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Restoring, estimating the fully 3D hand skeleton and pose from the image data of the
captured sensors/cameras applied in many applications of computer vision and robotics:
human-computer interaction; gesture recognition, interactive games, Computer-Aided
Design (CAD), sign languages, action recognition, etc. These are applications that flourish
in Virtual Reality and Augmented Reality (VR/AR) technologies. Previous survey studies
focused on analyzing methods to solve the relational problems of hand estimation in the 2D
and 3D space: Hand pose estimation, hand parsing, fingertip detection; List methods, data
collection technologies, datasets of 3D hand pose estimation. In this paper, we surveyed
studies in which Convolutional Neural Networks (CNNs) were used to estimate the 3D hand
pose from data obtained from the cameras (e.g., RGB camera, depth(D) camera, RGB-D
camera, stereo camera). The surveyed studies were divided based on the type of input
data and publication time. The study discussed several areas of 3D hand pose estimation:
(i)the number of valuable studies about 3D hand pose estimation, (ii) estimates of 3D hand
pose when using 3D CNNs and 2D CNNs, (iii) challenges of the datasets collected from
egocentric vision sensors, and (iv) methods used to collect and annotate datasets from
egocentric vision sensors. The estimation process followed two directions: (a) using the
2D CNNs to predict 2D hand pose, and (b) using the 3D synthetic dataset (3D annotations/
ground truth) to regress 3D hand pose or using the 3D CNNs to predict the immediacy of 3D
hand pose. Our survey focused on the CNN model/architecture, the datasets, the evaluation
measurements, the results of 3D hand pose estimation on the available. Lastly, we also
analyze some of the challenges of estimating 3D hand pose on the egocentric vision datasets.

1 Introduction

A few recent years, Virtual Reality (VR) and Augmented Reality
(AR) become promising technologies in human life. Based on com-
puter vision techniques, they could be found in many applications,
including human-computer interaction [1]-[2]; gesture recognition
[3, 4]; interactive games [5]; Computer-Aided Design (CAD) [6],
sign languages [7]; action recognition, etc. In those applications,
real pictorial data (e.g. depth image, color image, stereo, RGB-D,
and point cloud data as illustrated in Fig. 1) will be transformed into
computer-based data and then could be used by the algorithms. The
important work of VR/AR software is detecting the object in the
environment from those data. To resolve this point, estimating the
3D skeleton of hand by the Convolutional Neural Networks (CNNs),
as shown in Fig. 1 is a widely considered approach with more than
60 valuable studies over the last 4 years.

Convolutional 

Neural 

Networks 3D skeleton

3D mesh 

hand

depth image

RGB image

point cloud

Figure 1: Illustrating the typical input data of 3D hand pose estimation and the
results.
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Figure 2: (a) the result of hand detection [8], (b) the result of the hand segmentation
for Gesture Recognition in egocentric vision [9].

Figure 3: Top left: Hand anatomy; Bottom left: the kinematic model [10]; Right: 3D
hand skeleton and pose estimation on the RGB-D image of the egocentric sensor
[11].

With the strong development of the sensor/camera technology,
with the appearance of depth sensors (e.g. MS Kinect v1 [12], [13],
MS Kinect v2 [14], 3D Prime Sense Sensors [15], Intel Real Sense
[16], Leap Motion, etc) made restoring 3D hand skeleton and pose
easier and more accurate. However, the results of estimating, restor-
ing 3D hand skeleton and pose are influenced by several factors from
the captured image data such as hand motion, severe self-occlusion
and self-similarity of fingers, especially the data of hand is obscured

when collected from an egocentric sensor [10], [11] as Fig. 3, be-
fore conducting further research on 3D hand detection, recognition,
and full estimation of 3D hand skeleton, pose. More specific when
estimating and restoring the full hand skeleton and pose in the 3D
space will help recognize the grasp types, grasp attributes, object
attributes [17], [18] of the object more accurately, especially can
evaluate the ability to activate of the fingers [19], [20]. In this paper,
we survey of the methods and results of 3D hand pose, skeleton
estimation following the type input data and publication time, we
only focus on the approach that applies the CNNs to estimate 3D
hand pose. The input data of 3D hand pose estimation methods can
be the depth image, color image, stereo, RGB-D, and point cloud
data. They are illustrated in Fig. 1. In particular, we also discuss
the results of methods using 3D CNNs, 2D CNNs to estimate the
location of joints in the 3D space following the four issues in the 3D
hand pose estimation process: The number of valuable studies about
3D hand pose estimation; The estimated results of 3D hand pose
when using 3D CNNs and 2D CNNs; The challenges of the datasets
which is collected from egocentric vision sensors; The methods to
collect and annotate datasets from egocentric vision sensors.

