

www.astesj.com 211

A Critical Analysis of Topics in Software Architecture and Design

Janet Bishung, Ooreofe Koyejo, Adaugo Okezie, Boma Edosomwan, Sylvester Ani, Abisola Ibrahim, Austin Olushola, Isaac Odun-
Ayo*

Department of Computer and Information Sciences, Covenant University, Ogun State, Nigeria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 20 January, 2019
Accepted: 07 March, 2019
Online: 27 March, 2019

 Software architecture and design is an important component in the software engineering
field. This aspect of software engineering covers the functional and non-functional
requirements of any system being proposed to be developed, while software architecture
deals with non-functional requirements, software design entails the functional
requirements.
The objective of this paper is to critically analyze current topics in Software architecture
and design. The method of analysis involved the use of inclusion and exclusion criteria of
papers published in journals and conferences. These papers were accessed from digital
libraries like ScienceDirect, and IEEE explore, with a quantitative approach of analysis
been imbibed. From the analysis, the result showed that, of 35 papers used in analysis,
34.3% discussed stakeholders’ involvement and decisions in software design. 17.1% for
design quality, 20% examined software reuse while 11.4% discussed software evaluation
and 8.6% of papers reviewed discussed software management, evolution and software
development life cycle each which should be more focused as it is the fundamentals of
software design and architecture. From the analysis derived, stakeholder’s involvement
and decision in software design is an integral part in software building for effective use.
Thereby making researchers dwell more on the topic. The least discussed topics was due to
the expectations of researchers. Expecting readers to have a fore knowledge of the
fundamentals of design which includes software management, evolution and software
development life cycle.

Keywords:
Software Architecture
Software Design
Service Oriented Architecture
Design Patterns

1. Introduction

 Software Architecture gives the high-level description of a
software and the discipline of creating the structures and systems
[1]. It gives blueprint for the system, laying out tasks to be
executed in a logical manner through the design [2]. It is the
fundamental structural choices made vis a vis the business needs
of the organization which may be costly to change once
implemented [3]. Although there are no standard procedures to
follow in software architecture that can address all issues of
concern in general software development, certain factors should be
of utmost non-negotiable fundamentals in software development,
to ensure standardization thereby avoiding incessant collapse of
systems witnessed in the early years of software developments [4].
Among the factors that will be enumerated briefly is the factor of
proper documentation. This facilitates communication among

stakeholders, captures decisions about the structures of the task and
the design options – focusing on the decisions that must be right
from the onset, otherwise, the imminent collapse of such system
will be devastating– [5]. Since software architecture is largely
driven by the required or expected functionalities, the current
insight to software architecture is that required functionalities
should reflect or incorporate all the quality attributes which include
fault-tolerance, reliability, backward compatibility, extensibility,
availability, maintainability, usability, security amongst others.
Stakeholders concerns should reflect these quality attributes at
both non-functional and functional stages without recourse to extra
cost.

Software design envisions and defines software solutions to
problem sets. It involves a sequence of steps that describe all
aspects of the software in development [6]. Here, solutions to the
problem the software is to solve are expressed in a logical sequence
with details of their relationships. It begins with describing the
total components to be built, then refine them to every detail. It is

ASTESJ

ISSN: 2415-6698

*Isaac Odun-Ayo, Covenant University, +2348028829456
isaac.odunayo@covenantuniversity.edu.ng

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com

Special Issue on Advancement in Engineering and Computer Science

https://dx.doi.org/10.25046/aj040228

http://www.astesj.com/
mailto:isaac.odunayo@covenantuniversity.edu.ng
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040228

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 212

the physical expression of all the processes that create solutions
according to stakeholders’ expectations. The designs are taken
within the confines of fundamental principles which ensure
designs are traceable to requirement analysis, uniformity,
integration, structured for change etc. This ensures standardization
while addressing the business objectives and stakeholders’ needs
[7]. In general, software development is dependent on time and
cost and the design option should reflect these critical factors.

Software Design addresses all the expected required
functionalities of the business objectives. This includes
specifications of services, components, integration, data models
and algorithms. Meanwhile, Software Architecture addresses
design standard ensuring that it aligns with stated strategy as it
pertains to business and technology of an organization. This
includes considerations such as compliance, technology standards
and operational efficiency. An architecture designed is intended to
prevent repetitive mistakes in design or inconsistency with other
aspects of the organization. It could be said that architecture is
global optimization of software and design is local optimization
[8]. In general, software architecture provides standardization
upon which software designs are tailored.

Software architecture and software design are extremely
important for a software project. So, here are brief points
highlighting benefits of software architecture & design; solid
foundation for software project, scalability of platform, increase
performance, identification of area of cost savings, vision
implementation, increase quality, better code maintainability,
prioritization of goals, higher adaptability, faster platform, risk
management and enable quicker changes among many others [9].

This study is aimed at helping researchers to have an in-depth
knowledge of the fundamental as well as critical topics involved in
software architecture and design of proposed and existing systems.
It would also help in uncovering the critical gaps in which many
researchers were not able to explore thereby improving knowledge
as regards software architecture and design. The objective of this
paper is to conduct a critical analysis on current topics in Software
architecture and design. Published papers and articles on the topics
discussed in the paper were reviewed with the percentages of each
topic in relation to others were calculated.

Other parts of the paper are organized as follows: Section 2
gives review of some related work done, Section 3 gives a
highlight on software architectural styles, Section 4 discusses
Software Oriented Architecture, Section 5 is a discussion on
Design Patterns; section 6 presents the results and discussion of the
major topics selected for analysis from literatures. Section 7 gives
a conclusion of the paper with recommendations for future work.

2. Related Work

In [10], the importance of software architecture as a vital aspect
of software development was examined. The paper explored two
important components, software evolution and re-usability. These
are very critical component that helps curb the huge expenses
involved in the development of software. Software architecture
that can be evolved and reused should be in high demand, as
software evolution and reuse are more likely to receive higher pay-

off. [11] considers the fact that researchers cannot overlook the
year’s technology as well as the fact that software architecture
employs fully detailed explorations of notations, techniques,
analysis, tools and creation methods. There exist an intersection
and interrelationship of software architecture with the study of
software design, domain-specific design, program analysis,
software families, specific classes of components and component-
based reuse. The comparative analysis of software evolution
methods in [12] explains the systematic comparison between
architecture models and evolution methods centering its base on
the scenario-based approach of software architecture.

