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 In the software engineering research, several works focus on advantages of multi-modeling, 
which facilitate modeling a system by separating of concerns. The Model Driven 
Engineering approach relies on model to design software artefacts during the software 
development lifecycle. Handling such models involves describing some model management 
operators like ' composition '. That is an operation which consist to fuse a set of models into 
one (or more) incorporated model relating the application context. The present work, 
introduces a formal approach for UML-compliant model composition focused on three-
actions: matching, checking and merging. Each composition action is represented by one 
or many graph transformations rules. The composition operator's syntax is specified with 
triple graph grammars (TGGs) formalism. 
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1 Introduction  

In Model Driven Engineering (MDE), model composition is 
critical process, especially in modeling complex system with 
multi-modeling approach [1]-[4]. The primary goal is to 
distinguish issues related to the software system as model-views in 
accordance with certain particular concerns [5]: components, sub-
systems, abstraction views, interactions. The goal is to facilitate 
analyzing and designing activities tasks during software 
development process. Nevertheless, this would make difficult the 
to integrate the different sub-models throughout subsequent 
phases. 

To deal with this difficult operation, it’s very important to 
adopt appropriate approach, methods and techniques to maintain 
its consistency. The Model-Driven Engineering (MDE) approach 
is widely used that convert a process of integration to be operated 
automatically. In the model driven engineering approach these 
integration operations are assimilated to model transformations 
[6], [7]. However, this lacks formal foundations, and hence 
properties (e.g. commutative, associative) cannot be proven [8]. 
Such properties are useful to guarantee, that there is no influence 
of composition order in the operation of composition. we use the 
formal basis of graph grammars so that give a powerful 
background in the scope of model composition [9]. Some activities 

related to MDE process can also be applied in Graph theory [9]-
[13]. In addition, using graph transformations theory to formalize 
model makes it possible to use benefits and richness of current 
tools like AGG [14], Fujaba [15] and Great [10].  

To tackle the model composition issue, we propose a new 
method that uses graph transformation with Triple Graph 
Grammars (TGGs). TGGs is defined as a formalism to handle 
models that use transformation rules. we explain a composition 
operator that we had developed in our previous work [16] in 
response to different contextual purposes. 

The use of TGGs provides several benefits concerning model 
composition: excellent comprehension, simplicity to express 
declarative composition rules and an effective approach with 
formal software tools. Crucial analysis can also be used to 
automatically identify all interactions and contradictions between 
the graph production rules. In addition, a formalism depicting the 
composition operation is presented. 

The formalism is founded on two models' relationships [8]. 
specifically, Models are subsequently considered to be graph-
based artifacts, so we represent the relationships among models 
with two different equivalence categories. We will explore how 
composition operation can be accomplished by using relations 
between graphs. 
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Our work is built up as bellows. In section 2, a case study is 
presented to illustrate the different concepts of our composition 
approach. Section 3 exposes a formalism based on graph theory, in 
order to define the concepts of models and their relationships. In 
section 4, elucidates the suggested method by implementing triple 
graph grammars and explores some experimental information. the 
section 5 is devoted to related works. Section 6 sums up our 
contributions and outlines some upcoming work. 

2 Motivating Example 

2.1 Case study 

 This section is devoted to a short overview of the modeling 
approach, after that, a case study is presented illustrating our 
composition method, that functions as a driving example to 
illustrate the compositional approach. 

The purpose is to fuse two UML models developed separately 
by two distinct designers. We present the merging scenario using 
a Library Management System (LMS). To simplify the 
presentation, our example will focus only on the following actors 
and activities:  

• Librarian save the loans and save the return of loans. To 
manage these, the librarian must know the identity of the 
borrower;  

• Head Librarian manage books and members (add, delete, 
change); 

Those actors have multiple concerns, so this will affect the way 
in which the system can be designed. The goal of the requirements 
analysis step is to identify functional requirements of the system. 
In this step, a use case diagram is used. (Figure 1). 

