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In this paper an offline motion-planning algorithm is presented for robotic manipulators. In
this method to solve the path-planning task, the Transition-based Rapidly-exploring Random
Tree (T-RRT) algorithm was applied, that requires a cost-function over the search space. The
goal of this cost-function is to keep distance between the actual position and configurations
that cause collisions. The paper presents two possible cost function generation methods.
The first one is based on multidimensional Gauss functions and the second solution uses
fuzzy function-approximation to determine the cost all over the configuration space. At
last, the trajectory generator method will be introduced that calculates the desired shape of
the function of joint variables and their derivatives. The algorithm is universal, the only
restriction is that the manipulator and the environment are modelled by their bounding
polyhedra. To demonstrate the presented approach, simulation were performed in MATLAB
Simulink environment using the Mitsubishi RV-2F-Q robotic manipulator.

1 Introduction

Nowadays, automation is playing an increasingly important role
in our daily lives, therefore is a growing need for the autonomous
motion-planning of robotic manipulators.

Two types of path-planning methods can be defined, the offline
and the online methods. In case of offline path-planning method,
the calculation time does not mean a bottleneck, so more time can
be spent on improving the found path. For example, in [1] an of-
fline path-planning method is introduced, that can find an optimal
collision-free path, where the optimality is based on the energy
usage of the manipulator. These kind of methods can ensure the
collision-freeness only with static obstacles or obstacles with known
motions.

Online path-planning methods are used to avoid collisions with
dynamic obstacles having unpredictable movements. These algo-
rithms can be used in human-robot collaboration systems for exam-
ple [2]. The environment of the robot can be observed with a depth
camera. Besides, the image processing can be calculated with GPU,
so the real-time calculation can be ensured [3]. In this paper, an
offline path planning method will be described.

In our case, the minimization of cost-function is needed dur-
ing the motion-planning algorithm, while avoiding configurations
leading to collisions. There are numerous solutions in robotic appli-
cations to this problem.

Many of these are founded on the classical grid-based methods
like A* or D* which can be used to find an optimal path limited
by the resolution of the grid [4]. The main disadvantage of these
algorithms is that the computation time grows exponentially with
the number of dimensions. This effect is called as the “Curse of
dimensionality”.

Another type of path-planning methods are the sampling-based
algorithms like the Rapidly-exploring Random Tree (RRT). These
algorithms can be used effectively with higher number of dimen-
sions as well, but the optimality of the solution is not guaranteed [5].

These problems can be solved by the Transition-based RRT (T-
RRT) algorithm, that incorporates the advantages of the grid-based
and the sampling-based methods [6]. Thus, it can be used to find a
path that minimizes a cost-function defined in the high dimensional
search space.

Heuristics can be used to determine the meaning of cost. For ex-
ample, in case of a human-collaboration, to ensure the safe operation
and the security, the cost has to be high near by the person [7].

Another method could be that, when the dynamics of the sys-
tem is used to minimize the time or the performed work during the
motion.

In this paper, the goal is to maximize the distance between the
path of the manipulator and the configurations that cause collisions
with the help of defined cost function. In this case the result of
the offline path-planning algorithm can be used by a reactive mo-
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tion planning method, that will have more space to avoid dynamic
obstacles.

The paper is organized as follows. Section 2 introduces the base
of the kinematics of robotic manipulators. In Section 3, the T-RRT
algorithm is presented, that was used for path-planning in this work.
Then the collision-detection method is described, based on investi-
gation of the feasibility of inequalities of bounding polyhedra, that
are describing the manipulator and the obstacles (Section 4). Then,
Section 5 describes two cost function approximation algorithms
with Gauss-functions and with fuzzy function-approximation. The
latter is more detailed. Subsection 5.5 describes the method that
is used in this work for cost function evaluation. The trajectory
generation method is explained in Section 6. The simulation results
are presented in Section 7. Finally, Section 8 contains conclusions
and possible developments in the future.

2 Robotic manipulators
Robotic manipulators are usually modeled as open kinematic chains.
A manipulator contains links, which are connected by joints. Two
basic types of joints exist: Revolute joints are used to apply rela-
tive rotation, and prismatic joints allow linear motion between two
adjacent links. The relative movement between adjacent links is
given by the joint variables qi. In case of revolute joints, qi gives
the angular displacement, while for prismatic joints, qi equals the
amount of linear motion. The actual configuration q of the robot is
defined by the vector containing actual qi values of all joints.

