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 The development of electronic healthcare systems requires to adopt modern technologies 
and architectures. The use of Electronic Personal Health Record (E-PHR) should be 
supported by efficient storage such as cloud storage which enables more security, 
availability and accessibility of patients’ records. Actually, the increase of availability of 
E-PHR enhances parallel access, which improves the performance and the throughput of 
the system. Using distributed systems, users are able to communicate and to share 
resources to achieve specific goals. Such kind of access needs to have more coordination 
to maintain parallelism, which can be provided through leader election algorithms. In 
leader election algorithms, users elect one of them as a leader to coordinate the work and 
to prevent conflicts. This paper introduces an adoptive leader election algorithm (ALEA) 
that considers medical and healthcare specifications, since it uses leader election algorithm 
for E-PHR in the cloud environment. The use of ALEA improves performance by allowing 
more parallelism and reducing the number of coordinating messages within the system, as 
well as facilitating the medical specifications such as having a primary doctor or handling 
emergency situations. Moreover, the paper highlights the strengths and weaknesses of using 
Blockchain technology in the field of healthcare. In fact, the paper investigates the 
implementation challenges of ALEA concepts using Blockchain technology. 
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1. Introduction 

Within the last decades, the development of technologies, the 
Internet and digital applications makes them essential components 
in some other fields such as education and healthcare. This paper 
focuses on the development of e-health systems using some 
supportive algorithms and modern technologies. Actually, this 
paper is an extension of work originally presented in the 
2ndInternationalConference on New Trends in Computing 
Sciences [1]. 

The competition among healthcare organizations encourages 
them  to  involve  modern  and  advanced  technologies  to  increase 
stakeholders’ satisfaction. These technologies help to improve the 
provided services.   For examples,  a patient can schedule an 
appointment online; doctors (physicians) can access, maintain, and 
transfer E-PHRs electronically anytime and from anywhere; 
doctors would be able to diagnose, complete the required treatment 
and even participate in surgery remotely; prescriptions are sent to 
the corresponding pharmacy electronically. In addition, these 
technologies enable costs and managerial efforts to be reduced. 

The services costs can be time, physical space, energy and 
infrastructure. Besides that, it gives deep and clear insight for 
better administration and decision making. The use of E-PHR as a 
digital version of PHR allows information to be accessed, updated 
and transferred in an electronic manner [2], which enhances 
information accessibility, availability, security, privacy, 
completeness and consistency.  It also helps to avoid the risk of 
having traditional PHR in case of natural disasters such as 
Hurricane Katrina [2]-[6]. 

Moreover, an efficient pattern of storage such as cloud storage 
is required to support the use of E-PHR in distributed systems. 
Actually the E-PHRs are stored in servers and can be accessed 
securely on the Internet [7], [8]. 

The presence of E-PHR, servers, cloud storage and many 
connected devices creates a parallel and distributed system.  In 
distributed systems, devices are connected through networks to 
perform specific tasks. Thus, it helps to improve efficiency and 
throughput of the process of sharing resources but it also requires 
more control and coordination. Therefore, leader election 
algorithms can be used to coordinate the parallel tasks and to 
preserve the consistency of E-PHRs [9]. Indeed, having 
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parallelism could result in conflicts, especially when a process tries 
to update an E-PHR, while another one is reading or updating it at 
the same time.  In fact, having a leader allows for an exclusive 
access (token) to an E-PHR, which keeps it consistent.  

In addition, Blockchain technology allows decentralized ledger 
to be managed within a distributed system.  The ledger contains a 
chain of blocks (records). In Blockchain many nodes share and 
process distributed copies of the same ledger. In fact, when a node 
proposes a new block of transactions, the other nodes process it 
and vote to commit it if its valid or to abort to if it is not. Based of 
the votes of the majority (consensus), the block commits and every 
node updates its copy of the ledger or the block is ignored [10]. 

 Nakamoto uses Blockchain to produce the Bitcoin as a first 
cryptocurrency, in which users execute electronic financial 
transactions without banks [10]-[12]. After that, Blockchain 
technology has been involved in many other areas such as 
judiciary, notary, copyrights, education and healthcare [12].  

This paper introduces an adoptive leader election 
algorithm(ALEA) that is suitable for E-PHRs and healthcare 
systems.  The paper proposes the principles of a primary and a 
secondary leader as well as having multiple tokens. ALEA allows 
the number of communication messages to be reduced in case of 
failures. Moreover, this work highlights the strengths and 
weaknesses of using Blockchain technology in the field of 
healthcare to implement the concepts of ALEA.  

