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The possibility to apply non-linear transformation of the Wilson-Hilferty type to the Pois-
son random variable is investigated using an analytic approach, in order to improve the
convergence towards the large-parameter Gaussian limit. Considering the already existing
non-linear transformation for the Gamma distribution, the original Wilson-Hilferty and a
higher-order transformations are showed and approximations for the Gamma function are
illustrated. From this, an approximate algorithm which exploits standard Gaussian random
numbers is established, in order to generate Poisson random numbers of any parameter m.
The algorithm performance is also assessed. The convenience of this approximate approach
it resides in the fact that simulations often could be computationally demanding so that
optimized algorithms have to be adopted for the efficient extraction of Poisson random
numbers with variable parameter m.

1 Introduction
The Poisson k ∈ N (discrete) and standard Gamma x ∈ R+ (con-
tinuous) random variables are characterized by the asymmetric
probability distributions:

pk(m) =
mk exp(−m)

k!
, f (x, α) dx =

xα−1 exp(−x)
Γ(α)

dx (1)

which depend on a single dimensionless parameter m ∈ R+ or
α ∈ R+. The parameter coincides with both average and variance
of the random variables while the skewness asymmetry parameter,
equal to m−

1
2 for the Poisson and 2α−

1
2 for the Gamma distributions,

tends to zero in the limit of large parameter values. Correspond-
ingly both random variables weakly approach to a Gaussian limit
for m → ∞ or α → ∞. These distributions are useful for the de-
scription of several phenomena involving Poisson and other random
processes relevant to fundamental and applied research fields. The
distributions share the same functional form with the roles of vari-
able and parameter exchanged and therefore are also a representative
example of conjugate a priori in the Bayesian formalism [1].

The availability and evolution of computing hardware [2]-[3]
and the development of computational methods requiring the re-
peated generation of random numbers according to these distribu-
tions has stimulated the development of accurate and fast algorithms.

Most of these algorithms are based on different implementations
of the rejection method, random variable transformations or their
combination [4]. Exact algorithms for the generation of random
numbers for the Poisson, Gamma, Beta and Binomial distributions
were early introduced by Ahrens and Dieter [5], while specific
improved algorithms for the Gamma [6]-[7] and Poisson [8]-[13]
random numbers have been extensively discussed. Versatile fast
algorithms for repeated extractions of random numbers from the
same discrete distribution (also Poisson with parameter m) were
developed by Marsaglia and co-workers [14]. They are based on
the random access to suitable pre-calculated tables that contain the
integers to be generated in such a way that they are drawn with the
desired probability.

Approximate methods often provide useful alternatives espe-
cially when a wide range of large parameter values are encountered.
The large-parameter Gaussian limit for the Poisson and Gamma dis-
tributions suggests the possibility to generate approximate random
numbers with linear transformations of the type:

k ≈ m +
√

m z , x ≈ α +
√
α z (2)

from a standard Gaussian random number z generated using well
established approaches. It can be expected that more complex
non-linear transformations may provide more efficient strategies
to exploit the Gaussian random number z. In the historical paper
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by Wilson and Hilferty (WH) [15] non-linear transformations of
the form x = (a + b z)p were investigated to provide approximate
confidence intervals for the χ2 random variable (a Gamma with
semi-integer parameters) from the Gaussian confidence intervals. A
useful transformation was obtained using p = 3.

The possibility to use the WH transformation to approximate
the Poisson cumulative distribution was recently emphasized in a
paper of Lesch and Jeske [16] exploiting a relationship between the
Gamma and Poisson random variables through the cumulative distri-
bution function. In this paper, considering Pk(m) as the Poissonian
cumulative distribution function, and Φ(x) the Gaussian cumulative
distribution function, the following approximation is stated:

Pk(m) ' 1 − Φ((c − µ)/σ) (3)

where c = (m/(1 + k))1/3, µ = 1 − 1/ (9(1 + k)) and σ =

1/
(
3
√

1 + k
)
. Since the Eq. (3) is not explicable with a formula

which expresses the Poisson as dependent variable of a Gaussian
variable, an explicit non-linear transformation is still missing ac-
cording to our knowledge.