Figure 1: Mitsubishi RV-2F-Q manipulator (used in the simulations)

An end effector is usually attached to the last segment of the
manipulator. To determine the position and the orientation of the
end effector in the workspace of the robot, the equations of forward
kinematics can be used. A homogeneous transformation matrix
belongs to each robotic joints. The position and orientation of the
coordinate frame attached to the end effector (relative to the base
frame) can be determined by multiplying these matrices.

The main parameters of a robotic manipulator can be defined by
the Denavit-Hartenberg parameters [8]. Homogeneous transforma-
tion matrices can be calculated from these parameters using actual
joint variables.

The task of the path-planning is to find a path, which moves
the robot to a desired goal configuration. (This goal configuration
is typically given by the desired orientation and position of the
end-effector at the end of the motion.) The path-planning problem
can be defined in the Euclidean space, but usually, the planning is
performed in the configuration space C of robot. The configuration
space is spanned by the admissible configuration vectors (q), i.e.
joint variables (qi) are used as coordinates. For example the con-
figuration space of the Mitsubishi RV-2F-Q manipulator with six
degrees of freedom is a six-dimensional space. This robot has six
revolute joints. Its 3D model is depicted in Fig. 1. The simulations
presented in Section 7 were performed using this manipulator.

3 The Path-planning Algorithm
The traditional RRT algorithm is a stochastic sampling path-
planning algorithm. In this method a search tree is grown from
the initial qinit point to the qgoal goal configuration. In a given itera-
tion, a randomly selected configuration is inserted to the tree [9].

In these days, the planning algorithms like the RRT method are
very popular, due to their efficiency in exploration of the search
space. There exist several improvements of the traditional method,
for example the RRT* described in [10], which checks the available
corrections in every iteration cycle, so it is able to find an optimal
path to the goal point. The method presented in [11] called RRT+

can be used in very high dimensional spaces, such as the config-
uration space of hyper-redundant manipulators. In this work, the
T-RRT algorithm is used, that is able to find a suboptimal solution
defined by a cost function in high dimensional configuration spaces
as well. This solution is called as high quality path in [6]. In our
case the goal of cost function is to minimize the risk of collision.

Algorithm 1: Rapidly-exploring Random Tree (RRT)
Input: the configuration space C

the root qinit and the goal qgoal

Output: the tree T

1: T ← InitTree(qinit)
2: while not StopCondition(T, qgoal) do
3: qrand ← SampleConf(C)
4: qnear ← NearestNeighbor(qrand,T)
5: qnew ← Extend(T, qrand, qnear)
6: if NoCollision(qnew) then
7: AddNewNode(T, qnew)
8: AddNewEdge(T, qnear, qnew)
9: end if

10: end while
11: return T

In Algorithm 1 the traditional RRT algorithm is described. The
inputs of the algorithm is the configuration space, where the path-
planning method is evaluated, the initial and the goal configuration
of the path-planning. The output of the method is the search tree.
At first, the search tree is initialized with the initial configuration as
its root node.
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After that a uniformly distributed random configuration qrand is
generated in function SampleConf.

This configuration is used by the NearestNeighbor function to
determine the nearest configuration (called qnear) to it in the search
tree. In this method, distance from the edges is not examined, due
to the higher computational demand, it is determined only from the
previously added nodes.

A new point qnew is created in Extend, which is in the same
direction as qrand to qnear, but the distance between qnew and qnear

is maximized with the parameter δ. In this method, the collision-
freeness of the created qnew configuration is not examined.

The function NoCollision returns true, if the qnew configuration
does not lead to a collision. In this case, a new node and edge will
be added to the tree.

The algorithm is succeeded, if the distance between the last in-
serted point and the goal configuration is less than a given parameter,
or failed, if a maximum number of iterations has been reached. In
the function StopCondition are these conditions inspected.

Algorithm 2 describes the T-RRT method. As it can be seen,
the method is based on the traditional RRT algorithm described
in Algorithm 1. The main differences are the TransitionTest and
MinExpandControl functions (see Subsections 3.1-3.2), which are
the conditions to extend the search tree with a new node and edge.

The cost of the found path can be evaluated by several methods,
e.g. maximal cost, average cost or total cost along the path. How-
ever it will lead to a path, that avoids the areas of search space with
higher costs, if the performed work is minimized along the path, as
it is introduced in [6]. In this case, the positive variations of the cost
function will be minimized.