The rest of our paper is organized as follows: in Section 2, 
some related work is discussed. Sections 3 and 4, introduce our 
proposed system model and algorithm. Section 5 discusses many 
important issues and techniques such as algorithm correctness, 
consistency, synchronization, file sharing, traffic flow and 
replication.  Finally, Sections 6 and 7 focus on the advantages and 
disadvantages of using Blockchain technology, while Section 8 
provides conclusion. 

2. Related Work 

There are many techniques to preserve data consistency in 
cloud storage [13], [14]. Some research proposes strict consistency 
while the others relax this concept and accept weaker levels of 
consistency. Coppieters et al. provide an algorithm with strict 
consistency, where they order all concurrent processes on all 
replicas.  Actually, the concurrent execution of processes should 
be matched with a correct sequential execution [15]. Zellag and 
Kemme introduce an efficient relaxed consistency model for cloud 
storage [16]. 

 Some  others  use  leader  election  algorithms  for  consistency, 
whereby a leader grants exclusive access to some memory objects 
to prevent conflict [9], [17].  For leader electing, a bully algorithm 
[9, 18], enables every user to have a unique identifier (Id) and 
every user sends its Id to all other users. So, they select the node 
with the maximum Id as a leader. The complexity of this approach 
reaches O(n2) messages, which is considered expensive. With a 
token ring algorithm [19], the users are structured in a linked-circle 
and every user sends its Id to the next one. After receiving the 
message, the user compares its own Id with the received one and 
sends the greater one to the next user.  The complexity of this 
approach costs O(n) messages. Numan et al. provide an algorithm 
that uses a centralized linked-list queue of all users. The leader is 

the head of the queue; and when it fails, another user acquires a 
lock and dequeues the old head. The complexity of this approach 
is O(1) [20]. 

 At the same time, many countries and institutions have started 
using E-PHRs. For example, at the beginning of 2014, the 
American Recovery and Reinvestment Act enforced all healthcare 
agencies (public and private) to use E-PHR. This facilitates 
accessibility, utilization and management. However, such a change 
requires specific technical and infrastructural support to be adopted 
[21]. 

In addition, Blockchain technology helps to allow 
decentralized management of E-PHRs, where there is no need for 
a third party such as hospitals or healthcare agencies. However,  
Blockchain has  been  enhanced  with  fairness  and  freedom  [22]. 
Therefore, Blockchain provides many advantages for many areas 
such as health-care systems. First, it supports the availability, 
robustness and security of E-PHR. In fact, many projects and 
companies, such as Data Gateways, Gem Health Network, Deloitte 
and Guardtime have started using Blockchain to manage their E-
PHR [11], [23].  Second, it supports all related financial operations 
such as funding, donations and insurance payments through 
cryptocurrencies. Third, Blockchain supports scientific clinical 
and biomedical research such as in the MedRec Health bank. 
Indeed, companies and organizations use Blockchain for data 
sharing and verification, ownership proofs and privacy of patients 
and organizations. In addition, it could apply the principle of "gain 
as you contribute" in scientific clinical and biomedical research. 
For example, while Bitcoin (which is the first cryptocurrency) is 
earned through solving puzzles, Gridcoin, is another 
cryptocurrency that is earned based on the contribution to scientific 
research [10], [11] and [24]. Fourth, Blockchain can be used to 
manage and process any kind of data such as the records of 
employees, healthcare facilities, medical instruments, medicines 
and pharmaceutical supply chains.  

Laure  and  Martha  use  Blockchain  as  a  control  manager  to 
manage  the  access  of  E-PHR. Actually,  this  work  focuses  on 
Blockchain’s advantages such as scalability, security and privacy. 
Indeed, the work proposes using a Blockchain system as an access 
control manager, so it only has indexes of records, while the real 
records are stored in separate storage (out of the Blockchain). This 
would help to avoid the negative impact of data redundancy, where 
every node in the Blockchain has a copy of all indexes instead of 
having a copy of all records [21]. 

 Kevin et al. suggest the use of Blockchain in healthcare to 
solve the issues of hardware and software heterogeneity.  The work 
focuses on the quality of sharing E-PHR in an understandable and 
meaningful manner.  So, they use the concept of Fast Healthcare 
Interoperability Resources with specific Application Programming 
Interfaces as standard for data formatting and presentation [25]. 

