

www.astesj.com 159

Testing Web Service Compositions: Approaches, Methodology and Automation

Dessislava Petrova-Antonova1,*, Denitsa Manova2, Sylvia Ilieva1

1Software engineering, Sofia University, 1113, Bulgaria

2Rila Solutions, 1113, Bulgaria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 05 November, 2019
Accepted: 20 December, 2019
Online: 22 January, 2020

 Web services give a new view of the web as the biggest, widely accepted and the most
straightforward distributed software platform. Their composition into applications and
business processes is still a complex, non-trivial task, requiring highly rational efforts not
only from the software developers, but from the quality assurance specialists. The provision
оf web service compositions’ quality brings a lot of challenges due to variability of
difficulties at infrastructure, service and choreography levels and the need of different types
of testing in unknown context and environment. A consolidated quality assurance
methodology that advances the fundamental understanding of testing in terms of concepts,
models, techniques, standards and automation is required. This methodology needs to
enable effective exploration, comparison, evaluation and selection of testing approaches,
platforms and tools.
This article proposes such a methodology and reviews the current testing approaches for
single and composite web services from an objective, holistic perspective. The methodology
is presented as an end-to-end testing procedure, in which activities are facilitated by a set
of testing approaches, techniques and best practices. A concrete solution is recommended
for actual implementation of each activity either through selection among the most
appropriate and effective existing approaches or development of new approaches, mainly
in case of critical issues such as dependencies analysis, partner web services’ isolation and
injection of faults. A common framework that integrates different testing tools automates
the methodology. Its applicability, completeness, level of automation, and level of novelty
is evaluated through testing of real testing scenarios.

Keywords:
Testing approaches
Testing methodology
Testing web service compositions

1. Introduction

Web services provide a novel paradigm for interoperability of
distributed applications. They act as collaborative agents to deliver
advanced and high-quality functionality to the end users. That is
why the web services are used by the successful enterprises to
build flexible and fast connections with their partners, and thus
reducing the cost and increasing the revenue. Such business
interactions are possible through implementation of Web Service
Compositions (WSCs) in a standardized, secure and interoperable
manner. Although the WSCs provide a lot of benefits for the
developers, they bring challenges to testing as well as to overall
quality assurance process. First, its implementation is often based
on web services, which are developed and deployed on diverse

environments supported by different vendors. In case of legacy
systems and components, the web services act as wrappers of
functionality that is hard to be controlled and simulated in a testing
environment. The orchestrated web services are not always
available or could be undeployed by the provider, which leads to
additional efforts for emulation of their behavior during testing. In
addition, the emulation is required in case of payed web services
to reduce the testing process’s cost. Appropriate message data
needs to be generated not only for the emulated web services to
mimic their behavior, but for the composition as whole in order to
be invoked in the testing environment. Achieving a high level of
test coverage and determination of failure causes is difficult due to
the missing programming code of the orchestrated services as well
as the requirement for creating test cases based only on their public
interfaces. Such interfaces are usually defined using the Web
Service Description Language (WSDL). When a dynamic binding

ASTESJ

ISSN: 2415-6698

*Dessislava Petrova-Antonova, 1113 Sofia, Bulgaria, 125 Tsarigradsko shose
Blvd. Blok 2, +359887572094 & d.petrova@fmi.uni-sofia.bg

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj050121

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050121

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 160

of web services is implemented, the emulation process becomes
more complex, since advanced stubs (mockups) should be
developed.

A lot of testing approaches and automated tools have been
proposed to meet the above challenges. Unfortunately, the most of
them cover only single testing activities such as analysis of testing
paths, generation of test cases, web service mocking, injection of
faults, etc. However, it is important to merge all testing activities
in a general testing procedure supported by end-to-end
methodology and thus to facilitate the whole testing process. This
article is an extension of work originally presented in International
Conference on the Quality of Information and Communications
Technology (QUATIC’18) [1], which proposes such a
methodology, called Testing As Service Software Architecture
(TASSA). The methodology addresses the following major
problems of WSC testing:

• Difficulties in emulation of web services deployed on
heterogeneous platform and controlled by external
providers;

• Missing or temporally unavailable web services and
inability to detect the causes of failures;

• Lack of automation to test unanticipated behavior of web
services and test case generation to reach a high level of test
coverage.

Therefore, the benefit of the proposed methodology are as
follows:

• Provision of end-to-end testing methodology for WSC;
• Recommendation of concrete approaches for actual

implementation of each activity of the methodology;

• Development of completely new approaches to cover
critical issues such as analysis of data dependencies,
isolation of partner web services and injection of faults;

• Full automation in a single framework for testing WSCs,
described with Business process execution language (WS-
BPEL) [2].

The next two sections present the TASSA methodology and the
testing approaches appropriate for its implementation. Section 4
provides a view of TASSA methodology’s validation and Section
5 summarizes the validation results. Section 6 concludes the paper.

2. TASSA methodology
TASSA methodology supports functional, performance and

security testing of WSCs and provide means for validation of their
behavior if implementation changes are in place. It relies on a small
number of artefacts, such as a BPEL file, input data, expected
output data and test assertions. It consists of seven main activities,
presented with a workflow diagram in Figure 1.

2.1. Prerequisites
W3C defines a set of standards for WSCs that are used for

standard compliance validation of the WSCs [3]. If some
inconsistencies are detected, a notification to perform the
approapriate coreections are sent to the tester. The isolation of a
partner web service can can follow two approaches: (1) invocation
of mockup service that mimic the behavior of the partner web
service or (2) generation of expected response that is expected
from the partner web service. TASSA methodology adopts the
second approach based on change of the communication channel
between the WSC and its partner web service. This is realized
using a so called “mediator service” allows fo injection of different
types of faults in the communication channel.

Figure 1: Methodology workflow

Functional
testing

Functional
test case

Input/
Output data

Analysis

Test
assertions

Test data

WSDL

XSD

BPEL* BPEL

Prerequisites

Security testing

Test case
execution

Performance
and load testing

Security test
case

Performance
test case

Test data WSDL

BPEL

BPEL*

Test data WSDL

Logs

Reports

Charts

Recording and
reporting

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 161

2.2. Analysis

In order to obtain all test paths, the WSC is usually represented
using a specific formal model. TASSA methodology transforms
the WSC in a BPEL Flow Graph (BFG) similarly to the approaches
in [4] and [5]. First, all paths in the BFG are identified, next the
unfeasible ones are filtered and the finally the feasible paths are
used for generation of test cases.

