

www.astesj.com 653

On the Use of Triple Graph Grammars for Model Composition

Hatime Bencharqui*,1, Younes Moubachir2, Adil Anwar1

1Mohammed V University in Rabat. EMI, Siweb Team, Morocco

2Mohammed V University in Rabat. EMI, QSM Research Team, Morocco

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 October, 2019
Accepted: 18 March, 2020
Online: 14 April, 2020

 In the software engineering research, several works focus on advantages of multi-modeling,
which facilitate modeling a system by separating of concerns. The Model Driven
Engineering approach relies on model to design software artefacts during the software
development lifecycle. Handling such models involves describing some model management
operators like ' composition '. That is an operation which consist to fuse a set of models into
one (or more) incorporated model relating the application context. The present work,
introduces a formal approach for UML-compliant model composition focused on three-
actions: matching, checking and merging. Each composition action is represented by one
or many graph transformations rules. The composition operator's syntax is specified with
triple graph grammars (TGGs) formalism.

Keywords:
Model-driven development;
Model composition;
Formal approach;
Triple graph grammars
AGG

1 Introduction

In Model Driven Engineering (MDE), model composition is
critical process, especially in modeling complex system with
multi-modeling approach [1]-[4]. The primary goal is to
distinguish issues related to the software system as model-views in
accordance with certain particular concerns [5]: components, sub-
systems, abstraction views, interactions. The goal is to facilitate
analyzing and designing activities tasks during software
development process. Nevertheless, this would make difficult the
to integrate the different sub-models throughout subsequent
phases.

To deal with this difficult operation, it’s very important to
adopt appropriate approach, methods and techniques to maintain
its consistency. The Model-Driven Engineering (MDE) approach
is widely used that convert a process of integration to be operated
automatically. In the model driven engineering approach these
integration operations are assimilated to model transformations
[6], [7]. However, this lacks formal foundations, and hence
properties (e.g. commutative, associative) cannot be proven [8].
Such properties are useful to guarantee, that there is no influence
of composition order in the operation of composition. we use the
formal basis of graph grammars so that give a powerful
background in the scope of model composition [9]. Some activities

related to MDE process can also be applied in Graph theory [9]-
[13]. In addition, using graph transformations theory to formalize
model makes it possible to use benefits and richness of current
tools like AGG [14], Fujaba [15] and Great [10].

To tackle the model composition issue, we propose a new
method that uses graph transformation with Triple Graph
Grammars (TGGs). TGGs is defined as a formalism to handle
models that use transformation rules. we explain a composition
operator that we had developed in our previous work [16] in
response to different contextual purposes.

The use of TGGs provides several benefits concerning model
composition: excellent comprehension, simplicity to express
declarative composition rules and an effective approach with
formal software tools. Crucial analysis can also be used to
automatically identify all interactions and contradictions between
the graph production rules. In addition, a formalism depicting the
composition operation is presented.

The formalism is founded on two models' relationships [8].
specifically, Models are subsequently considered to be graph-
based artifacts, so we represent the relationships among models
with two different equivalence categories. We will explore how
composition operation can be accomplished by using relations
between graphs.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Hatime Bencharqui, bencharqui@gmail.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050281

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050281

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 654

Our work is built up as bellows. In section 2, a case study is
presented to illustrate the different concepts of our composition
approach. Section 3 exposes a formalism based on graph theory, in
order to define the concepts of models and their relationships. In
section 4, elucidates the suggested method by implementing triple
graph grammars and explores some experimental information. the
section 5 is devoted to related works. Section 6 sums up our
contributions and outlines some upcoming work.

2 Motivating Example

2.1 Case study

 This section is devoted to a short overview of the modeling
approach, after that, a case study is presented illustrating our
composition method, that functions as a driving example to
illustrate the compositional approach.

The purpose is to fuse two UML models developed separately
by two distinct designers. We present the merging scenario using
a Library Management System (LMS). To simplify the
presentation, our example will focus only on the following actors
and activities:

• Librarian save the loans and save the return of loans. To
manage these, the librarian must know the identity of the
borrower;

• Head Librarian manage books and members (add, delete,
change);

Those actors have multiple concerns, so this will affect the way
in which the system can be designed. The goal of the requirements
analysis step is to identify functional requirements of the system.
In this step, a use case diagram is used. (Figure 1).

Other models are used throughout the development process:
class diagrams, state machines, etc. In this work, we will
concentrate our studies on structural models.

 In order to put into practice, the notion of point of view, Figure
2 and Figure 3 present class diagrams which are centered on each
actor. Figure 2 illustrates an extract of the design model
corresponding to the head librarian. We follow the same process
to produce a design model (UML class diagram) for librarians and
Library members.

