
Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 1, 141-158 (2019)

www.astesj.com
ASTES Journal
ISSN: 2415-6698

Can parallelization save the (computing) world?
János Végh*,1,2 József Vásárhelyi1, Dániel Drótos2

1Kalimános BT, Debrecen, Hungary
2Hungarian Academy of Sciences, Institute for Nuclear Research, H-4032 Debrecen, Hungary

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 29 November, 2018
Accepted: 13 January, 2019
Online: 05 February, 2019

Keywords:
Parallelization
Performance stalling
Supercomputer
Single-processor approach

As all other laws of the growth in computing, the growth of computing
performance also shows a ”logistic curve”-like behavior, rather than an
unlimited exponential growth. The stalling of the single-processor per-
formance experienced nearly two decades ago forced computer experts
to look for alternative methods, mainly for some kind of parallelization.
Solving the task needs different parallelization methods, and the wide
range of those distributed systems limits the computing performance in
very different ways. Some general limitations are shortly discussed, and a
(by intention strongly simplified) general model of performance of paral-
lelized systems is introduced. The model enables to highlight bottlenecks
of parallelized systems of different kind and with the published perfor-
mance data enables to predict performance limits of strongly parallelized
systems like large scale supercomputers and neural networks. Some al-
ternative solution possibilities of increasing computing performance are
also discussed.

1 Introduction

Computing in general shows a growth described by a
logistic curve [1] rather than an unlimited exponential
curve. Since about 2000, a kind of stalling was experi-
enced in practically all components contributing to the
single-processor performance, signaling that drastic
changes in the approach to computing is needed [2].
However, the preferred way chosen was to continue the
traditions of the Single Processor Approach (SPA) [3]:
to assemble systems comprising several segregated pro-
cessing units, connected in various ways.

The Moore-observation has already been termi-
nated in the sense that no more transistors can be
added to a single processor, but persists in the sense
that more transistors can be placed on a single chip
in the form of several cores, complete systems or net-
works. In this way the nominal computing performance
of processors keeps raising, but the task to produce
some payload computing performance remains mostly
for the software. However, ”parallel programs ... are
notoriously difficult to write, test, analyze, debug, and ver-
ify, much more so than the sequential versions” [4]. ”The
general problem [with parallel programming] is that the
basic sentiment seems to go against history. Much of the

progress attributed to the Industrial Revolution is due to
using more power for reducing human effort” [5].

The today’s processors comprise a lot of different
parallelization solutions [6]. As the result of the devel-
opment, ”computers have thus far achieved . . . tremen-
dous hardware complexity, a complexity that has grown so
large as to challenge the industrys ability to deliver ever-
higher performance” [7]. The huge variety of solutions
make the efficiency of those systems hard to interpret
and measure [8].

In section 2 some issues demonstrate why the
present inflexible architectures represent serious is-
sues, like bottleneck for parallelized architectures and
tremendous non-payload activity during thread-level
parallelization.

A (by intention strongly) simplified operating
model of parallel operation is presented in section 3.
The basis of the section is Amdahl’s law, which is rein-
terpreted for the modern computing systems for the
purposes of the present study. The technical implemen-
tation of parallel systems from sequentially working
single-threads using clock signals have their perfor-
mance limitations as derived in section 4. Both the
inherent performance bound (stemming out from the
paradigm and the clock-diven electronic technology)

* János Végh & Vegh.Janos@gmail.com

www.astesj.com 141

https://dx.doi.org/10.25046/aj040114

http://www.astesj.com
http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

and the specific one for supercomputers are discussed.
Some aspects of one of the obvious fields of paral-

lel processing: the limitations of supercomputing is
discussed in section 5, where short-term prediction
for supercomputer performance is also given and the
role of different contributions is demonstrated through
some issues of brain simulation. Section 6 discusses
some possible ways out of the experienced stalling of
performance through parallelization. In section 7 it
is concluded that mainly the 70-years old computing
paradigm itself (and its consequences: the component
and knowledge base) limits the development of com-
puting performance through utilizing parallelized se-
quential systems.

L1

B = (C ∗D)− (E ∗F)

A = (C ∗D) + (E ∗F)

L2 L3 L4

X1 X2

+ −

A B

Cycle 1

Cycle 2

Cycle 3

L1

L2

L3

L4

X1

X2

+

−

B A

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Figure 1: Executing the example calculation on a dual
issue processor (borrowed from [6])

2 Some architectural issues

The intention with inventing ”computer” was to au-
tomate mechanical computing on a single computing
resource. Today masses of processors are available for
solving a task, and quite typical that the fraction of
real computing is much less than the part which imi-
tates other functionality through computations (if all
you have is a hammer, everything looks like a nail).

2.1 The theoretical parallelism and limits
of its technical implementation

When speaking about parallelization, one has to distin-
guish the theoretically possible and the technically im-
plementable parallelization. Modern processors com-
prise several (hidden) processing units, but the efficacy
of their utilization is rather poor: the theoretically
achievable parallelism in most cases cannot even be
approached. To find out the achievable maximum par-
allelisation, the different dependencies between the
data (as arguments of some operations) shall be consid-
ered. Let us suppose we want to calculate expressions
(the example is borrowed from [6])

A = (C*D)+(E*F)
B = (C*D)−(E*F)

where we have altogether 4 load operations, 2 multi-
plications, and 2 additions. To achieve the maximum
parallelism enabled by data dependencies the theoret-
ical parallelism assumes the presence of several Pro-
cessing Unit (PU)s: (at least) 4 memory access units,
2 multipliers and 2 adders (or equally: an at least 4-
issue universal processor). With a such theoretical a
processor (see Fig. 1, left side) we could load all the
four operands in the first machine cycle, to do the
multiplications in the second cycle, and to make the
addition/subtraction in the last cycle.

In the practical processors, however, the resources
are limited and inflexible. In a real (single issue) pro-
cessor this task can be solved in 8 cycles, every opera-
tion needs a clock cycle.

In a dual-issue processor (see Fig. 1, right side) one
issue is able to make calculations, the another one load-
/store operations. In the real configurations, however,
only one memory load operation can be made at a time
(mainly due to components manufactured for building
SPA computers), so the PUs must wait until all their
operands become available. In this case there is only one
single clock tick when the two issues work in parallel, and
the 8 operations are executed in 7 cycles, in contrast
with the theoretical 3 cycles. All this at the expense of
(nearly) double hardware (HW) cost.

L1

B = (C ∗D)− (E ∗F)

A = (C ∗D) + (E ∗F)

L2 L3 L4

X1 X2

+ −

A B

Cycle 1

Cycle 2

Cycle 3

L1 L3

L2 L4

X1 X2

S1 S2

L5 L6

+ −

A B

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Figure 2: Executing the example calculation on a dual
core processor (borrowed from [6])

A different idea for distributing the task could be to
utilize a dual-core processor, see Fig. 2, right side. Here
the multiplications are performed by independent pro-
cessors, and also have independent capacity for mak-
ing summation and subtraction separately. This (pro-
vided that the processors can load their arguments
independently) requires only 4 cycles. However, the
”other half” of the result of multiplications belongs
to the other processor. The segregated processors can
exchange data only through a memory location, so two
extra states (in both processors) are inserted for sav-
ing and loading the needed data): i.e. the processors
execute 12 operations instead of 8 (including 4 slow
memory operations), altogether they solve the task in
2*6 clock cycles, instead of 8 (and assume, that the
memory will make synchronization, i.e. can assure
that reading the intermediate memory locations takes

www.astesj.com 142

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

place only when the other party surely wrote that in).
That is, (at least) double HW cost, double memory
bandwitdh, 50% more instructions and only 25% per-
formance increase. Here the additional reason (to the
inflexible architecture) is the computing paradigm: the
single processor-single process principle.

In both cases the performance increase can be im-
plemented at a high price: considerably increased HW
cost (and mainly in the latter case: longer, more com-
plex software (SW) development). This latter increase
gets exponential when solving a real-life program and
using more segregated processors. This somewhat the-
oretical summary is sufficiently underpinned by expe-
riences of practicioners [9].

2.2 Multitasking

With the growing gap between the speed of the pro-
cessing and the growing demand for executing com-
plex tasks, the need for sharing the single computing
resource between processes appeared. The missing
features were noticed early [10].

One of the major improvements for enhancing
single-processor performance was introducing the reg-
ister file. It is practically a different kind of memory,
with separate bus, quick access and short address. Al-
though the processors could work with essentially less
registers [11], today the processors commonly include
dozens of registers. However, the processors have been
optimized for single-task regime, so utilizing them
for task-level parallelization required serious modifi-
cations, both on HW and SW side. What is very advan-
tageous for single-thread computing: to have register
access time for computations, is very disadvantageous
for multitasking: the register contents (or at least part
of them) must be saved and restored when switching
to another task. The context switching, however, is
very expensive in terms of execution time [12]. Also,
the too complex and over-optimized architecture con-
siderably increases the internal latency time of the
processor when used in multi-processor environment:
the same architecture cannot be optimized for both
work regimes,

Especially in the real-time applications the re-
sponse time is very critical. To respond to some ex-
ternal signal, the running task must be interrupted,
task and processor context saved, task and processor
context set for the interrupt, and only after that re-
sponding to the external signal can begin. This feature
(a consequence of SPA) is especially disadvantageous
for cyber-physical systems, networking devices, etc.
Synchronizing tasks for those purposes by the operat-
ing system (OS) requires tremendous offset work.

The major reason of the problem (among others) is
the loose connection between the HW and the SW: in
the paradigm only one processor exists, and for a seg-
regated processor there is no sense ”to return control”;
for the only processor a ”next instruction” must always
be available (leading among others to the idea of the
”idle” task is OS, and in a broader sense, to the non
energy-proportional operating regime [13]). The HW

interrupts have no information what SW process is ac-
tually executed. To mitigate the unwanted effects like
priority inversion [14] this instrumental artefact was
formalized [15], rather than eliminated by a different
HW approach.