2.3. Functional testing

The WSDL description of the WSC is the primary source for
functional test case generation. The main components of a given
test case are the request with input data and the expected response
with output data. Similar test cases are a common practice for
testing single web services. A modified approach that support
tracing of the executed activities in the WSC is applied by the
TASSA methodology.

The generation of test data is based on a widely adopted
approach based on XML Schema Definition (XSD) of the WSC. It
is further developed to support parametrization of test cases using
variables, functions as well as connectivity with external data pools
allowing for data-driven testing. The expected results from the
execution of the WSC are a base for definition of test assertions.
The execution order of the activities in the WSC is an important
assertion, when the behavior of multiple web services is
orchestrated. Additional assertions relevant to both single and
composite web services are defined, based on a single value, a
value type, a regular expression, an HTTP status code, a file type
and size, etc.

2.4. Security testing

The request to the WSC is enriched with appropriate test
artefacts for the purposes of security testing. The response from the
WSC is checked whether it matches the security requirements,
such as delivery of partial message, unauthorized access,
unavailable partner web service, etc. At the message level, the
security testing includes sending of “secure” request and checking
the response sent by the web service. There are a lot of security
mechanisms applicable to WSCs. The TASSA methodology
proposes usage of WS-Security standard and QoS policies, which
are based on enrichment of exchanged messages with a specific
information based on WS-RM, WS-Addressing or MOTM. At
transport level, the testing for security is related to testing of the
authentication, including sending certificates like Kerberos, SSL,
etc.

The TASSA methodology follows a new approach for the
robustness testing. It transforms the WSC under test allowing for
simulation of faults during its execution. The supported faults are
an unavailable partner web service, a delay of the response from a
partner web service, wrong structure or semantic of the response
from a partner web service. The test assertions for security testing
are defined in a similar way of functional testing.

2.5. Performance and load testing

The performance and load testing validate the non-functional
characteristics of the WSC. Since, it requires a set of requests to be
send in order to simulate parallel executions, a definition of virtual
users is performed for single functional test case or a group of them

for a given time interval. The threads are commonly used in the
most cases. They are scheduled to define the way, on which the
virtual users are managed. The schedule contains information
about the time for starting and stopping of requests, execution
order of requests and time interval between them, number of
executions, etc.

The test assertions for performance testing are based on those
for functional testing. Test assertions for time intervals, resource
usage, file sizes and others characteristics are also defined. They
provide insight for the system and network load, the hardware and
software resources, etc. Additionally, a special assertion for
checking the compliance with the Service Level Agreements
(SLAs) is created.

2.6. Test case execution

Prior execution of functional test cases, the BPEL file of the
WSC should be deployed on the application server and an instance
of the WSC should be created. The request defined in the
functional test case is sent to the WSC and its behavior is tested in
a similar way to a single web service. The security testing requires
to configure the security settings of the application server, where
the BPEL file is deployed. The performance or load testing needs
definition and management of threads according to the parameters
of in the test cases. When a huge load needs to be simulated or
hardware resources of the application server are limited, the
execution of test cases is distributed among different machines.

2.7. Recording and reporting

The information obtained during the execution of the test cases
is recorded in a log file. In order to allow for easily processing, the
valuable outputs are collected in a test data storage. Apart from the
directly obtained test results, additional metrics are recorded,
which are related to the WSC itself, the application server,
communication channels, the network and so on. These metrics are
simple, but can be further aggregated for computing of more
complex ones. In order to check whether the test is failed or passed,
the expected output and actual one after test case execution are
compared based on the test assertions. When the test is failed, the
reason for the failure is collected for defect allocation as well as
for a subsequent regression testing. The test reporting uses the data
from the log files and the corresponding test data storage. The
XML is the most commonly used data format for the test reports.

3. Testing Approaches

This section presents testing approaches that are appropriate
for implementation of TASSA methodology. For each
methodology’s task several approaches are identified and the most
appropriate ones are recommended. For particular tasks new
approaches are developed and reasoning about their applicability
is given.

3.1. Standard compliance checking

The preparation of WSC for testing includes three main
activities, described in previews section, namely checking for
compliance with standards, isolation of partner web services and
injection of faults.

The compliance with the standards can be validated by the
most of Integrated Development Environments (IDEs) such as

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 162

Eclipse BPEL Validator, Oracle ILINT and NetBeans XML
Validate. It can be performed following three different techniques
depending on the validation rules:

• Rules described with a programming code (e.g. code
written with Java);

• Rules based on XML or OCL constraints;

• Rules defined with a model of the WSC description (e.g.
UML model).

The proposed methodology relies on the Eclipse BPEL
Validator. It processes the BPEL file as a DOM and for each node
(assign, copy, from, to, etc.) creates rules for checking the
constraints prescribed by the corresponding standard. The rules are
written in Java and can be changed by the tester.

3.2. Isolation of partner web services

The replacement of partner web service with a stub (mockup)
service is a technique widely used to remove external
dependencies from the WSC [6,7]. An alternative approach is to
generate a message that substitutes the response expected by the
WSC from a partner web service [8,9,10]. The second approach
requires the real communication with the partner web services to
be recorded and appropriate interfaces and data to be manually
defined.

For the purpose of TASSA methodology, a new approach is
elaborated. It replaces the BPEL activities related to external
dependencies (e.g. Invoke activities) with ones that are internal to
the WSC and provide similar output to the original activities (e.g.
Assign activities). Since the output of the simulated activities are
known, the execution of the WSC can be controlled to follow a
particular path. For this purpose, proper values for the variables in
conditional branches should be defined. Identification of the
sequence of branch conditions and the values for conditional
variables is a heavily task but it is automated by the TASSA
isolation tool.

3.3. Fault injection

 The robustness of the WSC can be tested relying on methods
for negative testing by causing faults in the WSC itself or in its
communication with the partner web services. A classification of
the faults that are typical for service-oriented systems can be found
in [11], while the specific faults for WSC are described in [12]. In
[13] authors propose an approach that injects faults in the partner
web service and then perform coverage testing of the code
responsible for recovery from failures (e.g. exception handlers). In
[14] a fault injection technique is applied by exploring the behavior
of the WSC regarding the injected faults and thus to assess the its
fault tolerance capabilities.