In this paper we are interested in finding a non-linear transfor-
mation for the Poisson random variable exploiting the Gaussian
random variable, in the spirit of the WH approach used for the
Gamma random variable [15, 7]. Our interest in the generation of
Poisson random numbers was motivated by the effort to develop
a Kinetic Monte Carlo computer simulation of the classical nucle-
ation process [17] and was required for an approximate treatment
of the high transition rate region. The method has been recently
applied to compute the homogeneous crystalline nucleation rate
in undercooled liquid Ni [18] for comparison with experimental
data. In the parameter range m ≤ 50, an efficient exact approach
was adopted combining the method of Marsaglia [14], tabulated for
integer parameter values, with a O(m) algorithm correction for the
decimal part of m. While, for larger m, the following non-linear
transformation from a standard Gaussian random number z, was
adopted:

k =

[max
(

2
3

m
1
6 z + m

2
3 , 0

)] 3
2

+
1
3

 . (4)

Eq. (4), that has apparently never been suggested before, was
introduced in a previous paper without derivation [17]. In this pa-
per an analytic justification for the above expression is illustrated.
It will be shown that this approximation can be obtained with an
approach analogous to WH transformation for the Gamma random
variable. The aim is to find the optimal transformation in a given
class of functions for which the Taylor expansion about the max-
imum of the logarithm of the transformed probability density, is
closer to a parabolic shape. It is believed that this transformation
can be useful in many applications requiring an efficient generation
of Poisson random numbers with parameters m & 10 (variable in
a wide range) and represents a good trade off between computing
time and accuracy.

The paper is organized as follows. In Sec. 2 the WH transfor-
mation and a higher order formula for the Gamma distribution are
presented. Furthermore, approximations to the Gamma function are
discussed in the same section, exploiting the two transformation.
The non-linear transformation method is extended to the Poisson

distribution in Sec. 3 and the previous transformation (4) estab-
lished. The approximation errors on the cumulative and probability
distributions are investigated in Sec. 4. Conclusions are drawn in
Sec. 5.

2 Considerations on WH-type approxima-
tions for the Gamma random variable
and Gamma function

The original WH paper [15] is focused on the Gamma random vari-
able whose probability density is f (x, α) in Eq. (1), related to the
Erlang (α ∈ Z+), and χ2 (2α ∈ Z+) distributions. The spirit of the
original approach is to look for a non-linear transformation of the
type:

x = y(z)p =
[
a + bz + ψ(z)

]p (5)

where x is the Gamma random variable, z is the transformed random
variable, and a, b and p are suitable constants to be determined in
such a way that z is closely approximated by a standard Gaussian
random variable. The original WH approach considers ψ(z) = 0,
but it is possible to extend the class of transformations including
an analytic correction ψ(z) with ψ(0) = 0, ψ′(0) = 0, ψ′′(0) = 0.
Throughout this paper the Lagrange’s primes notation will be used
and the successive derivatives of f (x) are indicated as f ′(x), f ′′(x),
f ′′′(x), f (4)(x), f (5)(x)

The differentials dx and dz of the original and transformed ran-
dom variables, according to Eq. (1), are related by:

dx = p y(z)p−1y′(z) dz = p
[
a + bz + ψ(z)

]p−1 [
b + ψ′(z)

]
dz. (6)

If we transform the Gamma density function (1) according to
transformation (5), the resulting transformed probability density is:

f (x, α) dx = g(z, α) dz =
p

Γ(α)
exp

[
φ(z)

]
dz (7)

where g(z, α) is the new Gamma density function expressed through
the z variable and obtained replacing equations (5) and (6) in f (x, α)
of Eq. (1). Therefore, φ(z) is defined as:

φ(z) = (αp − 1) ln
[
y(z)

]
− y(z)p + ln

[
y′(z)

]
. (8)

Since we are interested in obtaining a Gaussian approximation
through the transformation in Eq. (2), the function φ(z) at the ex-
ponent in Eq. (7), could be approximated by a parabolic function
named φ̃(z):

φ(z) ' u + vz2 = φ(0) −
1
2

z2 = φ̃(z) (9)

with u = φ(0) and v = −1/2. So, the minimal analytic requirements
that φ(z) must satisfy in z = 0 are:

φ′(0) = 0, φ′′(0) = −1, φ′′′(0) = 0 . (10)

in order to recall a parabolic shape and therefore a Gaussian density
function for g(z, α) in the neighborhood of the peak z = 0.
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In the simplest case, corresponding to the original WH trans-
formation [15], where ψ(z) = 0, it is demonstrated that Eq. (5)
is:

x = [a(α) + b(α) z]3 =

(α − 1
3

) 1
3

+
1
3

(
α −

1
3

)− 1
6

z


3

(11)

where:

a = a(α) =

(
α −

1
3

) 1
3

, (12)

b =
1
3

a−
1
2 = b(α) =

1
3

(
α −

1
3

)− 1
6

. (13)

Always in the WH demonstration [15], the parameter p results
p = 3. This choise is endorsed by the fact that p = 3 implies that
φ′′′(0) = 0 for a wide class of ψ(z) functions where ψ(4)(z) = 0,
which is obviously true for ψ(z) = 0.

