. Some other authors
also put some explicit efforts for handling optimization structures
with the different memories, but still there is no general
guideline/outline from those works. In fact, a lot of time, the
associations of memory strictly depend on the target optimization
problem such as small problem instances and/or no data inputs.

The contribution of this research is: to design a GPU
framework with a set of efficient algorithms which can efficiently
address the above mentioned challenges by parallelizing major
metaheuristics for combinatorial optimization problems on the
CPU-GPU architecture and also, to validate the solution quality
with graph bisection problem as well as Travelling Salesman
Problem (TSP).
4. Proposed Method and Contribution

Below are the research methodologies that we followed for
proposing our methods and adding contributions to our GPU
framework.

• Studying data processing distribution between CPU and
GPU, and finding the challenges for efficient CPU-GPU
cooperation.

• Studying thread synchronization, parallelism control on GPU
threads, and finding the challenges for efficient parallelism
control.

• Designing algorithms to optimizing data transfer between
various memories and memory capacity constraints with
efficient memory management.

• Developing parallel combinatorial optimization
algorithms/frameworks for the CPU-GPU architecture to
efficiently deal with the above mentioned GPU challenges.

• Validating the solution quality and efficiency of the proposed
frameworks/algorithms relative to those of the best sequential
meta-heuristics with extensive experimental design for graph
bisection problem and TSP.

4.1 Difficulties in parallelizing optimization heuristics on GPU

Most of the time the performance of a parallel algorithm may
depend on how well the communication structure of the target
parallel system is matched with the communication structure of
the algorithm. Nowadays one class of parallel processing systems
consists of a number of processors, each with its own private
memory. In addition, each of these processor memory pairs are
connected to a small number of other pairs in a fixed topology. In
these systems, if two processor-memory pairs must share data, a
message is constructed and sent through the interconnection
network. Such a message must be forwarded through one or more
intermediate processors in the network. This forwarding
introduces delay and hence reduces the amount of speedup
achieved.

In science and industry, local search methods are heuristic
methods for solving very large optimization problems. Even
though these iterative methods can reduce the computational time
significantly, the iterative process can still be costly when dealing
with very large problem instances. Although local search
algorithms can also reduce the computational complexity for the
search process, still it is very time consuming for CPU in case of
objective function calculations, especially when the search space
size is too large. Therefore, instead of traditional CPUs the GPUs
can be used to find efficient alternative solutions for calculations.

It is not straightforward to parallelize combinatorial
optimization heuristics on GPU. It requires a lot of efforts at both
design level and implementation level. We need to achieve few
scientific challenges which are mostly related to the hierarchical
memory management. The major challenges are: the CPU-GPU
data processing with efficient distribution, synchronization of
different threads, the data transfer optimization between different
memories and their capacity constraints. Such challenges must be
considered in redesigning of parallel metaheuristic models on
GPU-CPU architectures for solving large optimization problems.

The following major challenges are identified for designing
parallel combinatorial optimization algorithms efficiently on
CPU-GPU architecture:

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 272

1. CPU-GPU Cooperation: It is important to optimize the data
transfer between GPU and CPU to achieve the best
performance. For efficient CPU-GPU cooperation, reparation
of task must be defined in metaheuristics.

2. Parallelism control on GPU threads: In order to satisfy the
memory constraints, it is important to apply the control of
threads efficiently, since the order of the threads’ execution
is unknown for parallel multithreading in GPU computing.
Also, it is important to define the mapping efficiently
between each of the candidate solutions and a single GPU
thread which is designated with a unique thread ID assigned
at runtime.

3. Management of different memories: The performance
optimization of GPU accelerated applications sometimes
depend on data access optimization that includes the proper
use of different GPU memory spaces. In this regard, it is
important to consider the sizes and access latencies of
different GPU memories for efficient placement of different
optimization structures on different memories.

Below are the contributions of this research that address the
challenges mentioned in section 4.1:
4.2 Efficient cooperation between GPU and CPU

An efficient GPU-CPU cooperation requires sharing the
work as well as optimizing data transfer between two components.

4.2.1 Task repartition on GPU

The iteration level parallel model focuses on the
parallelization of each iteration of metaheuristics. Indeed, the
most time consuming task in a metaheuristic is the evaluation of
the generated solutions. The concerns for the parallelization is the
search techniques/mechanisms which are problem independent
operations (For example, the evaluation of successive populations
for P-metaheuristics and the generation/evaluation of the
neighborhood for S-metaheuristics). As the iteration level model
does not change heuristic’s behavior, it can be defined as a low
level Master Worker model. The following Figure 8 illustrates this
Master Worker model. A set of solutions generated by the master
at each iteration need to be evaluated. Each worker receives a
partition of the solutions set from the master. The solutions are
then evaluated by the worker and sent back to the master. In case
of S-metaheuristics, the workers can generate the neighbors. Each
worker receives the current solution from the master, generates
neighbors for evaluation and then return this to master. This
model is generic and reusable, since it is problem independent.

Figure 8: The parallel evaluation of iteration-level model.