The fault injection is the second new approach proposed by the
TASSA methodology. It supports injection of delays, errors and
other malfunctions in the message exchange between WSC and its
partner web services. The BPEL file of the WSC is modified by
replacing the call to a partner web service with a call to a proxy
service. In case of faults, the behavior of the third-party services is
out of the TASSA scope. Therefore, faults in the outgoing calls are
not injected. The proposed approach requires the original partner
web service to be called and then intervention in its response to be
performed. For this reason, the proxy service calls the original
partner web service and then using the information for the fault

simulated performs the required action. When data errors need to
be injected, the two options are available – to change the values of
data fields, while keeping the structure of the message or to insert
random errors in the message data, which could break the XML
structure of the response. For the first case, a tool for random
generation of data according to an XML schema is required.

3.4. Dependency analysis

The analysis of WSC is focused on states, transitions and
related usage of BPEL activities that are part of complex
interactions. The software systems support two kinds of
interactions as follows:

• Data flow interactions, where the definition and values of
the next data items depend on the definition and values of
the previous ones.

• Control flow interactions along the execution path, in
which the next executions depend on the previous ones;

The testing of the above interactions is covered by the data flow
testing and control flow testing, respectively. Such techniques are
applicable mainly to white-box testing. In the context of the
service-oriented systems, there are additional interactions due to
communication with external services, for which only the types of
input and output data are known.

An overview of types of interactions, related dependencies and
approaches for analysis is can be found in [15]. The current
approaches for dependency analysis apply variety formal models.
The most popular ones transform the WSC in a control flow graph
[16,17], Petri net [18,19], a state graph [20] or an UML model
[21,22].

For the purpose of TASSA methodology, a new approach for
dependency analysis is developed. As was mentioned before, it
transforms the WSC in a BFG in order to find all executable paths.
The dependency analysis includes identification of the conditional
statements together with their conditional variables and constants,
which values guide the execution of the WSC on a certain path.

3.5. Test data generation

The test data generation is a complex task, since the
programming code of the WSC itself and its partner web services
is often unavailable. That is why the approaches for test data
generation are “black box” based, meaning that they rely only on
the scope and type of the input and output variables.

Since the communication in WSCs is performed through
exchange of XML messages, a large group of test data generation
techniques use WSDL descriptions of the web services in
combination with their XSDs [23,24,25,26,27]. The XSDs
determine the constraints over the data types that are useful for
generation of both simple and complex test data.

The approach proposed for TASSA methodology is similar to
those presented in [28,29,30,31], since it also processes XSDs. It
produces XML instances from a given XML Schema available in
the WSDL file or in the BPEL file. Thus, XML messages needed
for communication of the WSC with its partner web services are
generated. The proposed approach can be applied to functional and
robustness testing of WSCs due to support of both correct and
incorrect XML instances’ generation. The implemented algorithm
supports generation of empty XML documents – XML instances,
which structure follows a given XML Schema, but does not

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 163

contain concrete values for the XML elements. In addition,
generation of XML instances populated with random valid and
invalid data depending on the testing goal is provided. Finally, a
manual specification of values for the XML elements or their
loading from external file are supported.

3.6. Test assertions definition

The service-oriented systems require definition of test
assertions for a large group of test artefacts such as file content,
file properties, message content (both header and body), message
properties, expressions (e.g. XPath), variable values, variable
properties, time properties and sequences of activities’ execution.

Durand and Green propose a test script model allowing for
expression of predicates crossing over diverse inputs and to handle
a richer spectrum of outcomes [32]. The test assertions are well-
structured objects defined with identifier, source (normative
conformance requirement), target (instance of a specific artifact
type), pre-condition that should be fulfilled, predicate (logical
expression over the target) and prescription level (level of
imperativeness of the source requirement). The major benefit of
such approach is that the target can be tested within its context. The
test assertions are defined using XLST and XPath and can be
applied to functional testing and non-functional testing.

The power of XPath functions and expressions is leverage by
Schematron – a simple pattern and rule language suitable for
document testing [33]. Since the handling of the namespace is
difficult, when rules are written according to an XML schema, and
when there is a namespace prefix in a value of an attribute or
element, the language is primarily intended for XML instances.
XMLUnit is a tool offering both Java and .NET interfaces, which
also supports validation according to a given XML schema,
assertion of the values of XPath queries or comparison of XML
documents with the expected outcomes [34]. The approach behind
the tool relies on JDOM to traverse the XML tree.

TASSA methodology adopts the approach proposed by Durand
и Green. In addition to it, the XMLUnit is also utilized due to its
high level of automation.

3.7. Functional test case generation

The approaches for generation of functional test cases can be
divided in two groups depending on the type of testing technique
– white box or black box. The black box techniques handle the
WSC as a single service with known operations and message types
defined in a WSDL document. On the other hand, the white box
techniques explore the actual BPEL file to find information about
activities, control flow and data flow. According to the formal
model used for transformation of WSC to find executable paths
and thus generate test cases, the approaches falls in three main
groups: approaches based on CFG [16], approaches using Petri
nets [18] and approaches adopting model checking technique such
as Web Service Automata (WSA) [35], Stream X-machine (SXM)
[36], UML 2.0 activity diagram [37], PROMELA [38], etc.

The solution for test case generation of TASSA methodology
follows mixed approach – a combination of black box and with
box techniques. It supports the following tasks: (1) determination
of web service operations and BPEL variables; (2) generation of
templates of SOAP request; (3) test assertions’ definition at HTTP
level, SOAP level and BPEL variable level; (4) execution of test
cases by exchange of SOAP messages; (5) collection of test results
for reporting and follow-up actions. The test cases are described

and stored in an XML format, where the root element has two
attributes – “name”, corresponding to the test case name, and
“template”, indicating whether a data-driven testing can be
performed. The other elements are a narrative description of the
test case, a WSDL operation under test, an input data, a data source
for the purpose of data-driven testing, and test assertions. The
provided types of assertions verify the status code of the HTTP
response and response time, validate the SOAP message in case of
success or failure and can apply XPath expressions to a BPEL
variable or to a SOAP body.

The test case provides information for the web service address,
and the message parts like HTTP headers, authentication
mechanisms if they are required, and data that is carried in the body
of the SOAP request. The test result consists of HTTP headers,
data that is carried in the body of the SOAP response, the BPEL
variables’ values and the execution time. In case of data-driven
testing, parametrized test cases are generated, in which the actual
data in the SOAP request body and the expected data in the SOAP
response body are substituted with variables.