The review on the successes and failure for software
architecture in [13], gives insight into software architecture
development and management process. It assesses previous
literature and experiences to identify the factors that cause success
and failure for software architecture and classifying these factors
into subgroups as indicated by practitioners. [14] proposed a
different methodology as a guide for practitioners supporting
software architecture and design in an agile environment.
Highlights of phases in software design process were covered,
tools and techniques were proposed to implement those phases.
Architectural design decisions and knowledge in [15], examine the
essence of reusable architectural knowledge and the importance of
documenting quality attributes along with the decisions captured
during architectural design.

In [16], the concept of sustainability was introduced for
software design. It was essential in integrating it into the existing
catalog of design quality attributes. This was because design is a
key factor in software development and this has been noted by
many researchers. The information produced during software
design tends to evaporate progressively due to certain conditions
like software evolution. [17] considered all developed software
need to meet required and specified quality standards as requested
by users or stakeholders, quality being a major issue in software
systems today. To achieve the quality requirements, different
analysis approach was explored and a critical evaluation of the
software system was carried out. This was to analyze the
architecture, thereby verifying that quality requirements have been
duly addressed in the design.

From an in-depth review of System Development
Methodologies (SDMs) conducted by [18], a list of the important
features in each methodology was made. Despite several SDMs,
most of them share similar activities which include well known
and practiced requirements-analysis, design, codification-test and
implementation, all put together in project management. Four
stages in the evolution of SDMs were reported which include pre-
methodologies, rigor-oriented methodologies, agile-oriented
methodologies and emergent service-oriented methodologies.
Well-recognized SDMs in software engineering include Rational
Unified Process, Microsoft Solutions Framework and Model-
based (system) architecting and software engineering.

The software architecture chosen in the development of a
software product is dependent on the software requirements and
constraints. A Design Association Theory (DAT) to show the
causal relationship of why a design should exist was proposed by
[19] for associating design concerns, design problems and design
solutions. DAT proposes a five-step association-based design

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 213

review process, which includes the extraction of requirements,
extraction of design, construction of causal relationship between
design elements and design solutions, discovery of potential design
issues and verification and confirmation of design issues with
architects. In documenting design decisions and design reasoning
for objective evaluation, architects also utilize DAT. The DAT
model helps designers and reviewers in associating architectural
knowledge.

3. Software Architectural Styles

Architectural Styles are principles which shapes an application.
It is more of an abstract framework of a system in the area of its
organization. There are six major types of architectural styles.
Namely:

3.1 Dataflow Architecture

 In this, all software systems are categorized as lists of shifts on
chronological set of input data, where data and operations are
independent of each other. When data enters this system, it flows
through the modules one at a time until they are assigned to some
final destination [20]. Its aim is to achieve the qualities of reuse
and immovability and is suitable for applications involving series
of independent data computations on orderly defined input and
output. There are three execution sequences between modules that
the data flow architecture uses; Batch sequential, Pipe and filter or
non-sequential pipeline mode and the Process control [20].

3.2 Data-centered Architecture

Data is centralized in this form of architecture and accessed
frequently by other components that modify data. Its main purpose
is achieving integrality of data. It contains different components
that communicate using shared data repositories. The components
access a shared data structure and are independent, meaning, they
interact only through the data store. The flow of control sums the
types of Data-centered architecture into two types; The repository
and the blackboard architecture style. This form of architecture is
mostly used in information system [20].

3.3 Hierarchical architecture

 This views the whole system as a hierarchy structure whereby
software systems are decomposed into subsystems at different
levels in the hierarchy. It is mostly used in designing system
software such as network protocols and operating systems. [20].

3.4 Interaction oriented architecture

 The main aim of the interaction-oriented architecture is to separate
users’ interaction from data abstraction and business data
processing. It divides the system into three major partitions: Data
module (which provides the data abstraction and all business
logic.), Control module (Which identifies the flow of control and
system configuration actions) and the View presentation module
(This is responsible for the visual or audio presentation of data
output. It has two major styles: Model-View-Controller (MVC)
and The Presentation-Abstraction-Control (PAC) [20].

3.5 Component based architecture

 It is an architecture that decomposes software designs into
functional components with their own methods, events and
properties. These components become loosely coupled and

reusable to provide modular programs that can be tailored to fit any
need. [21]

3.6 Distributed architecture

This is a form of architecture that sits in the middle of a system and
manages or supports the different components of that distributed
system. Its aim is transparency, reliability, and availability. It hides
the way in which resources are accessed and the differences in data
platform, the resource location, different technologies from users,
failures and resource recovery and a host of others. [20]. It is the
most widely used form of architecture as it aligns with the
technological advancement of the 21st century. Software
development has improved greatly with the introduction of the
internet. Software is now been distributed, components been
reused, as well as introduction of concurrency and simultaneous
change in the modification of data. These are the major advantages
of the distributed architecture which has made it a common form
of architecture in time past. [20]. There are different types of
Distributed Architecture;

3.6.1 Broker Architecture: Mostly used to coordinate and enable
the communication between registered servers and clients more
like a software bus [20].

3.6.2 Client-server Architecture: Is commonly used by search
engines, web servers, mail servers, it is mostly based on the
functionality of the clients that is, requesting services of other
components. The Service Oriented Architecture is a major sub-
division of this. It supports business-driven Information
Technology (IT) approach in which an application consists of
software services and software service consumers. It has the ability
to develop new functions rapidly which makes it mostly used along
with its basic features which would be explained in the next section.
[22]

Service Oriented Architecture would be further discussed due to
its relevance in the current IT revolution. It is a known fact that
cloud computing has come to stay and due to the integration ability
of Service Oriented Architecture it has become a yardstick in the
cloud computing revolution as their technologies have become
more like bridges to the cloud.

4. Service Oriented Architecture (SOA)

SOA is a software architecture and design styles that entails the
use of services as its main building component [23]. A service (as
a software component), is a technique that allows access to several
capabilities. SOA is now a mainstream software development
mechanism. Despite the introduction of new architectural variants
like cloud computing or micro-services [24], SOA is still widely
used. This is due to its support for fast building applications using
assembling of Internet-accessible services, allowing software
organizations to hasten the development of distributed applications
as well as a result time-to-market. After all this, a service is simply
a distinct unit of performance that specifies a business function.
This simply means it relies on Web Services for its implementation
[24].

SOA carries out two core functions. Which are creating broad
architectural models that explain application goals, including the
approaches that help meet the goals. The second function is it
defines the implementation specifications, which is mostly

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 214

integrated to the Web Services Description Language (WSDL) and
the Simple Object Access Protocol (SOAP) specifications [25].