Other models are used throughout the development process: 
class diagrams, state machines, etc. In this work, we will 
concentrate our studies on structural models. 

 In order to put into practice, the notion of point of view, Figure 
2 and Figure 3 present class diagrams which are centered on each 
actor. Figure 2 illustrates an extract of the design model 
corresponding to the head librarian. We follow the same process 
to produce a design model (UML class diagram) for librarians and 
Library members. 

2.2  Composition process 

Our proposed method consists basically of three activities. 
First, we define between design models, some kind of relation of 
connection, the second activity consist of analyzing those 
established connections, and the last step consist of merging these 
models according to those correspondences. Composition process 
maintainability becomes easier due to the fact that the matching 
activity operation is sustainable than the merging one, which can 
be affected mainly by strategy modifications. Our proposed 
composition scheme will follow three different phases Figure 4: 
matchings step, checking step and merging step. 

Figure 2: LMS snippet use case diagram. 

Figure 1: LMS snippet use case diagram. 
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Figure 3: Snippet of Librarian actor design model 

Figure 5: Class Diagram snippet of the LMS. 

Figure 4: Merging process of the design models. 
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2.2.1 Matching step 

 Model Matching approaches can be decomposed into three 
categories according to the way the corresponding model elements 
are matched. (i) matching  based on static identity, in this case we 
employs single and unîque identîfiers (ii) matching based on  
signature  (iii ) matching based on similarity, within this technique, 
we compute the similarity value of an element feature, as an 
example, for UML class diagram, the similarity between two 
classes could be calculated by checking the similarities in their 
attributes or operations. The use of one technique instead of 
another depends on several factors such as the goal of the matching 
process and also the assumptions made about the application 
context, the nature of the models and their intention of use. For 
example, the static-based strategy won't be interesting for model 
merging purposes, since we don't look for elements which have the 
same value of the xml-id attribute but instead elements expressing 
the same principles, and designed to be similarly constructed. 
Additionally, Certain approaches focuses on similarity in graphs, 
for example, similarity flooding [17], To explore their matching 
degree, the authors use an algorithm to measure the resemblance 
of the adjacent nodes of elements. In addition, more the elements ' 
neighbors are different, more the similarity between those two 
elements decreases. It was regarded as the basis for further 
matching and merging set of rules like Ontology matching [18], 
and BPM merging [19]. 

First of all, we identify in this step corresponding elements on 
the input models. This is can be achieved by creating 
correspondence links that relates these elements. This operation is 
called the model comparaison,  since the computation of some type 
of relationships is only automated at this point (Equality, 
Similarity, Aggregation, Generalization). Equality relationship 
specifies equality as equivalent to two or more model elements, so 
the same concept is represented by tow designers in two different 
models. It might exist another type of Similarity that indicates that 
two or even more elements are semantically similar but not 
identical.  

It is very important to express a specific correspondence 
relationship to differentiate operations which come with the same 
signature [20] (name, returned type, a set of parameters) with two 
different behaviors. In order to illustrate the result of the step, 
consider design’s models (Figure 2 and Figure 3) of the LMS 
example. These models can overlap in several ways: the classes 
Library, Book and Member of the Head Librarian model are likely 
to be the same as that in Librarian model. The BookId attribute 
defined on the Book class of the Librarian model is likely to be the 
same as the ISBN attribute of the head Librarian model. Similarly, 
the studentId and memberId attributes of the Member classes in 
models Figure 2 and Figure 3 respectively are likely to be the same 
as well. Assuming that all of these likely correspondences hold, the 

Librarian model's 
Element 

Correspondence 
Relationship 

Head-librarian 
model's Element 

Member 
Library 
Book 

Bookid 
memberId 
FullName 

Equality  
Equality  
Equality 
similarity  
similarity 

Aggregation  

Member 
Library 
Book 
ISBN 

SutdentID 
FirstName,LastName 

Figure 6:A graph depicting a UML class diagram as shown in figure 3. 

http://www.astesj.com/


H. Bencharqui et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 653-664 (2020) 

www.astesj.com     657 

following is the set of correspondences relationships between the 
Head Librarian and Librarian classes models (Table 1). 