3.8. Performance testing

Since the web services are inherently concurrent, the
concurrent issues continue to receive a huge interest. There are two
primary solutions for implementation of concurrency models,
namely event-based and thread-based. In thread-based
applications each request is resolved in synchronous mode. Thus,
each request is processed in a single thread. When the response is
complete, the thread returns back to thread pool. If an external
service is called to resolve the request, the thread has to wait for
the response. In event-based applications each request is resolved
in an asynchronous mode. The thread returns back to thread pool
before the response is completed and it is ready to serve some other
request. There is a single thread (or a small number of threads) that
routes and manages all requests. If an external service is called to
resolve the request, the process continue to execute without
blocking and receives a response through a callback mechanism.
The BPEL engines work following one of the two models. IBM
WebSphere Process Server, ActiveBPEL Engine, Oracle BPEL
Process Manager are thread-based, while BPWS4J and BPEL-
Mora are event-based. A BPEL engine prototype with a high
performance, proposed in [39], adopts and event-driven
architecture and join patterns delivered by the Microsoft
Concurrent Coordination Runtime (CCR). Apache ODE executes
long-running business processes, described with BPEL. ODE's
Java Concurrent Objects (JaCOb) framework ensures the runtime
implementation of BPEL constructs at the instance level [40].
JaCOb supports a concurrency at application-level without relying
on threads.

The type of concurrency model directly affects the
performance of WSC. In addition to the Response time, other non-
functional characteristics of web services related to their
performance are Throughput, Availability, Accessibility and
Successful rate. In the context of WSC, the performance depends
on the orchestration of the partner web services, which can follow
five patterns: sequence parallel, conditional, cyclic or
discriminative execution. For each execution pattern, the quality
factor of each partner service is calculated and then an aggregated
factor for the whole WSC is delivered. The Response time,
Availability, Reliability, Bandwidth and Cost are non-functional
characteristics used for assessment of WSCs in [41]. A drawback
of the proposed approach is that it considers only sequence

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 164

execution of partner web services. The approach presented in [42]
covers all five execution patterns, but takes into account only three
are non-functional characteristics (Response time, Reliability and
Cost). In contrast to the approaches that apply aggregation method
for quality assessment, there is a more realistic method, which
accounts for the uncertainty of partner web services and estimate
the quality of a WSC’s probabilistically.

TASSA methodology proposes usage of combination of
approaches. It is validated in the context of Apache ODE BPEL
Engine. The generation of the virtual users us performed by
external tool, which handles the WSC as a single service applying
black box testing. The same number of requests following the same
schedule are used for testing of WSC and its partner web services.

3.9. Security testing

The security testing of WSCs brings challenges due to their
distributed nature and requires application of more than a single
approach. Kabbani and Tilley consider the security of WSCs from
three points of view: known threats and weaknesses, security
mechanisms for web services and privacy, integrity and
accessibility [43]. The Open Web Application Security Project
(OWASP) works on improving the software security. It describes
a set of security vulnerabilities, including those that affect the web
services. It proposes tools and best practices for security assurance
[44]. The OASIS consortium describes security quality factors
such as Encryption, Authorization, Authentication, Non-
Repudiation, Integrity, Availability, Privacy and Audit [45]. The
WS-standards (WS- Security Policy, WS-Addressing, WS-SOAP
Message Security, WS-Trust) prescribe mechanisms for secure
communication between single web services, but they are
applicable to WSCs too.

Several research works propose development of models for
data access of single services [46,47,48]. The security assessment
of WSCs is based on such models. An alternative approach is to
use a web service mediator, called broker, which composes the
web services against the specified security constraints. An optimal
WSC is selected according the QoS properties [49]. The broker
uses a repository to store security and quality properties of web
services and updates these properties after each execution of WSC.
The security certification of web services is a technique applicable
to selection, discovery, and composition processes. It includes
certificate issuing and management, certification-aware service
discovery, certificate validation, and service consumption [50].
Biskup et. al propose a framework supporting a decentralized
execution of WSCs, which guarantee the correctness and the
security of the execution [51]. The approach is based on a container
– an encrypted and authenticated data structure that is passed
among the composed web services. An XML-based script
language for definition of security policies of WSCs is presented
in [52]. It is integrated to a platform for run-time monitoring and
security analysis. Data sharing agreements are another solution for
secure collaboration between parties [53]. They define the data
sharing policies for authorizations, obligations and prohibitions.
The policies indicate the authorized, obliged or denied actions
together with their related data and subject.

TASSA methodology relies on validation according to the
security standards, testing through fault injection, described in
Section 3.3 and checking of the implemented security
mechanisms. The quality factors of security in [45] are defined for
single web services. The security tests check whether particular
mechanisms and standards are applied or not. They can be

performed on a transport level or on a message level. Since
TASSA methodology are focused on WSCs, it proposes testing of
the data exchange security, as it is prescribed in [53].

3.10. Recording and documentation of test results

The instrumentation is a popular method for monitoring and
analysis of the execution of WSCs is [54,55,56]. It adds s specific
code in the BPEL file, which collects execution information
without changing the normal execution of the WSC. The collected
information is sent to external auditing web service for processing.
The approach is technology independent and is suitable for
functional testing, since it allows monitoring of data flow and
control flow. It can be applied to security testing, but it is not
appropriate for performance testing due to invocation of external
web service, which can slow down the performance.

The BPEL engine itself provides a detail information for the
execution state of the WSC. For example, the ActiveBPEL Engine
[57], Oracle BPEL Process Manager (Glassfish) [58], IBM
WebSphere Process Server [59], Apache ODE [40] collect
information about the Response time, the variables and activities
as well as the invoked partner web services and the respective
message exchange. Since the BPEL engines control the execution
of WSC, the approaches and tools relying on their capabilities are
technology dependent, but applicable to both functional and non-
functional testing. SALMon is a service-oriented system for
monitoring services in order to detect violations in service level
agreements (SLAs) [60]. It is technology independent, including
three types of components, namely Monitors, Analyzer and
Decision maker. The Monitors consist of measuring instruments,
the Analyzer checks the SLA rules, while the Decision maker
performs corrections to satisfy SLA rules. An architecture for run-
time monitoring of WSCs, described with BPEL, is proposed in
[61]. The business logic of the composition and the monitoring
functionality are clearly separated through implementation of two
types of monitors – instance monitors and class monitors. The
instance monitors are responsible for execution of a single instance
of the composition, while the class monitors report aggregated
information about all executed instances. Both monitors are
specified through a specific language and are generated as Java
programs, which can be deployed in the run-time environment of
the monitor engine.