4.1 Major Principles of SOA

The major principles of SOA are [26]:

i. Regulate Service Contract - In this, there must be a form
of description that explains what the service is about. This
makes it easier for the client applications to understand
what the service is meant to do.

ii. Loose Coupling –It entails components having little or no
dependency on each other. This is a major characteristic
of web services that emphasizes that there should be less
dependency between web services and the client
initiating this web service. Therefore, if any service
functionality changes at any point in time, it should not
hinder the client application from working.

iii. Service Abstraction - In this, service is ought to
encapsulate its procedures and not expose how it executes
its functionality. Explaining to the client application what
it does and not how it does it for security purposes.

iv. Service Re-usability - Logic is separated into services
with the aim of increasing reuse capability. In any
technology, re-usability is a major issue as no one would
want to spend time and effort writing the same codes
again for multiple applications that require them.

v. Service Autonomy -The service knows everything about
the application or system and what functionality it offers
so it has complete control over the source code it
encompasses.

vi. Service Statelessness - Superlatively, services ought to be
stateless. Meaning they should not withhold any form of
information from one state to the other.

vii. Service Discoverability - Services can be identified in a
service registry. A service registry is a resource that
allows controlled access to data for the controlling of
SOA.

viii. Service Composability - It splits big issues into little ones.
It is to be noted that not all functions should be embedded
in an application and moved into one single service.
Instead the service should be split into modules each
having separate business functionalities.

ix. Service Interoperability - Services should accept and
make use of various standards allowing different
subscribers to use their various service.

For the implementation of SOA to be a success, you would
need a productive SOA method that explains the plans, discoveries,
procedures and the selected goals [26].

The integration platform for SOA plays a crucial role in the
merging of existing application to cloud services. With SOA,
components were split into services that became re-usable and easy
to use among several systems. This is similar to the system means
used in the automotive industry, where different layouts/systems
share the same components e.g. engines. Cloud computing is re-
vamping the IT world as we know it. The IT systems are utilized

by users and companies. In the automotive industry, owners do not
need to buy their own vehicles but can use car-sharing services.
These service providers show the cars to several drivers.
Comparably, in IT, a cloud service provider acts as a middle man
and merges several clouds. Existing IT systems that require
combination with new cloud-based solutions or inter-mediated are
resolved using cloud service providers [37].

Cloud computing is re-modelling the IT industry and how its
services are utilized, just like how petrol is soon going extinct in
the automotive industry. Electric cars are now in use even as we
use petroleum-based cars. As IT companies continue to make use
of more cloud technologies the SOA technologies will continue to
serve as bridges to the cloud.

Micro-service-based software architecture is the re-
industrialized application of the SOA model. The components are
developed as services using Application Programming Interfaces
(API), just like the SOA would require. An API broker serves as a
mediator to access components, ensuring SOA security and
governance practices are followed.

SOA principles have taken us to the cloud and aides the most
improved version of cloud software development techniques in use
today. [27]

4.2 Advantages of SOA [28]

• Services can be reused in multiple applications
independent of their interactions with other services.

• Due to service in-dependency, services can be easily
updated or maintained without having to worry about
other services.

• SOA-based applications are more reliable since they are
small independent services that are easier to test and
debug.

• Multiple instances of a single service can run on different
servers at the same time.

• It improves Software Quality.

4.3 Disadvantages of SOA [28]

• Every time a service interacts with another service,
complete validation of every input parameter takes place.
This increases the response time and machine load, and
thereby reduces the overall performance.

• There would be high investment cost as implementation
of SOA requires a large upfront investment by means of
technology, development, and human resource.

5. Design Patterns

Software design could be considered the most important aspect
of software development as well as the most difficult process in a
software development life cycle. Over the years, based on
experience, programmers have embodied and recommended
demonstrated results to fulfill the persistent issues that arise during
design. Accordingly, the experience-based clarifications are
composed and acknowledged as a consistent model for designs
patterns [29]. Various design patterns have been presented and
classified either as a sanctioned or a variation key to take care of
design issues. The current programmed systems for design
pattern(s) options help fledgling programmers to choose the more

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 215

proper pattern(s) from the rundown of relevant examples, to tackle
an issue during the design period of software that is been
developed. [29]

In software engineering, a design pattern is a general repeatable
result for an ordinarily happening issue in programming structure
[30]. Design patterns are used to ensure reuse of software design
solutions in the early phases of software development, especially
in the requirements engineering phase. Patterns do not provide
visible solutions, but they present the concepts from which
solutions are derived [31]. Design patterns have been introduced
for defining good practices in software design [33]. Design
patterns can be used in requirements engineering as patterns exist
for core activities of a process. Design patterns are not pure
inventions like a light bulb or a car. They are derived patterns that
software engineers and architects found, that could be standardized
to be used to solve similar problems categorized across three major
areas; creational, structural and behavioral. When we determine
the proper structure design for a task or issue, it helps us avoid
changes that would require budgetary expenses, untenable,
multiple and inefficient codes as the system scales up [32].

5.1 Classification and Selection of Design Patterns

The intrigue and involvement of programmers are utilized to
present recent arrangement plans for the association of design
patterns of specific concerns like object-oriented development and
real-time applications [30]. The outline of current efforts describes
the number of important categories of design patterns which relies
upon the sort and multifaceted nature of target issues. For instance,
[33] introduced three important classifications namely behavioral,
creational, and structural in the setting of object-oriented
advancement to solve recurring issues. In a specific circumstance
of working applications, [30] introduced a catalog of thirty-four
patterns, which are divided into five categories based on their
relevance. In this paper, we would consider the object-oriented
advancement categories.

A. Creational Design Patterns

Creational design patterns manage object creation systems
attempting to make questions in a way that suits the circumstance.
The essential type of object creation could result in design issues
or added intricacy to the design. Creational design patterns take
care of this issue by controlling this object creation [30]. These
patterns can be further divided into class-creation patterns and
object-creation patterns. Class-creation patterns use legacy viably
in the instantiating of procedures while object-creation designs use
assignment adequately to take care of business [35]. Creational
design patterns are singleton, abstract factory, prototype, factory
method, builder and object pool [31].

B. Structural patterns

Structural Design Patterns are used to ease a design by
recognizing a straightforward method to acknowledge
relationships [30]. These design patterns are tied in with sorting
out various classes and object to frame bigger structures and give
new usefulness [35].

C. Behavioral patterns

Behavioral design patterns are design patterns that identify
basic correspondence designs among object and understands the

patterns. By doing so, these patterns increment adaptability in
doing this correspondence [30]. Behavioral patterns are about
identifying basic correspondence designs among object and
understanding the patterns that exist among them [35].

Figure 1: Diagrammatic Representation of Design Patterns Classification and

Selection [34].