Algorithm 2: Transition-based RRT
Input: the configuration space C

the cost function c : C 7→ R∗+
the root qinit and the goal qgoal

Output: the tree T

1: T ← InitTree(qinit)
2: while not StopCondition(T, qgoal) do
3: qrand ← SampleConf(C)
4: qnear ← NearestNeighbor(qrand,T)
5: qnew ← Extend(T, qrand, qnear)
6: if qnew , NULL then
7: dnear−new ← Distance(qnear, qnew)
8: if TransitionTest(c(qnear), c(qnew), dnear−new)

and MinExpandControl(T, qnear, qrand)
and NoCollision(qnew) then

9: AddNewNode(T, qnew)
10: AddNewEdge(T, qnear, qnew)
11: end if
12: end if
13: end while
14: return T

3.1 Transition-test

Algorithm 3 describes the TransitionTest function. In the first step,
the number, how many times the transition-test failed previously, is
queried by the GetCurrentNFail function.

Thereafter if the cost in qnew point is higher than a cmax parame-
ter, then the test will not be accepted, so the search tree will not be
extended. In case of negative variation of cost function the transition
test will return true.

After that in case of positive slope of the cost, the transition test
will be successful in accordance with a probability based on the
Metropolis criterion [12], defined as

pi j = exp(−
∆ci j

K · T
) (1)

where ∆ci j =
c j−ci

di j
is the variation of the cost, K is a normalization

constant, it can be taken as the average cost of the query configura-
tions.

The difficulty of success for a given transition is defined by the
temperature parameter denoted by T . The goal of this parameter is
to minimize the amount of positive slopes in the cost function along
the path, but it allows to explore the whole reachable configuration
space by its adaptive tuning. In case of higher temperature the
acceptance of transition test is more probable for a transition with
higher positive slope. To accept only very low positive variations
at the start, T is initialized with a very low value. This functions
similar to the simulated annealing algorithm.

The function Rand(0,1) gives a random number between 0 and
1 based on uniform distribution.

The α > 1 variable is used to change the temperature adaptively.
If the transition was successful then the temperature is decreased.
And if the test failed nFailmax times then the value of T is increased
by multiplying with α. Thus if the nFailmax parameter is high then
the path will be more likely to go into the valleys, however finding
a path over a region with high cost will be more difficult.

Algorithm 3: TransitionTest(ci, c j, di j)
1: nFail = GetCurrentNFail();
2: if c j > cmax then
3: return False
4: end if
5: if c j < ci then
6: return True
7: end if
8: p = exp(−(c j−ci)/di j

K·T )
9: if Rand(0, 1) < p then

10: T = T/α
11: nFail = 0
12: return True
13: else
14: if nFail > nFailmax then
15: T = T · α
16: nFail = 0
17: else
18: nFail = nFail + 1
19: end if
20: return False
21: end if
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3.2 Minimal Expansion Control

The transition-test can slow the exploration rate of high cost hills
and the new configurations only refine the already known regions.

By specifying a minimum level of exploration, this can be pre-
vented. Accordingly, a new node close to the closest search tree
configuration will only be accepted if the refining node ratio is
smaller than the ρ parameter. The minimal exploration control
method will accept the exploring nodes automatically.

This function is introduced in Algorithm 4. The function
UpdateNbNodeTree increases the number of nodes, while the
UpdateNbRefineNodeTree function updates the number of refining
nodes in the search tree.

The Euclidean distance between the qrand (not the extended qnew)
and the qnear configurations is used to determine the type of a given
point. A point is an exploring node if the distance is high, otherwise
it will be a refining node.

The path-planning will discover the entire configuration space
very effectively with this complement, while trying to stay in the
valleys of the cost function owing to the transition-test.

Algorithm 4: MinExpandControl(T, qnear, qrand)
1: if Distance(qnear, qrand) > δ then
2: UpdateNbNodeTree(T)
3: return True
4: else
5: if NbRefineNodeTree(T+1)

NbNodeTree(T+1) > ρ then
6: return False
7: else
8: UpdateNbRefineNodeTree(T)
9: UpdateNbNodeTree(T)

10: return True
11: end if
12: end if

4 Collision detection
The effectiveness of a path planning method depends highly on the
applied collision detection function, since it is called often (see
Step 6 of Algorithm 1 or Step 8 of Algorithm 2) and it has to ensure
that only collision-free configurations are used for planning. To
calculate in real time, which robot configurations are in collisions,
is a difficult problem. The task is not only to determine if there is
any collision between the robot and the surrounding objects, but
also the self-collision configurations of the robot has to be avoided.