The rest of the paper is organized as follows: Section 1 intro-
duces some overview of this paper. Section 2 discusses the related
work. Section 3 discusses 3D hand pose estimation by CNNs to
estimate 3D hand pose from some types of data, including the depth
image (Sub-section 3.1), the RGB image (Sub-section 3.2), the
RGB-D image, or other camera data (Sub-section 3.3). Section
4 presents, discusses some results of 3D hand pose estimation by
the CNNs. Section 5 discusses the datasets (Sub-section 5.1) and
challenges (Sub-section 5.2) for 3D hand pose estimation. Section
(6) concludes the paper with future work.

2 Related Works
Many studies of estimating and restoring the full 3D hand model,
i.e. skeleton and pose, have been published in recent years. Some of
them are listed comprehensively in the survey of Li et al. [21]. This
paper provides the answers to many questions, including ”What
do we need to estimate of the hand?”, ”What entangles do we
need to overcome?”, ”What is the depth sensor?”, ”What are the
useful methods?”: The objective of 3D hand estimation is hand
detection, hand tracking, hand parsing, fingertip detection, hand
contour estimation, hand segmentation, gesture recognition, etc.
The challenges of estimating hand pose are low resolution, self-
similarity, occlusion, incomplete data, annotation difficulties, hand
segmentation, real-time performance. Existing depth sensors are
also summarized by Li et al. [21], including 19 popular depth sen-
sors produced in the last decade. They are divided into groups and
illustrated in Fig. 4. The considered parameters of those sensors
are depth technology, measurement range, and a maximum speed
of depth data. The methods to solve 3D hand pose estimation are
the model-based method, appearance-based method, and hybrid
method. It can be considered as an extension of a review written by
Erol et al. [22] that introduced two main methods (i.e. model-based
method and appearance-based method) to solve this problem in the
2D space:

• The model-based method compares the hypothetical hand
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Figure 4: The depth sensor groups: (1) MS Kinect group; (2) ASUS Xtion group; (3) Leap Motion; (4) Intel RealSense group; (5) SoftKinetic group; (6) Creative Interactive
Gesture; (7) Structure Sensor.

pose and the actual data obtained from the cameras. The
comparison is evaluated based on an objective function that
measures the discrepancy between the actual observations
and the estimated data that are generated from the model of
the hand.

• The appearance-based method based on learning the char-
acteristics of from the observations to a discrete set of the
annotated hand poses. This method uses a discriminative clas-
sifier or regression model to describe invariant characteristics
of hand pose as a map of the joints of the fingers.

However, the survey of Li et al. [21] is listed only without the
presentation of methods, datasets, and evaluation methods.

Another good survey of hand pose estimation is taken by Bar-
soum [23]. In this study, the author also discusses three meth-
ods to perform hand pose estimation from the depth image. The
appearance-based method is shown in Fig. 3, the model-based
method, the hybrid method is mentioned in Fig. 2. Barsoum focuses
on the hand segmentation because its outcome affects the accuracy
of algorithms. Facing this problem, the discussed methods are Color
or IR skin based; Temperature-based; Marker-based; Depth based
and Machine learning-based. In more detail, the author presents
the limitation of applying deep learning in hand pose estimation
with only two publications ([24] and [25]) in two years 2014 - 2015.
From point of view of the limitations as mentioned before, we sum-
maries a survey about the state of the art of hand pose estimation that
uses Deep Learning (DL) / Convolutional Neural Network (CNN)
in recent years.

3 3D Hand Pose Estimation by CNNs
In recent years, using CNNs in detection, recognization, and estima-
tion objects is one of the most successful approaches in computer
vision. Human hands are used in the applications of VR/AR and
human-computer interaction because human hands can create many
different states to execute control states. As Fig. 3(bottom left) is
shown 26 degrees of freedom (DOF). To build control and interac-
tion applications using human hands, firstly, human hands need to

be fully and accurately estimated joints in the 3D space. Therefore,
this issue is interested in research, especially with the success of
CNN in computer vision.