5.2 Design Pattern Topics

Six research design pattern topics concluded by [36] includes;
pattern usage, quality evaluation, pattern mining, pattern
specification, pattern development and miscellaneous issues.

i. Pattern development: This involves any advancements
in design pattern research such as:

a. Proposing a new model or new model language
b. Reviewing model variants, composing models or

elaborating a specific model, model evolution.
c. Arranging current design patterns into distinct

areas.
ii. Pattern usage: this relates to the commitment of utilizing

patterns in the software development process. They are
characterized into two primary groups:

a. Pattern utilization
b. Pattern application

iii. Pattern mining: this includes discovering examples of
the pattern in the code or design of a system. It can be
characterized into two major classes:

a. Introduction
b. Evaluation

iv. Quality Evaluation: the quality and effect of a design
pattern on a system after applying it, is one important
concern developers have. This can be characterized into
two major classes:

a. Pattern evaluation
b. Application evaluation

v. Pattern specification: it includes utilizing distinctive
strategies and notation of representing the patterns. The
two main groups are:

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 216

Figure 2: Design Pattern Research Tree [36]

a. Formal specification schemes
b. Semi-formal specification schemes

vi. Miscellaneous issues: this includes other issues that
cannot fit into any of the previous classifications’ issues
such as re-factoring, code smells and anti-patterns. A
major challenge of design patterns as discussed in [34,38,
39] is the searching and selection of design patterns
before employing a right pattern into the system.

5.3 Pros and Cons of Design Patterns

It is worthy of note that there are very many design patterns
available and a lack of understanding of these patterns pose
problems for designers in software development especially for the
novice [37]. Some of the pros and cons of the design patterns
include:

Pros: [40]
• Easy to adapt and very flexible to predictable changes in

business needs.
• Easy to test unit and validate individual components.
• Can provide organization and structure when business

requirements become very complicated.

Cons: [40]
• Beginner engineers may not understand them, and these can

cause a huge delay in development.
• Oftentimes used improperly without a realistic understanding

of how the software is likely to change.
•It can add memory and processing overhead, sometimes it is

not appropriate for applications such as low-level systems
programming or certain embedded systems.

Design pattern, in general, enhances the nature of a product

framework by giving a demonstrated solution for repeating design
issues [41]. Also, the application of patterns brings about
increment in quality and profitability of the software development
process [31].

6. Results and Discussion

Table 1 shows several topics in software architecture and
design alongside relevant work from several authors. Only one
facet was used in this analysis, which are topics that relate to the
subject (software architecture and design) discussed by these
important authors. These topics were selected using inclusion and
exclusion criteria. The essence of the selection criteria was to
locate and add all papers that are necessary for the analysis. The
inclusion and exclusion criteria were used to eliminate
publications that were not significant to the study. It was observed
that these topics were the most discussed and they also cut across
academics and industry practice. The papers used for this review
were access online from digital libraries like ScienceDirect, and
IEEE explore. The authors and title of publications are listed in
no particular order.

6.1. Software Evolution

Software evolution is the process of developing a software
product, employing software engineering principles and
methods. It follows the initial development of software and
required maintenance. Updates are done till the desired software
product is developed, thereby satisfying the (user) expected
requirements [42]. This process implements changes to the original
software, until the desired software is accomplished. Of the 35
papers used in this analysis, 8.6% of them reported on software
evolution. From table 1, the findings show that software evolution
though an integral part of software development was not
substantially discussed by majority of the literature reviewed
during the course of this study. This implies that there may be a
decrease in research of software evolution.

6.2. Software Reuse

Software reuse involves creating new software systems from
existing software frameworks rather than building software
systems from beginning. This simple yet powerful methodology of
software development was introduced in 1968 and now widely

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 217

Table 1: analysis of software architecture and design topics

Authors

So
ftw

ar
e

Ev
ol

ut
io

n

So
ftw

ar
e

R
eu

se

So

ftw
ar

e
M

an
ag

em
en

t

SD
LC

So
ftw

ar
e

Ev
al

ua
tio

n

St
ak

eh
ol

de
r I

nv
ol

ve
m

en
t/

D
ec

is
io

n
M

ak
in

g

D
es

ig
n

Q
ua

lit
y

Mekni, M., Buddhavarapu,
G., Chinthapatla, S. and
Gangula, M. (2018) “Software
Architectural Design in Agile
Environments”

- - - x x - -

Robillard, M.P. (2016)
“Sustainable Software
development”

- - x - - - x

I. Lytra, G. Engelbrecht, D.
Schall and U. Zdun (2015)
“Reusable Architectural
Decision Models for Quality-
driven Decision Support: A Case
Study from a Smart Cities
Software Ecosystem”

- x - - - - x

A. Ramirez, J. R. Romero and
S. Ventura (2018) “Interactive
multi-objective evolutionary
optimization of software
architectures”

- - - - - - -

O. Sievi-Korte, S. Beecham
and I. Richardson (2018)
“Challenges and recommended
practices for software
architecting in global software
development”

- - x - - - -

N. Hamalainen, J. Markkula,
T. Ylimaki and M. Sakkinen
(2006) “Success and Failure
Factors for Software
Architecture”

- - x - x - -

A. Alhar, R. Mazamal and F.
Azam (2016) “A Comparative
Analysis of Software
Architecture Evaluation
Methods”

- - - - x - -

David Garlan. (2000)
“software architecture”

- - - - - - -

R.Kazman, C.H Lung, (1997)
“An approach to software
architecture analysis for
evolution and reusability”

x x - - - - -

Smrithi Rekha V and Henry
Muccini, (2018) “Group
decision-making in software
architecture: A study on
industrial practices”

- - - - - x -

Hans van Vliet and Antony
Tang, (2016) “Decision making
in software architecture”

- - - - - x -

R.Kazman, C.-H. Lung, s.
Bot, and K. kalaichelvan
(1997) “An approach to software
architecture analysis for
evolution and reusability”

x

x

- - - - -

M.Shaw, and
P.Clements(2006) “The golden
age of software architecture: a
comprehensive survey.”