2.2.2 Correspondences checking step 

It’s commonly known that the related design models may 
present some consistencies because they have been constructed in 
a decentralized way; syntactic synonymy and certain differences 
within models are very probable. Applying some resolution 
strategies depend on how these cases are handled. For example, 
one can allow the matching of only a set of consistent models; 
others call for repair heuristics to correct inconsistencies before or 
during the matching operation. In our approach, we choose to 
repair conflicts after the matching step we tend to resolve conflicts, 
since checking the persisted elements wouldn't be difficult than 
resolving conflict at the first input models. 

 Testing and validation of correspoence relation could be done 
at this step. Potential inconsistencies can be identified between 
input models. For example, the same concept represented in tow 
ore even more classes appear with different names. For example, 
the attributes memberId and studentId have been identified as 
similar in the earlier step. Here the designer intervenes in order to 
delete this correspondence because those concepts are 
semantically deferent. Certain kinds of correspondence 
relationships can be defined manually, such as generalization, 
aggregation dependency., In the LMS example, the Member's 
name is represented in the Head Librarrian and the Librarian 
viewpoint models respectively by (firstName, lastName) and 
(fullName). Here, the designer intervenes in order to manually 
draw the aggregation correspondence between those elements.  

2.2.3 Merging Step  

At this point, we have applied tow techniques to merg models: 
merging technique and translating technique. We apply the merge 
technique on elements that are interconnected by the relations of 
equality. This is a default merging scenario, which is applied to 
relating elements among several models. Elements that have no 
corresponding one in the opposite model are by default translated 
into the merged model following the translation rules. In the case 
of 1 to many relationships, two merging strategies can be carried 
out, either representing the one element by the many or vice versa. 
In our example, we carried the second one (many-by-one).   

The result of the composition process applied to the LMS 
example of Figure 2 and Figure 3 class diagrams is illustrated in 
Figure 5. We applied tow stereotypes (merged and actor) to the 
merged model classes, those two stereotypes swill help us to trace 
back the classes originated from one input model and which ones 
existed in both. For example, In the merged model, the library and 
member classes appear with the merged stereotype. Otherwise, the 
merge process labels classes with the stereotype actor (e.g., 
Registration class) that exist only in one source model. It is 
important to note that a tag attribute called actorName is added in 
order to trace the actors from which the class is originated. 

3 Graph Transformation Theory  

In the section above, we explain model composition operator 
is formalized over graph-based models, using graph 
transformation rules, also, how these are structed to create an 

overall operator referred as compose, then we introduce some 
properties of it as well as their demonstrations.   

As reported by various studies, MOF-compliant models are 
basically graphing [21]. The whole formalization is based on the 
representation of the models as attributed graphs. The main idea is 
to use the graph transformation theory to specify the composition 
operator using a set of visual and formal graph transformation   
rules. Using this formalism for model composition offers many 
benefits, like : Simplicity for declaratively expressing composition 
rules, good understanding, and also suitable technique with formal 
analysis tools. In particular, critical pair analysis that can be used 
to automatically detect dependencies and conflicts between graph 
production rules.  

In the following, we assume that UML models (class diagrams) 
are formally defined as oriented, labelled, typed graphs. These 
graphs are conforming and satisfy the constraints defined by 
another graph called type graph. 

3.1 Basic definitions   

We present in the following some basic definitions that are 
necessary to define our composition operator. 

Definition 1. (graph-based model) 

 We assume that UML class diagrams are oriented labelled 
typed graphs. Then, each model is represented as a graph  
Gr = (Ve; Ed; Sr; Tr; Lb; ΓGr) such that Ve and Ed represent 
respectively vertices and  edges of graph  (Ed ⊂ Ve * Ve ), function 
source Sr: Ed → Ve and  function target Tr: Ed → Ve that relates 
edge to a vertex, and a multilabeling function Lb. The multi-
labeling function Lb associates attributes to each element of the 
graph whether it is vertex or edge.  