Figure 5: The results of some typical CNNs on the NYU dataset [26].

Firstly, we conducted a survey of methods, results and, discus-
sions of estimating 3D hand pose by CNNs based on the type input
data and publication time (i). There are 60 studies in the period
2015 - 2019 as shown in Tab. 1. Some of the prominent results
are illustrated in Fig. 5. As presented in Tab. 2, the studies in Tab.
1 is published in leading conferences and journals in the field of
computer vision. The input data of CNNs to estimate 3D hand pose
are the color image, the depth image, and the point cloud. These
are data sources that can be collected from common image sensors.
Therefore, building VR/AR and human-computer interaction appli-
cations in the 3D space can use low-cost sensors and have accurate
results (average of 3D joint error 8-16mm as shown in Fig. 5).

The estimated methods [23], i.e. discriminative method, genera-
tive method, and hybrid method, are shown in Fig. 6. In the next
sub-sections, we give more details on approaches using the CNNs
to estimate 3D hand pose from various input data.
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Table 1: Statistics of the number of studies used CNNs for 3D hand pose estimation.

Author CNN type Data type Approach Publish
2D 3D No Depth RGB RGB-D Stereo Point Gray appearance hybrid model data

cloud image based based based set
2015 (8 publications)
Oberweger[25] X X X CVWW
Choi[27] X X X ICCV
Poier[28] X X X BMVC
Li[29] X X X ICCV
Oberweger[30] X X X ICCV
Sun[31] X X X CVPR
Tang[32] X X X ICCV
Oberweger[33] X X X TPAMI
2016 (7 publications)
Wan[34] X X X ECCV
Ye[35] X X X ECCV
Sinha[36] X X X CVPR
Oberweger[37] X X X CVPR
Xu[38] X X X IJCV
Zhang[39] X X X X Arxiv
Ge[40] X X X TIP
2017 (12 publications)
Deng[41] X X X Arxiv
Yuan[42] X X X CVPR
Choi[43] X X X ICCV
Choi[44] X X X ICCV
Wan[45] X X X CVPR
Ge[46] X X X CVPR
Neverova[47] X X X Arxiv
Mueller[10] X X X ICCV
Zhang[48] X X X Arxiv
Malik[49] X X X Arxiv
Zimmermann[50] X X X ICCV
Oberweger[51] X X X ICCV
2018 (18 publications)
Baek[52] X X X CVPR
Wu[53] X X X TOC
Supancic[54] X X X ICCV
Madadi[55] X X X Arxiv
Rad[56] X X X X CVPR
Garcia[57] X X X CVPR
Ge[58] X X X TPAMI
Chen[59] X X X Arxiv
Zhang[60] X X X VIPC
Wohlke[61] X X X Arxiv
Moon[62] X X X CVPR
Ye[63] X X X ECCV
Chen[64] X X X Access
Spurr[65] X X X CVPR
Huang[66] X X X BMVC
Penteleris[67] X X X WACV
Wan[68] X X X CVPR
Ge[69] X X X ECCV
2019 (15 publications)
Zhang[70] X X X Arxiv
Sharma[71] X X X Arxiv
Yoo[72] X X X Arxiv
Li[73] X X X ICCV
Wan[74] X X X Arxiv
Li [21] X X X BMVC
Liu[75] X X X TPAMI
Cejong[76] X X X FG
Hampali[77] X X X CVPR
Li[78] X X X CVPR
Zhang[79] X X X TIP
Baek[80] X X X CVPR
Lee[81] X X X Arxiv
Ge[82] X X X CVPR
Du[83] X X X CVPR
Total 46 10 5 41 10 5 2 2 1 52 4 2 2
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Table 2: The explanation the names of conferences and journals in Tab. 1.

Acronym Explanation
CVWW Computer Vision Winter Workshop
ICCV IEEE International Conference on Computer Vision

BMVC British Machine Vision Conference
CVPR IEEE Conference on Computer Vision and Pattern Recognition
TPAMI IEEE Transactions on Pattern Analysis and Machine Intelligence
ECCV European Conference on Computer Vision
IJCV International Journal of Computer Vision
TIP IEEE Transactions on Image Processing

Arxiv arxiv.org
TOC IEEE Transactions On Cybernetics
VIPC Electronic Imaging, Visual Information Processing and Communication

Access IEEE Access
WACV IEEE Winter Conference on Applications of Computer Vision

FG IEEE International Conference on Automatic Face & Gesture Recognition

Use our full modell, keep unchanged
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Figure 6: CNN architectures to estimate 3D hand pose as follows: (a) the RGB
image [82]; (b) the depth image [47]; (c) the point cloud [58].