Moreover, the goal could be not only to plan a collision-free
path, but also to get a time-optimal motion. A solution for such a
problem is presented in [1], but the computational demand of that
algorithm is high, due to the solution of the optimization problem.
However, the collision detection algorithm used by that method can
be applied by other applications as well. The algorithm presented
in this paper is also based on this collision detection.

4.1 Collision detection with polyhedrons

The basic idea of this collision detection method is that the geometry
of the robot and the obstacles is approximated such that they are

represented by unions of convex polyhedrons. Fig. 2 and Fig. 3
illustrate how the bounding polyhedrons can be determined around
the robot and the obstacles. For the sake of simplicity, it is supposed
that the workspace of the robot contains only one obstacle. The
presented collision detection method can be easily extended if more
obstacles are present.

Let P denote the union of polyhedrons that represent the robot:

P =

nP⋃
i=1

P(i) =

nP⋃
i=1

{y ∈ R3|A(i)y ≤ b(i)} (2)

where nP shows the number of polyhedrons in P. A polyhedron is
bounded by faces. A face P(i) is defined by A(i) and b(i) parameters
and pi is the number of faces. Then A(i) ∈ Rpi×3 and b(i) ∈ Rpi for
i = 1, . . . , np.

Similarly, an obstacle Q can also be described by the union of
polyhedrons:

Q =

nQ⋃
j=1

Q( j) =

nQ⋃
j=1

{y ∈ R3|C( j)y ≤ d( j)} (3)

where nQ denotes the number of polyhedrons in Q. q j shows the
number of faces in Q( j), hence C( j) ∈ Rq j×3 and d( j) ∈ Rq j for
j = 1, . . . , nQ.

Figure 2: Bounding boxes of each segments were defined as the bounding polyhe-
drons of the manipulator

To avoid self-collisions, pairs of polyhedrons P(i) have to be
checked, whether they collide with each-other. There exist such
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pairs of P(i) where the collision detection is not necessary, since they
cannot collide physically (e.g. adjacent segments). Therefore, the
set of pairs (k, l), k , l has to be defined, such that k and l denote two
polyhedrons (P(k), P(l)) of the robot which could collide. This set is
denoted by I. If (k, l) ∈ I, the collision check has to be performed
for the corresponding two polyhedrons.

Suppose, that P is already calculated for a given configuration
and Q is determined as well, then the configuration is collision-free
if

P(i) ∩ Q( j) = ∅ ∧ P(k) ∩ P(l) = ∅ (4)

∀i = 1, . . . , nP and ∀ j = 1, . . . , nQ and ∀(k, l) ∈ I.
One polyhedron of the robot P(i) and one of the obstacle Q( j) do

not collide with each-other if the union of their system of inequali-
ties has no solution. Formally, there exists no such y(i, j) ∈ R3 point
where (

A(i)

C( j)

)
y(i, j) ≤

(
b(i)

d( j)

)
(5)

Similar inequalities can be used to check self-collision.
To determine, whether an inequality similar to (5) has no solu-

tion, Farkas’s lemma can be applied. The lemma says that there
exists no solution for the linear system if and only if a vector
w(i, j) ∈ R(pi+q j) can be found such that

w(i, j) ≥ 0 and
(
A(i)

C( j)

)>
w(i, j) = 0 and (6)

(
b(i)

d( j)

)>
w(i, j) < 0

Consequently, if given is a configuration q and a w(i, j) solution
can be found for (6), then the q configuration can be marked as
collision-free.

Figure 3: Bounding polyhedrons around the robot and obstacles (as used in the
simulation)

4.2 Construction of polyhedrons

The face parameters (A(i), b(i)) for some robot-polyhedron P(i) de-
pend on the actual robot configuration q. This subsection describes
how to calculate them.

First, A(i)
r and b(i)

r have to be determined for each segment of
the robot in a reference coordinate system that is attached to the
same segment. For example, the CAD model of the manipulator
(e.g. shown in Fig. 1) can be used to measure the corresponding
parameters in this frame. (For obstacles, the same process has to be
performed.)