- - - - - x -

H.V. Mohammad, A. Bavar,
N.M. Khashayar, and D.
Negin(2009)

- - - - - - -

I. Dobrica, and E. Niemela
(2002) “A survey on software
architecture analysis methods”

- - - - - - -

L. Tan, Y. Lin and H. Ye,
(2012). “Quality Oriented
Software Product Line
Architecture Design,”

- - - - - - x

T. Mens, J. Magee and B.
Rumpe(2010). “Evolving
Software Architecture
Descriptions of Critical System”

x - - - - - -

P. Abrahamsson, M. Ali
Babar and P. Kruchen(2010).
“Agility and Architecture: Can
They Coexist”

- - - x - x -

A.Tang and M. F. Lau (2014)
“Software architecture review by
association”

- - - - - x -

H.Vlieta and A.Tang(2016)
“Decision making in software
architecture”

- - - - - x x

P.Y. Reyes-Delgado, M.
Mora,H. A. Duran-Limon, L.
C. Rodríguez-Martínez,R. V.
O'Connorn and R. Mendoza-
Gonzalez,(2016)

- - - - - - -

W. Hasselbring (2018)
“Software Architecture: Past,
Present, Future”

- x - - - x x

S. Orlov and A. Vishnyakov
(2017) “Decision Making for the
Software Architecture Structure
Based on the Criteria Importance
Theory”

- - - - - x -

Nitin Upadhyay (2016)
“SDMF: Systematic Decision-
making Framework for
Evaluation of Software
Architecture”

- - - - - x -

T. Kim, S. Yeong-Tae, L.
Chung and Dung T. Huynh
(2015). “Architecture Analysis:
A Dynamic Slicing Approach”

- - - - - - -

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 218

M. Razavian, B. Paech and A.
Tang (2018). “Empirical
Research for Software
Architecture Decision Making:
An Analysis”

- - - - - x -

E. J. Eichwald, E. C.
Lustgraaf, & B. Wetzel,
(1999). “Transfer of the White
Graft Reaction”

- - - - - - -

C. Manteuffel, P. Avgeriou
and R. Hamberg (2018) “An
exploratory case study on reusing
architecture decisions in
software-intensive system
projects”

- x - - - x -

P.Bengtsson, (1999).
“Software Architecture-Design
and Evaluation.”

- - - - - - -

A. Sharma, M. Kumar and S.
Agarwal (2015) “A Complete
Survey on Software Architectural
Styles and Patterns”

- - - x - - -

M. Ozkaya and M. A. Kose
(2018) “SAwUML – UML-
based, contractual software
architectures and their formal
analysis using SPIN”

- - - - - - x

G. Vazquezab, J. Andres, D.
Pacec and M Campoab (2014)
“Reusing design experiences to
materialize software
architectures into object-oriented
designs”

- - - - - - -

B. Jalendar, A. Govardhan
and R. Emchand (2012)
“Desiging code level reusable
software components”

- x - - - - -

B. Kitchenham, S. Charters
(2007) “Guidelines for
performing systematic literature
reviews in software engineering”

- x - - - - -

adopted all over the world [43]. Only 20% of the papers reviewed,
showed software reuse as a major aspect of modern software
development. More literatures reviewed discussed this subject as
indicated in table 1 above, this implies that research still goes on
in this area with respect to software architecture and design, as well
as in the aspect of software development.
6.3. Software Management

Software management refers to the art and science of leading
and planning software projects. From the analysis carried out,
software management covers 8.6% of the relationship between
software architecture and design and other parameters considered.
Like software evolution, the aspect of software management was
not widely discussed in literatures reviewed. Substantial research
is therefore made in software architecture and design in this area.
6.4. Software Development Life cycle

Software Development Life Cycle (SDLC) gives a description
of the development process of a system from the initial study until

the time it is updated or replaced. There are six steps that make up
the SDLC [44]. The major function of the SDLC is to neatly lay
out the process of system development. Despite being a popular
and well-discussed topic in practice and theory. 8.6% of the
reviewed papers discussed the topic. Unlike other topics, this is a
major aspect of software, from the reviewed literature there was no
substantial amount of discussion made in this aspect.
6.5. Software Evaluation

Comprehensively, non-systematic checklists can be applied to
a program in the software evaluation process [45]. In recent times,
software assessment using theory-based approaches which
incorporates relevant criteria derived from psychological,
linguistic and pedagogical models of language learning and
teaching has been proposed. 11.4% of the 35 articles reviewed,
discussed the importance of software evaluation in developed
systems. There has been current research going on in the aspect of
software evaluation, hence making it one of the major discussed
topics from table 1 above.

6.6. Stakeholder Involvement/ Decision Making
The nature of the design problem also determines the form of

decision that will be made. As reported in [46], a structured design
problem makes the decision-making process better and easier. In
this analysis, 34.3% of the articles reviewed, considered
stakeholder involvement and in some cases, decision-making as a
factor in software architecture and design, making it the most
emphasized topic. This had the highest number of literatures
discussing the topic, this implies that currently, more researchers
are gearing towards this aspect during the course of their research
to emphasize the need of stakeholders’ involvement during
software development.
6.7. Design Quality

If the quality of a design is not considered properly, it could
lead to a negative impact on the product being developed [47]. The
quality of any software is dependent on how well it conforms with
the design plan of that product, it determines if the product would
deliver the requirements desired properly and efficiently. 17.1% of
the papers used for analysis discussed this topic, either directly or
by evaluation of some design quality factors like quality attributes
or design decisions. Also, this was among the topics discussed
substantially in the selected literatures, which makes design quality
a high recommended aspect of software architecture and design
both in terms of academics as regards research and also in the
industry.

From the results, the most discussed topics gotten from the
analysis of selected literatures were stakeholder involvement and
design, software reuse, design quality and software evaluation
while the least discussed topics include software management,
software evolution and software development life cycle.
7. Conclusion
 Software architecture and design is an important component in
the software engineering field. For success in the software
engineering field both the architecture and design of software must
be considered. Hence, various fundamental topics as regards
software architecture and design have been analyzed.
 The objective of this paper was to critically analyze current
topics in software architecture and design. The method of analysis

http://www.astesj.com/

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 219

adopted was the collection of published papers and articles on the
topics discussed in the paper and the percentages of each
fundamental topic was calculated. From the analysis, the result
showed that, of 35 papers used in analysis, 34.3% discussed
stakeholders’ involvement and decisions, 17.1% for design quality,
20% examined software reuse while 11.4% discussed software
evaluation and 8.6% of papers reviewed discussed software
management, evolution and software development life cycle each.

 From the analysis, it can confidently be concluded that aspects of
software architecture and design such as software evolution,
management, re-usability and building software which are fault
tolerant, reliable, backward compatible, maintainable and secured
are under-discussed. Several authors addressed various aspects of
software architecture and design, but there are no standard
procedures to follow that addresses all issues of concern in general
software developments. As earlier stated, some factors should be
non-negotiable in software development to ensure standardization
thereby reducing incessant collapse of systems witnessed in the
early years of software developments. This research stressed the
significance and rigorous work involved in the development of
software and outlined major factors that should be considered.