3. The System Model 

Before you ALEA is designed according the concepts of in 
well-organized bully algorithm for leader election [20]. The well-
organized bully leader election algorithm is implemented using a 
linked-list queue to minimize the cost of leader election to O(1).  
ALEA is a modified algorithm that is efficiently applicable for 
medical and healthcare systems.  

http://www.astesj.com/
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ALEA creates a linked-list queue Queue of size Z, where Z is  
the  number  of  nodes  in  the Queue.   The Queue is  stored  in 
shared memory, so it is always visible to all nodes. A node 
(processor/doctor) is denoted as Nod and is represented with a 
unique identifier (doctorId), a pointer that is pointing to the next 
node ,and a token flag.  The new inserted node (doctor) can read 
the E-PHR but it has to get exclusive access to update it. The 
exclusive access is given by changing the token value from 0 to 1. 
The queue head is the leader (PL). To change the leader, dequeue 
the current head node and move the leadership (PL pointer) to the 
next node. 

For emergency cases where the PL is not accessible, a 
temporary queue TQ is created with a secondary leader called SL. 

Figure 1 shows Queue where the list has three doctors, and PL 
points to the head of the queue. It also shows the emergency block 
which has another list of TQ and SL. In reality, TQ is not usually 
there. 

 
Figure 1: Leader election linked-list Queue with a PL pointing to the queue head; 

while the emergency linked-list TQ and a SL appear in the emergency block. 

It is obvious that many doctors can read files in parallel, but 
conflict arises at the time of the update. For instance, the situation 
arises when one doctor is reading a file and another updating it. In 
this case, the data updated last should be visible to the reader. Also, 
when two doctors are writing to (updating) the same files, the two 
updating processes conflict with each others. To overcome this 
situation, it incorporates the idea of TokenPtr, which shows who 
holds the token flag to update the files. 

4. Proposed Algorithm 

• A hospital creates the patient’s E-PHR with a primary 
doctor (leader) PL, (see Function 1). Actually, the node 
(doctor) has three attributes as follows: first, data to have 
the doctorId; second a pointer pointing to the next node; 
and third a token flag. When a new doctor is inserted into 
the Queue, the doctor can read the E-PHR directly, but for 
update permission, the token has to be changed to 1.  The 
TokenPtr is another pointer pointing to the node that has 
the token (token=1). Finally, it increases the size of Queue. 

• If PL cannot be accessed for any reasons, except in the case 
of failure, it creates an emergence or temporary queue TQ 
with a secondary leader SL, (see Function 2). With the 

creation of a new node, the size of TQ is increased and the 
same procedures as in Function 1 are used. 

• Now Function 3 shows the process of adding a new node 
to the Queue. Considering the medical needs, PL can add a 
new doctor to the team, by creating and enqueuing a new 
node to the Queue. Then it increases the Queue size. This 
is also applicable to TQ. 

• Sometimes because of medical needs, the leader has to 
reorder doctors in the Queue, so it swaps the nodes as 
shown in Function 4. Based on the doctor’s Id, TempPtr1 
starts searching from the head position, until it finds the 
first doctor. Then, TempPtr2 starts searching from the head 
position, until it finds the second doctor.  After that, it 
swaps the doctors by inserting doctorId1 in the node of 
TempPtr2 and doctorId2 in the node of TempPtr1. 

• When PL retires from leadership of the E-PHR’s team, it 
follows the procedures for Function 5. If it is the only 
doctor who handles the E-PHR, which means Queue has 
one node only, then, the retirement is not allowed. Else, it 
uses TPtr to point to the PL node; moves the PL pointer to 
the next node; moves the token (if it is needed) and finally 
it dequeues the TPtr node and enqueues it again from the 
other end of the Queue. This is also applicable for SL and 
TQ. 

• In Function 6, a doctor leaves the E-PHR’s team (complete 
clearness).  If it is the only doctor who handles the E-PHR, 
which means Queue has one node only, then, the clearness 
is not allowed. Else, it is dequeued from the Queue (as in 
Function 5), but there is no need to enqueue it again. 

• Function 7, explains how to move the token among nodes. 
First, PL finds the targeted node according to its doctorId, 
then it gives the token (makes token=1), or gets it (makes 
token=0). In addition, PL allows parallelism by giving the 
token to many nodes simultaneously, which is explained in 
details later. 