It is possible, however, to find transformations which improve
the parabolic approximation for φ(z) imposing the additional condi-
tion φ(4)(0) = 0 to the others showed in Eq. (10). A good choice is
to adopt a cubic ψ(z) term of the type:

ψ′′′(0) = 6c b3 ,

ψ(z) = cb3z3 ⇒ ψ(4)(0) = 0 ,

ψ(5)(0) = 0.

(14)

Imposing the conditions in Eq. (10) and φ(4)(0) = 0, the complete
higher order transformation is given by:

x =
[
a(α) + b4(α)z + c b4(α)3z3

]3
(15)

with p = 3, a(α) equal to Eq. (12) and:

b = b4(α) =
1
3

(
α −

1
3

)− 1
6
5

3
−

2
3

√
6α − 3
6α − 2

−
1
2

(16)

c = −a

1 − √
1 −

1
6a3

 . (17)

Furthermore, the previous Gaussian approximation to the trans-
formed Gamma distribution (7) can be used to compute approxi-
mately the integral corresponding to the Γ(α) function in the spirit
of the saddle point integration approach:

Γ(α) =

∫ ∞

0
xα−1 exp(−x) dx

≈ 3
∫ ∞

−∞

exp
[
φ(0) −

z2

2

]
dz

= 3 exp[φ(0)]
√

2π.

(18)

With respect to the usual Stirling approximation, the two non-linear
transformations (11) and (15) produce integrand functions of z better
approximated by a standard Gaussian. Recalling that:

φ(0) = (3α − 1) log(a) − a3 + log(b) ,

exp[φ(0)] = a(3α−1) b exp(−a3)
(19)

the following approximations ΓWH(α) and Γ4(α) to the Γ(α) function
are obtained:

ΓWH(α) =
√

2π
(
α −

1
3

)(α− 1
2 )

e−(α−
1
3 ) (20)

Γ4(α) =
√

2π
(
α −

1
3

)(α− 1
2 )

e−(α−
1
3 )

5
3
−

2
3

√
6α − 3
6α − 2

−
1
2

. (21)

The modulus of the relative error ε(α) =
∣∣∣∣1 − Γa(α)

Γ(α)

∣∣∣∣ of the two
previous above approximations Γa(α), is reported in Fig. 1 an com-
pared to the Stirling formula and the Stirling series (with two terms):

ΓS t(α) =
√

2π(α − 1)
(
α − 1

e

)α−1

(22)

ΓS 2(α) =
√

2π(α − 1)
(
α − 1

e

)α (
1 +

1
12(α − 1)

+ ...

)
. (23)

10−8

10−6

10−4

10−2

1 10 100 1000

∼ α−2

ǫ(
α
)

α

Figure 1: Relative error ε(α) of various approximations to the Γ(α) function. The
curves refer to: the Stirling approximation ΓS t(α) (dot-dashed line), the WH approxi-
mation ΓWH(α) (solid line), the higher-order WH approximation Γ4(α) (dashed line),
the first two terms of the Stirling series expansion ΓS 2 (dotted line). The thin straight
line is a guideline for the eye corresponding to an α−2 behaviour.

It is possible to notice that the approximations obtained by the
WH approach (20) and (21) are better than the Stirling formula
(22). In particular, the higher-order WH approximation (21) is
characterized by a relative error decreasing as α−2, similarly to the
approximation obtained including the first two terms of the Stirling
series (23).

3 The WH-type approximation for the
Poisson distribution

The possibility to obtain an approximation to the Poisson cumula-
tive distribution function, using a relationship between the Poisson
and Gamma random variables (exploiting the application of the WH
transformation to the latter) was emphasized [16]. In this approach
the transformation z(k) for the Poisson distribution, cannot however
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be easily inverted to obtain an explicit k(z) relationship, analogous
to the x(z) transformations for the Gamma distribution.