Then, a transformation is required to get these parameters in the
base frame. Denote the resultant transformation matrix by T (i)(q).
T (i)(q) can be used for the transformation from the base coordi-
nate system to the reference frame of the ith segment, if the actual
configuration of the robot is q.

The parameters in the base frame can be determined as follows

[
A(i) b(i)

]
=

[
A(i)

r b(i)
r

] [
T (i)(q)

]−1
(7)

During the collision-check algorithm, these parameters have to be
used.

5 Cost-function approximation

The goal of cost-function is to keep distance from configurations
leading to a collision. The approximation of this function is neces-
sary, to decrease the computational demand of the algorithm. This
cost-function is used by the T-RRT path-planning method, intro-
duced in Section 3.

5.1 Cost-funcion approximation with Gauss-functions

At first, the approximation of cost-function was evaluated by taking
enough sample of the configuration space and Gauss-functions were
summed in every sampling point. The centers of Gauss-functions
are the configurations causing a collision. There are several disad-
vantages of this method.

As it can be seen in the Fig. 4 the result is very hilly and a max-
imal value of the cost function can not be predefined, so the cmax

parameter of the TransitionTest function in Algorithm 3 is difficult
to determine.

In addition, the cost function has to be stored in every sampling
point, moreover the interpolation is slow at any other point.

Figure 4: Cost-function approximation with Gauss-functions with the search tree
found by the T-RRT algorithm
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5.2 The base of fuzzy approximation

Another solution could be the fuzzy approximator systems.
Fuzzy systems have several uses in many areas such as decision

making [13], system identification [14], control theory [15] etc. In
addition, the approximation of nonlinear functions is possible as
well, if enough teaching points are available. Teaching points are
defined as y j = f (x j), where f is the function that needs to be
approximated, x j is the position of the given teaching point and y j

is the value of f in x j.
There are several advantages of fuzzy estimator systems. De-

pending on which type of inference method is used, their rules can
be tuned adaptively and the approximation time is one of the benefits
of these systems as well.

Singleton fuzzyfication, center average defuzzyfication, prod-
uct inference and zero-order Sugeno model fuzzy systems with
Gaussian membership functions are therefore the most widely used
approaches [16].

Thus the fuzzy estimation of a nonlinear function is defined as

f̂ (x) =

∑M
l=0 ȳl ∏n

i=1 exp(−( xi−x̄i

σl
i

)2)∑M
l=0

∏n
i=1 exp(−( xi−x̄i

σl
i

)2)
(8)

where n is the number of dimensions in the configuration space,
ȳl is the output in the lth rule of the fuzzy inference system, x̄i is
the location of the maximum value of the Gaussian membership
function and with σl

i the width of this function can be modified.
The adaptive tuning of the fuzzy rules is feasible by modifying

the ȳl, x̄i and σl
i values.

According to the Universal approximation theorem described
in [16], for any given real continuous function f on the compact set
U ∈ Rn and arbitrary ε > 0 there exists f̂ in the form given in (8)
such that

sup
x∈U
| f (x) − f̂ (x)| < ε (9)

Henceforth, two adaptive tuning method for fuzzy estimator
systems will be introduced. In which bounded domain intervals of
input vector x and output y are assumed.

5.3 Generating fuzzy rules by learning from examples

Details of the algorithm can be found in [17].
The input and output domain is divided into intervals, in each

Gaussian membership functions are defined.
The possible fuzzy relations are determined exactly by the num-

ber of input membership functions. For example, in case of input
variables x1 and x2, if the number of membership functions are
N1 and N2 then the number of possible rules is N1 · N2. For each
teaching point the relation and output membership function has to
be selected that mostly fits the given teaching point.

In kth teaching step a generic form of fuzzy rules can be defined:

Rk : IF x1 IS Fk
1 AND x2 IS Fk

2 AND . . . AND xn IS Fk
n

THEN y IS Gk

where Fk
i is one of the input variable membership functions and Gk

is one of the output variable membership functions.

In the kth step a given rule will be chosen, if it maximizes the
following expression:

D(Rk) =

n∏
i=1

(µFk
i
(xk

i )) · µGk (yk) (10)

where µ is the firing strength of the given membership function for
the actual value of the teaching point.

There exist more possible solutions to that problem, if a new
relation has to be added with the same condition part, but a different
inference part as an already added relation. In this case, the relation
with higher value can be selected by evaluating (10), or a weighted
value of both inference parts can be specified.