2.2 Composition process

Our proposed method consists basically of three activities.
First, we define between design models, some kind of relation of
connection, the second activity consist of analyzing those
established connections, and the last step consist of merging these
models according to those correspondences. Composition process
maintainability becomes easier due to the fact that the matching
activity operation is sustainable than the merging one, which can
be affected mainly by strategy modifications. Our proposed
composition scheme will follow three different phases Figure 4:
matchings step, checking step and merging step.

Figure 2: LMS snippet use case diagram.

Figure 1: LMS snippet use case diagram.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 655

.

Figure 3: Snippet of Librarian actor design model

Figure 5: Class Diagram snippet of the LMS.

Figure 4: Merging process of the design models.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 656

2.2.1 Matching step

 Model Matching approaches can be decomposed into three
categories according to the way the corresponding model elements
are matched. (i) matching based on static identity, in this case we
employs single and unîque identîfiers (ii) matching based on
signature (iii) matching based on similarity, within this technique,
we compute the similarity value of an element feature, as an
example, for UML class diagram, the similarity between two
classes could be calculated by checking the similarities in their
attributes or operations. The use of one technique instead of
another depends on several factors such as the goal of the matching
process and also the assumptions made about the application
context, the nature of the models and their intention of use. For
example, the static-based strategy won't be interesting for model
merging purposes, since we don't look for elements which have the
same value of the xml-id attribute but instead elements expressing
the same principles, and designed to be similarly constructed.
Additionally, Certain approaches focuses on similarity in graphs,
for example, similarity flooding [17], To explore their matching
degree, the authors use an algorithm to measure the resemblance
of the adjacent nodes of elements. In addition, more the elements '
neighbors are different, more the similarity between those two
elements decreases. It was regarded as the basis for further
matching and merging set of rules like Ontology matching [18],
and BPM merging [19].

First of all, we identify in this step corresponding elements on
the input models. This is can be achieved by creating
correspondence links that relates these elements. This operation is
called the model comparaison, since the computation of some type
of relationships is only automated at this point (Equality,
Similarity, Aggregation, Generalization). Equality relationship
specifies equality as equivalent to two or more model elements, so
the same concept is represented by tow designers in two different
models. It might exist another type of Similarity that indicates that
two or even more elements are semantically similar but not
identical.

It is very important to express a specific correspondence
relationship to differentiate operations which come with the same
signature [20] (name, returned type, a set of parameters) with two
different behaviors. In order to illustrate the result of the step,
consider design’s models (Figure 2 and Figure 3) of the LMS
example. These models can overlap in several ways: the classes
Library, Book and Member of the Head Librarian model are likely
to be the same as that in Librarian model. The BookId attribute
defined on the Book class of the Librarian model is likely to be the
same as the ISBN attribute of the head Librarian model. Similarly,
the studentId and memberId attributes of the Member classes in
models Figure 2 and Figure 3 respectively are likely to be the same
as well. Assuming that all of these likely correspondences hold, the

Librarian model's
Element

Correspondence
Relationship

Head-librarian
model's Element

Member
Library
Book

Bookid
memberId
FullName

Equality
Equality
Equality
similarity
similarity

Aggregation

Member
Library
Book
ISBN

SutdentID
FirstName,LastName

Figure 6:A graph depicting a UML class diagram as shown in figure 3.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 657

following is the set of correspondences relationships between the
Head Librarian and Librarian classes models (Table 1).

2.2.2 Correspondences checking step

It’s commonly known that the related design models may
present some consistencies because they have been constructed in
a decentralized way; syntactic synonymy and certain differences
within models are very probable. Applying some resolution
strategies depend on how these cases are handled. For example,
one can allow the matching of only a set of consistent models;
others call for repair heuristics to correct inconsistencies before or
during the matching operation. In our approach, we choose to
repair conflicts after the matching step we tend to resolve conflicts,
since checking the persisted elements wouldn't be difficult than
resolving conflict at the first input models.

 Testing and validation of correspoence relation could be done
at this step. Potential inconsistencies can be identified between
input models. For example, the same concept represented in tow
ore even more classes appear with different names. For example,
the attributes memberId and studentId have been identified as
similar in the earlier step. Here the designer intervenes in order to
delete this correspondence because those concepts are
semantically deferent. Certain kinds of correspondence
relationships can be defined manually, such as generalization,
aggregation dependency., In the LMS example, the Member's
name is represented in the Head Librarrian and the Librarian
viewpoint models respectively by (firstName, lastName) and
(fullName). Here, the designer intervenes in order to manually
draw the aggregation correspondence between those elements.