Figure 7: Type graph representing a simplified UML class diagrams 
metamodel with AGG tool . 
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A graph morphism ΓGr  ΓGr: Gr → TGr which associates a 
type to every element in Gr.  Vertices and node types are defined 
in the graph ΓGr called the type graph; this represents the UML 
language meta-model graph representations. 

Figure 6 gives an example of an oriented labelled typed graph. 
For instance, the Association-End node representing the member 
Association-End has a labeled output edge and targets the 
member's class node. This means that the aggregation Association 
named loan-member has as extremity the Class Member (Figure 3). 

Corradini et al [22] proposed a powerful typing mechanism for 
graphs. This mechanism formalizes the conformance relationship 
between the models and the metamodel for the design language. 
Therefore, it is important to verify that it is conforms with a so-
called TypeGraph. In the MDE method, the same principle is 
applied, where models conform to its meta-model [23]. The formal 
definition of type graphs is given below.  

Definition 2. (Type Graph) 

 Let ΣVe and ∆Ed be a set of vertices types and edges types, 
respectively. Let Gr = (Ve, Ed, Sr; Tr; Lb; ΓGr) be a graph. A type 
graph TGr is a labeled graph over Σ Ve and ∆ Ed. Gr is typed over 
TG if there exists a graph morphism ΓG from G into TG (ΓG: Gr 
→ TGr). ΓGr associates graph elements of Gr to nodes of TGr. This 
implies that nodes and edges of Gr are constrained by nodes from 
TGr. ΓG : Ve * Ed →Σ Ve ∪ ∆ Ed) 

The type graph required to represent graphic model is 
illustrated in Figure 7. It should be generic enough to fit for a 
subset of any UML class-diagram. This type graph expresses a 
restriction on the graph-based models that are al- lowed: it 
specifies which types of edges may occur between certain types of 
nodes. the well formedness of graph-model is constrained by 
existence of a graph-morphism to its typegraph. 

Definition 3. (Graph morphism) 

Given two graph-based models Gr1 = (Ve1, Ed1, Sr1, Tr1, Lb1, 
ΓGr) and Gr2 = (Ve2, Ed2, Sr2, Tr2, Lb2, ΓGr) a graph morphism h 
from Gr1 to Gr2 is a pair of functions h = (hnode, hedge), with 
hnode: V1 → Ve2 and hedge: Ed1 → Ed2 Such that : ∀e1 ∈ Ed1 
hnode (Sr1 (e1)) = Sr2 (hedge (e1)) and hnode (Tr1 (e1)) = Tr2 
(hedge (e1)) 

Graph morphisms are viewed as a set of mappings between 
models, our aim is to prove that those mappings preserve the 
models structure, in other words, if an edge belonging to the first 
model is mapped to an edge belonging to the second, then, there 
exist a mapping of its source and target vertices too [24]. 

 
Figure 8: Graph transformation principle. 

3.2 Graph transformation 

Definition 4. (Graph production (rule) 

Let LHS, RHS be two oriented, labelled and typed graphs. A 
graph production rule is a graph morphism pr: LHS  RHS  

In case of a given graph Gr, we apply a graph production rules 
pr to perform transformation. This is made on three steps:  

(i) To find a correspondence in graph Gr on the left side of 
LHS. 

(ii) To remove element of the concrete graph that is linked to   
LHS but not RHS. 

(iii) To glue the context graph previously created with vertices 
and edges of RHS that possesses no equivalent in LHS. The 
formal definition of graph production rule, which respect 
the single pushout approach with injective graph 
morphisms, has been proposed in [25]. 

Definition 5. (Graph transformation) 

Following the definition given in [25] A graph transformation 
Gr ⇒t Gr' is defined as a pair t = (p,m) composing of a graph 
production pr : LHS→RHS and an injective graph morphism  
mr: LHS→ Gr. the use of category-theoretical construct, we may 
automate computing the morphisms m': RHS'→Gr' and pr' : Gr→Gr' 
that make the diagram (p;m) commute. The Graph Gr ' is the 
outcome of the transformation applied by t to Gr.  
The Figure 8 illustrates the principles of this definition. 