• Function 8, shows the case of a doctor requiring the token, 
so it sends an acquiring message to PL and waits for some 
time (Timeout). It should wait until the time becomes equal 
to T where T=currenttime+Timeout. In fact, it is supposed 
to receive a reply message (acknowledgment) from PL. 
However, if the timeout finishes without receiving the 
reply message, then PL fails, and it calls PLFailure(). 
Actually many nodes may detect PL failure simultaneously, 
so each node has to copy the Id of PL (failed leader’s 
doctorId) (more details are given in Function 9). 

• Function 9, shows the case of leader PL failing. Upon the 
detection of PL failure, the detector node calls 
PLFailure(Id). It also passes PL’s doctorId. PLFailure(Id) 
moves the PL pointer to the next node and  

 

1. ║ Algorithm 1: ALEA1. 
  

2. 1. Initialization() 
3. //To create the linked-list  
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4. Queue Z=0; //The queue size 
5. Nod=newnode(); 
6. Nod→data=doctorId; 
7. Nod→next=NULL; 
8. Nod→token=0; 
9. PL←node; 
10. TokenPtr=PL; 
11. TokenPtr→token=1; 
12. Z++; 
13. Return 

 
14.  2. Emergency() 
15. //Adding a new doctor as SL & creating a temporary queue  
16. Z=0; //The queue size 
17. Nod=newnode(); 
18. Nod→data=doctorId; 
19. Nod→next=NULL; 
20. Nod→token=0; 
21. SL←node; 
22. TokenPtr1=SL; 
23. TokenPtr1→token=1; 
24. Z++; 
25. Return 

 
26. 3. AddDoctor() 
27. //Adding a new doctor to Queue 
28. Nod=newnode(); 
29. Nod→data=doctorId; 
30. Nod→next=NULL; 
31. Nod→token=0; 
32. Queue←enqueue(); 
33. Z++; 
34. Return 
35.  
36. 4. SwapNodes(doctorId1, doctorId2) 
37. //Swapping the doctors in Queue 
38. TempPtr1=PL; 
39. TempPtr2=PL; 
40. i=1; 
41. while(i ≤ Z) do  
42. { 
43.     if (TempPtr1→data, doctorId1) then 
44.     { 
45.     TempPtr1=TempPtr1→next; 
46.     i++; 
47.     } 
48.     else 
49.    { 
50.     //First doctor is found, now find the other one 
51.     Break; 
52.    } 
53. } 
54. i=1; 
55. while(i ≤ Z) do 
56. {  
57.     if (TempPtr2→data, doctorId2) then  
58.     TempPtr2=TempPtr2→next; 
59.     i++; 
60.     } 
61.     else 

62.    { 
63.     //Now Second doctor is found, so swap them 
64.     TempPtr1→data=doctorId2; 
65.     TempPtr1→token=0; 
66.     TempPtr→data=doctorId1; 
67.     TempPtr2→token=0; 
68.     Break; 
69.     } 
70. } 
71. Return 

 
72. 5. Rretirement() 
73. //Retiring from the leadership 
74. if (PL→next=NU LL) then  
75. Return False; 
76. else 
77. {  
78. TPtr=PL; 
79. PL=PL→next; 
80.     if (TokenPtr=TPtr) then 
81.     { 
82.     TokenPtr→token=0; 
83.     TokenPtr=TokenPtr→next; 
84.     TokenPtr→token=1; 
85.     } 
86. TPtr.dequeue(); 
87. T Ptr.enqueue(); 
88. } 
89. Return 

 
90. 6. Clearness() 
91. //Clearness 
92. if (PL→next=NU LL) then 
93. return False; 
94. else 
95. { 
96. TPtr=PL; 
97. PL=PL→next; 
98.    if (TokenPtr=TPtr) then  
99.    { 
100.     TokenPtr→token=0; 
101.     TokenPtr=TokenPtr→next; 
102.     TokenPtr→token=1; 
103.     } 
104.  TPtr.dequeue(); 
105.  } 
106.  Return 