The main disadvantage of this technique is that (10) has to be
evaluated N = N1 · N2 · . . . · Nn times for every teaching points
(where n is the number of dimensions of the space) to find the maxi-
mum value. As a consequence, with the number of dimensions the
computational time grows exponentially.

5.4 Nearest neighborhood clustering

In this algorithm, teaching points are clustered depending on their
position in the configuration space. A given cluster can be described
by three parameter, the center of it xl

0, the number of teaching points
in it Bl and the sum of values of these points Al [18].

A new point x j (y j = f (x j)) is inserted to the cluster l, if it
is closer to xl

0 than a given r radius. After that the other cluster
parameters Al and Bl will be updated. If the distance of the teaching
point x j is too high from all of the clusters then a new cluster will
be created as {xl

0 = x j; Al = y j; Bl = 1}. M represents the number
of clusters that have been defined during the teaching process.

Therefore, the estimation of the nonlinear function can be de-
fined as

f̂ (x) =

∑M
l=0 Al exp(−( x−x̄l

0
σl )2)∑M

l=0 Bl exp(−( x−x̄l
0

σl )2)
(11)

5.5 Cost-function evaluation

Eventually, the cost-function for the T-RRT method was approxi-
mated with the Nearest neighborhood clustering algorithm, because
it has a higher computational efficiency.

To determine the position of the teaching points, random sam-
pling of the configuration space is needed, owing to the high number
of dimensions.

The collision detection method described in Section 4 is evalu-
ated in all of teaching points. If the x j configuration causes collision,
then one will be assigned as the value of the cost-function y j in x j,
otherwise zero.

After that the rules of the fuzzy approximator are tuned with
the Nearest neighborhood clustering algorithm. This method can
be used for arbitrary robotic manipulators. An example for the cost
function and path can be seen in Fig. 5 in case of 2-DoF manipu-
lator (since it is not possible to depict the cost function in higher
dimensions).
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Figure 5: T-RRT method is able to find high quality path based on a cost-function.
The cost-function is evaluated for a two degrees of freedom manipulator with the
Nearest Neighborhood Clustering algorithm.

Table 1 shows the comparison of approximation with Gauss-
function and the Nearest neighborhood clustering algorithm. As
can be seen, both the training time and the evaluation time for one
configuration in the case of Gauss-function approximation grow
very fast by increasing the number of teaching points. In the case of
Nearest neighborhood clustering, these values increased to a lesser
extent. By using clusters, the evaluation time of the fuzzy function-
approximation method did not increase significantly, which is ideal
for applying the method in a path-planning algorithm.

Table 1: Comparison of fuzzy function-approximation and approximation with
Gauss-functions

Num. of Nearest Neighborhood clustering Gauss
teaching Training Number Eval. Training Eval.
points time of clusters time time time
1000 0.0481s 714 22µs 0.0402s 7.8µs
5000 0.207s 1649 45µs 0.3027s 28.8µs

10000 0.4554s 1974 52µs 1.4151s 58.2µs
50000 3.0962s 2431 65µs 22.88s 137.9µs

100000 7.045s 2521 76µs 155.26s 1632µs

6 Trajectory generation
The already presented methods can be used to find points in the
configuration space, that by moving the robot between these points,
the possible collisions can be avoided.

6.1 Trajectory generation for scalar values

In the following method y denotes one coordinate of the q configu-
ration, in other words, one joint variable of the robot.

Let {yk} be the set of points founded by the path-planning algo-
rithm and {tk} denotes the desired absolute time of reaching these
points [19].

{yk} = {. . . , A, B,C,D, . . . },

{tk} = {. . . , tA, tB, tC , tD, . . . }
(12)

Due to the limits of torques, boundaries have to be defined for
the acceleration of joints: |ÿ|max.

At first, y(t) trajectory can be defined as a series of linear func-
tions between adjacent points. In this case, the first derivative ẏ(t) is
constant between two points and it steps to another constant value in
a given point. The acceleration ÿ(t) is zero in every point except the
points where the slope of y(t) trajectory is changing. In these points,
the second derivative contains Dirac-delta functions, which leads to
an unbounded control value, so this solution is not applicable. To
overcome this problem, the acceleration of joints have to be changed
continuously.