 
4 Specifying Model Composition as Graph 

Transformations 

We introduce our approach in this section, that applies triple 
graph grammars [11] and also the use of this approach on model 
composition. 

Triple graph grammars offer a declarative and visual formalism 
for description of model transformation. The TGG formalism is 
appropriate with the QVTMOF norm [26] for dealing with the 
problem of model transformation. Furthermore, A variety of 
models-driven development process activities such as model-
refactoring [9], model-synchronization[12], model-integration  
[13],  etc can also be achieved using it. 

4.1 Meta9modeling 

The main reason behind the use of metamodels is the 
specification of composition rules in the formalism of TGGs, and 
also metamodels that are conform with the MOF. In the example 
presented in Figure 9, metamodels (source and target) are specified 
by UM/MOF. A third metamodel is used as composition 
metamodel. It is a model that permits the definition of all the links 
types for the graphical specifications of composition rules. 

In Model-driven engineering area, a model is conform to its 
metamodel, the same principle may apply to the theory of graphs, 
which means that a given graph is conform to its type graph [11]. 
A type graph specifies both nodes type, edges type and constraints 
between them.  
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Figure 10: A example of a  TGGs merging  rule. 

Figure 9: A example of a  TGGs matching  rule. 

Figure 11:A example of a  TGGs translation rule. 

Figure 12:Composition metamodel. 
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The AGG defines metamodels as graph types. Typed attributed 
graphs are defined via node type inheritance, Nevertheless, node 
inheritance may not be allowed by the transformation rules and 
application requirements. this is the reason behind why we adopted 
a classical representation without node type inheritance. (Figure 9) 
illustrates packages via a subgraph. each type graph is shown in 
subgraphs. Related to the composition process, we may need to 
preserve and create a matching links between input model 
elements from the matching step. This will take us to use links for 
merging. by doing so, we create all of the matching links types 
needed to specialize the MergeRelation links type declaration. 
when link type is specialized, will determine a mapping link for 
every element type from source metamodels which would be used 
in the merging step producing elements in the merged model 

4.2 specifying Composition Rules using TGGs  

With TGGs formalism, the graph-rewriting rules will show the 
way in which the elements of a pair of graphs are linked by a third-
graph, so-called correspondence graph. Especially, Every TGG's 
rule consists of a rewriting pair of graphs and a third rewriting 
graph rules; those are used for checking and creating 
correspondence links between nodes of the two regarded graphs 
[13]. 

We recall that TGGs rules are considered as a set of declarative 
transformation rules of bidirectional graph transformations. In this 
section, we explain how, from these declaratives' specifications, 
we derive some transformation rules for model composition 
purposes. These rules are into three categories: matching, merging 
and translation rules. 

The matching rules are first executed over input models. In this 
particular step, the transformation is in-place, only correspondence 
relations are set up. The TGGs rules compute a valid 
correspondence between two existing graphs [27]. Each rule 
execution looks for a pattern corresponding to the rule's LHS and 
not violating the NACs, if so, the RHS is produced and a 
correspondence pattern is arranged.  

Figure 10 illustrates an example of a matching rule that creates 
a correspondence link between two equivalent classes. They are 
said equivalent if they hold the same name and belonging to two 
different models. Note that, a negative application condition is not 
shown, which eliminate many applications and creation 
correspondences links of this rule. As we have explained in the 
composition process section, some matching links could be created 
manually by the designer, so that they relate concept that are 
similar but differently modeled. Among the most important 
advantages of our method consist of separating the matching and 
merging operations. the main purpose of the merging 
transformation is treating the involved models and matching links 
as a single graph. The equivalent parts in the merged model are 
created by computing various matching links through merging 
rules. An example of a TGG rule that create a new class is given 
in Figure 11. In this rule, the newer class is linked to a merged 
model. The target production of the rule also specifies the 
generation of the merged stereotype according to our merging 
strategy.  