As mentioned above, the most time consuming task of
metaheuristics is often the evaluation of solution candidates. So,
in regards with the iteration level parallel model the evaluation of
solution candidates should be performed in parallel. According to
the Master Worker model, the solutions can be evaluated in
parallel with GPU. We can design the iteration level parallel
model based on the data parallel SPMD (single program multiple
data) model to achieve this. As showed in Figure 9, the main
concept for GPU-CPU task partitioning is that CPU is responsible
to host as well as execute the whole sequential part of the handled
metaheuristic. On the other hand, the GPU is responsible for the
solutions’ evaluation at each iteration. The function code in this
model called “kernel” to be executed on a number of GPU threads
is sent to GPU. The number of threads per block determines the
granularity of each partition.

Figure 9: The parallel evaluation of solutions on GPU

4.2.2 Optimization of data transfer

Both GPU and the host computer have their own separate
memories and processing elements. So, data transfer between
GPU and CPU via PCI bus can be performance bottleneck for
GPU applications. A higher volume of data to be copied while
repeating the process thousands of times, definitely has a big
impact on the execution time. For metaheuristics, the data to be
copied are basically the solutions to be evaluated as well as their
resulting fitnesses. For most of the P-metaheuristics, the solutions
at hand are usually uncorrelated, but for S-metaheuristics each
neighboring solution varies slightly compared to the initial
candidate solution. So, for parallelization, the data transfers
optimization is more prominent in case of S-metaheuristics.

In deterministic S-metaheuristics (such as hill climbing,
variable neighborhood search, tabu search), the generation as well
as evaluation of the neighborhood can be performed in parallel,
which is indeed the most computation intensive. One challenge
for data transfer optimization between GPU and CPU is to define
where in S-metaheuristics the neighborhood should be generated.
Below are two fundamental approaches for this challenge:

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 273

• Neighborhood generation on CPU, but evaluation on
GPU: The neighborhood is generated on the CPU at each
iteration of the search process, and the structure associated
with this to store the solutions is then copied to GPU. It is
pretty straightforward, as a neighbor representation of a
thread is associated automatically with it. Usually this is
something that can be done to parallelize P-metaheuristics
with GPU. So, in this approach the data transfers are
basically: 1) Copying neighbor solutions from CPU to GPU
2) Copying fitnesses structures from GPU to CPU.

• Both neighborhood generation and evaluation on GPU:
The generation of neighborhood happens dynamically on
GPU and thereby, there is no need to allocate any explicit
structures. A little variation with the candidate solution that
generates the neighborhood can be considered as a neighbor.
So in this case, only the candidate solution is copied from
CPU into GPU. The main advantage is that the data transfers
is reduced drastically because only the resulting fitnesses
structure need to be copied back from GPU to CPU, but the
entire neighborhood does not need to be copied. However,
this approach has a problem of determining the mapping
between a thread and a neighbor which might be challenging
in some cases.

Although the first approach is straightforward,
implementing this in S-metaheuristics with GPU will require a
large volume of data transfers in case of large neighborhood. This
approach can be implemented in P-metaheuristics because the
whole population is generally copied from the CPU to the GPU.
The first approach might affect the performance because of the
external bandwidth limitation. That is why, we consider the
second approach i.e. both generation of neighborhood and
evaluation on GPU.
The Proposed GPU accelerated Algorithm:

It is not a simple task to adapt traditional S-metaheuristics to
GPU. We propose an algorithm 4.2.2 in a generic way to rethink
S-metaheuristics on GPU. Memory allocations are made on GPU
at the initial stage and also, data inputs as well as candidate
solution are allocated initially.

As previously said, heavy computations are required by
GPUs with predictable accesses of memory. Hence, we need to
allocate a structure to store the results for evaluating each
neighborhood fitness’s structure at different addresses. To
facilitate the computation of neighbor evaluation, we can also
allocate additional solution structures that are problem dependent.
The data inputs of the problem, initial candidate solution and
additional solution structures need to be copied onto GPU
(line#4). The data inputs of the problem are read only structure
which doesn’t change at the time of all executions of the S-
metaheuristic. So, during all the execution their associated
memories are copied for only once. In the parallel iteration level,
the neighboring solutions are evaluated and resulting fitnesses are
then copied to the neighborhood fitnesses structure (line #6 to #9).
The neighborhood fitnesses structure need to be copied into CPU
host memory, since it is not defined in which order the candidate
neighboring solutions are evaluated (line #10). Then, a particular
strategy for the selection of the solution is implemented on the
neighborhood fitness’s structure (line #11): CPU explores the
neighborhood fitnesses structure in a sequential way. Finally, the
chosen solution and additional structures of solution are copied
into GPU device memory (#13). This process repeats until some
stop criteria is met.
4.2.3 Additional optimization of data transfer

In some S-metaheuristics, the selection criteria to find the
best solution are based on maximal or minimal fitness. So, only
one value (maximal fitness or minimal fitness) can merely be
copied from GPU to CPU. However, it is not straightforward to
find the appropriate maximal/minimal fitness’s, as the read/write
memory operations are performed asynchronously. The
traditional parallel techniques that strongly suggests the global
synchronization of hundreds of threads can decrease the
performance drastically. Therefore, the techniques for the parallel
reduction of each thread block should be adapted to address this
issue. The following algorithm describes the techniques for the
parallel reduction of each thread block.