3 Amdahl’s Law and model for par-
allelized systems

The huge variety of the available parallelization meth-
ods, the extremely different technological solutions do
not enable to set up an accurate technological model.
With the proper interpretation of the Amdahl’s Law,
the careful analysis enables to spot essential contri-
butions degrading the efficacy of parallelized systems.
Despite its simplicity, the model enables to provide a
qualitative (or maybe: semi-quantitative) description
of the operational characteristics of the parallelized
systems, in quite different fields.

3.1 Amdahl’s Law

A half century ago Amdahl [3] called first the atten-
tion to that the parallel systems built from segregated sin-
gle processors have serious performance limitations. The
”law” he formulated was used successfully on quite
different fields [16], sometimes misunderstood, abused
and even refuted (for a review see [17]). Despite of
that ”Amdahl’s Law is one of the few, fundamental laws
of computing” [18], for today it is quite forgotten when
analyzing complex computing systems. Although Am-
dahl was speaking about complex computing systems,
due to its initial analysis about which contributions
degrading parallelism can be omitted, today Amdahl’s
Law is commonly assumed to be valid for SW only. For
today, thanks to the development and huge variety of
the technological implementations of parallelized dis-
tributed systems, it became obvious that the role of the
contributing factors shall be revised.

3.1.1 Amdahl’s idea

The successors of Amdahl introduced the misconcep-
tion that Amdahl’s law is valid for software only and
that the non-parallelizable fraction contains something
like the ratio of the numbers of the corresponding in-
structions or maybe the execution time of the instructions.
However, Amdahl’s law is valid for any partly paralleliz-
able activity (including computer unrelated ones) and the
non-parallelizable fragment shall be given as the ratio of
the time spent with non-parallelizable activity to the total
time. In his famous paper Amdahl [3] speaks about
”the fraction of the computational load” and explicitly
mentions, in the same sentence and same rank, algo-
rithmic contributions like ”computations required may
be dependent on the states of the variables at each point”;
architectural aspects like ”may be strongly dependent
on sweeping through the array along different axes on
succeeding passes” as well as ”physical problems” like

www.astesj.com 143

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

”propagation rates of different physical effects may be quite
different”.

In the present complex parallelized systems his rea-
soning is still valid: one has to consider the workload of
the complex HW/SW system, rather than some segregated
component, and Amdahl’s idea describes parallelization
imperfectness of any kind. Notice that the eligibility of
neglecting some component changes with time, technology
and conditions. When applied to a particular case, it shall
be individually scrutinized which contributions can be
neglected.

3.1.2 Deriving the effective parallelization

Successors of Amdahl expressed Amdahl’s law with
the formula

S−1 = (1−α) +α/k (1)

where k is the number of parallelized code fragments,
α is the ratio of the parallelizable part within the total
code, S is the measurable speedup. The assumption
can be visualized that in α fraction of the running time
the processors are executing parallelized code, in (1-
α) fraction they are waiting (all but one), or making
non-payload activity. That is α describes how much,
in average, processors are utilized, or how effective (at
the level of the computing system) the parallelization
is.

For a system under test, where α is not a priory
known, one can derive from the measurable speedup
S an effective parallelization factor [19] as

αef f =
k

k − 1
S − 1
S

(2)

Obviously, this is not more than α expressed in terms
of S and k from (1). For the classical case, α = αef f ;
which simply means that in the ideal case the actually
measurable effective parallelization achieves the the-
oretically possible one. In other words, α describes a
system the architecture of which is completely known,
while αef f characterizes the performance, which de-
scribes both the complex architecture and the actual
conditions. It was also demonstrated [19] that αef f
can be successfully utilized to describe parallelized
behavior from SW load balancing through measuring
efficiacy of the on-chip HW communication to charac-
terize performance of clouds.

The value αef f can also be used to refer back to Am-
dahl’s classical assumption even in the realistic case
when the parallelized chunks have different lengths
and the overhead to organize parallelization is not neg-
ligible. The speedup S can be measured and αef f can
be utilized to characterize the measurement setup and
conditions, how much from the theoretically possi-
ble maximum parallelization is realized. Numerically
(1−αef f ) equals with the f value, established theoreti-
cally [20].

The distinguished constituent in Amdahl’s classic
analysis is the parallelizable fraction α, all the rest (in-
cluding wait time, non-payload activity, etc.) goes into

the ”sequential-only” fraction. When using several pro-
cessors, one of them makes the sequential calculation,
the others are waiting (use the same amount of time).
So, when calculating the speedup, one calculates

S =
(1−α) +α

(1−α) +α/k
=

k
k(1−α) +α

(3)

hence the efficiency is

E =
S
k

=
1

k(1−α) +α
(4)

This explains the behavior of diagram S
k in function

of k experienced in practice: the more processors, the
lower efficiency. It is not some kind of engineering
imperfectness, it is just the consequence of Amdahl’s
law. At this point one can notice that 1

E is a linear func-
tion of number of processors, and its slope equals to
(1 − α). Equation (4) also underlines the importance
of the single-processor performance: the lower is the
number of the processors used in the parallel system
having the expected performance, the higher can be
the efficacy of the system.

Notice also, that through using (4), the efficiency
S
k can be equally good for describing the efficiency of
parallelization of a setup, provided that the number of
processors is also provided. From (4)

αE,k =
Ek − 1
E(k − 1)

(5)

From the same relationship α can also be expressed in
terms of S and k

αef f =
k

k − 1
S − 1
S

(6)

If the parallelization is well-organized (load balanced,
small overhead, right number of processors), αef f
is very close to unity, so tendencies can be better
displayed through using (1 − αef f ) (i.e. the non-
parallelizable fraction) in the diagrams below.

The importance of this practical term αef f is un-
derlined by that the achievable speedup (performance
gain) can easily be derived from (1) as

G =
1

(1−αef f )
(7)

Correspondingly, the resulting maximum prefor-
mance is

Presulting = G ∗ Psingle (8)

3.1.3 The original assumptions

The classic interpretation implies three1 essential re-
strictions, but those restrictions are rarely mentioned
in the textbooks on parallelization:

• the parallelized parts are of equal length in terms
of execution time

1An additional essential point which was missed by both [20] and [1], that the same computing model was used in all computers considered.

www.astesj.com 144

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

• the housekeeping (controling parallelization,
passing parameters, waiting for termination, ex-
changing messages, etc.) has no cost in terms of
execution time

• the number of parallelizable chunks coincides
with the number of available computing re-
sources

Essentially, this is why Amdahl’s law represents a theo-
retical upper limit for parallelization gain. It is important
to notice, however, that a ’universal’ speedup exists only
if the parallelization efficiency α is independent from the
number of the processors. As will be discussed below,
this assumption is only valid if the number of proces-
sors is low, so the usual linear extrapolation of the actual
performance on the nominal performance will not be valid
any more in the case of high number of processors.

3.1.4 The additional factors considered here

In the spirit of the Single Processor Approach (SPA) the
programmer (the person or the compiler) has to or-
ganize the job: at some point the initiating proces-
sor splits the execution, transmits the necessary pa-
rameters to some other processing units, starts their
processing, then waits for the termination of started
processings; see section 4.1. Real-life programs show
sequential-parallel behavior [21], with variable degree
of parallelization [22] and even apparently massively
parallel algorithms change their behavior during pro-
cessing [23]. All these make Amdahl’s original model
non-applicable, and call for extension.

As discussed in [24]

• many parallel computations today are limited
by several forms of communication and synchro-
nization

• the parallel and sequential runtime components
are only slightly affected by cache operations

• wires get increasingly slower relative to gates

In the followings

• the main focus will be on synchronization and
communication; they are kept at their strict ab-
solute minimum; and their effect is scrutinized

• the effect of cache will be neglected, and runtime
components not discussed separately

• the role of the wires is considered in an extended
sense: both the importance of physical distance
and using special connection methods will be
discussed

3.2 A simplified model for parallel opera-
tion

3.2.1 The performance losses

P roc

T
im
e(
n
ot
p
ro
p
or
ti
on
al

)

0

1

2

3

4

5

6

7

8

9

10

Model of parallel execution

P0 P1 P2 P3 P4

AccessInitiation
Sof twareP re

OSP re

T
0

P
D

00
P
ro
ce
ss

0
P
D

01

T
1

P
D

10
P
ro
ce
ss

1
P
D

11

T
2

P
D

20
P
ro
ce
ss

2
P
D

21

T
3

P
D

30
P
ro
ce
ss

3
P
D

31

T
4

P
D

40
P
ro
ce
ss

4
P
D

41

Just waiting

Just waiting

OSP ost
Sof twareP ost

AccessT ermination

P
ay
lo
ad

T
ot
al

E
xt
en
d
ed

Figure 3: The extended Amdahl’s model (strongly sim-
plified)

When speaking about computer performance, a mod-
ern computer system is assumed, which comprises
many sophisticated components (in most cases embed-
ding complete computers), and their complex interplay
results in the final performance of the system. In the
course of efforts to enhance processor performance
through using some computing resources in parallel,
many ideas have been suggested and implemented,
both in SW and HW [6]. All these approaches have
different usage scenarios, performance and limitations.
Because of the complexity of the task and the lim-
ited access to the components, empirical methods and
strictly controlled special measurement conditions are
used to quantitize performance [8]. Whether a metric
is appropriate for describing parallelism, depends on
many factors [20, 25, 27].

As mentioned in section 3, Amdahl listed different
reasons why losses in the ”computational load” can
occur. To understand operation of computing systems
working in parallel, one needs to extend Amdahl’s
original (rather than that of the successors’) model in

2This separation cannot be strict. Some features can be implemented in either SW or HW, or shared among them, and also some
apparently sequential activities may happen partly parallel with each other.

www.astesj.com 145

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

such a way, that non-parallelizable (i.e. apparently
sequential) part comprises contributions from HW,
OS, SW and Propagation Delay (PD)2, and also some
access time is needed for reaching the parallelized sys-
tem. The technical implementations of different paral-
lelization methods show up infinite variety, so here a
(by intention) strongly simplified model is presented.
Amdahl’s idea enables to put everything that cannot
be parallelized into the sequential-only fraction. The
model is general enough to discuss qualitatively some
examples of parallely working systems, neglecting dif-
ferent contributions as possible in the different cases.
The model can easily be converted to a technical (quan-
titative) one and the effect of inter-core communcation
can also easily be considered.