Two classes that have the same label and but each of which 
belonging of a class diagram already merged (LHS). A merged 
class that has the same label as well as a merged stereotype is 
created, this will link the merged class to the merged class diagram. 
The default NACs guarantee the rules only apply once. AGG 
includes an editor for defining variables and attributes conditions. 
For instance, we used this feature to certify that the names of the 
two classes are identical in the Class Merging rule.  

We have defined a set of transformation rules named 
“Translation rules”. Those rules apply a simple default behavior 
which consists of creating, a deep duplicate of the source model in 
the target model. We show in Figure 12 a translation rule 
illustration applied to a single class. It generates a Class and a 
stereotype element by initializing their corresponding attributes 
with the provided values. We remember as explained before, that 
the merged model must be earlier produced by the corresponding 
merge rule to which the new produced class will be attached to. 

Figure 13:Transformation Rule layers. 
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5 Tool support 

In order to validate the mentioned concepts, we carried out 
performed some practical experiments with AGG tool [14]. AGG 
tool is considered as one of the most known graph-based 
transformation tools implementing an algebraic approach for graph 
transformation. We have chosen this tool because it provides 
several advanced features of TGGs to specify complex 
transformations scenarios. As an example of advanced features, we 
can for example specify context constraints by using the specific 
attribute constraints. Also, we can specify a set of fillers with the 
concepts of Positive, Negative, and General Applications 
Conditions (PACs, NACs, and GACs). Within the GACs, one can 
apply combinations of former operators like AND, OR, FORALL 
over patterns. We can also perform some validations of graph 
transformation rules by applying advanced features by using 
consistency checking and critical pair analysis concepts. This is 
very useful to detect parallel conflicts and sequential dependencies 
[28]. Others features are applied to control flow of transformation 
rules, with rule sequences, layers and priority order [29].  

5.1 Specifying rule layers  

 in this logic So we can consider the fact of as to havinge the 
same logical order as in the composition process, we may used rule 
layers to identifyspecify the transformations ow and decrease the 
complexity of the trans- formation application conditions. ThusSo, 
the matching rules appear first, the trans- formation rules come 
after the application of merging rules, and, obviously, the deletion 
rules come after the transformation process. Figure 13. shows 
composition rules sorted by rule layers.   

5.2 Consistency checking with AGG 

 A consistency checking can be performed over the output 
model throughout consistency conditions (CC). A consistency 
condition describes graphically the graph properties as e.g. 
existence of a certain element or the independent of a certain rule. 
Also, a consistency condition is composed of a premise P and a 

conclusion C. Formally; a consistency condition is a total injective 
morphism  

c: P →C. This condition is said satisfied by a given graph G, if for 
all total injective morphisms p: P→G there is a total injective 
morphisms q : C→G such that q o c = p. 

In other words, for all the matches of the premise P in G, the 
conclusion C has to be fulfilled. We note that if we have multiple 
constraints then, G has to fulfill all these constraints. For instance, 
Figure 14 shows a consistency condition that specifies how to 
check that every parameter has necessarily a type. It is composed 
of one premise and two disjunctive conclusions (the satisfaction of 
one conclusion is enough). First, the premise is represented by a 
node of type parameter. Then, the associated conclusions assert 
that each node parameter has to be coupled (through- out the edge 
type) with either a node of type class or a node of type DataType.  

Another example of a cc is depicted in Figure 15 which 
describes a consistency condition which specifies how to check 

Figure 15: Dangling Parameter Type reference constraint. 

Figure 16: Check Class stereotypes constraint 

Figure 14:Sequential dependencies of merging rules. 
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that every class has essentially a stereotype with an attribute named 
actor or merged. The premise of the CC is the node Class, and the 
conclusion is a class connected to Stereotype with an attribute 
name actor or merged. When checking those CC over our output 
model and a window appears having the message the graph fulfills 
this atomic.  