Algorithm: parallel reduction techniques
Input Parameter: InputFitnesses on Global memory;

1: SharedMem[ThreadId] := InputFitnesses[id]
2: Synchronize locally

3: for n := NumOfThreadsPerBlock/2 ; n > 0; n := n / 2
4: if ThreadId < n
5: SharedMem[ThreadId] :=
Compare(SharedMem[ThreadId], SharedMem[ThreadId + n])
6: Synchronize locally
7: end if
8: end for
9: if ThreadId = 0
10: OutputFitnesses[blockId]:= SharedMem[0]
11: end if
Output: OutputFitnesses

One element of input fitnesses from global memory is
basically loaded into shared memory by each thread (line #1 and
line #2). The array elements are compared by pairs at each
iteration of the loop (line #3 to #7). As threads operate on different

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 274

memory addresses, the maximum/minimum of a given array can
be found via the shared memory by applying local threads
synchronizations in a given block. We can find the maximum or
minimum fitness for all neighbors after a number of iterations are
operated on GPU reduction kernel.

In some S-metaheuristics (such as simulated annealing),
indeed the best neighbor is selected by the selection of maximal
fitness or minimal fitness at each iteration. Therefore, the entire
fitness’s structure doesn’t need to be transferred for these
algorithms, and also, further optimizations might be possible.

4.3 Efficient control of parallelism

The efficient parallelism control on GPU for the iteration
level is mainly focused here. For parallel multithreading in GPU
computing, the order for the execution of threads is unknown,
since it is indeed hyper threading based. First, it is important to
apply the control of threads efficiently in order to satisfy the
memory constraints. This allows to improve the overall
performance by adding some robustness in the developed
metaheuristics on GPU. Second, it is important for S-
metaheuristics to define the mapping efficiently between GPU
thread and each neighboring candidate solution. Therefore, at
runtime each GPU thread is assigned with a unique thread ID for
this purpose.

The key components for the parallelism control are the
heuristic for controlling threads and the efficient mappings of the
neighborhood structures. New S metaheuristics can be designed
on GPU by considering these key components. The difficulty
arises from the sequential characteristics of the metaheuristics that
are first improvement based. In case of traditional parallel
architectures, the neighborhood is generally divided into separate
partitions with equal size. Then the generated partitions are
evaluated and when an improved neighbor is found, the
exploration stops. The whole neighborhood doesn’t need to be
explored, as the parallel model is asynchronous. When the
computations become asynchronous, GPU computing is not
efficient to execute such algorithms because GPUs’ execution
model is basically SIMD. Moreover, as the execution order of
GPU threads is not defined, no such inherent mechanism exists
for stopping the kernel in its execution.

We can deal with this type of asynchronous parallelization by
transforming these algorithms into a data parallel regular
application. So, we can consider the previous iteration-level
parallelization scheme on GPU, which means that instead of
applying to the entire neighborhood, we can apply to a sub set of
solutions which need to be generated and evaluated on GPU. A
specific post treatment on this partial set of solutions is performed
on CPU after this parallel evaluation. This approach is considered
as a parallel technic for simulating the first improvement based S-
metaheuristic. Regarding implementation, this is similar to the
Algorithm 4.2.2 that is proposed in the previous section. The sub
set that has to be handled is the only difference concerns, in which
the neighbors are randomly selected. The heuristic of thread

control can adjust the remaining parameters automatically once
the number of neighbors are set.

Although it may be normal to deal with such an asynchronous
algorithm, but compared to an S-metaheuristic this approach may
not be efficient, because a full neighborhood exploration is
performed on GPU in case of S-metaheuristic. Indeed, memory
accesses need to constitute an adjacent range of addresses to get
coalesced in order to get a better global memory performance. But
this cannot be achieved for exploring a partial neighborhood,
because neighbors are chosen randomly.

Figure 10: Illustration of a memory access pattern for both full exploration and

partial exploration.

Figure 10 shows a memory access pattern for both full
exploration and partial exploration of the neighborhood. In case
of full exploration (left side of the Figure), all the neighbors are
generated and many thread accesses get coalesced. In case of
partial exploration of the neighborhood it does not happen (right
side of the Figure), because no connection is available between
the elements to get accessed.

4.4 Efficient memory management

For efficient implementation of parallel metaheuristics on
GPU, it’s important to understand the hierarchical organization of
different memories. However, global memory coalescing can be
done for some of the optimization structures which are specific to
given GPU thread. This is usually the case for the large local
structures that are used in P-metaheuristics for the evaluation
function, or organization of data for a population.

Data accesses optimization that includes proper utilization of
different memory spaces in GPU is important for optimizing the
performance of GPU accelerated applications. The texture
memory can certainly provide an amazing aggregation
capabilities such as caching global memory. Each unit in texture
memory gets some internal memory which buffers data from
global memory. We can consider texture memory like a relaxed
technique/mechanism of global memory access for the GPU
threads, since coalescing is not required to accesses to this
memory. For metaheuristics, the utilization of texture memory
can be well adapted due to the following reasons:

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 275

• As no write operations are possible to perform on Texture
memory, it is considered as a read only memory. This
memory can be adapted in metaheuristics, because the inputs
of the problem are read only values as well.