Therefore, it is important to note that a critical and rigorous
analysis of software architecture and design is required to
overcome the overall failure or crash of software in software
development process and to also identify relevant gaps in the
architecture and design styles or methods. Software architecture
and design as an ever-growing field of software engineering, calls
for further analysis to test and validate principles as they evolve.
This study would help other researchers in the quest of knowing
more about software development and the need to research further
on the least discussed topics which are software management,
software evolution and software development life cycle (SDLC).

Conflict of Interest

The authors declare no conflict of interest.

References

[1] C. Paul, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.
Nord, J. Stafford, (2010). “Documenting Software Architectures: Views and
Beyond”, Second Edition. Boston: Addison-Wesley. ISBN 978-0-321-55268-
6, pp. 592.

[2] D. E. Perry, A. L. Wolf, (1992). "Foundations for the study of software
architecture". ACM SIGSOFT Software Engineering Notes. 17 (4):
CiteSeerX 10.1.1.40.5174. doi:10.1145/141874.141884, pp. 40.

[3] "SoftwareArchitecture".(2018),
https://www.sei.cmu.edu/educationoutreach/courses/course.cfm?coursecode
=p34. Retrieved 2018-07-23.

[4] B. Len, P. Clements and R. Kazman, (2012). “Software Architecture in
Practice”, Third Edition. Boston: Addison-Wesley. ISBN 978-0-321-81573-
6.

[5] M. Fowler, (2003). "Design – Who needs an architect?". IEEE Software. 20
(5): 11–44. doi:10.1109/MS.2003.1231144

[6] F. Peter and D. Hart, (2004). "A Science of design for software-intensive
systems". Communications of the ACM. 47 (8): 19–21 [20].
doi:10.1145/1012037.1012054.

[7] A. Davis, (2004)” Principles of Software Development", McGraw-Hill, Inc.
New York, NY, USA, ISBN:0-07-015840-1.

[8] J. Spacey, (2017) “Software Design Vs Software Architecture.”,
https://simplicable.com/new/software-design-vs-software-architecture ,
Retrieved 2018-07-23.

[9] E. Novoseltseva, (2016). “https://apiumtech.com/blog/15-benefits-of-
software-architecture/”, Retrieved 2018-07-23.

[10] R.Kazman, C.-H. Lung, s. Bot, and k. kalaichelvan, (1997) ” an approach to
software architecture analysis for evolution and reusability”, center for
advanced studies conference, pp. 144-154.

[11] M.Shaw, and P. Clements, (2006)” the golden age of software architecture: a
comprehensive survey.”, institute for software research international school
of computer science. Camegie mellon university, Pittsburgh, PA,0740-
7459/06/.

[12] A.Alhar, M. Liaqat and F.Azam, (2016). “A Comparative Analysis of
Software Architecture Evaluation Methods” Journal of Software Vol 11, No.
9. DOI:10.17706/JSW.11.9.934-942.

[13] N. Hämäläinen, J. Markkula, T. Ylimäki and M. Sakkinen, (2006)“Success
and Failure Factors for Software Architecture”. Available:
https://jyx.jyu.fi/bitstream/handle/123456789/41384/Article_Success_and_F
ailure_Factors_for_SA.pdf;sequence=1 , Retrieved: 2018-08-21.

[14] M. Mekni, G. Buddhavarapu, S. Chinthapatla and M. Gangula, (2018)
“Software Architectural Design in Agile Environments,” Journal of Computer
and Communications, 6, pp. 171-189. Available:
https://doi.org/10.4236/jcc.2018.61018 .

[15] I. Lytra, G. Engelbrecht, D. Schall and U. Zdun, (2015) “Reusable
Architectural Decision Models for Quality-driven Decision Support: A Case
Study from a Smart Cities Software Ecosystem”. Available:
https://eprints.cs.univie.ac.at/4330/1/paper.pdf . Retrieved: 2018-08-21.

[16] M. P. Robillard (2016). “Sustainable Software development,”. Available:
https://www.cs.mcgill.ca/~martin/papers/fse2016.pdf . Retrieved: 2018-08-
21.

[17] l. Dobrica, and E. Niemela, (2002) “a survey on software architecture analysis
methods”, IEEE Transactions on software engineering, vol 28, no. 7.
Available: https://www.researchgate.net/publication/3188246. Retrieved:
2018-07-23.

[18] Antony Tang and Man F. Lau, (2014) “Software architecture review by
association”, Journal of Systems and Software”, Volume 88, pp 87-101, ISSN
0164-1212.

[19] P.Y. Reyes-Delgado, M. Mora, Hector A. Duran-Limon, L. C. Rodríguez-
Martínez, R. V. O'Connor and R. Mendoza-Gonzalez, (2016) “The strengths
and weaknesses of software architecture design in the RUP, MSF, MBASE
and RUP-SOA methodologies: A conceptual review, Computer Standards &
Interfaces”, Volume 47, pp 24-41, ISSN 0920-5489.

[20] “Software architecture and design tutorial,” Tutorialpoints, 2019.[Online].
Available:
https://www.tutorialspoint.com/software_architecture_design/index.htm.
Retrieved:27-Feb-2019.

[21] R. J. de Paula, V. Falvo and E. Y. Nakagawa (2016), “Architectural Patterns
and Styles” [Online].
Available:https://edisciplinas.usp.br/pluginfile.php/977101/course/section/26
8862/S4-%20Architectural%20Patterns%20and%20Styles.pdf.

[22] S. Boyd, M. D’Adamo, C. Horne, N. Kelly, D. Ryan and N. Tsang (2013),
“SOFTWARE ARCHITECTURAL STYLES” SENG 403-W2013 Paper
Project (Group4) [Online].
Available:http://kremer.cpsc.ucalgary.ca/courses/seng403/W2013/papers/04
ArchitectureStyles.pdf

[23] D. Ameller, X. Burgués, D.Costal,C.Farré, X. Franch, (2018) “Non-functional
requirements in model-driven development of service-oriented
architectures”Science of Computer Programming,Volume 168, Pp 18-37.

[24] G.Rodríguez, J. A. Díaz-Pace and Á.Soria (2018) ”Information Systems A
case-based reasoning approach to reuse quality-driven designs in service-
oriented architectures”, Information Systems Volume 77, pp 167-189.

[25] “What is service-oriented architecture (SOA)? - Definition from WhatIs.com,”
SearchMicroservices, 2014. [Online]. Available:
https://searchmicroservices.techtarget.com/definition/service-oriented-
architecture-SOA. Retrieved: 13-Dec-2018.

[26] “SOA (Service Oriented Architecture) Principles,” Meet Guru99 - Free
Training Tutorials & Video for IT Courses, 2018. [Online]. Available:
https://www.guru99.com/soa-principles.html. Retrieved: 13-Dec-2018.