2.2.3 Merging Step

At this point, we have applied tow techniques to merg models:
merging technique and translating technique. We apply the merge
technique on elements that are interconnected by the relations of
equality. This is a default merging scenario, which is applied to
relating elements among several models. Elements that have no
corresponding one in the opposite model are by default translated
into the merged model following the translation rules. In the case
of 1 to many relationships, two merging strategies can be carried
out, either representing the one element by the many or vice versa.
In our example, we carried the second one (many-by-one).

The result of the composition process applied to the LMS
example of Figure 2 and Figure 3 class diagrams is illustrated in
Figure 5. We applied tow stereotypes (merged and actor) to the
merged model classes, those two stereotypes swill help us to trace
back the classes originated from one input model and which ones
existed in both. For example, In the merged model, the library and
member classes appear with the merged stereotype. Otherwise, the
merge process labels classes with the stereotype actor (e.g.,
Registration class) that exist only in one source model. It is
important to note that a tag attribute called actorName is added in
order to trace the actors from which the class is originated.

3 Graph Transformation Theory

In the section above, we explain model composition operator
is formalized over graph-based models, using graph
transformation rules, also, how these are structed to create an

overall operator referred as compose, then we introduce some
properties of it as well as their demonstrations.

As reported by various studies, MOF-compliant models are
basically graphing [21]. The whole formalization is based on the
representation of the models as attributed graphs. The main idea is
to use the graph transformation theory to specify the composition
operator using a set of visual and formal graph transformation
rules. Using this formalism for model composition offers many
benefits, like : Simplicity for declaratively expressing composition
rules, good understanding, and also suitable technique with formal
analysis tools. In particular, critical pair analysis that can be used
to automatically detect dependencies and conflicts between graph
production rules.

In the following, we assume that UML models (class diagrams)
are formally defined as oriented, labelled, typed graphs. These
graphs are conforming and satisfy the constraints defined by
another graph called type graph.

3.1 Basic definitions

We present in the following some basic definitions that are
necessary to define our composition operator.

Definition 1. (graph-based model)

 We assume that UML class diagrams are oriented labelled
typed graphs. Then, each model is represented as a graph
Gr = (Ve; Ed; Sr; Tr; Lb; ΓGr) such that Ve and Ed represent
respectively vertices and edges of graph (Ed ⊂ Ve * Ve), function
source Sr: Ed → Ve and function target Tr: Ed → Ve that relates
edge to a vertex, and a multilabeling function Lb. The multi-
labeling function Lb associates attributes to each element of the
graph whether it is vertex or edge.

Figure 7: Type graph representing a simplified UML class diagrams
metamodel with AGG tool .

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 658

A graph morphism ΓGr ΓGr: Gr → TGr which associates a
type to every element in Gr. Vertices and node types are defined
in the graph ΓGr called the type graph; this represents the UML
language meta-model graph representations.

Figure 6 gives an example of an oriented labelled typed graph.
For instance, the Association-End node representing the member
Association-End has a labeled output edge and targets the
member's class node. This means that the aggregation Association
named loan-member has as extremity the Class Member (Figure 3).

Corradini et al [22] proposed a powerful typing mechanism for
graphs. This mechanism formalizes the conformance relationship
between the models and the metamodel for the design language.
Therefore, it is important to verify that it is conforms with a so-
called TypeGraph. In the MDE method, the same principle is
applied, where models conform to its meta-model [23]. The formal
definition of type graphs is given below.

Definition 2. (Type Graph)

 Let ΣVe and ∆Ed be a set of vertices types and edges types,
respectively. Let Gr = (Ve, Ed, Sr; Tr; Lb; ΓGr) be a graph. A type
graph TGr is a labeled graph over Σ Ve and ∆ Ed. Gr is typed over
TG if there exists a graph morphism ΓG from G into TG (ΓG: Gr
→ TGr). ΓGr associates graph elements of Gr to nodes of TGr. This
implies that nodes and edges of Gr are constrained by nodes from
TGr. ΓG : Ve * Ed →Σ Ve ∪ ∆ Ed)

The type graph required to represent graphic model is
illustrated in Figure 7. It should be generic enough to fit for a
subset of any UML class-diagram. This type graph expresses a
restriction on the graph-based models that are al- lowed: it
specifies which types of edges may occur between certain types of
nodes. the well formedness of graph-model is constrained by
existence of a graph-morphism to its typegraph.

Definition 3. (Graph morphism)

Given two graph-based models Gr1 = (Ve1, Ed1, Sr1, Tr1, Lb1,
ΓGr) and Gr2 = (Ve2, Ed2, Sr2, Tr2, Lb2, ΓGr) a graph morphism h
from Gr1 to Gr2 is a pair of functions h = (hnode, hedge), with
hnode: V1 → Ve2 and hedge: Ed1 → Ed2 Such that : ∀e1 ∈ Ed1
hnode (Sr1 (e1)) = Sr2 (hedge (e1)) and hnode (Tr1 (e1)) = Tr2
(hedge (e1))

Graph morphisms are viewed as a set of mappings between
models, our aim is to prove that those mappings preserve the
models structure, in other words, if an edge belonging to the first
model is mapped to an edge belonging to the second, then, there
exist a mapping of its source and target vertices too [24].