 
dequeues the failed leader. If many nodes detect PL failure 
simultaneously, all of them invoke PLFailure(Id), which may 
cause multiple unnecessary dequeues. Thus, it is mandatory to use 
a Compare-and-Swap atomic operation (CAS statement), by which 
only one node changes the leader [26].  Using a CAS statement, 
one node checks if the PL is still in a failure (PL’s doctorId=Id), 
and it invokes Clearness(). In Clearness(), PL (failed leader) is 
dequeued and another leader is elected. Therefore, the other nodes 
that detected the failure of PL also use CAS, but find PL’s 
doctorId≠Id, since they find doctorId of the new PL that is not 
equal to the value of Id, and do nothing.  
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107.  7. Leadership(doctorId1) 
108.  //Moving the token among nodes 
109.  //Getting the token  
110.  TokenPtr→token=0; 
111.  //Find the targeted node based on Id 
112.  i=1; 
113.  while(i ≤ Z) do  
114. {    
115.      if (TokenPtr→data, doctorId1) then  
116.       { 
117.       TokenpPtr=TokenPtr→next; 
118.       i+ +; 
119.       } 
120.       else 
121.       { 
122.        //Give the token 
123.       TokenPtr→token=1; 
124.       Break; 
125.       } 
126.  } 
127.  Return 

 
128.  8. Reminder() 
129.  //Node sends a message to acquire the token 
130.  Sendmsg(PL, ”Acquire token”); 
131.  //Waiting (Timeout) 
132.  T=CurTime()+Timeout; 
133.  while(receiveack() = false && CurTime() < T) do  
134.  wait(); 
135.  //Timeout finishes and no response (PL fails) 
136.  if (receiveack()=false) then 
137.  { 
138.  Id=PL→data; 
139.  PLFailure(Id); 
140.  } 
141.  Return 

 
142.  9. PLFailure(Id) 
143.  //Leader still in failure 
144.  CAS (PL→data, Id, Clearness()); 
145. Return 

 
Figure 2 is an example of a failed leader.  Node 3 and 4 

discover that the leader has failed.  In Figure 2 (a), the two detector 
nodes elect a new leader in parallel, so both dequeue and move PL 
pointer. This causes one unnecessary dequeue. In Figure 2 (b) the 
two nodes elect a new leader in parallel using CAS (the lock can 
also be used), so both of them copy the doctorId of the PL in Id 
(Id=1). Both of them apply CAS such that one node will have 
successful CAS, and it dequeues the failed leader. However, since 
a new leader is already there, the doctorId of the new leader does 
not equal to Id anymore. Obviously, the doctorId is 2, while Id=1.  
As a result of this, the other node gets a failed CAS, so it does 
nothing. 
5. Analysis 
5.1. Correctness 

For ALEA correctness, the correctness of concurrent 
operations, that are made by doctors, are proved by satisfying 

Linearizability [26]. This requires the concurrent operations to be 
ordered to match a correct (valid) sequential execution. Indeed, 
ALEA is considered an event-based model [9], where a doctor 
performs the operations(a read/update) on the E-PHR, and each 
operation is represented by two instantaneous events (begin() and 
end()). A complete execution is a sequence of operations where 
there is no pending operation and every operation has the two 
events. For the correctness and legality of all operations, it is not 
difficult to argue about the correctness and legality of a sequential 
execution where all operations are running in one processor and 
one after another.  This helps to prove the memory consistency and 
to predict the situation of the file, before and after each operation. 
Since ALEA has two kinds of operations which are update and 
read, an update operation is legal if it appears instantaneously and 
all later reads read it, until another update takes place. A read 
operation is legal if it reads the last written data, and all later reads 
read the same data until another update takes place. A sequential 
execution is legal if all its operations are legal. Then, the 
concurrent execution is correct and the memory is consistent if the 
order of concurrent execution (including events of all concurrent 
operations) matches the order of a legal sequential one; this is 
known as Linearizability [26].  

 
Figure 2:  (a):  As result of the failure of the leader, two nodes are electing a new 
leader in parallel, which causes one more unnecessary dequeue: (b) As result of 
the failure of the leader, two nodes use CAS to elect a new leader in parallel, so 
one node dequeues the failed leader and the other does nothing 
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In ALEA, there are two kinds of operations, some operations 
process the linked-list queue and the other operations process the 
E-PHR. The first kind is to modify the linked-list queue of doctors. 
To update the queue, there are operations such as enqueue, 
dequeue (even electing new leader is conducted through 
dequeuing) or move the token.  In fact, ALEA maintains a queue 
of linked-list, so it follows the concepts of Michael and Scot [27], 
that is considered as one of the best lock-free algorithms in the 
field. Actually the enqueue and dequeue operations are conducted 
based on Michael and Scot’s algorithm [27], which is linearizable.  
For the operation of moving the token, it is executed only by the 
leader, so it is serialized. The read operation simply tries to find 
the current leader which is always able to see the last change.  In 
fact, the linked-queue is stored on a shared memory which makes 
all updates visible instantaneously. The second kind of operations 
is to update the E-PHR. Actually, some procedures that prove the 
correctness of the bully leader election algorithm [9, 18], and the 
well-organized bully leader election algorithm [20], are applicable 
in ALEA. To update the E-PHR it has to use the token which gives 
exclusive access, so it does not conflict with other operations and 
the operations can be ordered based on the token movement.  On 
the other hand, all read operations are executed concurrently and 
are ordered with respect to the real-time order. Indeed, ALEA 
satisfies Linearizability. 