TASSA methodology adopts the approach relying on the
BPEL engine for monitoring of WSC and subsequent reporting of
the collected information. Such approach is suitable for all types
of testing and provides information about assertions, variables,
messages, control flow and communication with the partner web
services. Its advantage is the lack of intervention in the WSC and
early reporting of the test results.

4. Validation of TASSA methodology

The validation of the TASSA methodology is performed
through its application for testing of a sample business process,
called Check Payment. The testing is performed using NetBeans
integrated development environment.

4.1. Functional testing

The definition of functional test cases includes the following
steps:

1) Selection of BPEL file, containing description of the
Check Payment business process;

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 165

2) Selection of test path from the data dependency tree,
generated from the BPEL file;

3) Identification of variables and constants, from which the
execution of the selected path depend on, using the data
dependency analysis tool. The tool returns description of
dependencies, shown in Listing 1;

Listing 1: Description of dependencies

Listing 2: SOAP request

Listing 3: Input test data

4) Generation of abstract test case for testing of business
process’s operation OrderPartnerOperation. The SOAP
request to the partner web service is shown in Listing 2;

5) Creation of executable test cases from the abstract one by
manual or automated specification of values for the input
variables, considering the identified constraints on step 3.
The expected results and assertions are defined using the
test case generation tool. In order to execute the path that
contains the activity CityAssign, the credit card number
and the client email should be valid, while the city and the
state may be omitted. The input data that satisfy these
conditions as well as standard data types in the XSD
schema of the business process are presented in Listing 3;

The following assertions are defined:

• HTTP status code – checks the HTTP status code of the
response. The expected value is 200;

• XPath equals – the BPEL variable ValidateEMailOut
should contain XPath expression message/part/
ValidateEMailResponse/ValidateEMailRe with value
True.

• XPath equals – the BPEL variable
Validate_CreditCardOut should contain XPath expression
message/part/Validate_CreditCardResponse/Validate_Cr
editCardResult with value 1.

• Not XPath exists – the BPEL variable
OrderPartnerOperationIn should not contain XPath
expression message/part/city.

• Contains – the response is expected to contain the regular
expression <ord1:city>.*</ord1:city>;

• Response time – the maximum value of the Response time
is expected to be 5 000 ms.

6) The test cases are executed and the results are recorded
and analyzed.

Table 1: Output from functional testing

No Assertion Result
1 HTTP status code 200
2 XPath equals on ValidateEMailOut variable True
3 XPath equals on Validate_CreditCardOut variable 1
4 Not XPath exists on OrderPartnerOperationIn variable XPath not

found
5 Contains (case sensitive: “false”, is regex: “true”) Value

found
6 Response time 2562 ms

4.2. Isolation of partner web service

Since the partner web service addresslookup allows limited
invocations over time, it is isolated from the business process by
performing the following steps:

1) Selection of BPEL file, containing description of the
Check Payment business process.

2) Selection of addresslookup web service for isolation;

3) Formal description of isolation, shown in Listing 4. The
partner web service is executed though invoke activity
PostCodeInvoke. The result from invocation is replaced
with a string constant “TEXAS CITY”.

4) Isolation of the partner service through transformation of
the business process. Figure 2 shows the transformed part

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 166

of the business process, where the Assign1 activity
replaces the original PostCodeInvoke invoke activity.

Listing 4: Formal description of isolation

Figure 2: Isolation of partner web service

5) Execution of the transformed business process without
invocation of addresslookup web service.

The output from isolation of partner web service is the same as
one presented in Table 1. The partner web service addresslookup
is successfully isolated without breaking of the normal execution
of the business process.

4.3. Fault injection

The robustness testing of the business process is performed
through the following steps:

1) Selection of BPEL file, containing description of the
Check Payment business process.

2) Formal description of the fault that will be simulated,
shown in Listing 5 – a delay in the communication channel
between the business process and its partner web service
ValidatorDemo.

Listing 5: Formal description of fault injection

3) Transformation of the business process according to the
formal description in step 3. The invocation of partner web
service ValidatorDemo is replace with an invocation of
proxy web service, called PoxyInvoke, which injects fault.

4) Execution of the transformed business process. The
ProxyInvoke web service simulates a delay of 20 sec of the
response from the partner web service.

The output from fault injection is the same as one presented in
Table 1, except the value for the Response time. Due to delay of
response from the partner web service ValidatorDemo, the actual
Response time of the business process is 23718 ms.

5. Summary of methodology validation

TASSA methodology is evaluated based on the following
assessment criteria:

• Applicability to SOA-based systems;

• Completeness of testing related to both WSCs and its
components;

• Level of automation of the whole testing process;

• Level of novelty.

More details about the results form evaluation of TASSA
methodology can be found in [62,63,64,65]. They prove that the
TASSA methodology provides solution of the most significant
problems related to the WSC testing: (1) Inability to instrument
web services that are not under control of the developer; (2) Delay
of testing due to parallel development of the application
components that have dependencies between each other; (3) Lack
automation of testing for situations when the communication
channel is interrupted or there is a noise in it and (4) Difficulties
during identification of the root causes of failures and lack of a
specific analysis approach dealing with different technology
platforms.

The validation results shows that the isolation of partner web
services can be applied to both synchronous and asynchronous
WSCs. The isolation of the external dependencies and the injection
of faults keep the original behavior of the WSC. In addition, the
proposed approach for fault injection successfully simulate
different types of failures. The identification and tracking the
execution paths of WSC is supported by TASSA methodology
through the approach for dependency analysis. This approach
successfully identifies the conditional activities in the BPEL file
and the variables, which values determine the execution on a given
path.

The evaluation of TASSA methodology according to the above
criteria proves its feasibility and effectiveness. The TASSA
methodology proposes a novelty solution for testing SOA-based
applications. Its level of novelty is directly related to the maximum
level of novelty of the adopted approaches. Therefore, the level of
novelty of TASSA methodology is 3 from total 3. It delivers a
complete solution. Its completeness is calculated as a sum of
completeness of the adopted approaches. The completeness of
TASSA methodology is 11 from total 12. The TASSA
methodology provides a high level of automation. Its level of
automation is computed as a sum of level of automation of the
approaches that are proposed for its implementation. This metric
varies due to possibility for combination of different approaches to
achieve a specific testing goal. Since the testing approaches share
test data, the manual activities related to its generation on the latest
testing stages are minimized. The average level of automation of
TASSA methodology is 7 from total 12. It is fully applicable to
testing of WSCs, defined with WS-BPEL. The applicability of the
TASSA methodology is directly related to the minimum
applicability of the approaches that are proposed for its
implementation. It depends on the concrete approaches used to test
a given WSC. When all activities of TASSA methodology are

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 167

performed, the applicability is calculated as 1. When the activities
related to isolation of partner web services and dependency
analysis are not performed, the applicability is calculated as 3. In
this case the TASSA methodology can be applied to a number of
service-based applications.