Figure 8: Graph transformation principle.

3.2 Graph transformation

Definition 4. (Graph production (rule)

Let LHS, RHS be two oriented, labelled and typed graphs. A
graph production rule is a graph morphism pr: LHS RHS

In case of a given graph Gr, we apply a graph production rules
pr to perform transformation. This is made on three steps:

(i) To find a correspondence in graph Gr on the left side of
LHS.

(ii) To remove element of the concrete graph that is linked to
LHS but not RHS.

(iii) To glue the context graph previously created with vertices
and edges of RHS that possesses no equivalent in LHS. The
formal definition of graph production rule, which respect
the single pushout approach with injective graph
morphisms, has been proposed in [25].

Definition 5. (Graph transformation)

Following the definition given in [25] A graph transformation
Gr ⇒t Gr' is defined as a pair t = (p,m) composing of a graph
production pr : LHS→RHS and an injective graph morphism
mr: LHS→ Gr. the use of category-theoretical construct, we may
automate computing the morphisms m': RHS'→Gr' and pr' : Gr→Gr'
that make the diagram (p;m) commute. The Graph Gr ' is the
outcome of the transformation applied by t to Gr.
The Figure 8 illustrates the principles of this definition.

4 Specifying Model Composition as Graph

Transformations

We introduce our approach in this section, that applies triple
graph grammars [11] and also the use of this approach on model
composition.

Triple graph grammars offer a declarative and visual formalism
for description of model transformation. The TGG formalism is
appropriate with the QVTMOF norm [26] for dealing with the
problem of model transformation. Furthermore, A variety of
models-driven development process activities such as model-
refactoring [9], model-synchronization[12], model-integration
[13], etc can also be achieved using it.

4.1 Meta9modeling

The main reason behind the use of metamodels is the
specification of composition rules in the formalism of TGGs, and
also metamodels that are conform with the MOF. In the example
presented in Figure 9, metamodels (source and target) are specified
by UM/MOF. A third metamodel is used as composition
metamodel. It is a model that permits the definition of all the links
types for the graphical specifications of composition rules.

In Model-driven engineering area, a model is conform to its
metamodel, the same principle may apply to the theory of graphs,
which means that a given graph is conform to its type graph [11].
A type graph specifies both nodes type, edges type and constraints
between them.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 659

Figure 10: A example of a TGGs merging rule.

Figure 9: A example of a TGGs matching rule.

Figure 11:A example of a TGGs translation rule.

Figure 12:Composition metamodel.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 660

The AGG defines metamodels as graph types. Typed attributed
graphs are defined via node type inheritance, Nevertheless, node
inheritance may not be allowed by the transformation rules and
application requirements. this is the reason behind why we adopted
a classical representation without node type inheritance. (Figure 9)
illustrates packages via a subgraph. each type graph is shown in
subgraphs. Related to the composition process, we may need to
preserve and create a matching links between input model
elements from the matching step. This will take us to use links for
merging. by doing so, we create all of the matching links types
needed to specialize the MergeRelation links type declaration.
when link type is specialized, will determine a mapping link for
every element type from source metamodels which would be used
in the merging step producing elements in the merged model

4.2 specifying Composition Rules using TGGs

With TGGs formalism, the graph-rewriting rules will show the
way in which the elements of a pair of graphs are linked by a third-
graph, so-called correspondence graph. Especially, Every TGG's
rule consists of a rewriting pair of graphs and a third rewriting
graph rules; those are used for checking and creating
correspondence links between nodes of the two regarded graphs
[13].

We recall that TGGs rules are considered as a set of declarative
transformation rules of bidirectional graph transformations. In this
section, we explain how, from these declaratives' specifications,
we derive some transformation rules for model composition
purposes. These rules are into three categories: matching, merging
and translation rules.

The matching rules are first executed over input models. In this
particular step, the transformation is in-place, only correspondence
relations are set up. The TGGs rules compute a valid
correspondence between two existing graphs [27]. Each rule
execution looks for a pattern corresponding to the rule's LHS and
not violating the NACs, if so, the RHS is produced and a
correspondence pattern is arranged.