In this section an approach similar to the one mentioned in Sec.
2, and therefore referred to as a WH-type transformation, is applied
to the Poisson distribution. Two additional complications arise:
the first is that for a discrete random variable it is necessary to ap-
proximate the distribution with a continuous probability density, the
second is the requirement to expand k! = Γ(k+1) at the denominator
introducing an additional approximation. For these reasons there
is no scope in pushing the expansion order while the accuracy of
the final transformation will have to be numerically assessed. An
advantage of the discrete nature of the approximated random vari-
able is that the transformation will eventually inject finite z intervals
into a single k value and the possible effects of the transformation
singularity will be masked.

The simplest continuous approximation to the Poisson distribu-
tion (the approximate normalization is not relevant for the following
arguments) is given by:

pk(m) =
mk exp(−m)

k!
−→ f (k,m) '

mk exp(−m)
Γ(k + 1)

. (24)

The class of transformation k(z) considered in the present work is
of the type:

k(z) = [a(m) + b(m) z]q + c. (25)

The opportunity to include an additional constant term c, with re-
spect to (5) with ψ(z) = 0, is suggested by a flexibility requirement
for the successive conversion into integer numbers. The general
form of (25) and the resulting optimal functional dependencies a(m),
b(m) and exponent q, are expected to be compatible with relatively
fast numerical computations.

The probability density of the transformed random variable is
obtained as usual:

f (k,m) dk =
mk(z) exp(−m)

Γ(k(z) + 1)
q b(m) [a(m) + b(m)z]q−1 dz

= exp
[
ϕ(z)

]
dz

(26)

where:

ϕ(z) = k(z) ln(m) − m − ln [Γ(k(z) + 1)] +

(
1 −

1
q

)
ln [k(z) − c] +

+ ln [b(m)] + ln(q) .
(27)

Similarly to the Gamma case treated in Sec. 2, the aim is to find
the optimal parameters in such a way that the function ϕ(z) (27) at
the exponent of the transformed probability density is close to a
parabolic function in the neighbourhood of z = 0.

In order to calculate the derivatives of ϕ(z) respect to z, an ex-
plicit approximate functional expression for the logarithm of the

Gamma function is required and, according to Eq. (20), it is possible
to write:

ln [Γ(k(z) + 1)] ''
1
2

ln(2π) +

[
k(z) +

1
2

]
ln

[
k(z) +

2
3

]
−

−

[
k(z) +

2
3

]
.

(28)

An approximate expression for ϕ(z) (27) is obtained exploit-
ing Eq. (28), retaining the leading terms in k ln(k), k, ln(k) and
neglecting constants or lower order terms as:

ϕ(z) ' −k(z) ln [k(z)] + k(z) + k(z) ln(m) −
1
2

ln [k(z)] +

+

(
1 −

1
q

)
ln [k(z)] + O (1) .

(29)

Correspondingly the first three approximated derivatives are:

ϕ′(z) '
{

ln(m) − ln [k(z)] +

(
1
2
−

1
q

)
1

k(z)

}
·

· q b(m) [k(z) − c]
(
1− 1

q

) (30)

ϕ′′(z) '
{

(ln(m) − ln [k(z)])
(
1 −

1
q

)
− 1

}
·

· q2 b2(m) k(z)
(
1− 2

q

) (31)

ϕ′′′(z) '
{(

1
q
− 1

)
+

[
(ln(m) − ln[k(z)])

(
1 −

1
q

)
− 1

] (
1 −

2
q

)}
·

· q3b(m)3k(z)
(
1− 3

q

)
(32)

where further terms of order O (1) have been neglected in the second
and third derivatives and the condition k(z) � c accounted for. The
analytic conditions to be imposed to equations (30), (31) and (32)
are that these first three derivatives of ϕ(z) in z = 0 should satisfy:

ϕ′(0) = 0 , ϕ′′(0) = −1 , ϕ′′′(0) = 0 . (33)

The condition on the first derivative requires that the term in curly
brackets in Eq. (30) vanishes:

0 = ln(m) − ln (aq + c) +

(
1
2
−

1
q

)
1

aq + c
'

' ln(m) − ln (aq) −
1
aq

[
c −

(
1
2
−

1
q

)]
.