• In computation of evaluation methods, data accesses are
frequent. The texture memory can make some high
performance improvement by reducing the number of
memory transactions

• In order to provide the best performance for 2D/1D access
patterns, cached texture data is laid out. From a spatial
locality perspective when the threads of a warp read locations
are close together, then the best performance can be achieved.
As the inputs of the optimization problems are generally 1D
solution vectors or 2D matrices, we can bind the optimization
structures to texture memory. Using of texture memories in
place of global memory accesses is totally a mechanical
transformation.

For parallelizing a metaheuristic, reducing the search time is
one of the main goals and also, a fundamental aspect when there
are some hard requirements on search time in some types of
problems. In this regard, the parallel evaluation of solutions can
be a concern for the iteration-level model. It can be considered as
an acceleration model for the evaluation of independent as well as
parallel computations. This is usually the case of S-metaheuristics
that improve a single solution iteratively. There is no direct
interaction between different neighborhood moves in these
algorithms.

In case of P-metaheuristics, things are little different. During
the search process, the solutions that represents a population can
cooperate. For example, the solutions that compose the population
are selected/reproduced by using variation operators in evolution
based P-metaheuristics. A new solution can be constructed with
different attributions of solutions which belong to the current
population. Participating in constructing a common or shared
structure (for example, ant colonies) is another example that
concerns P-metaheuristics. The main input for generating the new
population of solutions will be this shared structure, and the
solutions that are generated previously participate in updating this
type of common structure. Unlike S-metaheuristics, P-
metaheuristics can provide additional cooperative aspects which
is much more important while running multiple metaheuristics in
parallel. The challenging issue here is the exploitation of these
cooperative properties on GPU architectures.

To the best of our knowledge, these cooperative algorithms
are never investigated much for CPU-GPU architecture. For P-
metaheuristic, it is indeed the costliest operation to evaluate the
fitness for each solution. Therefore, it is important to clearly
define the task distribution in this scheme: for each cooperative
algorithm the CPU is responsible for managing the whole
sequential search process, whereas the GPU is responsible for
evaluating the populations in parallel. The CPU sends a set of
solutions through the global memory to be evaluated by GPU, and
then, these solutions are processed on GPU. The same evaluation
function kernel is executed on each GPU thread associated with

one solution. Finally, the results of the evaluation function are sent
to CPU through global memory.

Algorithm: GPU accelerated Cooperative algorithm for the
parallel evaluation of populations
1: Select initial populations
2: Initialize specific variables if needed
3: Allocate problem data inputs, the different populations,
fitness’s structures, additional structures of solution on GPU
4: Copy the problem data inputs to GPU
5: repeat
6: for each P-metaheuristic
7: particular pre-treatment
8: Copy different populations as well as
additional structures of solution on GPU device memory

9: for each solution on GPU in parallel
10: Evaluating Solution
11: Adding resulting fitnesses to
corresponding fitness’s structure
12: end for
13: Copy fitness’s structures on CPU (hosts
memory)
14: particular post-treatment
15: Population replacement
16: end for
17: Possible transfers between different P-metaheuristics
18: until some stop criteria is met

According to the above algorithm, memory allocations on
GPU are made first i.e. problem data inputs, different populations
and corresponding fitness’s structures are allocated first (line #3).
Additional structures of solution that are problem dependent can
be allocated as well in order to make the computation of solution
evaluation easier (line #3). Secondly, the data inputs of the
problem need to be copied onto GPU device memory (line #4).
The structure of these problem data inputs are read only, and also,
for all the execution their associated memory need to be copied
for one time only. Thirdly, the algorithm mainly describes that at
each iteration different populations as well as the associated/
additional structures need to be copied (line #8). Then, the
solutions are evaluated on GPU in parallel (lines #9 to #12).
Fourthly, the structures of the finesses need to be copied into CPU
(#13) and then a particular post treatment as well as population
replacement are performed (line #14 and #15). Lastly, a possible
migration can be performed on CPU at the end of each generation
for information exchange between different P-metaheuristics (line
#17). This process repeats until some stop criteria is met.

In this algorithm, GPU is utilized synchronously as a device
coprocessor. However, as previously mentioned, copying
operations (like population and finesses structures) from CPU to
GPU can be a serious performance bottleneck. Accelerating the
search process is the main goal of this scheme which does not alter
the meaning of the algorithm. Hence, compared to the classic
design on CPU, the policy of migration between the P-
metaheuristics remains unchanged. This scheme is essentially

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 276

devoted to cooperative algorithms (synchronous), as the GPU is
utilized as a device coprocessor for parallel evaluation of all
individuals.
5. Experimental Validation

For our experimental validation, we have considered the
following optimization problems to parallelize some heuristic
methods with our proposed GPU framework in order to find
higher quality solutions.
• Graph Bisection Problem
• Travelling Salesman Problem

5.1 Graph Bisection Problem

For Graph Bisection Problem, we have made experiments to
parallelize hill climbing algorithm as well as simulated annealing
algorithm with our GPU framework as follows:
5.1.1 Experimental Environment