5.2. Synchronization 
Processes synchronization allows resources to be shared 

without causing any conflicts (it preserves consistency).  Clearly, 
ALEA uses application level synchronization, but at some points 
it also relies on operating system primitives such as using locks 
and CAS atomic operation. Focusing on how to order events, 
Linearizability follows the real-time order of the concurrent 
operations (execution). In fact, when there is one thread, events are 
not interleaved on the same object. However, when there are many 
threads the synchronization satisfies a happens-before relationship.  
Therefore, the synchronization of events respects a well-formed 
clock.  Actually, the order depends on the exact time in terms of 
where and when the operation takes effect. However, having 
multiple time zones of doctors and patients due to remote access 
or travel; challenges the use of physical clock. Therefore, a logical 
clock such as Lamport’s logical clock [9, 23], is preferred. 
Lamport’s logical clock is one of the famous approaches that uses 
the happens-before (|) relationship such that, for any two 
operations a and b, it is said a happens-before b (a|b) if and only if 
the end() of operation a occurred before the begin() of b. However, 
if there is an overlap between operations then the two possibilities 
are considered (a|b) or (b|a). Using ALEA, it orders the operations 
even if they are executed in multiple processors since all of them 
are executed on a single version of E-PHR. The read operation 
isordered easily, while the update operation gets exclusive 
access(token), so it is also ordered based on the token movements. 

5.3. Parallel Access of E-PHR 
In this part, it is suggested the E-PHR to divided into multiple 

sections s, and doctors are able to access different sections 
concurrently. Therefore, ALEA has to use multiple tokens, let say 
k tokens, where k=s (a token for each section).  Now, the leader 
gives a suitable token to a doctor according to the needed section. 
Thus, TokenPtr of the original ALEA is replaced with a two-
dimensional array of pointers (with k rows and 2 columns). Each 

row of this array shows the doctor’s id and the corresponding 
section. 

5.4. Traffic Flow 
Processes It is known that the election of a new leader requires 

a number of messages to passed and that may costn2messages for 
n nodes [17, 18]. On the other hand, having one leader has severe 
negative impacts on the system in case of leader failure. To handle 
this situation, decentralized leader election algorithms enable 
many replicas for each file and more than one leader. To access 
any replica, voting is conducted and access is allowed according to 
the majority (consensus). Such type of permission requires 
approximately 2n messages [17, 18]. However, with ALEA the 
number of messages is reduced to 0, as it dequeues the head node 
(leader) and the new head will be the new leader (no traffic). In 
addition, other messages are sent to acquire the token.  In ALEA 
the leader can hold a token or move it to the targeted node as 
needed with no messages. Rarely, if a doctor needs to get the token, 
the doctor sends an acquire message (as shown in Function 8), and 
it receives a reply message from the leader, which causes no traffic. 

5.5. Fairness and Starvation (timeout) 
This part focuses on fairness of the leader election process and 

fairness of token movements.  For the fairness of leader election 
process, the leadership appointment has to follow the queue 
property first-in-first-leader. However, this is relaxed to 
approximate-first-in-first-leader to handle medical and healthcare 
requirements. Indeed, in ALEA, the leader is able to swap the 
doctors in the queue based on the medical needs, which is 
completely fair from the medical point of view. On the other hand, 
ALEA allows the leader to move token among nodes as needed, 
which is also fair from the medical point of view. 