The transformation configuration of the AGG tool gives one 
the ability to stop after the execution of each layer and check 
manually the satisfiability of the constraints of interest. This, 
evaluates the correctness of the graph resulting so far, and prevents 
errors to be propagated. 

 As our transformation is composed of two major and separate 
steps (matching and merging), it is more convenient to assess the 
matching phase before starting the composition phase. Afterwards, 
comes the final checking phase to validate and ensure the 
correction of the output graph. Thereafter, a brief description of the 
constraints to be checked after each step:  

5.2.1 Marching step  

After this transformation step finishes, we check either the 
transformation behaved as expected or not by running the 
appropriate constraints over the graph resulted as yet. These 
constraints play on the one hand the role of a syntactic checker. 
And on the other hand, they say if the set of transformation rules 
reaches all the graphs nodes. For instance, checking if all the 
classes are reached can be translated by the following constraint. 
For each node Class this class should either be merged to another 
class or simply transcribed as it is. In other words, each node Class 
has to be linked to a node MergeRelation or TransformRelation. 
The same constraints can be extended to all the of the source type 
graph (Attribute, Association, Parameter).  

5.2.2 Merging step  

After that he merging step reaches its end another validation 
process take place. Using the appropriate model constraints, we 
check if the transformation consults and transforms every 
matching relation (MergeRelation or TransformRelation). For 
example, every Class matching relation of type MergeRelation 
have to be linked to a Class with the stereotypes name merged. We 
expand it for every matching relation linked to any node type.  

5.2.3 Final checking  

Despite the fact that the previous checking steps help vanishing 
ambiguities, how- ever, it is not satisfactory to tell that the results 
are correct. In some way, the constraints defined in this phase aid 
validating the syntactic properties of the out- put graph.  

5.3 Sequential Dependencies between rules 

 This implementation activity is an important step to validate 
the syntactic correction of our composition process. During the 
definition of these constraints, we confronted a couple of 
difficulties, namely, the definition of complex constraints or 
negative ones. Other difficulties, adhere to those agged [9].  

In fact, the graph of sequential dependencies between the trans-
formation rules is computed by AGG, in order to retrieve the cross-
dependency which in between (i.e is executing a rule depends on 
another execution). This graph is also intended to detect execution 

cycles. We talk about execution cycles when a sequence of rules 
gives a way to a rule previously triggered to be executed for the 
same matching. This prevents the transformation to turn in empty. 
We computed this graph for the merging step of our composition 
process. While analyzing the graph in Figure 16, we conclude that 
the rules mergeClass, mergeData, and mergeAssociation depend 
on the rule mergeDiagram, so this rule should be triggered first. 
Also, we come out with the conclusion that no cyclic executions 
are present in this transformation layer.  

6 Related Works and Discussion 

 In the MDE approach, model composition is now one of the 
relevant activities in MDE approach. According to [30], On the 
one side, matching requires consistency, efficiency and simplified 
approach. On the other side, the merging step requires; conflict 
identification and resolution and consistency preservation. In the 
section that follows, we used graph grammar to transform these 
requirements to model composition in an ad-hoc manner. 

Merging strategy: This technique could be divided into in-place 
techniques and out-targeted techniques. The first one consists of 
merging the input models into one global model named the host 
model along with their correspondence model. This strategy has 
many advantages such as simplicity, so a new model is not 
necessary to define the global view. Nevertheless, the input models 
are no longer available and to return and get them back is not 
guaranteed. The second strategy maintains the inputs unchanged 
and completely computes their union into a novel target model. 

Conflicts management: Conflict can occur when the input models 
overlap. Many solutions require merging only consistent models, 
this operation requires a preliminary step to conflict resolution. 
Matching process automation: this activity could be performed 
automatically, semi-automatically or manually. In certain 
situations, the designer must make the final drawings of models 
matching when dealing with inconsistencies or when describing 
other relationships that are not evident (e.g. generalization or 
aggregation). 