OpenCL programming environment was setup on a NVIDIA
CUDA GPU using C++ as follows:
• NVIDIA CUDA GPU (GeForce GTX 1050 Ti)
• OpenCL Driver for NVIDIA CUDA GPU
• VISUAL STUDIO 2017
• Windows 10 (64-bit Ultimate edition)

Created Visual Studio OpenCL projects (for both Hill Climbing
and Simulated Annealing) using Visual C++.
5.1.2 Experimental Data
We’ve considered the following problem for the experiments:
Problem:

Also for experimental validations, various problem instances

(such as 20 vertices, 50 vertices, 100 vertices etc.) for graph

bisections were used. An example of graph bisections problem for
20 vertices is given below:

0
1 1
0 0 1
0 1 0 0
0 0 0 1 0
0 1 0 1 0 0
1 0 0 0 0 1 0
0 1 0 1 0 0 0 1
1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 1 0 0 1 1 0 0 0 1 0 1 1 1 0
1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1
0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0

5.1.3 Experimental Data Presentation and Analysis
Below are the experimental presentation and analysis for both

parallel Hill Climbing and simulated annealing algorithm with our
GPU framework for Graph Bisection Problem. It is noted that
we’ve used the following formula for calculating cut size as
explained in section 2 (background).

Data Presentation and Analysis for parallel Hill Climbing

As we ran both CPU based sequential hill climbing and our

GPU based parallel hill climbing solution for multiple problem
instances (For example: 20 vertices, 50 vertices, 100 vertices etc.)
with the above mentioned scenarios and data, we’ve found the
following results:

Table 1: Experiment Results for hill climbing algorithm on GPUs

Problem
Instance

Best Cost for
Sequential
Solution

Best Cost for
Parallel
Solution

Improvement

Graph10.txt 4 3 25%
Graph15.txt 18 13 27.77%
Graph20.txt 25 18 28.00%
Graph30.txt 21 17 23.52%
Graph50.txt 18 15 16.66%
Graph100.txt 30 20 33.33%

We can see from the above results in Table 1 that for each
problem instance the GPU based parallel solution got some good

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 277

improvement on cut size (cost) compared to CPU based sequential
solution and thus, the average improvement on cut size (cost) for
multiple problem instances is 25.71%. Therefore, much better
optimized solution is found for Graph Bisection problem by
parallelizing hill climbing algorithm on GPUs.
Data Presentation and Analysis for parallel Simulated Annealing

As we ran both CPU based sequential Simulated Annealing
and GPU accelerated parallel Simulated Annealing solution for
multiple problem instances ((For example: 30 vertices, 100
vertices etc.)) with the above mentioned scenarios and data, we’ve
found the following results:

Table 2: Experiment Results for simulated annealing algorithm on GPUs.

Problem
Instance

Best Cost for
Sequential
Solution

Best Cost for
Parallel
Solution

Improvement

Graph10.txt 5 5 0%
Graph15.txt 14 13 7.14%
Graph20.txt 19 15 21.05%
Graph30.txt 44 32 27.27%
Graph50.txt 133 60 54.88%
Graph100.txt 663 140 78.88%

We can see from the above results in Table 2 that for each

problem instance the GPU based parallel solution got some good
improvement on cut size (cost) compared to CPU based sequential
solution. Thus, the average improvement for multiple problem
instances on cut size (cost) is 31.53%. This improvement looks
better when comparatively large problem instances are considered
(such as: for 100X100 adjacent matrix, the improvement is
78.88%). Therefore, we can say that we’ve found a better optimal
solution as we parallelize Simulated Annealing algorithm with
GPUs.

5.2 Travelling Salesman Problem
5.2.1 Experiment Design

We built an experiment environment with the followings:

• CUDA programming model
• C++
• Visual Studio 2017
• NVIDIA GPU (GeForce GTX 1050 Ti)
• CPU (Core i7 9300 quad-core processor)
• Windows 10 (64-bit Ultimate edition)

For experimental validation of Travelling Salesman Problem
(TSP), we’ve considered a CPU based sequential solution [29]
that we previously proposed at an IEEE conference in 2017. For
parallelization with our GPU framework, we’ve considered the
following steps:

It is noted that our Main TSP Greedy-Genetic algorithm that
we previously implemented for a sequential solution [29] is
illustrated in background section. We’ve parallelized the same
proposed heuristics with our GPU framework, used the same data
and compared the two results to confirm that we find the better
optimized solution with GPU.

We developed our simulator by producing the inputs for
Euclidean TSP and simplified the simulator with the following
assumptions:

• The cities are located on the plane
• The distance between the cities is the Euclidean distance
• Each city is able to reach all other cities

We generated the inputs in such a way that the cities were
uniformly placed on a grid at random with 600 columns and 350
rows. Then, by using the columns and rows as unit of Euclidean
distance, the path length was obtained after so many numbers of
iterations.

5.2.2 Experimental Data Tabulation and Visualization

We made 10+ repeated runs with the same instance in order
to observe the behavior of our GPU accelerated parallel TSP
solution. Table 3 shows the path lengths for n = 50 cities with 200
iterations. The input for each of this execution was generated
randomly as explained above.