5.6. Replication 
This part It would never be advisable to use a single centralized 

copy of the E-PHR since there is no way for recovery in case 
anything goes wrong.  In this regard, the idea of having multiple 
replicas of the same file is integrated, which is very important for 
reliability and performance. Firstly, many replicas allow recover 
of files if the reis an issue with a server, security problem, file 
corruption or failed operation (read/update). Secondly, the replicas 
allow improved performance as they can be distributed based on 
system capabilities, competences, load balancing or geographical 
distribution. However, having many replicas requires more effort 
to keep them consistent. For such an issue, it is suggested that the 
number of replicas be reduced to three copies. The main 
(permanent) replica is stored in a suitable place bearing in mind 
the geographical location of the patient and all doctors accessing 
this replica.  The second replica (backup1) should be stored in the 
same system or in a very close one, so it can be used easily for 
recovery.  The third replica (backup2) must be stored in a different 
server that is geographically located far away from the main one; 
so it can be used in case of natural disasters, for example. In order 
to maintain consistency in replicas, it is suggested to use the 
eventual consistency criteria where the consistency of file is 
relaxed [9, 15]. Eventual consistency is very suitable to E-PHRs 
and cloud storage. Using eventual consistency, read operations do 
not cause any harm, as the replicas remain consistent, but this 
scenario will be different in the update operation because the 
update operation changes the content of the replica. After 
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confirmation of an update, the change should be reflected in all 
other replicas in an asynchronous manner (over the network). In 
ALEA, the token can be given to more than one doctor working on 
different parts of the file, which causes a write-write conflict.  
Therefore, every update is labeled with two timestamps, which are 
the timestamp when the update takes effect, and the timestamp of 
the last update before this one took place. This helps all replicas to 
order the changes and maintain consistency among all of them. 
Another way is to use Primary-Based Protocol to conduct remote 
write/update; in this scheme, the user holds a local copy of a file 
and after performing the update operation locally, it sends are quest 
to the server for final approval [9]. This way, the main server takes 
responsibility for preventing conflicts. To avoid any type of 
conflict, it updates the other replicas instantly.  This protocol (of 
maintaining the local replica) is an actual support for mobile 
applications, where the user works on those selected files from 
different locations, which may affect the connection with the 
server. Besides this, a huge number of update operations on the 
system and the processes of maintaining replica consistency result 
in very high contention on the network.  To solve this difficulty, 
the techniques below is effective: 

• Directly, send the modified part of a file to replicas. This 
can be used in case of a considerable number of update 
operations. 

• Only send a notification to invalidate the other replicas. 
The invalidation notification has a smaller size compared 
to the update messages. Indeed the invalidation can be 
more specific to tell which part of the replica is not valid 
anymore. Then, the system denies access to that part until 
it finds a suitable time to update it. 

• For some kind of update, send the computation itself, so 
the others process it locally and make the update 
themselves. 

6. The Use of Blockchain 

Blockchain technology is a distributed ledger that is shared and 
processed by nodes according to consensus [10, 11]. In fact, 
Blockchain algorithms have three major phases which are 
proposing a new block, voting on the new block, committing or 
aborting it based the consensus [10, 11, 22]. The implementation 
of ALEA concepts using Blockchain technology requires some 
modifications. The creation of a new queue in Functions 1 and 2, 
will be based on the consensus of users, rather than hospitals or 
healthcare agencies. Moreover, adding, removing and swapping 
doctors (in Functions 3, 4, 5 and 6) will not be executed by the 
leader; instead, they have to make a proposal, vote and then take a 
decision according to the majority.  The same thing is applicable 
to token movements in Functions 7 and 8, as well as in case of the 
failure of the leader in Function 9. 

6.1. Transaction's Validation 
The Blockchain consists of a number of nodes (processors). 

Each node can access the patients’ E-PHRs and has a copy of the 
ledger. The ledger contains blocks and each block contains a 
number of transactions. The transaction contains some operations 
that are executed on E-PHRs. The operations on the E-PHR are 
either read or update (the update includes creating, editing and 
deleting E-PHR). After the execution of transactions, the miners 

validate the transactions by validating the output of the operations 
of those transactions. Indeed, the miners also consider the 
concurrency of transaction and can use some standard property for 
such issues such as Opacity [28]. According to this correctness 
property, a valid transaction commits and is placed on the blocks, 
while an invalid transaction aborts [29]. Note that more than one 
miner may validate the same transaction and every one places it in 
a different block. or heads, are organizational devices that guide 
the reader through your paper. There are two types: component 
heads and text heads. 