3.2.2 The principle of the measurements

When measuring performance, one faces serious dif-
ficulties, see for example [26], chapter 1, both with
making measurements and interpreting them. When
making a measurement (i.e. running a benchmark)
either on a single processor or a system of parallelized
processors, an instruction mix is executed many times.
The large number of executions averages the rather
different execution times [28], with an acceptable stan-
dard deviation. In the case when the executed instruc-
tion mix is the same, the conditions (like cache and/or
memory size, the network bandwidth, Input/Output
(I/O) operations, etc) are different and they form the
subject of the comparison. In the case when comparing
different algorithms (like results of different bench-
marks), the instruction mix itself is also different.

Notice that the so called ”algorithmic effects” – like
dealing with sparse data structures (which affect cache
behavior) or communication between the parallelly
running threads, like returning results repeatedly to
the main thread in an iteration (which greatly increases
the non-parallelizable fraction in the main thread) –
manifest through the HW/SW architecture, and they
can hardly be separated. Also notice that there are
fixed-size contributions, like utilizing time measure-
ment facilities or calling system services. Since αef f is
a relative merit, the absolute measurement time shall be
long. When utilizing efficiency data from measure-
ments which were dedicated to some other goal, a
proper caution must be exercised with the interpre-
tation and accuracy of the data.

3.2.3 The formal introduction of the model

The extended Amdahl’s model is shown in Fig. 3. The
contributions of the model component XXX to αef f
will be denoted by αXXXef f in the followings. Notice the
different nature of those contributions. They have only
one common feature: they all consume time. The ver-
tical scale displays the actual activity for processing
units shown on the horizontal scale.

Notice that our model assumes no interaction be-
tween the processes running on the parallelized sys-
tems in addition to the absolutely necessary minimum:
starting and terminating the otherwise independent
processes, which take parameters at the beginning and
return results at the end. It can, however, be triv-
ially extended to the more general case when processes
must share some resource (like a database, which shall
provide different records for the different processes),
either implicitly or explicitly. Concurrent objects have
inherent sequentiality [21], and synchronization and
communication among those objects considerably in-
crease [22] the non-parallelizable fraction (i.e. con-
tribution (1 − αSWef f )), so in the case of extremely large
number of processors special attention must be devoted
to their role on the efficiency of the application on the
parallelized system.

Let us notice that all contributions have a role dur-
ing measurement: contributions due to SW, HW, OS
and PD cannot be separated, though dedicated mea-
surements can reveal their role, at least approximately.
The relative weights of the different contributions are
very different for the different parallelized systems,
and even within those cases depend on many specific
factors, so in every single parallelization case a careful
analyzis is required.

3.2.4 Access time

Initiating and terminating the parallel processing is
usually made from within the same computer, except
when one can only access the parallelized computer
system from another computer (like in the case of
clouds). This latter access time is independent from
the parallelized system, and one must properly correct
for the access time when derives timing data for the par-
allelized system. Failing to do so leads to experimental
artefacts like the one shown in Fig. 7. Amdahl’s law
is valid only for properly selected computing system.
This is a one-time, and usually fixed size time contri-
bution.

3.2.5 Execution time

The execution time Total covers all processings on the
parallelized system. All applications, running on a par-
allelized system, must make some non-parallelizable
activity at least before beginning and after terminat-
ing parallelizable activity. This SW activity represents
what was assumed by Amdahl as the total sequential
fraction3. As shown in Fig. 3, the apparent execution
time includes the real payload activity, as well as wait-
ing and OS and SW activity. Recall that the execution
times may be different [28], [26], [29] in the individual
cases, even if the same processor executes the same
instruction, but executing an instruction mix many
times results in practically identical execution times,
at least at model level. Note that the standard deviation
of the execution times appears as a contribution to the

3Although some OS activity was surely included, Amdahl assumed some 20 % SW fraction, so the other contributions could be neglected
compared to SW contribution.

www.astesj.com 146

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

0 2 4 6 8
0

0.2

0.4

0.6

0.8

Number of processors

1
-

(S
p

ee
du

p
/N

o
of

p
ro

ce
ss

or
s) Audio stream 1

Audio stream 2
Radar initial

Radar improved

2 4 6 8

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Audio stream 1
Audio stream 2

Radar initial
Radar improved

Figure 4: Relative speedup (left side) and (1−αef f ) (right side) values, measured running the audio and radar
processing on different number of cores. [31]

non-parallelizable fraction, and in this way increases the
”imperfectness” of the architecture. This feature of pro-
cessors deserves serious consideration when utilizing
a large number of processors. Over-optimizing a pro-
cessor for single-thread regime hits back when using
it in a parallelized many-processor environment, see
also the statistical underpinning in [30].

3.3 Fields of application

The developed formalism can be effecively utilized on
quite different fields, for more examples see [19].

3.3.1 Load balancing

The classic field of application is to qualify how effec-
tively a parallelized task uses its resources, as shown
in Fig. 4. A compiler making load balancing of an orig-
inally sequential code for different number of cores is
described and validated in paper [31], by running the
executable code on platforms having different num-
ber of cores. The authors’ first example shows results
of implementing parallelized processing of an audio
stream manually, with an initial, and a later, more
careful implementation. For two different processings
of audio streams, using efficiency E as merit enables
only to claim a qualitative statement about load bal-
ancing, that ”The higher number of parallel processes
in Audio-2 gives better results”, because the Audio-2
diagram decreases less steeply, than Audio-1. In the
first implementation, where the programmer had no
previous experience with parallelization, the efficiency
quickly drops with increasing the number of cores. In
the second round, with experiences from the first im-
plementation, the loss is much less, so 1−E rises less
speedily.

Their second example is processing radar signals.
Without switching the load balancing optimization on,
the slope of the curve 1−E is much bigger. It seems to
be unavoidable, that as the number of cores increases,
the efficiency (according to Eq. (4)) decreases, even
at such low number of cores. Both examples leave

the question open whether further improvements are
possible or whether the parallelization is uniform in
function of the number of cores.

In the right column of the figure (Fig. 10 in [31])
the diagrams show the (1−αef f ) values, derived from
the same data. In contrast with the left side, these
values are nearly constant (at least within the mea-
surement data readback error) which means that the
derived parameter is really characteristic to the system.
By recalling (6) one can identify this parameter as the
resulting non-parallelizable part of the activity, which
– even with careful balancing – cannot be distributed
among the cores, and cannot be reduced.

In the light of this, one can conclude that both the
programmer in the case of audio stream and the com-
piler in the case of radar signals correctly identified
and reduced the amount of non-parallizable activity:
αef f is practically constant in function of number of
cores, nearly all optimization possibilities found and
they hit the wall due to the unavoidable contribution
of non-parallelizable software contributions. Better
parallelization leads to lower (1−αef f ) values, and less
scatter in function of number of cores. The uniformity
of the values make also highly probable, that in the
case of audio streams further optimization can be done,
while processing of radar signals reached its bounds.

3.3.2 SoC communication method

Another excellent example is shown in Fig. 5. In their
work [32] the authors have measured the execution
time of some tasks, distributed over a few cores in a
System on Chip (SoC). It is worth to notice that the
method of calculating (1−αef f ) is self-consistent and
reliable. In the case of utilizing 2 cores only, the same
single communication pair is utilized, independently
from the chosen communication method. Correspond-
ingly, the diagram lines start at the same (1 − αef f )
value for all communication methods. It is also demon-
strated that ”ring” and ”nearest neighbor” methods
result in the same communication overhead. Notice
also that the (1−αef f ) values are different for the two

www.astesj.com 147

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rosenbrock minimization, Ring method

1− ef f iciency
1−α

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rosenbrock minimization, Neigbourhood method

1− ef f iciency
1−α

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rosenbrock minimization, Broadcast method

1− ef f iciency
1−α

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rastrigin minimization, Ring method

1− ef f iciency
1−α

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rastrigin minimization, Neigbourhood method

1− ef f iciency
1−α

2 4 8 16 32

10−3

10−2

10−1

Number of processors

1-
α
ef
f

Rastrigin minimization, Broadcast method

1− ef f iciency
1−α

Figure 5: Comparing efficiency and αef f for different communication strategies when running two minimization
task on SoC by [32]

mathematical methods, which highlights that the same
architecture behaves differently when executing a different
task.

The commonly used metric (1 − ef f iciency) only
shows that the efficiency decreases as the number of
cores increases. The proposed metric (1 − αef f ) also
reveals that while the ”ring” and ”nearest neighbor”
methods scale well with the number of cores, in the
case of the ”broadcast” method the effective paralleliza-
tion gets worse as the number of communicating cores
increases. The scatter on the diagrams originate from
the short measurement time: the authors focused on
a different goal, but their otherwise precise measure-
ment can be used for the present goal only with the
shown scatter.

3.3.3 Supercomputer performance design

Utilizing the effective parallelization is important in
designing supercomputer architectures, too. Since the
resulting performance depends on both the number of
processors and the effective parallelization, both quan-
tities are correlated with ranking of the supercomputer
in Fig. 6. As expected, in TOP50 the higher the rank-
ing position is, the higher is the required number of
processors in the configuration, and as outlined above,
the more processors, the lower (1 − αef f ) is required
(provided that the same efficiency is targeted).

In TOP10, the slope of the regression line sharply
changes in the left figure, showing the strong com-
petition for the better ranking position. Maybe this
marks the cut line between the ”racing supercomput-

ers” and ”commodity supercomputers”. On the right
figure, TOP10 data points provide the same slope as
TOP50 data points, demonstrating that to produce a
reasonable efficiency, the increasing number of cores
must be accompanied with a proper decrease in value
of (1−αef f ), as expected from (4), furthermore, that to
achieve a good ranking a good value of (1−αef f ) must
be provided.