[27] S. Pulparambil and Y. Baghdadi (2018) “Service oriented architecture
maturity models: A systematic literature review”, Computer Standards &
Interfaces, Volume 61, pp. 65-76.

[28] “Advantages and Disadvantages of Service-oriented Architecture (SOA)”
Techspirited, 2018. [Online]. Available: https://techspirited.com/advantages-
disadvantages-of-service-oriented-architecture-soa. Retrieved:27-Feb-2019.

[29] S. Hussain, J. Keung, and A. A. Khan, (2017). “Software design patterns
classification and selection using text categorization approach”. Applied Soft
Computing Journal, vol.58, pp. 225–244.
http://doi.org/10.1016/j.asoc.2017.04.043

[30] "Design Patterns and Refactoring", (2018). [Online]. Available:
https://sourcemaking.com/design_patterns. Retrieved: 13- Dec- 2018.

http://www.astesj.com/
https://en.m.wikipedia.org/wiki/International_Standard_Book_Number
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-321-55268-6
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-321-55268-6
https://en.m.wikipedia.org/wiki/Alexander_L._Wolf
http://users.ece.utexas.edu/%7Eperry/work/papers/swa-sen.pdf
http://users.ece.utexas.edu/%7Eperry/work/papers/swa-sen.pdf
https://en.m.wikipedia.org/wiki/ACM_SIGSOFT_Software_Engineering_Notes
https://en.m.wikipedia.org/wiki/CiteSeerX
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.5174
https://en.m.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F141874.141884
https://www.sei.cmu.edu/research-capabilities/all-work/display.cfm?customel_datapageid_4050=21328
https://www.sei.cmu.edu/education
https://en.m.wikipedia.org/wiki/International_Standard_Book_Number
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-321-81573-6
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-321-81573-6
https://en.m.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2FMS.2003.1231144
https://en.m.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F1012037.1012054
https://simplicable.com/new/software-design-vs-software-architecture
https://jyx.jyu.fi/bitstream/handle/123456789/41384/Article_Success_and_Failure_Factors_for_SA.pdf;sequence=1
https://jyx.jyu.fi/bitstream/handle/123456789/41384/Article_Success_and_Failure_Factors_for_SA.pdf;sequence=1
https://doi.org/10.4236/jcc.2018.61018
https://eprints.cs.univie.ac.at/4330/1/paper.pdf........design
https://www.cs.mcgill.ca/%7Emartin/papers/fse2016.pdf.......sustainable
https://www.researchgate.net/publication/3188246
https://www.tutorialspoint.com/software_architecture_design/index.htm
http://doi.org/10.1016/j.asoc.2017.04.043

J. Bishung et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 211-220 (2019)

www.astesj.com 220

[31] J.L. Barros-Justo, B.V.B. Fabiane, L.C. Ania, (2018) “Software patterns and
requirements engineering activities in real-world settings: A systematic
mapping study”, Computer Standards & Interfaces 58, pp. 23-42.

[32] J.O. Coplien, N.B. Harrison, (2005) “Organizational Patterns of Agile
Software Development”, Pearson Prentice Hall, ISBN-13: 978-0131467408.

[33] E. Gamma, R. Helm, R. Johnson and J.Vlissides , (1995) “ Design Patterns:
Elements of Reusable Object-oriented Software”. Boston: Addison-Wesley
Longman Publishing Co., Inc.

[34] S. Hussain, J. Keung, M. K. Sohail, A. A. Khan, and M. Ilahi (2019).
“Automated framework for classification and selection of software design
patterns”. Applied Soft Computing Journal, vol.75, pp.1–20.
http://doi.org/10.1016/j.asoc.2018.10.049

[35] "Design Patterns | Set 1 (Introduction) - GeeksforGeeks", GeeksforGeeks,
(2018). [Online]. Available: https://www.geeksforgeeks.org/design-patterns-
set-1-introduction/. Retrieved: 13- Dec- 2018.

[36] B. Bafandeh Mayvan, A. Rasoolzadegan and Z. G. Yazdi (2017) “The state
of the art on design patterns: A systematic mapping of the literature”, Journal
of Systems and Software, Volume 125, pp. 93-118.

[37] J. Kress, B. Maier, H. Normann, D. Schmeidel, G. Schmutz, B.Trops, C.
Utschig-Utschig and T. Winterberg. (2014). “SOA and Cloud Computing”,
https://www.oracle.com/technetwork/articles/soa/ind-soa-cloud-
2190513.html Retrieved: 2018-01-09

[38] A. Birukou, (2010) A survey of existing approaches for pattern search and
selection, in: Proceeding of PLoP DISI - University of Trento, Italy, ACM
978-1-4503-0259-3.

[39] P. Velasco-Elizondo, R. Marín-Piña, S. Vazquez-Reyes, A. Mora-Soto and J.
Mejia, (2016), Knowledge representation and information extraction for
analyzing architectural patterns, Sci. Comput. Program. Vol. 121 pp. 176–189.

[40] 2018. [Online]. Available: https://www.quora.com/What-are-some-pros-and-
cons-of-using-Design-Patterns-to-describe-your-business-model. Retrieved:
2018-12- 13.

[41] D. K. Kim, L. Lu, and B. Lee, (2017). “Design pattern-based model
transformation supported by QVT”. Journal of Systems and Software, vol.125,
pp.289–308. http://doi.org/10.1016/j.jss.2016.12.019

[42] Tutorials.point. “Software engineering overview”
available:https://www.tutorialspoint.com/software_engineering/software_en
gineering_overview.html, Retrieved: 2018-12-13

[43] C.W. Krueger, (1992) “Software reuse”, School of Computer Science,
G'arnegie Mellon University, Pittsburgh, Pennsylvania. Available:
https://dl.acm.org/citation.cfm?doid=130844.130856

[44] En.wikibooks.org, (2012) “Computer Revolution”. [Online]. Available:
https://en.wikibooks.org/wiki/The_Computer_Revolution/MIS/SDLC.
Retrieved: 2018-11-2.

[45] IGI Global, (2012) “Software Evaluation”. [Online]. Available:
https://www.igi-global.com/dictionary/software-evaluation/27677 Retrieved:
2018-11-3.

[46] C. Zannier, M. Chiasson and F. Maurer, (2007) A model of design decision
making based on empirical results of interviews with software designers. Inf.
Softw. Technol. Vol. 49 (6), pp. 637–653.