The following visual simulator developed for our previously
proposed CPU based solution [29] shows the path length in
different iteration levels which finally provide us with one
minimum path length after completing all iterations.

We also randomly captured the following GPU thread results

from our GPU based parallel solution for one single execution.

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 278

Table 3: Path lengths on different GPU threads for TSP

After 10 times repeated run of our TSP heuristics on both
GPU and CPU for the same number of cities (n=50), we obtained
the following results:

Table 4: Comparison of path lengths between CPU and GPU for TSP

Run# Path Length
(CPU)

Path Length
(GPU)

Improvement

1 2034 1776 12.68%
2 1965 1702 13.38%
3 2370 1904 19.66%
4 1881 1607 14.56%
5 2018 1780 11.79%
6 2243 1945 13.28%
7 1980 1756 11.31%
8 1777 1578 11.19%
9 2400 2019 15.87%
10 2018 1745 13.52%

5.2.3 Experiment Result Explanation

In our experimental validation, we involved 200 GPU threads
to run the same TSP metaheuristics simultaneously by using our
GPU framework. We captured different thread results which is
illustrated in Table 4. We can see that the best path length
calculated by thread 1 is 2086, thread 2 is 2019, ………..., thread
100 is 1809…………, thread 200 is 2019 and so on. As all the
thread results are sent to CPU for comparison, CPU finds the best
path length (shortest) for TSP is 1776. The average path length
obtained from different threads is 2034 and so, the improvement
is 12.68% (approximately) because of the parallelization.

As we made 10 times repeated run of our TSP heuristics on
both GPU and CPU for the same number of cities (n=50), both
results are illustrated in Table 4. We can see that for run#3, CPU
based best path length is 2370, whereas GPU best path length is
1904 which is much shorter that CPU based path length and thus
the improvement on run#3 is 19.66%. Similarly, if we also
observe the results for other repeated runs (#1, #2……...#10), we

can easily notice that GPU based path length is definitely shorter
than CPU based path length and thus there are some
improvements in the solution quality for each execution on GPU.

The presented results show that the path lengths are shorter
up to 19.66%, with an average of 13.72%. This improvement for
finding the shortest path length in TSP is due to GPU
parallelization with our framework.

6. Conclusion

In combinatorial optimization, parallel metaheuristic
methods can be helpful to improve the effectiveness and
robustness of a solution. But, their exploitation might make it
possible to solve real world problems by only using important
computational power. GPUs are based on high performance
computing and it has been revealed that GPUs can provide such
computational power. However, we have to consider that GPUs
can have many issues related to memory hierarchical management,
since parallel models’ exploitation is not trivial. In this paper, a
new guideline is established to design parallel meta heuristics and
efficiently implement on GPU.

An efficient mapping of the GPU based iteration level
parallel model is proposed. In the iteration level, CPU is used to
manage the entire search process, whereas GPU is dedicated to
work as a device coprocessor for intensive calculations. In our
contributions, to achieve the best performance an efficient
cooperation between CPU and GPU is very important because it
minimizes the data transfer. Also, the goal for the parallelism
control is, controlling the neighborhood generation to meet the
memory constraints and also, finding the efficient mapping
between the GPU threads and neighborhood solutions.

The redesigning of GPU based iteration level parallel model
is suitable for most of the deterministic metaheuristics like Tabu
search, Hill climbing, Simulated Annealing, or iterative local
search. Moreover, we applied an efficient thread control to prove
the robustness of our approach. This allows GPU accelerated
metaheuristics preventing from crash when a large number of
solutions are considered for evaluation. Also, this kind of thread
control can provide some improvements with additional
acceleration.

Redesigning of the algorithm for an efficient management of
the memory on GPU is another contribution. Our contribution is
basically the redesigning of GPU accelerated parallel
metaheuristics. More specifically, we proposed multiple different
general schemes to build efficient GPU based parallel
metaheuristics as well as cooperative metaheuristics on GPU. In
one scheme, the parallel evaluation of the population is combined
with cooperative algorithms on GPU (iteration level). In regards
to implementation, this approach is a very generic approach
because we only considered the evaluation kernel. However, the
performance is little limited in this approach because of data
transfer between GPU and CPU. To address this issue, GPU based
two other approaches operate on the complete distribution of
search process, involving the appropriate use of local memories.

http://www.astesj.com/

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 279

Applying such a strategy allows to extremely improve the
performance. This approaches might experience some limitations
because of the memory limitations with some of the problems
which can be possibly more demanding with respect to resources.
We have proved effectiveness of the proposed methods with a set
of experiments in a general manner.

Furthermore, our experiments show that not only GPU
computing exploits the parallelism to improve the solution quality,
but also it can speed up the search process. In the future, we’ll try
to extend the framework with further features to be validated on a
wider range of NP-hard problems in various fields like deep
neural network, data science, artificial intelligence, computer
vision, machine learning etc. including current industry
challenges.

Conflict of Interest

We have no conflicts of interest to disclose.