Figure 10 illustrates an example of a matching rule that creates
a correspondence link between two equivalent classes. They are
said equivalent if they hold the same name and belonging to two
different models. Note that, a negative application condition is not
shown, which eliminate many applications and creation
correspondences links of this rule. As we have explained in the
composition process section, some matching links could be created
manually by the designer, so that they relate concept that are
similar but differently modeled. Among the most important
advantages of our method consist of separating the matching and
merging operations. the main purpose of the merging
transformation is treating the involved models and matching links
as a single graph. The equivalent parts in the merged model are
created by computing various matching links through merging
rules. An example of a TGG rule that create a new class is given
in Figure 11. In this rule, the newer class is linked to a merged
model. The target production of the rule also specifies the
generation of the merged stereotype according to our merging
strategy.

Two classes that have the same label and but each of which
belonging of a class diagram already merged (LHS). A merged
class that has the same label as well as a merged stereotype is
created, this will link the merged class to the merged class diagram.
The default NACs guarantee the rules only apply once. AGG
includes an editor for defining variables and attributes conditions.
For instance, we used this feature to certify that the names of the
two classes are identical in the Class Merging rule.

We have defined a set of transformation rules named
“Translation rules”. Those rules apply a simple default behavior
which consists of creating, a deep duplicate of the source model in
the target model. We show in Figure 12 a translation rule
illustration applied to a single class. It generates a Class and a
stereotype element by initializing their corresponding attributes
with the provided values. We remember as explained before, that
the merged model must be earlier produced by the corresponding
merge rule to which the new produced class will be attached to.

Figure 13:Transformation Rule layers.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 661

5 Tool support

In order to validate the mentioned concepts, we carried out
performed some practical experiments with AGG tool [14]. AGG
tool is considered as one of the most known graph-based
transformation tools implementing an algebraic approach for graph
transformation. We have chosen this tool because it provides
several advanced features of TGGs to specify complex
transformations scenarios. As an example of advanced features, we
can for example specify context constraints by using the specific
attribute constraints. Also, we can specify a set of fillers with the
concepts of Positive, Negative, and General Applications
Conditions (PACs, NACs, and GACs). Within the GACs, one can
apply combinations of former operators like AND, OR, FORALL
over patterns. We can also perform some validations of graph
transformation rules by applying advanced features by using
consistency checking and critical pair analysis concepts. This is
very useful to detect parallel conflicts and sequential dependencies
[28]. Others features are applied to control flow of transformation
rules, with rule sequences, layers and priority order [29].

5.1 Specifying rule layers

 in this logic So we can consider the fact of as to havinge the
same logical order as in the composition process, we may used rule
layers to identifyspecify the transformations ow and decrease the
complexity of the trans- formation application conditions. ThusSo,
the matching rules appear first, the trans- formation rules come
after the application of merging rules, and, obviously, the deletion
rules come after the transformation process. Figure 13. shows
composition rules sorted by rule layers.

5.2 Consistency checking with AGG

 A consistency checking can be performed over the output
model throughout consistency conditions (CC). A consistency
condition describes graphically the graph properties as e.g.
existence of a certain element or the independent of a certain rule.
Also, a consistency condition is composed of a premise P and a

conclusion C. Formally; a consistency condition is a total injective
morphism

c: P →C. This condition is said satisfied by a given graph G, if for
all total injective morphisms p: P→G there is a total injective
morphisms q : C→G such that q o c = p.

In other words, for all the matches of the premise P in G, the
conclusion C has to be fulfilled. We note that if we have multiple
constraints then, G has to fulfill all these constraints. For instance,
Figure 14 shows a consistency condition that specifies how to
check that every parameter has necessarily a type. It is composed
of one premise and two disjunctive conclusions (the satisfaction of
one conclusion is enough). First, the premise is represented by a
node of type parameter. Then, the associated conclusions assert
that each node parameter has to be coupled (through- out the edge
type) with either a node of type class or a node of type DataType.

Another example of a cc is depicted in Figure 15 which
describes a consistency condition which specifies how to check

Figure 15: Dangling Parameter Type reference constraint.

Figure 16: Check Class stereotypes constraint

Figure 14:Sequential dependencies of merging rules.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 662

that every class has essentially a stereotype with an attribute named
actor or merged. The premise of the CC is the node Class, and the
conclusion is a class connected to Stereotype with an attribute
name actor or merged. When checking those CC over our output
model and a window appears having the message the graph fulfills
this atomic.

The transformation configuration of the AGG tool gives one
the ability to stop after the execution of each layer and check
manually the satisfiability of the constraints of interest. This,
evaluates the correctness of the graph resulting so far, and prevents
errors to be propagated.