To reach the next point two kinds of phases can be defined:
traveling phase and acceleration phase. In the former, we use a con-
stant velocity and zero acceleration, while in the latter a continuous
acceleration function has to be applied, to reach the desired constant
velocity of the next traveling phase. The quadratic function can be
chosen as the form of the function in the acceleration phase (Fig. 6).

Figure 6: To ensure the continuity of the acceleration function, quadratic function
can be applied in the acceleration phase. The form of the trajectories can be seen in
the figure.

Let B and C be two adjacent points, while B′ and C′ are the
beginning, B′′ and C′′ are the end of their acceleration phase. The
relative time t can be defined as

t = tabs − tB ∈ [−τB,TB], (13)

where tB is the absolute time of reaching the point B, τB is the half of
duration of acceleration phase in B and TB denotes the time-interval
of reaching point C from point B. This can be seen in Fig 7. The
time-intervals between configurations can be determined by the
boundaries of joint-velocities, for example TB = C−B

|ẏ|max
.

Figure 7: Relative time can be defined, where the zero value is in the qB configuration.
The zero point will be shifted with T , when the T − τ relative time is reached.
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By integrating the quadratic acceleration during the acceleration
phase, the velocity and position can be determined:

B′B′′ : ÿ(t) = a0t2 + a1t + a2

ẏ(t) = a0
t3

3
+ a1

t2

2
+ a2t + a3

y(t) = a0
t4

12
+ a1

t3

6
+ a2

t2

2
+ a3t + a4

(14)

To determine the a0 . . . a4 parameters of the trajectory of posi-
tion, five independent conditions have to be defined:

ÿ(−τB) = 0
ÿ(τB) = 0

ẏ(−τB) = vB′B =
B − B′

τB

ẏ(τB) = vBC =
C − B

TB

y(τB) = B + vBC · τB

(15)

The following linear equation system can be defined:


ÿ(−τB)
ÿ(τB)

ẏ(−τB)
ẏ(τB)
y(τB)

 =



τ2
B −τB 1 0 0
τ2

B τB 1 0 0

−
τ3

B
3

τ2
B
2 −τB 1 0

τ3
B
3

τ2
B
2 τB 1 0

τ4
B

12
τ3

B
6

τ2
B
2 τB 1





a0
a1
a2
a3
a4
a5


y = C · a

(16)

The solution of this linear equation system can be calculated as
follows:

a = C−1 · y (17)

In the traveling phase (t ∈ [τB,TB − τC)), the form of the path
of the scalar value will be a linear function:

y(t) = B + vBC · t (18)

6.2 Trajectory generation for joint variables

The presented method for scalar values can be used for each joint
variable separately, by taking into account the difference between
the boundaries of velocities (|q̇i|max) and accelerations (|q̈i|max) of
some joints.

In addition, the minimal time needed to reach qCi joint value
from qBi can be different as well, so just that joint have to be moved
in maximal speed, that needs the most time to reach the next config-
uration.

The same τ parameter can be used for each joint variable and it
is calculated as follows [19]:

τ = max
i

3
2
|q̇i|max

|q̈i|max
(19)

The trajectory generation method can be seen in the Algorithm 5.
The input of the method denoted by Q is the series of configurations
contained by the found path.

Algorithm 5: TrajectoryGeneration(Q, τ)
1: qC =GetFirstConfiguration(Q)
2: T = τ
3: while Size(Q) > 0 do
4: qB′ = q(T − τ)
5: qB = qC

6: qC = GetFirstConfiguration(Q)
7: Ti =

|qCi−qBi |

|q̇i |max

8: T = max{max
i
{Ti}, 2τ}

9: vAB =
qB−qB′

τ

10: vBC =
qC−qB

T
11: a = C−1 · y
12: t = −τ
13: while t < T − τ do
14: q(t) = CalculateTrajectory(a, t)
15: t = t + ∆

16: end while
17: end while
18: return q(t)

The GetFirstConfiguration function gives the first element of
the configuration queue and this element will be removed from the
queue as well.

At first the variable T is initialized with τ calculated by (19), so
in the first iteration the qB′ variable will be the root configuration.

The equations in (14) are evaluated in the CalculateTrajectory
function for each joint variable, consequently the dimension of the
q variable is equal to the dimension of the configuration space.

Trajectories calculated with this method can be seen in Fig. 9.