6.2. Block's Validation 
When the block is full (based on the size of the block), it is 

proposed to the validators (who are the team of doctors), so they 
validate the correctness of the block, considering the concurrent 
blocks as well. In fact, the content of the block is hashed to secure 
it. The hashing can be produced in many ways such as Proof-of-
Work (PoW) or Proof-of-Stack (PoS) [30]. In addition, validators 
validate the signature of the proposer node to verify that the block 
has been created by a legitimate node. Actually, the validators 
validate the identity of the proposer through its digital signature, 
the PoW and content of the block. According to this, validators 
vote to commit the block or abort it.  

6.3. Consensus 
Blockchain uses consensus to consider the validation processes 

of all validators. If the majority votes to commit the block, then it 
is added to the ledger, otherwise it is ignored (and then there is no 
need for a leader like in ALEA). The majority of votes means more 
than 50% is needed, and in some systems they increase it to 67% 
[31,  22]. In addition, the order of the committed blocks in the 
ledger is decided based on who gets PoW first.  Some work uses a 
unique timestamp for each block, so the one with a smaller 
timestamp is added first [22]. The blocks are chained in the ledger 
using the hash number, as every block has the hash of the previous 
one; thereforethe ledger is unchangeable. 

7. Discussion on the Use of Blockchain 

The implementation of ALEA’s concept using Blockchain has 
some strengths and weaknesses. Thus, this section discusses the 
issues of security, privacy, immutability, decentralization, 
robustness, availability,  ownership,  computational  costs  and  
system  traffic  flow [10, 11, 24, 21].  

7.1. Security, Privacy and Immutability 
Using Blockchain technology the identities of doctors are 

hidden. The E-PHRs and the operations on them are hashed and 
encrypted. Such security and privacy are positive points that 
encourage everyone to use Blockchain. On the other hand, users 
will be untraceable and that is an issue for healthcare systems, 
especially in terms of tracking suspicious and illegal behaviors. 

In addition, using Blockchain guarantees immutability, since 
the ledger (that has the records of all operations on E-PHRs) is 
unchangeable. Obviously, this is a positive point; however, such a 
system does not allow to rollback. 
7.2. Decentralization 

To avoid the presence and the control of the centralized third 
party such as a hospital, decentralization enables queue to be 
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created or emergency to be handled using consensus. The negative 
impact of consensus is the voting delays; as well as having non-
trusted nodes or misleading votes. 

7.3.  Robustness 
To The distribution of Blockchain technology helps to prevent 

a single point of failure, especially in the case of leader failure. 
Instead, the work will continue as long as the majority of nodes is 
still working. 

7.4. Availability 
Blockchain provides high availability, since all nodes have 

replicas of the files. The large redundancy of replicas requires 
more space (memory), communication and processing (to preserve 
the consistency of the replicas). To avoid such an issue, it is 
proposed to use Blockchain as an access control manager that 
shares copies of indexes rather than the real records, and the 
records are stored in separate centralized storage [21], as shown in 
Figure 3. 

 
Figure 3: Blockchain with indexes and separated centralized storage of records. 

7.5. Performance Cost 
The use of Blockchain technology results in huge increases in 

computational and communication costs. In ALEA, the 
computation is executed by one node, while in Blockchain all 
validators execute the computation to confirm its correctness. In 
addition, when a node proposes a new block, it broadcasts to all 
validators, so if there are n validators, it broadcasts n messages. 
After the validators execute the computation, they send votes to all 
nodes, let’s say m nodes, which costs m2 messages. Actually, the 
set of the validators is a subset of all nodes in the Blockchain.  
Then, every node calculates the majority and broadcasts messages 
of the decision (commit/abort), which also costs m2 messages. 
Finally, in case of commit, all nodes update their own copy of the 
ledger, rather than a limited number of replications. Thus, the use 
of Blockchain negatively affects the speed of the system and its 
traffic flow. 

7.6.  Fault Tolerance 
The consensus is a fault tolerant correctness property, where 

some validators do not confirm the validity of the block. In medical 

cases, it is not suitable to ignore the votes of 49% or even 33% of 
doctors because they are not the majority. This means, the 
Blockchain may still allow for some errors, which is very critical 
for healthcare specifications. 

8. Conclusion 

This paper proposes an adaptive algorithm, for E-PHRs in a 
cloud environment, so it can be easily used with minimal 
infrastructure. ALEA enhances parallelism using an alternative 
and modified leader election technique that suits medical and 
healthcare systems. This work investigates the performance and 
the characteristics of the ALEA in comparison to Blockchain 
technology, which shows that the use of Blockchain technology 
may result in some negative impacts  
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