 As our transformation is composed of two major and separate
steps (matching and merging), it is more convenient to assess the
matching phase before starting the composition phase. Afterwards,
comes the final checking phase to validate and ensure the
correction of the output graph. Thereafter, a brief description of the
constraints to be checked after each step:

5.2.1 Marching step

After this transformation step finishes, we check either the
transformation behaved as expected or not by running the
appropriate constraints over the graph resulted as yet. These
constraints play on the one hand the role of a syntactic checker.
And on the other hand, they say if the set of transformation rules
reaches all the graphs nodes. For instance, checking if all the
classes are reached can be translated by the following constraint.
For each node Class this class should either be merged to another
class or simply transcribed as it is. In other words, each node Class
has to be linked to a node MergeRelation or TransformRelation.
The same constraints can be extended to all the of the source type
graph (Attribute, Association, Parameter).

5.2.2 Merging step

After that he merging step reaches its end another validation
process take place. Using the appropriate model constraints, we
check if the transformation consults and transforms every
matching relation (MergeRelation or TransformRelation). For
example, every Class matching relation of type MergeRelation
have to be linked to a Class with the stereotypes name merged. We
expand it for every matching relation linked to any node type.

5.2.3 Final checking

Despite the fact that the previous checking steps help vanishing
ambiguities, how- ever, it is not satisfactory to tell that the results
are correct. In some way, the constraints defined in this phase aid
validating the syntactic properties of the out- put graph.

5.3 Sequential Dependencies between rules

 This implementation activity is an important step to validate
the syntactic correction of our composition process. During the
definition of these constraints, we confronted a couple of
difficulties, namely, the definition of complex constraints or
negative ones. Other difficulties, adhere to those agged [9].

In fact, the graph of sequential dependencies between the trans-
formation rules is computed by AGG, in order to retrieve the cross-
dependency which in between (i.e is executing a rule depends on
another execution). This graph is also intended to detect execution

cycles. We talk about execution cycles when a sequence of rules
gives a way to a rule previously triggered to be executed for the
same matching. This prevents the transformation to turn in empty.
We computed this graph for the merging step of our composition
process. While analyzing the graph in Figure 16, we conclude that
the rules mergeClass, mergeData, and mergeAssociation depend
on the rule mergeDiagram, so this rule should be triggered first.
Also, we come out with the conclusion that no cyclic executions
are present in this transformation layer.

6 Related Works and Discussion

 In the MDE approach, model composition is now one of the
relevant activities in MDE approach. According to [30], On the
one side, matching requires consistency, efficiency and simplified
approach. On the other side, the merging step requires; conflict
identification and resolution and consistency preservation. In the
section that follows, we used graph grammar to transform these
requirements to model composition in an ad-hoc manner.

Merging strategy: This technique could be divided into in-place
techniques and out-targeted techniques. The first one consists of
merging the input models into one global model named the host
model along with their correspondence model. This strategy has
many advantages such as simplicity, so a new model is not
necessary to define the global view. Nevertheless, the input models
are no longer available and to return and get them back is not
guaranteed. The second strategy maintains the inputs unchanged
and completely computes their union into a novel target model.

Conflicts management: Conflict can occur when the input models
overlap. Many solutions require merging only consistent models,
this operation requires a preliminary step to conflict resolution.
Matching process automation: this activity could be performed
automatically, semi-automatically or manually. In certain
situations, the designer must make the final drawings of models
matching when dealing with inconsistencies or when describing
other relationships that are not evident (e.g. generalization or
aggregation).

Change propagation: Models are updated and revised regularly.
Therefore, some model views require the transformation at the
beginning stage of design. Therefore, it is important to preserve
traceability between input models in order to avoid the merged
model being computed in case of any change in the source models.

 In [13], The authors proposed an approach based on multigraph
grammar principle to generalize TGG formalism and which
besides presents a method to deal with data integration in
heterogeneous distributed environment. On the one side, the
integration mechanism relies on declarative rules to define
communication relations between models. On the other side, they
derive from those rules a set of operational rules which ensure
accuracy among models and are responsible for the propagation of
attribute changes from one element to the linked one. As with
TGGs we can define constraints that are fairly simple, we propose
the use of Layered graph grammars in our approach that permits to
minimize the difficulty of constraints properties. The propagation
mechanism as well as the integration, updates and changes were
addressed using graph transformation rules. In [31], an EMF-based
model management framework is suggested, including a collection
of generic modules. The framework is founded on three notions:

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 663

equivalent relations, inconsistency resolution and refreshment of
the construct those steps are equivalent to our steps mentioned in
our approach. To locate reused elements between two models, the
Merge. operator employs the equivalence. relations specified in a
metamodel. This method suppose consistency in the input models
and consider only a simple relationship like a simple Association.
this would facilitate automatization of matching operation.

 Several approaches use matching step as primary step in model
composition. UMLDiff [32] It introduces an automated structurall-
differentiating. algorithm. UML-.aware. Based on the name and
structural similarity of two models, it generates all modifications
in the form of a tree structure. the use of heuristics makes it
possible to establish such correspondence between elements by
comparing both structural and lexical similarity between them.