3.3.4 Cloud services

In the case of utilizing cloud services (or formerly
grids) the parallelized system and the one which in-
terfaces user to its application are physically different.
These systems differ from the ones discussed above
in two essential points: the access and the inter-node
connections are provided through using Internet, and
the architecture is not necessarily optimized to offer
the best possible parallelization. Since the operation
of the Internet is stochastic, the measurements cannot
be as accurate as in the cases discussed above. The
developed formalism, however, can also be used for
this case.

The authors of [33] benchmarked some commer-
cially available cloud services, fortunately using High
Performance Linpack (HPL) benchmark. Their results
are shown in Fig. 7. On the left side efficiency (i.e.
RMax
RP eak

), on the right side (1−αef f ) is displayed in func-
tion of the processors. They found (as expected) that
the efficiency decreases as the number of the proces-
sors (nodes) increases. Their one-time measurement

4 A long term systematic study [34] derived the results that measured data show dozens of percents of variation in long term run, and
also unexpected variation in short term run.

www.astesj.com 148

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

0 10 20 30 40 50

10−1

100

101

Ranking by HPL

N
o

of
P

ro
ce

ss
or

s/
1e

6
Data points
Regression Top50
Regression Top10

10−1 100 101

10−7

10−6

10−5

No of Processors/1e6

(1
-α
ef
f

by
H
P
L

)

Data points
Regression TOP50
Regression TOP10

Figure 6: Correlation of number of processors with ranking and effective parallelism with number of processors.

show considerable scatter, as expected4.
When compared to Fig. 4, one can immediately

notice two essential differences. First, that RMax
RP eak

is con-
siderably lower than unity, even for very low number
of cores. Second, that (1−αef f ) values steeply decrease
as number of cores increases, although the model con-
tains only contributions which may only increase as
number of cores increases. Both of those deviations are
caused by an instrumental artefact made during bench-
marking: when acquiring measurement data also the
access time must be compensated for, see Fig. 3.

As discussed above, HPL characterizes the setup
comprising processors working in parallel, so the
benchmark is chosen correctly. If the time is measured
on client’s computer (and this is what is possible using
those services), the time Extended is utilized in the cal-
culation in place of Total. This artefact is responsible
for both mentioned differences. As can be seen from
extrapolating the data, the efficiency measured in this
way would not achieve 100 % even on a system com-
prising only one single processor. Since αef f measures
the average utilization of processors, this foreign con-
tribution is divided by the number of processors, so
with increasing number of processors this foreign con-
tribution decreases, causing to decrease the calculated
value of (1−αef f ).

At such low number of processors neither of the
contributions depending the processor number is con-
siderable, so one can expect that in the case of correct
measurement (1−αef f ) would be constant. So, extrap-
olating graphs (1 − αef f ) to the value corresponding
to a one-processor system, one can see that both for
Edison supercomputer and Azure A series grid (and
maybe also Rackspace) the expected value is approach-
ing unity (but obviously below it). From the slope
of the curve (increasing the denominator 1000 times,
(1−αef f ) reduces to 10−3) one can even find out that
(1−αef f ) should be around 10−3. Based on these data,
one can agree with the conclusion that on a good cloud
the benchmark High Performance Conjugate Gradients
(HPCG) can run as effectively as on the supercomputer

used in the work. However, (1−αef f ) is about 3 orders
of magnitude better for TOP500 class supercomputers,
but this makes a difference only for HPL class bench-
marks and only at large number of processors.

Note that in the case of AWS clouds and Azure F
series the αOS+SW

ef f can be extrapolated to about 10−1,
and this is reflected by the fact that their efficiency
drops quickly as the number of the cores increases.
Interesting to note that ranking based on αef f is just
the opposite of ranking based on efficiency (due to the
measurement artefact).

Note also that switching hyperthreading on does
not change our limited validity conclusions: both effi-
ciency and (1−αef f ) remains the same, i.e. the hyper-
threaded core seems to be a full value core. The place-
ment group (PG) option did not affect the measured
data considerably.

4 Limitations of parallelization

It is known from the ancient times that there is a mea-
sure in things; there are certain boundaries (sunt certi
denique fines quos ultra citraque nequit consistere rectum
Horace). The different computing-related technical im-
plementations also have their limitations [24], conse-
quently computing performance itself has its own limi-
tations. In parallelized sequential systems an inherent
(stemming out from the paradigm and the clock-driven
electronic technology) performance limit is derived.
The complex parallelized systems are usually qualified
(and ranked) through measuring the execution time of
some special programs (benchmarks). Since utilizing
different benchmarks results in different quantitative
features (and ranking [35]), the role of benchmarks is
also discussed in terms of the model. It is explained
why certain benchmarks result in apparently contro-
versial results.

www.astesj.com 149

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

100 101 102 103

0.2

0.4

0.6

0.8

1

Number of processors

E
ffi

ci
en

cy

AWS with HT
AWS

AWS with PG

100 101 102 10310−3

10−2

10−1

100

Number of processors

1-
α
ef
f

AWS with HT
AWS

AWS with PG

100 101 102 103

0.2

0.4

0.6

0.8

1

Number of processors

E
ffi

ci
en

cy

Azure F-series
Azure A-series
Azure H-series

100 101 102 10310−3

10−2

10−1

100

Number of processors

1-
α
ef
f

Azure F-series
Azure A-series
Azure H-series

100 101 102 103

0.2

0.4

0.6

0.8

1

Number of processors

E
ffi

ci
en

cy

Rackspace Compute1-60
SoftLayer

Edison supercomputer

100 101 102 10310−3

10−2

10−1

100

Number of processors

1-
α
ef
f

Rackspace Compute1-60
SoftLayer

Edison supercomputer

Figure 7: Efficiency (left side) and (1−αef f ) (right side) values for some commercial cloud services. Data from
[33] are used

www.astesj.com 150

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

4.1 The inherent limit of parallelization

In the SPA initially and finally only one thread
exists, i.e. the minimal absolutely necessary non-
parallelizable activity is to fork the other threads and
join them again. With the present technology, no such
actions can be shorter than one clock period. That is, in
this simple case the non-parallelizable fraction will be
given as the ratio of the time of the two clock periods
to the total execution time. The latter time is a free
parameter in describing the efficiency, i.e. the value of
the effective parallelization αef f also depends on the
total benchmarking time (and so does the achievable
parallelization gain, too).

This dependence is of course well known for super-
computer scientists: for measuring efficiency with bet-
ter accuracy (and also for producing better αef f values)
hours of execution times are used in practice. For ex-
ample in the case of benchmarking the supercomputer
T aihulight [36] 13,298 seconds benchmark runtime
was used; on the 1.45 GHz processors it means 2 ∗ 1013

clock periods. This means that (at such benchmarking
time) the inherent limit of (1−αef f ) is 10−13 (or equiv-
alently the achievable performance gain is 1013). In
the followings for simplicity 1.00 GHz processors (i.e.
1 ns clock cycle time) will be assumed.

The supercomputers, however, are distributed sys-
tems. In a stadium-sized supercomputer the distance
between processors (cable length) about 100 m can be
assumed. The net signal round trip time is cca. 10−6

seconds, or 103 clock periods. The presently available
network interfaces have 100. . . 200 ns latency times,
and sending a message between processors takes time
in the same order of magnitude. This also means that
making better interconnection is not a bottleneck in en-
hancing performance of large-scale supercomputers. This
statement is underpinned also by statistical considera-
tions [30].

Taking the (maybe optimistic) value 2∗103 clock pe-
riods for the signal propagation time, the value of the
effective parallelization (1−αef f ) will be at least in the
range of 10−10, only because of the physical size of the
supercomputer. This also means that the expectations
against the absolute performance of supercomputers
are excessive: assuming a 10 Gflop/s processor, the
achievable absolute nominal performance is 1010*1010,
i.e. 100 EFlops. In the feasibility studies an analysis
for whether this inherent performance bound exists
is done neither in USA [38, 37] nor in EU[39] nor in
Japan [40] nor in China [41].

Another major issue arises from the computing
paradigm SPA: only one computer at a time can be ad-
dressed by the first one. As a consequence, minimum
as many clock cycles are to be used for organizing the
parallel work as many addressing steps required. Ba-
sically, this number equals to the number of cores in
the supercomputer, i.e. the addressing in the TOP10
positions typically needs clock cycles in the order of
5 ∗ 105. . . 107; degrading the value of (1 − αef f ) into
the range 10−6. . . 2 ∗ 10−5. Two tricks may be used to
reduce the number of the addressing steps: either the

cores are organized into clusters as many supercom-
puter builders do, or the processor itself can take over
the responsibility of addressing its cores [42]. Depend-
ing on the actual construction, the reducing factor can
be in the range 102. . . 5 ∗ 104, i.e the resulting value of
(1−αef f ) is expected to be in the range of 10−8. . . 2∗10−6.
Notice that utilizing ”cooperative computing” [42] en-
hances further the value of (1−αef f ) and considerably
enhances the performance of real-life programs [43],
but it means already utilizing a (slightly) different com-
puting paradigm.

An operating system must also be used, for pro-
tection and convenience. If one considers the context
change with its consumed 2 ∗ 104 cycles [12], the abso-
lute limit is cca. 5∗10−8, on a zero-sized supercomputer.
This is why T aihulight runs the actual computations
in kernel mode [42].

It is crucial to understand that the decreasing effi-
ciency (see (4)) is coming from the computing paradigm
itself rather than from some kind of engineering imperfect-
ness. This inherent limitation cannot be mitigated without
changing the computing paradigm.

Although not explicitly dealt with here, notice that
the data exchange between the first thread and the
other ones also contribute to the non-parallelizable
fraction and tipically uses system calls, for details
see [22, 44] and section 4.2.

1995
2005

2015 1

10

2010−7

10−5

10−3

10−1

Year
Ranking

(1
−
α
ef
f

)

Supercomputer parallelization hillside

Figure 8: The Top500 supercomputer parallelization
efficiency in function of the year of construction and
the actual ranking. The (1−α) parameter for the past
25 years and the (by Rmax) first 25 computers. Data
derived using the HPL benchmark.