(34)

In this expression the identity k(0) = aq + c was used and, con-
sidering that c � k ' aq, the logarithm was expanded to the first
order as ln (aq + c) ' ln (aq) + c

aq and the denominator in the last
term approximated as aq + c ' aq. In order to satisfy Eq. (34) it is
possible to chose:

a(m) = m
1
q , c =

1
2
−

1
q
. (35)
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By evaluating (31) in z = 0, considering that to the O(1) order
ln(m)−ln[k(0)] ' 0 and the term in curly brackets is ' −1, imposing
the condition ϕ′′(0) = −1, it is found that:

b(m) = q−1 k(0)
(

1
q−

1
2

)
' q−1a

(2−q)
2 . (36)

Finally, retaining only O(1) terms in the curly brackets of Eq. (32),
the condition ϕ′′′(0) = 0 yields:

1
q
− 1 +

2
q
− 1 = 0 ⇒ q =

3
2
. (37)

The solution for q from (37) inserted into (35) and (36) defines all
optimal transformation parameters as:

q =
3
2
, a(m) = m

2
3 , b(m) =

2
3

m
1
6 , c = −

1
6
. (38)

The proposed k(z) transformation thus takes the form:

k(z) =

[
m

2
3 +

2
3

m
1
6 z

] 3
2

−
1
6
. (39)

The performance and meaning of transformation (39) is illus-
trated in Fig. 2 for a typical Poisson distribution with a relatively
low parameter value (m = 10). The small (∗) symbols are exact
numerical results, reported at the ordinate integer values k and k + 1
and abscissa z such that the cumulative distributions of the Poisson
random variable (up to k included) and of the standard Gaussian (up
to z) coincide, that is:

exp(−m)
k∑
`=0

m`

` !
=

1
√

2π

∫ z

−∞

exp
(
−

y2

2

)
dy . (40)

0

10

20

30

40

50

−4 −2 0 2 4 6 8

m=10

0
1
2
3
4
5

−4 −3 −2
k

z

Figure 2: Relationship between the standard Gaussian z and Poisson k (parameter
m = 10) random variables. Couples (z, k), (z, k + 1) (∗ symbols) where a matching
between the corresponding cumulative distributions occurs, according to Eq. (40).
Proposed non linear transformation (dashed curve) Eq. (39). Stepwise discretized
transformation Eq. (41). The small k range is magnified in the inset.

The dashed curve is the approximate transformation (39) that
clearly interpolates the numerical result for the exact discrete ran-
dom variable. In order to use the continuous transformation to
generate correctly integer values, a continuity correction has to be
applied. This can be performed by adding a constant shift + 1

2 to

the transformation and taking the largest integral value that is not
greater than the resulting real number1. The discretized version of
the transformation is therefore:

k =

(m 2
3 +

2
3

m
1
6 z

) 3
2

+
1
3

 . (41)

This expression corresponds to the stepwise curve reported in
Fig. 2 that closely reproduces the exact numerical steps (symbols
∗) especially in the |z| < 3 high probability region. The remote
possibility that a large negative z results in a negative k is overcome
by the max operator in the final transformation, anticipated in Eq.
(4), that injects these cases in the k = 0 random number.

4 Accuracy assessment
Several statistical indicators can be considered to investigate the er-
rors of the proposed approximation (4) in comparison with the linear
transformation (2) or the one proposed in the paper of Chang [19]
and of Lesch [16]. As described by Lesch [16], useful statistical
indicators quantify the maximum deviations on both the probability
and the cumulative distributions and can be defined respectively
as the maximum absolute difference between the exact Poisson
probability pk and the approximate probability fk,

Mp = max
k
|pk − fk | (42)

and, the maximum absolute difference between the exact Pois-
son Pk and the approximate Fk cumulative distributions:

Mc = max
k
|Pk − Fk | . (43)

The dependence of these two indicators as a function of m is
illustrated in Fig. 3 in double logarithmic plots, which quantifies
the precision of the approximations.

10−4

10−2

10−4

10−2

4 6 10 20 40 60 100

M
p

M
c

m

Figure 3: Double logarithmic plot of the dependence of the two statistical indicators
Mp (42) and Mc (43) as a function of the Poisson parameter m. The performance
of the proposed non-linear transformation (solid lines) is compared with the linear
transformation (dashed lines) and the transformation proposed by Lesch [16] (dotted
lines). This latter curve overlaps with the solid line in the Mp case.