References

[1] Dr. Lixin Tao, “Research Incubator: Combinatorial Optimization” Pace
University, NY, February 2004

[2] Man Leung Wong, Tien-Tsin Wong, Ka-Ling Fok, “Parallel evolutionary
algorithms on graphics processing unit” IEEE Congress on Evolutionary
Computation, 2005. https://doi.org/10.1109/CEC.2005. 1554979

[3] Man-Leung Wong,Tien-Tsin Wong, “Parallel hybrid genetic algorithms on
consumer-level graphics hardware” IEEE International Conference on
Evolutionary Computation, 2006. https://doi.org/10.1109/CEC.
2006.1688683

[4] Ka-Ling Fok, Tien-Tsin Wong, Man-Leung Wong, “Evolutionary computing
on consumer graphics hardware” IEEE Intelligent Systems, 22(2), 69–78,
2007. https://doi.org/10.1109/MIS.2007.28

[5] Weihang Zhu, “A study of parallel evolution strategy: pattern search on a gpu
computing platform” GEC ‘09 Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation, 765–772, 2009.
https://doi.org/10.1145/1543834.1543939

[6] Ramnik Arora, Rupesh Tulshyan, Kalyanmoy Deb, “Parallelization of binary
and real-coded genetic algorithms on gpu using cuda” IEEE Congress on
Evolutionary Computation, 2010. https://doi.org/
10.1109/CEC.2010.5586260

[7] Shigeyoshi Tsutsui, Noriyuki Fujimoto, “Solving quadratic assignment
problems by genetic algorithms with gpu computation: a case study” GECCO
’09 Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, 2523–2530,
2009. https://doi.org/ 10.1145/1570256.1570355

[8] Ogier Maitre, Laurent A. Baumes, Nicolas Lachiche, Avelino Corma, Pierre
Collet, “Coarse grain parallelization of evolutionary algorithms on gpgpu
cards with easea” GECCO ’09 Proceedings of the 11th An- nual conference
on Genetic and evolutionary computation, 1403–1410, 2009.
https://doi.org/10.1145/1569901.1570089

[9] Pablo Vidal, Enrique Alba, “Cellular genetic algorithm on graphic processing
units” Springer Juan Gonz´alez, David Pelta, Carlos Cruz, Germ´an Terrazas,
and Natalio Krasnogor, editors, Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010), 2010. https://doi.org/10.1007/978-3-642-
12538-6_19

[10] Pablo Vidal, Enrique Alba, “A multi-gpu implementation of a cellular genetic
algorithm” IEEE Congress on Evolutionary Computation, 2010.
https://doi.org/10.1109/CEC.2010.5586530

[11] Petr Pospichal, Jir´ı Jaros, Josef Schwarz. “Parallel genetic algorithm on the
cuda architecture”, In Cecilia Di Chio, Stefano Cagnoni, Carlos Cotta, Marc
Ebner, Anik´o Ek´art, Anna Esparcia-Alc´azar, Chi Keong Goh, Juan J.
Merelo Guerv´os, Ferrante Neri, Mike Preuss, Julian Togelius, and Georgios
N. Yannakakis, editors, EvoApplications, Springer, 2010.
https://doi.org/10.1007/978-3-642-12239-2_46

[12] Th´e Van Luong, Nouredine Melab, El-Ghazali Talbi. “GPU-based Island
Model for Evolutionary Algorithms. Genetic and Evolutionary Computation
Conference” GECCO '10 Proceedings of the 12th annual conference on
Genetic and evolutionary computation, 1089–1096, ACM, 2010.
https://doi.org/10.1145/1830483.1830685

[13] Adam Janiak, Wladyslaw A. Janiak, Maciej Lichtenstein. “Tabu search on
gpu”, J. UCS, 14(14):2416–2426, 2008.

[14] WZhu, J Curry, A Marquez. Simd, “tabu search with graphics hardware
acceleration on the quadratic assignment problem” International Journal of
Production Research, 2008.

[15] Th´e Van Luong, Nouredine Melab, El-Ghazali Talbi. “GPU-based Multi-
start Local Search Algorithms” Coello C.A.C. (eds) Learning and Intelligent
Optimization, Springer, 2011. https://doi.org/10.1007/978-3-642-25566-3_24

[16] Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama,
“Hybrid of genetic algorithm and local search to solve maxsat problem using
nvidia cuda framework.” Genetic Programming and Evolvable Machines,
10(4), 391–415, 2009. https://doi.org/10.1007/ 978-3-642-25566-3_24

[17] Th´e Van Luong, Nouredine Melab, El-Ghazali Talbi, “Parallel Hybrid
Evolutionary Algorithms on GPU” IEEE Congress on Evolutionary
Computation, 2010. https://doi.org/ 10.1109/CEC.2010.5586403

[18] Man Leung Wong, “Parallel multi-objective evolutionary algorithms on
graphics processing units” GECCO ’09 Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers, 2515–2522, ACM, 2009.
https://doi.org/10.1145/1570256.1570354

[19] Luca Mussi, Stefano Cagnoni, Fabio Daolio. “Gpu-based road sign detection
using particle swarm optimization” IEEE Ninth International Conference on
Intelligent Systems Design and Applications, 2009.
https://doi.org/10.1109/ISDA.2009.88