4.2 Benchmarking the performance of a
complex computing system

As discussed above, measuring the performance of
a complex computing system is not trivial at all.
Not only finding the proper merit is hard, but
also the ”measuring device” can basically influence
the measurement. The importance of selecting the
proper merit and benchmark can be easily understood

www.astesj.com 151

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

through utilizing the model and the well-documented
benchmark measurements of the supercomputers.

As experienced in running the benchmarks HPL
and HPCG [45] and explained in connection with
Fig. 13, the different benchmarks produce different
payload performance values and computational effi-
ciencies on the same supercomputer. The model pre-
sented in Fig. 3 enables to explain the difference.

The benchmarks, utilized to derive numerical pa-
rameters for supercomputers, are specialized programs,
which run in the HW/OS environment provided by the
supercomputer under test. Two typical fields of their
utilization: to describe the environment supercom-
puter application runs in, and to guess how quickly an
application will run on a given supercomputer.

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018102

103

104

105

106

107

108

Year

P
er
f
or
m
an
ce
g
ai
n
bo
u
n
d

Performance gain of supercomputers, Top 500 1st-3rd

1st by RMax
2nd by RMax
3rd by RMax
Best by αef f

Figure 9: The trend of the development of computing
performance gain in the past 25 years, based on the
first three (by RMax) and the first (by (1−α)) in the year
of construction. Data derived using the HPL bench-
mark. A saturation effect around 107 is expressed.

The (apparently) sequential fraction (1−αef f ), as
it is obvious from our model, cannot distinguish be-
tween the (at least apparently) sequential processing
time contributions of different origin, even the SW (in-
cluding OS) and HW sequential contributions cannot
be separated. Similarly, it cannot be taken for sure
that those contributions sum up linearly. Different
benchmarks provide different SW contributions to the
non-parallelizable fraction of the execution time (re-
sulting in different efficiencies and ranking [35]), so
comparing results (and especially establishing rank-
ing!) derived using different benchmarks shall be done
with maximum care. Since the efficiency depends heavily
on the number of cores, different configurations shall be
compared using the same benchmark and the same number
of processors (or same RP eak).

If the goal is to characterize the supercomputer’s
HW+OS system itself, a benchmark program should

distort HW+OS contribution as little as possible, i.e.
the SW contribution must be much lower than the
HW+OS contribution. In the case of supercomputers,
the benchmark HPL is used for this goal since the be-
ginning of the supercomputer age. The mathematical
behavior of HPL enables to minimize SW contribution,
i.e. HPL delivers the possible best estimation for αHW+OS

ef f .

If the goal is to estimate the expectable behavior
of an application, the benchmark program should imi-
tate the structure and behavior of the application. In
the case of supercomputers, a couple of years ago the
benchmark HPCG has been introduced for this goal,
since ”HPCG is designed to exercise computational and
data access patterns that more closely match a different
and broad set of important applications, and to give incen-
tive to computer system designers to invest in capabilities
that will have impact on the collective performance of these
applications” [45]. However, its utilization can be mis-
leading: the ranking is only valid for the HPCG applica-
tion, and only utilizing that number of processors. HPCG
seems really to give better hints for designing super-
computer applications5, than HPL does. According to
our model, in the case of using the HPCG benchmark,
the SW contribution dominates6, i.e. HPCG delivers
the best estimation for αSWef f for this class of supercom-
puter applications.

Supercomputer community has extensively tested
the efficiency of TOP500 supercomputers when bench-
marked with HPL and HPCG [45]. It was found that
the efficiency (and RMax) is typically 2 orders of magni-
tude lower when benchmarked with HPCG rather than
with HPL, even at relatively low number of processors.

5 Supercomputing

In supercomputing the resulting payload computing
performance is crucial and the number of the pro-
cessors, their single-processor performance and the
speed of their interconnection are critical resources.
As today a ”gold rush” is experienced with the goal to
achieve the dream limit of 1 Eflop/s (1018 f lop/s) [46],
the section scrutinizes the feasibility of achieving that
goal. Through applying the model to different kinds
of large-scale sequential-parallel computing systems
it is shown that such systems require to understand
the role and dominance of the contributions of quite
different kinds to the performance loss and that the
improperly designed HW/SW cooperation provides
direct evidence about the existence of the performance
bound. The well-documented, strictly controlled mea-
surement database [48] enables to draw both retrospec-
tive statistical conclusions on the logic of development
behind the performance data, as well as to make pre-
dictions for the near future about the performance of
supercomputers and its limitations.

5This is why for example [47] considers HPCG as ”practical performance”.
6 Returning calculated gradients requires much more sequential communication (unintended blocking).

www.astesj.com 152

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

0 10 20 30 40 50
0

50

100

150

200

Ranking by HPL

P
ro

ce
ss

or
p

er
fo

rm
an

ce
(G

fl
op

/s
) Accelerated

Non-accelerated
GPU-accelerated
Regression of accelerated
Regression of nonaccelerated
Regression of GPU accelerated

0 10 20 30 40 5010−9

10−8

10−7

10−6

10−5

Ranking by HPL

α
ef
f

by
H
P
L

Accelerated
Non-accelerated
GPU-accelerated
Regression of accelerated
Regression of nonaccelerated
Regression of GPU accelerated

Figure 10: Correlation of performance of processors using accelerator and effective parallelism with ranking, in
2017. The left figure shows that utilizing GPU accelerators increases single-processor performance by a factor
of 2. . . 3, but as the right side demonstrates, at the price of increasing the non-parallelizable fraction.

10−2 10−1 100

10−2

10−1

RP eak (exaFLOPS)

R
M
ax

(e
xa
F
L
O
P
S

)

Prediction of RHPLMax of Top10 Supercomputers

Summit
Sierra

Taihulight
Tianhe-2
Piz Daint

Trinity
ABCI

SuperMUC-NG
Titan

Sequoia

Figure 11: Dependence of payload supercomputer performance on the nominal performance for the TOP10
supercomputers (as of November 2018) in case of utilizing the HPL benchmark. The actual positions are
marked by a bubble on the diagram lines.

www.astesj.com 153

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

5.1 Describing the development of super-
computing

One can assume that all configurations are built with
the actually available best technology and components,
and only the really best configurations can be found in
circles of TOP lists. The large number of configurations
in the rigorously controlled database TOP500 [48]
enables to draw reliable conclusions, although with
considerable scattering. Fig. 8 depicts the calculated
(1−αef f ) for the past 26 years and the first 25 comput-
ers in the TOP500 list.

Fig. 8 explicitly shows signs of reaching a ”flat sur-
face” in values of (1−αef f ) in the past few years. This
effect can be more clearly studied if considering the
TOP3 supercomputers only. Fig. 9 depicts the per-
formance gain (see (7)) of supercomputers for their
26-years history. As seen, symptoms of stalling of the
parallelized performance appeared in 2012: in three
adjacent years the payload performance gain of the
TOP3 supercomputers remained at the same value.
With the appearance of T aihulight in 2016 apparently
a by an order of magnitude higher performance gain
has shined up. However, it is just the consequence
of using the ”cooperative computing” [42], the rest of
world remains under that limiting stalling value. The
new world champion in 2018 could conquer the slot
#1 only due to its higher (accelerator-based) single-
processor performance, rather than the enhanced effec-
tive parallelization (although its clustering played an
important role in keeping it in good condition).

5.2 Predictions of supercomputer perfor-
mance for the near future

As Eq. (8) shows, the resulting performance can be in-
creased by increasing either the single processor perfor-
mance or the performance gain. As the computational
density cannot be increased any more [49, 50], some
kind of accelerator is used to (apparently) increase
the single processor performance. The acceleration,
however, can also contribute to the non-parallelizable
fraction of the computing task.

Fig. 10 shows how utilizing Graphic Processing
Unit (GPU) acceleration is reflected in parameters of
the TOP50 supercomputers. As the left side of the
figure displays, the GPU really increases the single-
processor performance by a factor of 2. . . 3 (in accor-
dance with [51]), but at the same time increases the
value of (1−αef f ). The first one is a linear multiplier,
the second one is an exponential divisor. Consequently,
at low number of cores it is advantageous to use that
kind of acceleration, while at high number of cores it
is definitely disadvantageous.

Having the semi-technical model ready, one can
estimate how the computing performance will develop
in the coming few years. Assuming that the designers
can keep the architecture at the achieved performance
gain, and virtually changing the number of proces-
sors one can estimate how the payload performance
changes when adding more cores to the existing TOP10

constructions. Fig. 11 shows the virtual payload perfor-
mance in the function of the nominal performance for
the TOP105 supercomputers (as of November 2018).
Notice that the predictions are optimistic, because the
performance breakdown shown in Fig. 13 is not in-
cluded. Even with that optimistic assumption, the
1 Eflop/s payload performance cannot be achieved
with the present technology and paradigm.

10−3 10−2 10−1 10010−4

10−3

10−2

10−1

RP eak (exaFLOPS)

R
M
ax

(e
xa
F
L
O
P
S

)

Development of RHPLMax for the P izDaint Supercomputer

Xeon E5-2690 + NVIDIA Tesla P100 (2018)
Xeon E5-2690 + NVIDIA Tesla P100 (2017)
Xeon E5-2690 + NVIDIA Tesla P100 (2016)

Xeon E5-2670 + NVIDIA K20x (2013)
Xeon E5-2670 (2013)
Xeon E5-2670 (2012)

Figure 12: Dependence of the predicted payload perfor-
mance of supercomputer P iz Daint in different phases
of the development, with the prediction based on the
actual measured efficiency values. The actual positions
are marked by bubbles on the diagram lines.