1This operator corresponds to the C floor function and is indicated as b. . . c
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The behaviour of the two indicators are showed in each sub-plot
for the linear (Eq. 2 with dashed line), the non-linear (Eq. 4 with
solid line) and the Lesch transformations ([16] with dotted line).
It is possible to notice that, for the non-linear transformation, the
two indicators decrease with increasing m roughly as m−1.5 in both
the case. So, the performance of the proposed approximation (4) is
substantially equivalent to the one proposed by Lesch [16] with the
advantage of the availability of an explicit k(z) expression for the
random number generation.

The χ2 test is also performed and showed in Fig. 4 as a function
of the sample number N. As in Fig. 3, the indicator is reported for
three different number of degree of freedom nc (7, 57, 89), which
correspond respectively to different values of the Poisson parameter
m (1, 60.24, 144.89). The χ2 value is reported for the linear (Eq.
2 with dashed line), the non-linear (Eq. 4 with solid line) and the
Lesch transformations ([16] with dotted line). The horizontal line
represents the χ2 level of significance considered at 5%. Under
the line, the hypothesis test is considered verified and the random
numbers obtained through the transformation (4) are considered dis-
tributed as a Poisson function. This means that the approximation
is good. Furthermore, its goodness improves with the increasing of
the degree of freedom nc, and so with the increasing of the Poisson
parameter m.

10−2
1

102
104
106
108

10−2
1

102
104
106
108

10−2
1

102
104
106
108

1 10 102 103 104 105 106 107 108 109

χ
2 n
c=

7
χ
2 n
c=

5
7

χ
2 n
c=

8
9

N

Figure 4: The dependence of the statistical indicator χ2 as a function of the sample
dimension N. The performance of the proposed non-linear transformation (solid
lines) is compared with the linear transformation (dashed lines) and the transforma-
tion proposed by Lesch [16] (dotted lines). The plot are showed for three different
case of degree of freedom nc, which correspond to different value of the Poisson
parameter m. In particular for nc = 7 m = 1, nc = 57 m = 60.64 and nc = 89
m = 144.89. The horizontal line represents the level of significance of 5% taken
from the χ2 table under which the hypothesis of the χ2 test is verified.

It is evident the better performance of the proposed non-linear
transformation (solid line) respect to the linear one, furthermore, its
goodness increases with the increasing of the degree of freedom.

As in the case of the previous statistical indicators, the proposed
approximation (4) is substantially equivalent to the one proposed by
Lesch [16].

5 Conclusions
In this paper WH type non-linear transformation between a standard
Gaussian random variable z and Poisson k random variable was
investigated. The historical WH transformation, was revisited and
its corresponding approximations to the Gamma function were in-
vestigated. The WH approach was extended to the Poisson random
variable and a relatively simple transformation was established. The
accuracy of the transformation was assessed as a function of the
Poisson parameter m.

This result provide an analytic justification for the proposed
transformation (4) to generate approximate Poisson random num-
bers for arbitrary parameter m introduced in the previous paper
[17]. The proposed transformation has a relatively simple func-
tional structure and can be implemented using fast library routines
for the evaluation of square roots sqrt, while the slower pow func-
tion is not required. The execution of (4), including the generation
of the Gaussian random number, requires about 53 ns on a 3.7
GHz 64-bit processor and the reliability of the generated random
numbers is fully acceptable for m ≥ 10 for most applications. The
improved reliability of the generated random number with respect
to the simpler linear transformation m +

√
m z fully justifies the

required additional 4 ns of computing time.
While a large number of exact methods for the generation of

Poisson random number with different characteristics are described
in the literature [8],[11]-[14], the present method is expected to
provide a useful approximate alternative for several possible ap-
plications. Marsaglia’s method [14], for example, is useful for
repeated extractions from the same distribution (parameter m), since
different arrays are required if m changes. Our method for sure
is slower and less precise (since it is an approximation) than the
Marsaglia’s method, anyway it is a valid alternative for the cases
where m varies over time, giving a good trade-off between preci-
sion computing speed. A possible application filed of the proposed
algorithm is the filed of embedded systems and Wireless Sensor
Networks (WSN)[20]-[21], where the aspect just mentioned has its
importance.

The method actually provides an explicit expression for the
random number generation, implementing the ideas of the usage
of the WH non-linear transformation recently emphasized in the
educational literature [16]. Furthermore, this paper intend to be
an hint for a more precise mathematical work in which to provide
analytical bounds and how the proposed transformation is related
to the central limit theorem. Finally, last observation, this method
could be the basis for a new rejection method, increasing its random
number generation accuracy.
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