7 Simulation results

The comparison of several path-planning algorithms can be seen in
Table 2 in case of two degrees of freedom robotic manipulator. The
result of planning with the T-RRT method can be seen in Fig. 8. The
RRT∗ algorithm is a variant of traditional RRT method, that refines
the search tree in every iteration to find the actual shortest path to the
goal configuration [10]. In case of multi-directional RRT method
an other search tree is started from the goal configuration [5]. The
calculation time can be reduced by this method.

Table 2: Comparison of path-planning algorithms

Algorithm Calculation Length Total Performed
time [s] cost work

RRT 0.039 10.54 0.415 0.896
Multi-directional 0.019 10.54 0.396 0.822RRT
Multi-directional 3.34 6.92 0.171 0.449RRT∗

T-RRTg 0.55 10.21 0.028 0.121
T-RRTt 13.466 10.91 0.01 0.062
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Figure 8: The result of path-planning for two degrees of freedom manipulator with the tempered version of T-RRT

Two parameter settings are examined for the T-RRT method, the
first one (T-RRTg) is a greedy version with nFailmax = 10, in the
other case (T-RRTt) nFailmax = 100, which will lead to a tempered
version of T-RRT. The computation time in the first case is lower,
but the found path has a lower quality as well. The other parameters
were: Tinit = 10−5, α = 1.5, ρ = 0.2, cmax = 0.4, δ = 0.3. The
parameters were chosen empirically.

As it can be seen, the path of the T-RRT algorithm is not equal
with the shortest collision-free path.

To demonstrate the presented method, simulations were per-
formed using the Mitsubishi RV-2F-Q manipulator as well. The task
of the robot was to move to the other side of an obstacle, which is
modeled by two polyhedrons. For implementation and simulation,
MATLAB Simulink and Simscape Multibody toolbox were used.
The running times were measured on a computer with Intel Core
i7-7700HQ Processor.

For the cost function evaluation, the nearest neighborhood clus-
tering method was applied. The parameters were empirically se-
lected as follows: number of teaching points is n = 20000, radius of
the cluster is r = 1 rad and deviation of the Guassian membership
functions is σ = 0.5. To determine the approximated cost function,
t ≈ 120s computational time was required, what is appropriate,
since these calculations have to be performed only once for a given
robot and workspace.

The parameters of the T-RRT method were selected as Tinit =

0.01, α = 5, nFailMax = 10, ρ = 0.1, cmax = 0.8 and δ = 0.4. To get
a solution for a path-planning problem, the average calculation time
was t ≈ 7.3s.

One solution is presented in Fig. 9–Fig. 10. Fig. 9 depicts the
trajectories of the joint variables. The whole movement can be
seen in a video: https://youtu.be/t6GO8LKG5js. Some key
configurations of the robot are also presented in Fig. 10. It can be
seen, that the presented algorithm was able to plan such a motion,
where colliding configurations can be avoided.

8 Conclusion
The method presented in this paper can be used to solve the offline
path-planning problem for robotic manipulators. The algorithm is

based on the T-RRT method, which is able to calculate the reference
motion for the robot, such that collision avoidance is guaranteed
and suboptimal path is selected according to some cost-function.

Figure 9: Trajectories of the joint variables

In this work such a cost-function was selected, which can ensure,
that the distance between the path of the robot and the colliding con-
figurations is large. Instead of the time-consuming determination of

www.astesj.com 394

https://youtu.be/t6GO8LKG5js
http://www.astesj.com
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Figure 10: Robot configurations along the collision-free path

the exact cost values, a nonlinear-fuzzy approximation algorithm
was suggested which uses the Nearest neighborhood clustering
method.

For the collision checking of robot configurations, another ap-
proximation was applied. The segments of the robot and the obsta-
cles can be modeled by sets of bounding polyhedrons. The collision
of these polyhedrons was checked by the feasibility analysis of
inequality systems.

Trajectory planning was also presented in the paper. To produce
an input for a trajectory tracking and control method, time functions
were determined for the joint variables and their derivatives using
known bounds of the joint velocities and accelerations.

In the sequel, the goal is to develop an effective online motion-
planning method, which can be used to plan a collision-free motion
in such a workspace which contains obstacles with unpredictable
movements as well. First, the reference motion can be determined
by the presented T-RRT based method for the static environment,
and additionally, a reactive planning method (similar to [20]) can be
applied to ensure the avoidance of dynamic obstacles as well.
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