The accuracy of the short-term prediction can be
estimated from Fig. 12. Fortunately, supercomputer
P iz Daint has a relatively long documented history
in the TOP500 database [48]. The publishing of the
results of the development has started in year 2012. In
the next year the number of processor has changed by
a factor of three, and the parallelization efficiency con-
siderably improved by the same factor, although pre-
sumably some hardware efficacy improvements have
also occurred. Despite this, the predicted performance
improvement is quite accurate. (unfortunately, two
parameters have been changed between two states re-
ported to the list, so their effect cannot be qualified
separately.) In year 2013 GPU acceleration with K20
have been introduced, and the number of processors
have been increased by a factor of four. The resulting
effect is a factor of 10 increase in both the payload
performance and the nominal performance. Probable
a factor of 2.5 can be attributed to the GPU, which
value is in good agreement with the values received
in[51, 30], and a factor of 4 to the increased number
of cores. The designers were not satisfied with the re-
sult, so they changed to TESLA P100. Notice that the
change to a more advanced type of GPU results in a
slight fallback relative to the prediction in the expected
value of RMax : copying between a bigger GPU memory
and the main memory increases the non parallizable

www.astesj.com 154

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

10−3 10−2 10−1 10010−10

10−9

10−8

10−7

10−6

10−5

10−4

RP eak(Ef lop/s)

(1
−
α
H
P
L

ef
f

)

10−5

10−4

10−3

10−2

10−1

100

R
H
P
L

M
ax

(E
f
lo
p
/s

)

αSW

αOS

αef f
RMax(Ef lop/s)

10−3 10−2 10−1 10010−10

10−9

10−8

10−7

10−6

10−5

10−4

RP eak(Ef lop/s)

(1
−
α
H
P
C
G

ef
f

)

10−5

10−4

10−3

10−2

10−1

100

R
H
P
C
G

M
ax

(E
f
lo
p
/s

)

αSW

αOS

αef f
RMax(Ef lop/s)

10−3 10−2 10−1 10010−10

10−9

10−8

10−7

10−6

10−5

10−4

RP eak(Ef lop/s)

(1
−
α
N
N

ef
f

)

10−5

10−4

10−3

10−2

10−1

100

R
N
N

M
ax

(E
f
lo
p
/s

)

αSW

αOS

αef f
RMax(Ef lop/s)

Figure 13: Contributions (1−αXef f ) to (1−αtotalef f ) and max payload performance RMax of a fictive supercomputer
(P = 1Gf lop/s @ 1GHz) in function of the nominal performance. The blue diagram line refers to the right hand
scale (RMax values), all others ((1 − αXef f ) contributions) to the left scale. The leftmost figure illustrates the
behavior measured with benchmark HPL. The looping contribution becomes remarkable around 0.1 Eflops,
and breaks down payload performance when approaching 1 Eflops. The black dot marks the HPL performance
of the computer used in works [53, 55]. In the middle figure the behavior measured with benchmark HPCG
is displayed. In this case the contribution of the application (thin brown line) is much higher, the looping
contribution (thin green line) is the same as above. As a consequence, the achievable payload performance is
lower and also the breakdown of the performance is softer. The black dot marks the HPCG performance of the
same computer. The rightmost figure demonstrates what happens if the clock cycle is 5000 times longer: it
causes a drastic decrease in the achievable performance and strongly shifts the performance breakdown toward
lower nominal performance values. The figure is purely illustrating the concepts; the displayed numbers are
somewhat similar to the real ones.

contribution, which cannot be counterbalanced even
by the two times more cores. Finally, the constructors
upgraded also the processor (again changing two pa-
rameters at a time), but the twice more processors and
the new accelerator produced only twice more perfor-
mance. The upgrade in 2018 accurately predicted by
the diagram. As the diagram lines in Fig. 12 accurately
display the resulting values of the later implementa-
tion if no changes in the architecture (the efficiency)
happens, one can rely to the estimations for predicting
future values display in Fig. 11, provided that no ar-
chitectural changes (or changes in the paradigm) occur
during the development.

5.3 What factors dominate the perfor-
mance gain

As discussed above, different goals can be targeted
with the parallelized sequential HW/SW systems. Ac-
cordingly, different factors dominate in limiting the
computational performance. The case of simulating
large neural networks is a very good example how the
dominance of the different factors changes with the
actual conditions.

The idea of simulating neural activity in a way that
processors are used to provide the computing facility
for solving partial differential equations, seems to be
a good idea, as well as to utilize paralelly running SW
threads to imitate neural activity of large networks.
However, utilizing parallelized sequential systems for
that goal implies all limitations discussed above.

As discussed in details in [52], two of the men-
tioned effects can become dominating in those applica-
tions. Since the operating time scale of the biological

networks lies in themsec range, brain simulation appli-
cations commonly use integration time about 1ms [53].
Since the threads running in parallel need to be syn-
chronized (i.e. they must be put back on the same
biological time scale, in order to avoid working with
”signals from the future”), quietly and implicitly a 1ms
”clock signal” is introduced. Since this clock period
is a million times longer than the typical clock period
in digital computers, its dominance is seriously pro-
moted in producing non-payload overhead. This im-
plicit clock signal has the same limiting effect for both
the many-thread simulation and the special-purpose
HW brain simulator [54]. This is why the special HW
brain simulator cannot outperform the many-thread
version SW running on a general-purpose supercom-
puter.

The other field-specific effect is that the processing
speed is too quick and storage capacity too large for
simulating biological systems in an economic way, so
the same core is utilized to simulate several neurons
(represented by several threads). This method of solu-
tion however needs several context changes within the
same core, and since the context changes are rather ex-
pensive in terms of execution time [12], the overhead
part of the process amounts to 10% [53], and the 0.1
value of (1−αef f ) competes for dominance with the im-
properly selected clock period. This is the reason why
the many-thread based simulation cannot scale above
a few dozens of thousands of neurons [55]. (At the
same time, the analog simulators achieve thousands
time better performance and scaling.)

It is worth to have look at Fig. 13. The thick blue
line shows the dependence of the payload performance
on the nominal performance under different condi-

www.astesj.com 155

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

tions and refers to the right side scale. The leftmost
figure shows the case of running the benchmark HPL
in some fictive (but somewhat similar to T aihulight)
supercomputer. The middle figure shows how a typi-
cal computation (modelled by the benchmark HPCG,
utilizing intensively communication between threads)
leads to strong degradation of payload performance at
higher nominal performances. HPCG is in its behav-
ior greatly similar to AI applications. These real-life
applications show also smeared maximum behavior
(compared to those of the benchmark HPL).

On the rightmost figure the clock signal is 5,000
times higher, modeling the ”hidden clock signal”. In
this case the performance degradation is much more
expressed, and also the breakdown of the performance
has been measured [55].

6 How to proceed after reaching
limits of parallelization

Today the majority of leading researchers agree that
computing (and especially: the computing paradigm)
needs renewal (for a review see [56]), although there is
no commonly accepted idea for a new paradigm. After
the failure of supercomputer Aurora (A18) project it
became obvious that a processor optimized for SPA
regime cannot be optimal at the same time for paral-
lelized sequential regime.

Intel learned the lesson and realized that exa-scale
computing needs a different architecture. Although
Intel is very cautious with discovering its future plans,
especially the exa-scale related ones[57], they already
dropped the X86 line[58]. Their new patent [59] at-
tempts to replace the conventional instruction-driven
architecture by a data-driven one. However, a serious
challenge will be to eliminate the overhead needed to
frequently reconfigure the internals of the processor
for the new task fraction and it is also questionable
that emulating the former X86 architecture (obviously
from code compatibility reasons) enables to reduce
the inherent overhead coming from that over-complex
single-processor oriented architecture. The new and
ambitious player in Europe [39, 60], however, thinks
that some powerful architecture (although even the
processor type is not selected) can overcome the theo-
retical and technological limits without changing the
paradigm. That is, there are not much ”drastically
new” ideas on board.

As discussed above, from the point of view of paral-
lelism the inherently sequential parts of any HW/SW
system form a kind of overhead. The happenings
around parallelised sequential processing systems val-
idate the prophecy of Amdahl: The nature of this over-
head [in parallelism] appears to be sequential so that it
is unlikely to be amenable to parallel processing tech-
niques. Overhead alone would then place an upper limit
on throughput . . . , even if the housekeeping were done in
a separate processor [3]

As Amdahl in 1967(!) warned: the organization of a
single computer has reached its limits and that truly sig-

nificant advances can be made only by interconnection of a
multiplicity of computers in such a manner as to permit co-
operative solution [3]. Despite that warning, even today,
many-processor systems, including supercomputers,
distributed systems and manycore processors as well,
comprise many single-processor systems, (rather than
”cooperating processors” as envisioned by Amdahl).
The suggested solutions typically consider segregated
cores, based on SPA components and use programmed
communication, like [61].

There are some exceptions, however: solutions
like [62, 63] transfer control between (at Instruction
Set Architecture (ISA) level) equivalent cores, but un-
der SW control. Direct connection between cores exists
only in [42], also under SW control. This processor
has kept the supercomputer T aihulight in the first
slot of the TOP500 list [48] for two years. Optimizing
this direct (non-memory related) data transfer resulted
in drastic changes [43] in the executing of the HPCG
benchmark (mitigating the need to access memory de-
creases the sequential-only part). Unfortunately, the
architectures with programmed core-to-core connec-
tion are not flexible enough: the inter-core register-to-
register data transfer must be programmed in advance
by the programmer. The need for solving architectural
inflexibility appeared, in the form of ”switchable topol-
ogy” [64]. The idea of ”outsourcing” (sending compute
message to neighboring core) [65] also shined up. Both
suggestions without theoretical and programming sup-
port.

A different approach can be to use a radically new (or
at least a considerable generalization of the old) com-
puting paradigm. That radically new paradigm at the
same time must provide a smooth transition from the
present age to the new one, as well as co-existence for
the transition period. The idea of utilizing Explicitly
Many-Processor Approach (EMPA) [66] seems to fulfill
those requirements, although it is in a very early stage
of development.

The technology of manufacturing processors
(mainly the electronic component density) as well as
the requirements against its utilization have consider-
ably changed since the invention of the first computer.
Some of the processing units (the cores within a pro-
cessor) are in close proximity, but this alone, without
cooperation is not sufficient. Even utilizing synergis-
tic cell processors [67] did not result in breakthrough
success. Utilizing cooperation of processors in close
proximity [42], however, resulted in the best effective
parallelism up to now. Establishing further ways of
cooperation (like distributing execution of task frag-
ments to cooperating cores in close proximity [66, 68]),
however, can considerably enhance the apparent per-
formance through decreasing the losses of paralleliza-
tion.