 A related work called GenericDiff [33], tak.es into a count all
feature information of models, pa.ir-up feasibility predicates, and
random walk tendency functions. This method compares two nodes
to the recognizing off the Maximum Common Sub-graph (MCS) of two
Typed Attributed Graphs by the use of an iterative process that
propagates the distance value from nodes pair .to node pair based on
graph structure and probability distributions. The major weakness of
this method is to specify the appropriate threshold.

 Finally, EMF Compare framework [34] is developed with a
high level of extensibility to deliver good performance and
efficiency. Some techniques such as instances, statistics and
heuristics are used to achieve the matching phase. the authors use
some metrics to weight this formula such as element's name, their
content, their types and the relations they have with other elements.
In return a value ranging from zero to one, which will be balanced
with additional factor's scores the similarity between the source
and target elements.

7 Conclusion

To sum up, our work was a mere investigation conducted to
test the practicality of our approach using a graph transformation
by means of AGG which appears to be the appropriate one to
achieve and satisfy the following representation and visualization
requirements: it is an investigation that goes along with the
objective of our work, it is mainly about formalizing the model
composition activity to produce an integrated view of all the
individual views. We are totally concluded that tools like AGG
accomplish the requirements presented earlier. To this end, we are
going to examine a list of languages and tools specialized on graph
transformation such as Tiger EMF[35] in order to choose the more
appropriate to our method. we have formalized graphically the
process by means of graph transformations. Composition rules are
specified graphically using TGGS formalism. A set of attributed
graphs allows both source and target model formal representation
as well as correspondence model. The matching process is really
aimed at adding a set of links to features of the source model. The
correspondence graph is used to facilitate the automatization of the
merging step and enable the correspondence graph to be
incrementally refine. It also helps the traceability of the
composition phase to be enhanced. The scope of this research
could be broadened to various lines. our method was specified and
proved in case of UML models context. however, it is entirely
generic because majority of specification concerns graphs features.
Therefore, it can be simply applied to any graph-based model

composition. it is an important to automate the detection of
possible concordances or conflicts between models towards
implementing the proposed methodology to the big projects. So,
we can use matching heuristics to compute similarities between
elements of graphbased models.

References

[1] France R, Ray I, Georg G, Ghosh S. An aspect-oriented approach to design
modeling. IEE Proceedings - Software, Special Issue on Early Aspects:
Aspect-Oriented Requirements Engineering and Architecture Design
151,2004, 173.185.

[2] Sabetzadeh M, Easterbrook S.An Algebraic Framework for Merging
Incomplete and Inconsistent Views.13th IEEE International Requirements
Engineering Conference, (RE2005) pages 306-318, Washington, DC, USA,
September 2005. IEEE Computer SocietyL.

[3] Finkelstein A, Kramer J, Goedicke M. Viewpoint Oriented Software
Development. IC-SSEA. Toulouse, France,1990, pages 337-351.

[4] Clarke S.Extending Standard UML with Model Composition Semantics.
Science of Computer Programming, 44 (2002). 71.100.

[5] Chechik M. A relationship-based approach to model management. In Model-
Based Methodologies for Pervasive and Embedded Software, 2009.
MOMPES09. ICSE Workshop on, pages 11. IEEE.

[6] [Kolovos D, Paige R, and Polack F. Merging models with the epsilon merging
language (eml). Model Driven Engineering Languages and Systems,
2006,pages 215229.

[7] Anwar A, Ebersold S, Coulette B, Nassar M, and Kriouile A.A rule-driven
approach for composing viewpoint-oriented models. Journal of Object
Technology,2010, 9(2):89114.

[8] Anwar A, Dkaki T, Ebersold S, Coulette B, and Nassar M.A formal approach
to model composition applied to vuml. In the 16th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS)2011,
on, pages 188197. IEEE Computer Society.

[9] Mens T, Van Eetvelde N, Demeyer S and Janssens D. Formalizing refactoring
with graph transformations. Journal of Software Maintenance and Evolution:
Research and Practice, 2005, 17(4):247276.

[10] Agrawal A, Karsai G, Neema S, Shi F and Vizhanyo A.The design of a
language for model transformations. Software and Systems Modeling, 2006,
5(3):261288.

[11] Schrr A. Specification of graph translators with triple graph grammars. In
Proceedings of the 20th International Workshop on Graph-Theoretic
Concepts in Computer Science,1994, pages 151163. Springer-Verlag.

[12] Giese H and Wagner R. Incremental model synchronization with triple graph
grammars. Model Driven Engineering Languages and Systems, pages
543557, 2006.

[13] Knigs A and Schrr A. MDI: A rule-based multi-document and tool integration
approach. Software and Systems Modeling, 5(4): 349368, 2006.