Table 2 Summarizes the evaluation results. The first fifth rolls
are related to the proposed testing approaches, while the last one
shows the results for the TASSA methodology as a whole.

Table 2: Summary evaluation of TASSA methodology

Approach/
methodology Novelty Completeness Automation Applicability Total

Isolation of
dependencies 100% 100% 66% 25% 73%

Fault injection 66% 100% 66% 75% 77%
Dependencies
analysis 100% 33-66% 33-66 25% 48-73%

Functional test
case generation 33% 100% 100% 100% 66%

Test data
generation 66% 66-100% 66% 75% 68-77%

Overall
methodology 100% 80-93% 33-100% 25-100% 66-77%

6. Conclusion

The present work addresses the challenges of testing WSCs by
proposing a novel methodology for testing, called TASSA. The
methodology consists of the following main activities: (1)
Checking for compliance with standards and isolation of partner
web services; (2) Definition of testing goal and dependency
analysis of the WSC to obtain testing paths; (3) Definition of
functional test cases; (4) Definition of test cases for performance
and load testing; (5) Definition of test cases for security testing; (6)
Test case execution; and (7) Recording and reporting of test
results. The optional execution of some activities enables focusing
of the testing process on the specific user requirements and
performing a step-by-step testing. For example, preparation
activities could be performed at the beginning of business process
development, including checking for compliance with standards.
On the next step, when the partner web services are identified and
are available, a functional testing could be performed. Finally,
when the development of the business process under test is
completed, non-functional testing could be conducted. A
significant benefit of the TASSA methodology is that it deals with
a small set of test artefacts – BPEL file, test data and test assertions.
When the methodology is applied to the functional testing, a high
level of automation can be achieved, in which only the BPEL file
should be provided.

A lot of approaches are explored to identify the most suitable
ones for implementation of the activities of TASSA methodology.
New approaches are proposed for the most critical issues such as
fault injection, isolation of partner services and dependency
analysis. For other activities current approaches are adopted and
are extended if needed. Two popular approaches for functional test
case definition and test data generation are extended. The
automation of TASSA methodology is shown onto a sample, yet
realistic case study as a proof-of-concept. The complete validation
is performed using different business processes in terms of number
of activities, number of partner web services and type of
communication – synchronous or asynchronous. The novelty,
automation and applicability of TASSA methodology to testing

serviced-based applications are evaluated regarding clearly
defined assessment criteria. The results shows that it fully support
end-to-end testing of WSCs covering all required testing activities.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This research work has been supported by GATE “Big Data for
Smart Society” project, funded by the European Union's Horizon
2020 WIDESPREAD-2018-2020 TEAMING Phase 2
programme under grant agreement no. 857155 and Big4Smart
“Big Data Innovative Solutions for Smart Cities”, funded by the
Bulgarian National Science fund, under agreement no. DN12/9
and agreement no. DN 02/11.

References

[1] Petrova-Antonova, S. Ilieva, D. Manova, “TASSA Methodology: End-to-end
Testing of Web Service Compositions” in 11th International Conference on
the Quality of Information and Communications Technology
(QIATIC’2018), September 4-7, 2018, 264-267, Electronic ISBN: 978-1-
5386-5841-3. https://doi.org/10.1109/QUATIC.2018.00046

[2] OASIS Web Services Business Process Execution Language,
https://www.oasis-open.org/, last accessed 2019/11/04

[3] W3C., https://www.w3.org/standards, last accessed 2019/11/04
[4] T. Lertphumpanya, T. Senivongse, “Basis path test suite and testing process

for WS-BPEL” WSEAS Transactions on Computers, 7(5), 483-496, 2008.
[5] Y. Yuan, Li, Z., W. Sun, “A graph-search based approach to BPEL4WS test

generation” in IEEE Int. Conf. on Software Engineering Advances, 2006.
https://doi.org/10.1109/ICSEA.2006.261270

[6] IBM - Rational Test Virtualization Server. (2016, January 1).
http://www.ibm.com/software/products/en/rtvs, last accessed 2019/11/04

[7] Web Services API Mocking Overview | SOAP Mocking. (n.d.).
https://www.soapui.org/soap-mocking/service-mocking-overview.html. last
accessed 2019/11/04

[8] CA Service Virtualization - CA Technologies. (n.d.).
https://www.ca.com/us/products/ca-service-virtualization.html, last accessed
2019/11/04

[9] R. Fletcher, “Betamax - Record & replay HTTP traffic”,
http://betamax.software/, 2011, last accessed 2019/11/04

[10] Service Virtualization: Application & Data Simulation Software | Hewlett
Packard Enterprise. (n.d.). http://www8.hp.com/us/en/software-
solutions/service-virtualization/, last accessed 2019/11/04

[11] S. Bruning, S. Weissleder, M. Malek, “A fault taxonomy for service-oriented
architecture” in IEEE 10th High Assurance Systems Engineering Symposium,
2007, 367-368. https://doi.org/10.1109/HASE.2007.46

[12] K. M. Chan, J. Bishop, J. Steyn, L. Baresi, S. Guinea, “A fault taxonomy for
web service composition” in International Conference on Service-Oriented
Computing, 2007, Lecture Notes in Computer Science, vol 4907. Springer,
Berlin, Heidelberg, 363-375. https://doi.org/10.1007/978-3-540-93851-4_36

[13] C. Fu, B. G. Ryder, A. Milanova, D. Wonnacott, “Testing of java web services
for robustness” ACM SIGSOFT Software Engineering Notes, 29(4), 2004,
23-34. https://doi.org/10.1145/1007512.1007516

[14] M. G. Fugini, B. Pernici, F. Ramoni, “Quality analysis of composed services
through fault injection” Inf Syst Front (2009) 11: 227.
https://doi.org/10.1007/s10796-008-9086-3.