7 Summary

The parallelization of otherwise sequential processing
has its natural and inherent limitations, does not meet

www.astesj.com 156

http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

the requirements of modern computing and does not
provide the required flexibility. Although with de-
creasing efficiency, for part of applications sufficiently
performable systems can be assembled and with some
tolerance and utilizing special SW constraints, the real-
time needs can be satisfied. In the case of extremely
large processing capacity, however, bounds of the par-
allelized sequential systems are faced. For developing
the computing performance further, the 50-years old idea
about making systems comprising cooperating processors
must be renewed. The need for cooperative computing
is evident and its feasibility was convincingly demon-
strated by the success of the world’s first really coopera-
tive processor [42]. An extension [66] to the computing
paradigm, that considers both the technological state-
of-the-art and the expectations against computing, was
also presented and some examples of its advantageous
features were demonstrated.

Conflict of Interest The authors declare no conflict
of interest.

Acknowledgment Project no. 125547 has been im-
plemented with the support provided from the Na-
tional Research, Development and Innovation Fund of
Hungary, financed under the K funding scheme.

References
[1] P. J. Denning, T. Lewis, Exponential Laws of Computing

Growth, COMMUN ACM (2017) 54–65doi:DOI:10.1145/
2976758.

[2] S. H. Fuller and L. I. Millett, Computing Performance: Game
Over or Next Level?, Computer 44/1 (2011) 31-.38.

[3] G. M. Amdahl, Validity of the Single Processor Approach
to Achieving Large-Scale Computing Capabilities, in: AFIPS
Conference Proceedings, Vol. 30, 1967, pp. 483–485. doi:

10.1145/1465482.1465560.

[4] J. Yang et al., Making Parallel Programs Reliable with Stable
Multithreading COMMUN ACM 57/3(2014)58-69

[5] U. Vishkin, Is Multicore Hardware for General-Purpose Paral-
lel Processing Broken?, COMMUN ACM, 57/4(2014)p35

[6] K. Hwang, N. Jotwani, Advanced Computer Architecture: Par-
allelism, Scalability, Programmability, 3rd Edition, Mc Graw
Hill, 2016.

[7] Schlansker, M.S. and Rau, B.R. EPIC: Explicitly Parallel In-
struction Computing, Computer 33(2000)37–45

[8] D. J. Lilja, Measuring Computer Performance: A practitioner’s
guide, Cambridge University Press, 2004.

[9] Singh, J. P. et al, Scaling Parallel Programs for Multiprocessors:
Methodology and Examples, Computer 27/7(1993),42–50

[10] Arvind and Iannucci, Robert A., Two Fundamental Issues in
Multiprocessing 4th International DFVLR Seminar on Foun-
dations of Engineering Sciences on Parallel Computing in
Science and Engineering (1988)61–88

[11] Mahlke, S.A. and Chen, W.Y. and Chang, P.P. and Hwu, W.-
M.W., Scalar program performance on multiple-instruction-
issue processors with a limited number of registers Proceed-
ings of the Twenty-Fifth Hawaii International Conference on
System Sciences (1992)34 - 44

[12] D. Tsafrir, The context-switch overhead inflicted by hardware
interrupts (and the enigma of do-nothing loops), in: Pro-
ceedings of the 2007 Workshop on Experimental Computer
Science, ExpCS ’07, ACM, New York, NY, USA, 2007, pp. 3–3.
URL http://doi.acm.org/10.1145/1281700.1281704

[13] Luiz Andr Barroso and Urs Hlzle, The Case for Energy-
Proportional Computing Computer 40(2007)33–37

[14] ”Babaolu, zalp and Marzullo, Keith and Schneider, Fred B.”,
”A formalization of priority inversion” Real-Time Systems,
5/4(1993)285303

[15] ”L. Sha and R. Rajkumar and J.P. Lehoczky”, ”Priority inher-
itance protocols: an approach to real-time synchronization”
IEEE Transactions on Computers, 39/4(1990)1175–1185

[16] S. Krishnaprasad, Uses and Abuses of Amdahl’s Law, J.
Comput. Sci. Coll. 17 (2) (2001) 288–293.
URL http://dl.acm.org/citation.cfm?id=775339.

775386

[17] F. Dévai, The Refutation of Amdahl’s Law and Its Variants,
in: O. Gervasi, B. Murgante, S. Misra, G. Borruso, C. M. Torre,
A. M. A. Rocha, D. Taniar, B. O. Apduhan, E. Stankova, A. Cuz-
zocrea (Eds.), Computational Science and Its Applications –
ICCSA 2017, Springer International Publishing, Cham, 2017,
pp. 480–493.

[18] J. M. Paul, B. H. Meyer, Amdahl’s Law Revisited for Single
Chip Systems, INT J of Parallel Programming 35 (2) (2007)
101–123.

[19] J. Végh, P. Molnár, How to measure perfectness of paral-
lelization in hardware/software systems, in: 18th Internat.
Carpathian Control Conf. ICCC, 2017, pp. 394–399.

[20] A. H. Karp, H. P. Flatt, Measuring Parallel Processor Perfor-
mance, COMMUN ACM 33 (5) (1990)Inherent Sequential-
ity:2012 539–543. doi:10.1145/78607.78614.

[21] F. Ellen, D. Hendler, N. Shavit, On the Inherent Sequentiality
of Concurrent Objects, SIAM J. Comput. 43 (3) (2012) 519536.

[22] L. Yavits, A. Morad, R. Ginosar, The effect of communication
and synchronization on Amdahl’s law in multicore systems,
Parallel Computing 40 (1) (2014) 1–16.

[23] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo, D. Prountzos, X. SuiThe Tao of Parallelism
in Algorithms, SIGPLAN Not. 46 (6) (2011) 12–25.

[24] I. Markov, Limits on fundamental limits to computation, Na-
ture 512(7513) (2014) 147–154.

[25] Sun, Xian-He and Gustafson, John L., Toward a Better Parallel
Performance Metric Parallel Comput., 17/10-11(1991)1093–
1109

[26] D.A. Patterson and J.L. Hennessy, Computer Organization and
design. RISC-V Edition, (2017) Morgan Kaufmann

[27] S. Orii, Metrics for evaluation of parallel efficiency to-
ward highly parallel processing ”Parallel Computing ”
36/1(2010)16–25

[28] P. Molnár and J. Végh, Measuring Performance of Processor
Instructions and Operating System Services in Soft Processor
Based Systems. 18th Internat. Carpathian Control Conf. ICCC
(2017)381–387

[29] Randal E. Bryant and David R. O’Hallaron, Computer Sys-
tems: A Programmer’s Perspective (2014) Pearson

[30] J. Végh, Statistical considerations on limitations of supercom-
puters, CoRR abs/1710.08951.

[31] W. Sheng et al., A compiler infrastructure for embed-
ded heterogeneous MPSoCs Parallel Computing volume =
40/2(2014)51-68

www.astesj.com 157

http://dx.doi.org/DOI:10.1145/2976758
http://dx.doi.org/DOI:10.1145/2976758
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1281700.1281704
http://dl.acm.org/citation.cfm?id=775339.775386
http://dl.acm.org/citation.cfm?id=775339.775386
http://dl.acm.org/citation.cfm?id=775339.775386
https://doi.org/10.1007/s10766-006-0028-8
https://doi.org/10.1007/s10766-006-0028-8
http://doi.acm.org/10.1145/78607.78614
http://doi.acm.org/10.1145/78607.78614
http://dx.doi.org/10.1145/78607.78614
http://arxiv.org/abs/1710.08951
http://arxiv.org/abs/1710.08951
http://www.astesj.com


J. Végh et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 141-158 (2019)

[32] L. de Macedo Mourelle, N. Nedjah, and F. G. Pessanha, Recon-
figurable and Adaptive Computing: Theory and Applications.
CRC press, 2016, ch. 5: Interprocess Communication via
Crossbar for Shared Memory Systems-on-chip.

[33] Mohammadi, M. and Bazhirov, T., Comparative Benchmark-
ing of Cloud Computing Vendors with High Performance
Linpack Proceedings of the 2nd International Conference on
High Performance Compilation, Computing and Communica-
tions (2018)1–5

[34] E. Wustenhoff and T. S. E. Ng, Cloud
Computing Benchmark(2017) https://www.

burstorm.com/price-performance-benchmark/

1st-Continuous-Cloud-Price-Performance-\

Benchmarking.pdf

[35] IEEE Spectrum, Two Different Top500 Supercomputing
Benchmarks Show Two Different Top Supercomputers,
https://spectrum.ieee.org/tech-talk/computing/

hardware/two-different-top500-supercomputing-\

benchmarks-show-two-different-top-\supercomputers

(2017).

[36] J. Dongarra, Report on the Sunway TaihuLight System, Tech.
Rep. Tech Report UT-EECS-16-742, University of Tennessee
Department of Electrical Engineering and Computer Science
(June 2016).

[37] Robert F. Service, Design for U.S. exascale computer takes
shape, Science, 359/6376(2018)617–618

[38] US DOE, The Opportunities and Challenges of Exascale
Computing, https://science.energy.gov/˜/media/ascr/
ascac/pdf/reports/Exascale_subcommittee_report.pdf

(2010).

[39] European Commission, Implementation of the Action
Plan for the European High-Performance Computing strat-
egy, http://ec.europa.eu/newsroom/dae/document.cfm?

doc_id=15269 (2016).

[40] Extremtech Japan Tests Silicon for Exascale Computing
in 2021. https://www.extremetech.com/computing/

272558-japan-tests-silicon-for-exascale-\

computing-in-2021

[41] X Liao, Kaiet al Moving from exascale to zettascale comput-
ing: challenges and techniques. Frontiers of Information Tech-
nology & Electronic Engineering 567 19(10) pp: 1236–1244
(2018)

[42] F. Zheng, H.-L. Li, H. Lv, F. Guo, X.-H. Xu, X.-H. Xie, Coopera-
tive computing techniques for a deeply fused and heteroge-
neous many-core processor architecture, Journal of Computer
Science and Technology 30 (1) (2015) 145–162.