[14] Ahmed A. et al., “Modeling and Simulation of Office Desk Illumination
Using ZEMAX,” in 2019 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), 2019, pp. 1–6.

[15] Niere J and Zu ndorf A. Using fujaba for the development of production
control systems. Applications of Graph Transformations with Industrial
Relevance, pages 301304, 2000.

[16] A. Anwar , A. Benallam , M. Nassar et B. Coulette. A Graphical Specification
of Model Composition With Triple Graph Grammars . Lecture Notes in
Computer Science (LNCS), volume 7706, p. 1 - 18. Springer, Heidelberg ,
2013.

[17] Melnik S, Garcia-Molina H, and Rahm E. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages
117128. IEEE, 2002.

[18] Jean-Mary Y.R, Shironoshita E.P, and Kabuka M.R. Ontology matching with
semantic verification. Web Semantics: Science, Services and Agents on the
World Wide Web, 7(3):235251, 2009.

[19] La Rosa M, Dumas M, Uba R, and Dijkman R.M. Business process model
merging: an approach to business process consolidation. ACM Transactions
on Software Engineering and Methodology (TOSEM), 2012.

[20] France F, Fleurey F, Reddy R, Baudry B, and Ghosh S. Providing support for
model composition in metamodels. In Enterprise Distributed Object
Computing Conference, 2007. EDOC 2007. 11th IEEE International, pages
253253. IEEE, 2007.

[21] Mens T. On the Use of Graph Transformations for Model Refactoring.
GTTSE 2006: 219-257.

http://www.astesj.com/

H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020)

www.astesj.com 664

[22] Corradini A, Montanari U, Rossi. Graph processes. Fundamental
Informaticae, 26(34):241265, 1996.

[23] Bezivin J. Model driven engineering: Principles, scope, deployment and
applicability. In Proceedings of 2005 Summer School on Generative and
Transformation Techniques in Software Engineering, 2005.

[24] Marchand J, Combemale B, Baudry B, A Categorical Model of Model
Merging and Weaving. In 4th International Workshop on Modelling in
Software Engineering (MiSE 2012), in conjunction with ICSE 2012, IEEE,
2012.

[25] Ehrig H and Lwe M. Parallel and distributed derivations in the single-pushout
approach. Theoretical Computer Science, 109:123143, 1993.

[26] OMG 2002. OMG/MOF Meta Object Facility (MOF) 1.4. Final Adopted
Specification Document. formal/02-04-03.

[27] Greenyer J and Kindler E. Reconciling tggs with qvt. Model Driven
Engineering Languages and Systems, LNCS pages 1630, Springer-Verlag
2007.

[28] Bottoni P, Taentzer G, and Schurr A. Efficient parsing of visual languages
based on critical pair analysis and contextual layered graph transformation. In
Visual Languages, 2000. Proceedings. 2000 IEEE International Symposium
on, pages 59 60. IEEE, 2000.

[29] Ehrig H, Ehrig K, De Lara J, Taentzer G, Varro D, and Varro -Gyapay S.
Termination criteria for model transformation. Fundamental Approaches to
Software Engineering, pages 4963, 2005.

[30] Fortsch S and Westfechtel B. Differencing and merging of software diagrams.
State of the Art and Challenges, 2007.

[31] Boronat A, Cars J.A , Ramos I, and Letelier P. Formal model merging applied
to class diagram integration. Electronic Notes in Theoretical Computer
Science, 166:526, 2007.

[32] Xing Z and Stroulia E. Umldiff: an algorithm for object-oriented design
differencing. In Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 5465. ACM, 2005

[33] Xing Z. Model comparison with genericdiff. In Proceedings of the
IEEE/ACM international conference on Automated software engineering,
pages 135138. ACM, 2010.

[34] Brun C and Pierantonio A. Model differences in the eclipse modelling
framework. UPGRADE, The European Journal for the Informatics
Professional, 2008

[35] TFS Group, Technische Universitt Berlin. EMF Tiger (2009).
http://tfs.cs.tuberlin.de/emftrans

http://www.astesj.com/

	1 Introduction
	2 Motivating Example
	2.1 Case study
	2.2 Composition process
	2.2.1 Matching step
	2.2.2 Correspondences checking step
	2.2.3 Merging Step

	3 Graph Transformation Theory
	3.1 Basic definitions
	3.2 Graph transformation

	4 Specifying Model Composition as Graph Transformations
	4.1 Meta9modeling
	4.2 specifying Composition Rules using TGGs

	5 Tool support
	5.1 Specifying rule layers
	5.2 Consistency checking with AGG
	5.2.1 Marching step
	5.2.2 Merging step
	5.2.3 Final checking

	5.3 Sequential Dependencies between rules

	6 Related Works and Discussion
	7 Conclusion
	References