Change propagation: Models are updated and revised regularly. 
Therefore, some model views require the transformation at the 
beginning stage of design. Therefore, it is important to preserve 
traceability between input models in order to avoid the merged 
model being computed in case of any change in the source models.  

 In [13], The authors proposed an approach based on multigraph 
grammar principle to generalize TGG formalism and which 
besides presents a method to deal with data integration in 
heterogeneous distributed environment. On the one side, the 
integration mechanism relies on declarative rules to define 
communication relations between models. On the other side, they 
derive from those rules a set of operational rules which ensure 
accuracy among models and are responsible for the propagation of 
attribute changes from one element to the linked one. As with 
TGGs we can define constraints that are fairly simple, we propose 
the use of Layered graph grammars in our approach that permits to 
minimize the difficulty of constraints properties. The propagation 
mechanism as well as the integration, updates and changes were 
addressed using graph transformation rules. In [31], an EMF-based 
model management framework is suggested, including a collection 
of generic modules. The framework is founded on three notions: 
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equivalent relations, inconsistency resolution and refreshment of 
the construct those steps are equivalent to our steps mentioned in 
our approach. To locate reused elements between two models, the 
Merge. operator employs the equivalence. relations specified in a 
metamodel. This method suppose consistency in the input models 
and consider only a simple relationship like a simple Association. 
this would facilitate automatization of matching operation.  

 Several approaches use matching step as primary step in model 
composition. UMLDiff [32] It introduces an automated structurall-
differentiating. algorithm. UML-.aware. Based on the name and 
structural similarity of two models, it generates all modifications 
in the form of a tree structure. the use of heuristics makes it 
possible to establish such correspondence between elements by 
comparing both structural and lexical similarity between them.  

 A related work called GenericDiff [33], tak.es into a count all 
feature information of models, pa.ir-up feasibility predicates, and 
random walk tendency functions. This method compares two nodes 
to the recognizing off the Maximum Common Sub-graph (MCS) of two 
Typed Attributed Graphs by the use of an iterative process that 
propagates the distance value from nodes pair .to node pair based on 
graph structure and probability distributions. The major weakness of 
this method is to specify the appropriate threshold.  

 Finally, EMF Compare framework [34] is developed with a 
high level of extensibility to deliver good performance and 
efficiency. Some techniques such as instances, statistics and 
heuristics are used to achieve the matching phase. the authors use 
some metrics to weight this formula such as element's name, their 
content, their types and the relations they have with other elements. 
In return a value ranging from zero to one, which will be balanced 
with additional factor's scores the similarity between the source 
and target elements. 

7 Conclusion  

To sum up, our work was a mere investigation conducted to 
test the practicality of our approach using a graph transformation 
by means of AGG which appears to be the  appropriate one to 
achieve and satisfy the following representation and visualization 
requirements: it is an investigation that goes along with the 
objective of our work, it is mainly about formalizing the model 
composition activity to produce an integrated view of all the 
individual views. We are totally concluded that tools like AGG 
accomplish the requirements presented earlier. To this end, we are 
going to examine a list of languages and tools specialized on graph 
transformation such as Tiger EMF[35 ] in order to choose  the more 
appropriate to our method. we have formalized graphically the 
process by means of graph transformations. Composition rules are 
specified graphically using TGGS formalism. A set of attributed 
graphs allows both source and target model formal representation 
as well as correspondence model. The matching process is really 
aimed at adding a set of links to features of the source model. The 
correspondence graph is used to facilitate the automatization of the 
merging step and enable the correspondence graph to be 
incrementally refine. It also helps the traceability of the 
composition phase to be enhanced. The scope of this research 
could be broadened to various lines. our method was specified and 
proved   in case of UML models context. however, it is entirely 
generic because majority of specification concerns graphs features. 
Therefore, it can be simply applied to any graph-based model 

composition. it is an important to automate the detection of 
possible concordances or conflicts between models towards 
implementing the proposed methodology to the big projects. So, 
we can use matching heuristics to compute similarities between 
elements of graphbased models. 
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