[20] You Zhou, Ying Tan, “Gpu-based parallel particle swarm optimization” IEEE
Congress on Evolutionary Computation, 2009. https://doi.org/
10.1109/CEC.2009.4983119

[21] Boguslaw Rymut, Bogdan Kwolek, “Gpu-supported object tracking using
adaptive appearance models and particle swarm optimization” In Leonard
Bolc, Ryszard Tadeusiewicz, Leszek J. Chmielewski, and
KonradW.Wojciechowski, editors, ICCVG, Springer, 2010.
https://doi.org/10.1007/978-3-642-15907-7_28

[22] Simon Harding, Wolfgang Banzhaf, “Fast genetic programming on GPUs” In
Proceedings of the 10th European Conference on Genetic Programming, 90–
101. Springer, 2007.

[23] Darren M. Chitty, “A data parallel approach to genetic programming using
programmable graphics hardware” GECCO ’07 Proceedings of the 9th annual
conference on Genetic and evolutionary computation, 1566–1573, ACM ,
2007. https://doi.org/ 10.1145/1276958.1277274

[24] William B. Langdon, Wolfgang Banzhaf, “A SIMD interpreter for genetic
programming on GPU graphics cards” EuroGP Proceedings of the 11th
European Conference on Genetic Programming, 73–85, Springer,2008.
https://doi.org/10.1007/978-3-540-78671-9_7

[25] William B. Langdon, “Graphics processing units and genetic programming:
an overview. Soft Comput” Springer, 2011. https://doi.org/10.1007/s00500-
011-0695-2

[26] Asim Munawar, Mohamed Wahib, Masaharu Munetomo, Kiyoshi Akama,
“Theoretical and empirical analysis of a gpu based parallel bayesian
optimization algorithm” IEEE International Conference on Parallel and
Distributed Computing, Applications and Technologies, 2009.
https://doi.org/10.1109/PDCAT.2009.32

[27] Lucas de P. Veronese, Renato “A. Krohling. Differential evolution algorithm
on the gpu with c-cuda” IEEE Congress on Evolutionary Computation, 2010.
https://doi.org/10.1109/CEC.2010.5586219

[28] Mar´ıa A. Franco, Natalio Krasnogor, Jaume Bacardit, “Speeding up the
evaluation of evolutionary learning systems using gpgpus” GECCO ’10
Proceedings of the 12th annual conference on Genetic and evolutionary
computation,1039–1046, ACM, 2010. https://doi.org/10.1145/
1830483.1830672

[29] Mohammad Rashid, Dr. Miguel A. Mosteiro, “A Greedy-Genetic Local-
Search Heuristic for the Traveling Salesman Problem” IEEE ISPA/IUCC,
2017. https://doi.org/ 10.1109/ISPA/IUCC.2017.00132

http://www.astesj.com/
https://doi.org/
https://doi.org/10.1109/CEC.2005.1554979
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11108
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11108
https://doi.org/10.1109/CEC.2006.1688683
https://doi.org/10.1109/CEC.2006.1688683
https://doi.org/10.1109/MIS.2007.28
https://doi.org/10.1145/1543834.1543939
https://doi.org/10.1109/CEC.2010.5586260
https://doi.org/10.1145/1570256.1570355
https://doi.org/10.1145/1569901.1570089
https://doi.org/10.1109/CEC.2010.5586530
http://www.sigevo.org/gecco-2010
https://doi.org/10.1145/1830483.1830685
https://doi.org/10.1007/
https://doi.org/
https://doi.org/10.1109/CEC.2010.5586403
https://doi.org/
https://doi.org/10.1145/1570256.1570354
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362793
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362793
https://doi.org/
https://doi.org/10.1109/ISDA.2009.88
https://doi.org/
https://doi.org/10.1109/CEC.2009.4983119
https://doi.org/10.1145/1276958.1277274
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5372726
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5372726
https://doi.org/10.1109/PDCAT.2009.32
https://doi.org/10.1109/CEC.2010.5586219
https://doi.org/10.1145/1830483.1830672
https://doi.org/10.1145/1830483.1830672
https://doi.org/10.1109/ISPA/IUCC.2017.00132

M.H. Rashid et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 6, 265-280 (2018)

www.astesj.com 280

Appendix:

Sample code for Kernel execution:

Sample code for parallel simulated annealing:

Sample code for parallel hill climbing:

http://www.astesj.com/

	2.1 Significance of Combinatorial Optimization
	2.2 Combinatorial Optimization Heuristics
	Figure 1: Different classifications of metaheuristics
	2.2.1 Hill Climbing

	2.3 Optimization Problems
	2.4 GPU Architecture/Computing
	3. Literature Review
	3.1 Research issues and contributions

	4. Proposed Method and Contribution
	4.1 Difficulties in parallelizing optimization heuristics on GPU

	5. Experimental Validation
	5.1 Graph Bisection Problem
	5.1.1 Experimental Environment

	5.2 Travelling Salesman Problem
	5.2.1 Experiment Design
	5.2.2 Experimental Data Tabulation and Visualization
	5.2.3 Experiment Result Explanation

	6. Conclusion
	Conflict of Interest
	References