[15] P. Kumar, Ratneshwer, “A Review on Dependency Analysis of SOA based
System” in IEEE Fifth International Conference on Recent Trends in
Information, Telecommunication and Computing, 2014, 69-81.
https://doi.org/02.ITC.2014.5.11

[16] J. Yan, Z. Li, Y. Yuan, W. Sun, J. Zhang” Bpel4ws unit testing: Test case
generation using a concurrent path analysis approach” In IEEE 17th
International Symposium on Software Reliability Engineering, 2006, 75–84.
https://doi.org/10.1109/ISSRE.2006.16

[17] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, N. M. Mitsumori, “Business-process-
driven gray-box SOA testing” IBM Systems Journal, 47(3), 2008, 457-472.
https://doi.org/10.1147/sj.473.0457

[18] W. L. Dong, H. Yu, Y. B. Zhang, “Testing BPEL-based web service
composition using high-level petri nets” in 10th IEEE International Enterprise
Distributed Object Computing Conference, 2006. 441-444.
https://doi.org/10.1109/EDOC.2006.59

http://www.astesj.com/

D. Petrova-Antonova et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 1, 159-168 (2020)

www.astesj.com 168

[19] W. M. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, E. Verbeek,
“Conformance checking of service behavior” ACM Transactions on Internet
Technology, 8(3), 13, 1-30, 2008. https://doi.org/10.1145/1361186.1361189

[20] M. Daghaghzadeh, M. Babamir, “An ABC based approach to test case
generation for BPEL processes” in IEEE 3th International eConference on
Computer and Knowledge Engineering, 2013, 272-277.
https://doi.org/10.1109/ICCKE.2013.6682849

[21] H. Cao, S. Ying, D. Du “Towards model-based verification of BPEL with
model checking” In Sixth IEEE International Conference on Computer and
Information Technology, 2006, Seoul, 190-190.
https://doi.org/10.1109/CIT.2006.185

[22] Z. Guangquan, R. Mei, Z. Jun, “A business process of web services testing
method based on UML2. 0 activity diagram” in IEEE Workshop on Intelligent
Information Technology Application, Zhang Jiajie, 2007, pp. 59-65.
https://doi.org/10.1109/IITA.2007.83

[23] C. Bartolini, A Bertolino, E. Marchetti, A. Polini, “WS-TAXI: A WSDL-
based testing tool for web services” In IEEE International Conference on
Software Testing Verification and Validation, 2009, 326-335.
https://doi.org/10.1109/ICST.2009.28

[24] C. Ma, C. Du, T. Zhang, F. Hu, X. Cai, “WSDL-based automated test data
generation for web service” In International Conference on Computer Science
and Software Engineering, 2008, 731-737.
https://doi.org/10.1109/CSSE.2008.790

[25] H. M. Sneed, S. Huang “WSDLTest-a tool for testing web services” in Eighth
IEEE International Symposium on Web Site Evolution, 2006, pp. 14-21.
https://doi.org/10.1109/WSE.2006.24

[26] J. Offutt, W. Xu “Generating test cases for web services using data
perturbation” ACM SIGSOFT Software Engineering Notes, 29(5), 2004, 1-
https://doi.org/10. 10.1145/1022494.1022529

[27] X. Bai, W. Dong, W. T. Tsai, Y. Chen, “WSDL-based automatic test case
generation for web services testing” in IEEE International Workshop on
Service-Oriented System Engineering, 2005, 207-212.
https://doi.org/10.1109/SOSE.2005.43

[28] DataGen - XML Test Data Generation Tool (2012). http://iwm.uni-
koblenz.de/datagen/index.html, last accessed 2019/11/04

[29] Eclipse XML Editor Help - Eclipse Platform. (n.d.).
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.wst.xmleditor.d
oc.user%2Ftopics%2Fcwxmledt.html, last accessed 2019/11/04

[30] M. Sorens (2009). Taking XML Validation to the Next Level: Introducing
CAM. DevX. http://www.devx.com/xml/Article/41066, last accessed
2019/11/04

[31] V. Bergmann, Databene Benerator 0.7.6, manual, 2012.
[32] J. Durand, S. D. Green, S. Kulvatunyou, T. Rutt, “Test Assertions on steroids

for XML artifacts” In Balisage: The Markup Conference, vol. 3, 2009.
[33] J. Tennison, “Validating XML with Schematron”, Beginning XSLT, 2004,

Apress.
[34] T. Bacon, J. Martin, “XMLUnit - Unit Testing XML for Java and .NET”,

http://www.xmlunit.org/, last accessed 2019/11/04
[35] Y. Zheng, J. Zhou, P. Krause “An Automatic Test Case Generation

Framework for Web Services” Journal of Software, 2(3), 20017, 64-77.
http://epubs.surrey.ac.uk/id/eprint/1975

[36] Ch. Ma, J. Wu, Tao Zh., Y. Zhang, X. Cai “Automatic Test Case Generation
for BPEL Using Stream X-Machine” International Journal of u- and e-
Service, Science and Technology, ISSN: 2005-4246, 2008, 27-36.

[37] Q. Yuan, J. Wu, Ch. Liu, L. Zhang “A model driven approach toward business
process test case generation” in 10th International Symposium on Web Site
Evolution, 2008. https://doi.org/10.1109/WSE.2008.4655394

[38] J. García-Fanjul, J. Tuya, Cl. de la Riva “Generating Test Cases Specifications
for BPEL Compositions of Web Services Using SPIN” in International
Workshop on Web Services Modelling and Testing, 2006, 83-94.

[39] W. Chen, J. Wei, G. Wu, X. Qiao’ Developing a Concurrent Service
Orchestration Engine Based on Event-Driven Architecture” Meersman R.,
Tari Z. (eds) On the Move to Meaningful Internet Systems: OTM 2008. OTM
2008. Lecture Notes in Computer Science, vol 5331. Springer, Berlin,
Heidelberg, 2008, pp. 61-68.

[40] Apache ODE Team. Apache ODE BPEL Engine - Architectural Overview,
2013. http://ode.apache.org/developerguide/architectural-overview.html, last
accessed 2019/11/04

[41] B. Li, X. Y. Tang, J. Lv, “The research and implementation of services
discovery agent in web services composition framework”. in IEEE
International Conference on Machine Learning and Cybernetics, 2005, vol. 1,
78-84.

[42] S. Y. Hwang, H. Wang, J. Tang, J. Srivastava, “A probabilistic approach to
modeling and estimating the QoS of web-services-based workflows”,
Information Sciences, 177(23), 2007, 5484-5503.