[47] L. Tan, Y. Lin and H. Ye, (2012). “Quality Oriented Software Product Line
Architecture Design,” Journal of Software Engineering and Applications, vol.
5, pp. 472-476, [Online]. Available: http://www.SciRP.org/journal/jsea

[48] A. Ramírez, J. R. Romero and S. Ventura, (2018)” Interactive multi-objective
evolutionary optimization of software architectures” Information Sciences,
Vol 463–464, pp 92-109 Available: www.elsevier.com/locate/ins

[49] O. Sievi-Korte, S. Beecham and I. Richardson, (2018)“Challenges and
recommended practices for software architecting in global software
development” Information and Software Technology, In press, Available:
www.elsevier.com/locate/infsof

[50] D. Garlan, (2000), “software architecture”, School of Computer
Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA.

[51] S. B. chung-Horng Lung, (1997) "An Approach to software Architecture
Analysis for Evolution and Reusability," in Centre for Advanced Studies
Conference, Toronto, Canada.

[52] V. S. Rekha and H. Muccini, (2018) “Group decision-making in software
architecture: A study on industrial practices”, Information and Software
Technology, Vol. 101, pp. 51-63, ISSN 0950-5849.

[53] M. Unterkalmsteiner, T. Gorschek, R. Feldt and E.riks Klotins, (2015)
Assessing requirements engineering and software test alignment—Five case
studies, Journal of Systems and Software, Vol. 109, pp. 62-77, ISSN 0164-
1212.

[54] H. Vlieta and A.Tang (2016).“Decision making in software architecture”,
Science Direct-Journal of Systems and Software,Vol 117,pp. 638-644,
https://doi.org/10.1016/j.jss.2016.01.017 .

[55] A. Tang and M. F. Lau (2014). “Software architecture review by association”,
Journal of Systems and Software, Vol 88, pp.87-101,
https://doi.org/10.1016/j.jss.2013.09.044 .

[56] T. Mens, J. Magee and B. Rumpe (2010). “Evolving Software Architecture
Descriptions of Critical System”, IEEE Computer Society, vol 43, pp. 42-48.
DOI: 10.1109/mc.2010.136

[57] P. Abrahamsson, M. Ali Babar and P. Kruchen (2010). “Agility and
Architecture: Can They Coexist”, IEEE Computer Society, pp16-22.

[58] S. Orlov and A. Vishnyakov (2017). “Decision Making for the Software
Architecture Structure Based on the Criteria Importance Theory”, Procedia
Computer Science, Vol 104, pp. 27-34, ISSN 1877-0509.

[59] Nitin Upadhyay (2016). “SDMF: Systematic Decision-making Framework
for Evaluation of Software Architecture”, Procedia Computer Science, Vol 91,
pp. 599-608, ISSN 1877-0509.

[60] T. Kim, S. Yeong-Tae, L. Chung and D. T. Huynh (2015). Architecture
Analysis: A Dynamic Slicing Approach. Dept. of Computer Science
University of Texas at Dallas
https://doi.org/10.1017/CBO9781107415324.004

[61] M. Razavian, B. Paech and A. Tang (2018). “Empirical Research for Software
Architecture Decision Making: An Analysis”, Journal of Systems and
Software, ISSN 0164-1212.

[62] C. Manteuffel, P. Avgeriou and R. Hamberg (2018). “An exploratory case
study on reusing architecture decisions in software-intensive system projects”,
Journal of Systems and Software, Vol 144, pp. 60-83, ISSN 0164-1212

[63] E. J. Eichwald, E. C. Lustgraaf, & B. Wetzel, (1999). Transfer of the White
Graft Reaction. Proceedings of the Society for Experimental Biology and
Medicine, vol. 126(3), pp. 619–620. https://doi.org/10.3181/00379727-126-
32521

[64] P.Bengtsson, (1999). Software Architecture-Design and
Evaluation.University of Karlskrona PerOlof Bengtsson Department of
Software Engineering and Computer Science.
https://pdfs.semanticscholar.org/6c1c/a7056fbb2ee1f82f04c3ae2b7b7e16f41
c6c.pdf

[65] A. Sharma, M. Kumar and S. Agarwal,(2015) “A Complete Survey on
Software Architectural Styles and Patterns,” Procedia Computer Science, Vol.
70, pp. 16-28 https://doi.org/10.1016/j.procs.2015.10.019

[66] M. Ozkaya and M. A. Kose, (2018) “SAwUML – UML-based, contractual
software architectures and their formal analysis using SPIN,”Computer
Languages, Systems & Structures,Vol 54, pp. 71-94,
https://doi.org/10.1016/j.cl.2018.04.005

[67] G. Vazquezab, J. Andres, D. Pacec and M. Campoab, (2014), “Reusing design
experiences to materialize software architectures into object-oriented
designs,”Information Sciences Vol. 259, pp. 396-411
https://doi.org/10.1016/j.ins.2010.03.013

[68] B. Jalendar, A. Govardhan and R. Emchand, (2012) “Desiging code level
reusable software components”, International Journal of Software
Engineering & Applications, Vol. 3, n. 1, pp. 219-229.

[69] B. Kitchenham and S. Charters, (2007) “Guidelines for performing systematic
literature reviews in software engineering”, EBSE,Software Engineering
Group, School of Computer Science and Mathematics, Keele University,
Keele, Staffs, ST5 5BG, UK and Department of Computer Science,
University of Durham, Durham, UK .

[70] W. Hasselbring (2018). “Software Architecture: Past, Present, Future in:
Gruhn V., Striemer R. (eds) The Essence of Software Engineering”. Springer,
Cham. https://doi.org/10.1007/978-3-319-73897-0_1]

http://www.astesj.com/
http://doi.org/10.1016/j.asoc.2018.10.049
http://doi.org/10.1016/j.jss.2016.12.019
https://dl.acm.org/citation.cfm?doid=130844.130856
http://www.scirp.org/journal/jsea
https://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1016/j.jss.2013.09.044
https://www.sciencedirect.com/science/article/pii/S187705091503183X#aep-article-footnote-id3
https://doi.org/10.1016/j.procs.2015.10.019
https://www.sciencedirect.com/science/article/pii/S1477842417301550#!
https://www.sciencedirect.com/science/article/pii/S1477842417301550#!
https://doi.org/10.1016/j.cl.2018.04.005
https://www.sciencedirect.com/science/article/pii/S0020025510001258#!
https://www.sciencedirect.com/science/article/pii/S0020025510001258#!
https://www.sciencedirect.com/science/article/pii/S0020025510001258#!
https://doi.org/10.1016/j.ins.2010.03.013

	1. Introduction
	2. Related Work
	3. Software Architectural Styles
	4. Service Oriented Architecture (SOA)
	5. Design Patterns
	6. Results and Discussion
	7. Conclusion
	Conflict of Interest
	References