[43] Ao, Yulong et al Performance Optimization of the HPCG
Benchmark on the Sunway TaihuLight Supercomputer ACM
Trans. Archit. Code Optim. 15/1(2018)1-20

[44] S. Eyerman, L. Eeckhout, Modeling Critical Sections in
Amdahl’s Law and Its Implications for Multicore Design,
SIGARCH Comput. Archit. News 38 (3) (2010) 362–370.

[45] HPCG Benchmark, http://www.hpcg-benchmark.org/

(2016).

[46] J. Dongarra, The Global Race for Exascale High Perfor-
mance Computing(2017) http://ec.europa.eu/newsroom/
document.cfm?doc_id=45647

[47] Tim Dettmers, The Brain vs Deep Learning Part I:
Computational Complexity Or Why the Singularity Is
Nowhere Near (2015) http://timdettmers.com/2015/07/

27/brain-vs-deep-learning-singularity/

[48] TOP500.org, TOP500 Supercomputer Sites.
URL https://www.top500.org/

[49] J. Williams et al, Computational density of fixed and reconfig-
urable multi-core devices for application acceleration Proceed-
ings of Reconfigurable Systems Summer Institute, Urbana, IL,
(2008)

[50] J. Williams et al, Characterization of Fixed and Reconfigurable
Multi-Core Devices for Application Acceleration ACM Trans.
Reconfigurable Technol. Syst. volume = 3/4(2010) 19:1–19:29

[51] Lee, Victor W. et al, Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU
Proceedings of the 37th Annual International Symposium on
Computer Architecture ISCA ’10(2010)451–460,

[52] J. Végh How Amdahl’s Law limits the performance of large
neural networks Brain Informatics, in review (2019).

[53] van Albada, Sacha J. and Rowley, Andrew G. and Senk, Jo-
hanna and Hopkins, Michael and Schmidt, Maximilian and
Stokes, Alan B. and Lester, David R. and Diesmann, Markus
and Furber, Steve B., Performance Comparison of the Digital
Neuromorphic Hardware SpiNNaker and the Neural Network
Simulation Software NEST for a Full-Scale Cortical Microcir-
cuit Model, Frontiers in Neuroscience 12(2018)291

[54] S. B. Furber et al, Overview of the SpiNNaker System Architec-
ture IEEE Transactions on Computers 62/12(2013)2454-2467

[55] Ippen, Tammo and Eppler, Jochen M. and Plesser, Hans E. and
Diesmann, Markus, Constructing Neuronal Network Models
in Massively Parallel Environments, Frontiers in Neuroinfor-
matics 11 (2017) 30-41.

[56] J. Végh, Renewing computing paradigms for more efficient
parallelization of single-threads, Vol. 29 of Advances in Paral-
lel Computing, IOS Press, 2018, Ch. 13, pp. 305–330.

[57] Intel, Looking Ahead to Intels Secret Exascale Ar-
chitecture (2017), https://www.nextplatform.com/

2017/11/14/looking-ahead-intels-secret-exascale\

-architecture/

[58] Intel Intels Exascale Dataflow Engine Drops X86 And
Von Neumann (2018) http://www.freepatentsonline.com/
y2018/0189231.html

[59] Intel, Processors, methods and systems with a configurable
spatial accelerator (2018) http://www.freepatentsonline.
com/y2018/0189231.html

[60] European Community, The European Processor Ini-
tiative (EPI) to develop the processor that will be
at the heart of the European exascale supercom-
puter effort (2018) http://e-irg.eu/news-blog/-/

blogs/the-european-processor-initiative-epi\

-to-develop-the-processor-that-will-be\

-at-the-heart-of-the-european-exascale-\

supercomputer-effort

[61] GlobalFoundries Inc, Administering inter-core communica-
tion via shared memory (2013) https://patents.google.

com/patent/US9223505

[62] J. Congy, et al, Accelerating Sequential Applications on CMPs
Using Core Spilling, Parallel and Distributed Systems 18
(2007) 1094–1107.

[63] ARM, big.LITTLE technology (2011).
URL https://developer.arm.com/technologies/

big-little

[64] Intel, Switchable topology machine (2018) https://patents.
google.com/patent/US20180113838A1

[65] Nokia, Method, apparatus, and computer program product
for parallel functional units in multicore processors, (2013)
https://patents.google.com/patent/US20130151817A1/

[66] J. Végh, Introducing the explicitly many-processor approach,
Parallel Computing 75 (2018) 28 – 40.

[67] M. Kistler et al, Cell multiprocessor communication network:
Built for speed, IEEE Micro 26/3 (2006) 10–23.

[68] J. Végh, EMPAthY86: A cycle accurate simulator for Explicitly
Many-Processor Approach (EMPA) computer.

doi:10.5281/zenodo.58063).
URL https://github.com/jvegh/EMPAthY86

www.astesj.com 158

https://www.burstorm.com/price-performance- benchmark/1st-Continuous-Cloud-Price-Performance-\ Benchmarking.pdf
https://www.burstorm.com/price-performance- benchmark/1st-Continuous-Cloud-Price-Performance-\ Benchmarking.pdf
https://www.burstorm.com/price-performance- benchmark/1st-Continuous-Cloud-Price-Performance-\ Benchmarking.pdf
https://www.burstorm.com/price-performance- benchmark/1st-Continuous-Cloud-Price-Performance-\ Benchmarking.pdf
https://spectrum.ieee.org/tech-talk/computing/ hardware/two-different-top500-supercomputing-\ benchmarks-show -two-different-top-\supercomputers
https://spectrum.ieee.org/tech-talk/computing/ hardware/two-different-top500-supercomputing-\ benchmarks-show -two-different-top-\supercomputers
https://spectrum.ieee.org/tech-talk/computing/ hardware/two-different-top500-supercomputing-\ benchmarks-show -two-different-top-\supercomputers
https://science.energy.gov/~/media/ascr/ ascac/pdf/reports/Exascale_subcommittee_report.pdf
https://science.energy.gov/~/media/ascr/ ascac/pdf/reports/Exascale_subcommittee_report.pdf
http://ec.europa.eu/newsroom/dae/document.cfm? doc_id=15269
http://ec.europa.eu/newsroom/dae/document.cfm? doc_id=15269
https://www.extremetech.com/computing/ 272558-japan-tests-silicon-for-exascale-\computing-in-2021
https://www.extremetech.com/computing/ 272558-japan-tests-silicon-for-exascale-\computing-in-2021
https://www.extremetech.com/computing/ 272558-japan-tests-silicon-for-exascale-\computing-in-2021
https://doi.org/10.1007/s11390-015-1510-9
https://doi.org/10.1007/s11390-015-1510-9
https://doi.org/10.1007/s11390-015-1510-9
http://doi.acm.org/10.1145/1816038.1816011
http://doi.acm.org/10.1145/1816038.1816011
http://www.hpcg-benchmark.org/
http://ec.europa.eu/newsroom/document.cfm? doc_id=45647
http://ec.europa.eu/newsroom/document.cfm? doc_id=45647
http://timdettmers.com/2015/07/27/brain-vs-deep- learning-singularity/
http://timdettmers.com/2015/07/27/brain-vs-deep- learning-singularity/
https://www.top500.org/
https://www.nextplatform.com/2017/11/14/looking- ahead-intels-secret-exascale\-architecture/ 
https://www.nextplatform.com/2017/11/14/looking- ahead-intels-secret-exascale\-architecture/ 
https://www.nextplatform.com/2017/11/14/looking- ahead-intels-secret-exascale\-architecture/ 
http://www.freepatentsonline.com/ y2018/0189231.html 
http://www.freepatentsonline.com/ y2018/0189231.html 
http://www.freepatentsonline.com/ y2018/0189231.html 
http://www.freepatentsonline.com/ y2018/0189231.html 
http://e-irg.eu/news-blog/-/blogs/the-european- processor-initiative-epi\-to-develop-the-processor- that-will-be\-at-the-heart-of-the-european -exascale-\ supercomputer-effort 
http://e-irg.eu/news-blog/-/blogs/the-european- processor-initiative-epi\-to-develop-the-processor- that-will-be\-at-the-heart-of-the-european -exascale-\ supercomputer-effort 
http://e-irg.eu/news-blog/-/blogs/the-european- processor-initiative-epi\-to-develop-the-processor- that-will-be\-at-the-heart-of-the-european -exascale-\ supercomputer-effort 
http://e-irg.eu/news-blog/-/blogs/the-european- processor-initiative-epi\-to-develop-the-processor- that-will-be\-at-the-heart-of-the-european -exascale-\ supercomputer-effort 
http://e-irg.eu/news-blog/-/blogs/the-european- processor-initiative-epi\-to-develop-the-processor- that-will-be\-at-the-heart-of-the-european -exascale-\ supercomputer-effort 
https://patents.google.com/patent/US9223505 
https://patents.google.com/patent/US9223505 
https://developer.arm.com/technologies/big-little
https://developer.arm.com/ technologies/big-little
https://developer.arm.com/ technologies/big-little
https://patents.google.com/patent/US20180113838A1 
https://patents.google.com/patent/US20180113838A1 
https://patents.google.com/patent/US20130151817A1/ 
https://github.com/jvegh/EMPAthY86
http://www.astesj.com

	Introduction
	Some architectural issues
	The theoretical parallelism and limits of its technical implementation
	Multitasking

	Amdahl's Law and model for parallelized systems
	Amdahl's Law
	Amdahl's idea
	Deriving the effective parallelization
	The original assumptions
	The additional factors considered here

	A simplified model for parallel operation
	The performance losses
	The principle of the measurements
	The formal introduction of the model
	Access time
	Execution time

	Fields of application
	Load balancing
	SoC communication method
	Supercomputer performance design
	Cloud services


	Limitations of parallelization
	The inherent limit of parallelization
	Benchmarking the performance of a complex computing system

	Supercomputing
	Describing the development of supercomputing
	Predictions of supercomputer performance for the near future
	What factors dominate the performance gain

	How to proceed after reaching limits of parallelization
	Summary