[43] N. Kabbani, S. Tilley, “Evaluating the capabilities of SOA security testing
tools” In IEEE International Systems Conference, 2011, 129-134.
https://doi.org/10.1109/SYSCON.2011.5929125

[44] R. Groenboom, R. Jaamour, “Securing Web Services” in OWASP Europe
Conference, Leuven, Belgium, 2006

[45] OASIS Web Services Quality Factors Version 1.0. OASIS Committee
Specification 01. http://docs.oasis-open.org/wsqm/WS-Quality-
Factors/v1.0/cs01/WS-Quality-Factors-v1.0-cs01.html, last accessed
2019/11/04

[46] E. Yuan, J. Tong, “Attributed based access control (ABAC) for web services”
In IEEE International Conference on Web Services, 2005.
https://doi.org/10.1109/ICWS.2005.25

[47] M. Bartoletti P. Degano, G. L. Ferrari, “Plans for service composition” in
Workshop on Issues in the Theory of Security, 2006.

[48] S. Haibo, H. Fan, “A context-aware role-based access control model for web
services” in IEEE International Conference on e-Business Engineering, 2005,
pp. 220-223. https://doi.org/10.1109/ICEBE.2005.1

[49] S. M. Babamir, F. S. Babamir S. Karimi, “Design and evaluation of a broker
for secure web service composition” in IEEE International Symposium on
Computer Networks and Distributed Systems, 2011, 222-226.
https://doi.org/10.1109/CNDS.2011.5764577

[50] M. Anisetti, C. A. Ardagna, M. Bezzi, E. Damiani, S. P. Kaluvuri, A. Sabetta,
“A Certification-Aware Service-Oriented Architecture” Bouguettaya A.,
Sheng Q., Daniel F. (eds) Advanced Web Services. Springer, New York, NY,
2014, 147-170.

[51] J. Biskup, B. Carminati, E. Ferrari, F. Muller, S. Wortmann, “Towards secure
execution orders for composite web services” in IEEE International
Conference on Web Services, 2007, 489-496.

[52] B. Zhou, D. Llewellyn-Jones, Q. Shi, M. Asim, M. Merabti, D. Lamb, “A
Compose Language-Based Framework for Secure Service Composition” in
IEEE International Conference on Cyber Security, 2012, 195-202.
https://doi.org/10.1109/CyberSecurity.2012.32

[53] F. Martinelli, I. Matteucci, M. Petrocchi, L. Wiegand, “A formal support for
collaborative data sharing”, in International Conference on Availability,
Reliability, and Security, Springer Berlin Heidelberg, 2012, 547-561.

[54] C. K. Yee, Design and Implementation of Test Case Generation Tool for
BPEL Unit Testing (Doctoral dissertation, thesis), 2007.

[55] H. Roth, J. Schiefer, A. Schatten, “Probing and monitoring of WSBPEL
processes with web services” in 3rd IEEE International Conference on E-
Commerce Technology, 8th IEEE International Conference on and Enterprise
Computing, E-Commerce, and E-Services, 2006, 30-30.
https://doi.org/10.1109/CEC-EEE.2006.69

[56] L. Baresi, C. Ghezzi, S. Guinea, “Smart monitors for composed services” in
ACM 2nd international conference on Service oriented computing, 2004, 193-
202. https://doi.org/10.1145/1035167.1035195

[57] Active Endpoint, ActiveBPEL. www.active-endpoints.com/active-bpel-
engineoverview, 2007. htm, last accessed 2019/11/04

[58] L. Jamen, SGhosh, “Oracle Fusion Middleware Performance and Tuning
Guide 11g”
https://docs.oracle.com/cd/E21764_01/core.1111/e10108/bpel.htm#ASPER9
9175, last accessed 2019/11/04

[59] C. Johnson, B. Newport, “Develop high performance J2EE threads with
WebSphere Application Server”
http://www.ibm.com/developerworks/websphere/techjournal/0606_johnson/
0606_johnson.html, last accessed 2019/11/04

[60] M. Oriol Hilari, J. Marco Gómez, J. Franch Gutiérrez, D. Ameller,
“Monitoring adaptable SOA systems using SALMon” in 1st Workshop on
Monitoring, Adaptation and Beyond, 2008, 19-28.

[61] F. Barbon, P. Traverso, M. Pistore, M. Trainotti, “Run-time monitoring of
instances and classes of web service compositions” in IEEE International
Conference on Web Services, 2006, 63-71.
https://doi.org/10.1109/ICWS.2006.113

[62] D. Manova, I. Manova, S. Ilieva, D. Petrova-Antonova, “faultInjector: A Tool
for Injection of Faults in Synchronous WS-BPEL processes” in IEEE 2nd
Eastern European Regional Conf. on the Engineering of Computer Based
Systems, 2011, 99-105. https://doi.org/10.1109/ECBS-EERC.2011.23

[63] D. Petrova-Antonova, D. Manova, S. Ilieva, “TASSA: Testing Framework for
web service orchestration”. in IEEE/ACM 10th International Workshop on
Automation of Software Test, 2015, 8-12.
https://doi.org/10.1109/AST.2015.9

[64] D. Petrova-Antonova, S. Ilieva, D. Manova, “Automated Web Service
Composition Testing as a Service” in Hammoudi S., Pires L., Selic B.,
Desfray P. (eds) Model-Driven Engineering and Software Development.
MODELSWARD 2016. Communications in Computer and Information
Science, vol 692. Springer, Cham, 114-131.

[65] I. Spassov, D. Petrova, V. Pavlov, S. Ilieva, “Data Dependency Analysis Tool
for Web Service Business Processes” Murgante B., Gervasi O., Iglesias A.,
Taniar D., Apduhan B.O. (eds) Computational Science and Its Applications -
ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6786.
Springer, Berlin, Heidelberg, 232-243.

http://www.astesj.com/

	2. TASSA methodology
	2.1. Prerequisites
	2.2. Analysis
	2.3. Functional testing
	2.4. Security testing
	2.5. Performance and load testing
	2.6. Test case execution
	2.7. Recording and reporting

	3. Testing Approaches
	3.1. Standard compliance checking
	3.2. Isolation of partner web services
	3.3. Fault injection
	3.4. Dependency analysis
	3.5. Test data generation
	3.6. Test assertions definition
	3.7. Functional test case generation
	3.8. Performance testing
	3.9. Security testing
	3.10. Recording and documentation of test results

	4. Validation of TASSA methodology
	4.1. Functional testing
	4.2. Isolation of partner web service
	4.3. Fault injection

	5. Summary of methodology validation
	6. Conclusion
	Conflict of Interest
	Acknowledgment
	References