3.1 Estimating by The Depth Image

Being the origin format of 3D data, the depth image is the most
widely used when estimating a 3D hand pose. There are 2 branches
as illustrated in Fig. 7, based on the form of intermediate data, i.e.
hand point cloud and heat-map.

Depth 

image

Segmented,

preprocessed 

hand

Convert to

point 

cloud

data

Training 

features by 

CNN to 

generate 

2D heat-

map

Training 3D 

features by 3D 

CNN to generate 

3D hand joint 

relative locations

Using Inverse 

Kinematic (IK) 

to find the hand 

model from the 

2D heat-map

3D 

hand

pose

hand point cloud

2D heat-map

branch 1

branch 2

Figure 7: The CNN architecture to estimate 3D hand pose from the depth image.
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3.1.1 Converting to Hand Point Cloud Data

The first branch of depth image approach converts collected depth
data to the form of point cloud before putting it into CNN as a
training data [40] [58]. Liuhao et al. [40] proposed a multi-view
regression framework for 3D hand pose estimation, as is shown in
Fig. 8. This framework generates heat-maps for three views by pro-
jecting the point cloud of the hand onto three orthogonal planes, i.e.
(x − y; y− z; z− x). Then each projected image is fed into a separate
CNN to generate a set of heat-maps for hand joints. This method is
similar to the method of [26] to generate a set of heat-maps. After
that, the combination of those three views thus contains the location
distribution of the joint in the 3D space. This proposed method
was evaluated by the dataset of [84]. The average estimation errors
are 22.8mm and the processing time is 14.1ms when to be trained
and tested on the GPUs under the system whose two Intel Xeon
processors, 64GB of RAM and two Nvidia Tesla K20 GPUs. The
details of time are 2.6ms for multi-view projection, 6.8ms for CNN
forward propagation, and 4.7ms for multi-view fusion.

Depth 
image

3D 
points

Projections
Heat-
maps

Convolutional 
networks

3D 
joints

Multi
-view 
fusion

Figure 8: Multi-view regression framework for 3D hand pose estimation [40].

Wan et al. [34] proposed a Conditional Regression Forest
(FCRF) which uses a set of new features. At each stage of the
regression, the frame of reference is established from either the
local surface normal or previously estimated hand joints of the point
cloud. The normal difference feature of this method is highly robust
to 3D rigid transformation because the 2.5D point cloud is projected
and indexed to the image space. Therein, the hand pose estimation
process is the process of estimating the joints of 5 fingers. The
proposed method is evaluated on ICLV and MSRA datasets and the
result of the average of joints error is about 8mm, 25mm-30mm,
respectively. Ge et al. [46] proposed a simple approach for real-time
3D hand pose estimation from single depth images by using three-
dimensional CNNs (3D CNNs). This 3D CNNs can effectively
learn 3D features from the 3D volumetric representation. Liuhao et
al. [58] proposed Hand PointNet-based method for 3D hand pose
estimation. The 3D point cloud of the hand is down-sampled and
normalized in an oriented bounding box (OBB) to make the pro-
posed method robust to various hand orientations. This method uses
the estimated surface normal and normalized points of the point
cloud data of the hand as the input of the hierarchical PointNet
[85] and then outputs a low dimensional representation of the 3D
hand joint locations. Therein, the hierarchical PointNet consists of
L point set abstraction levels. The higher the level is, the smaller

the number of points. The authors evaluated the proposed method
on three public hand pose datasets, including NYU [26], MSRA
[84], and ICVL [86]. The experimental results when deploying in a
workstation with two Intel Core i7 5930K, 64GB of RAM and an
Nvidia GTX1080 GPU are:

• The per-joint mean error distances and the overall mean error
distances are 10.5mm, 8.5mm, and 6.9mm, respectively.

• The average processing time of the proposed method is
20.5ms, including 8.2ms for point sampling and surface nor-
mal calculation, 9.2ms for the hand pose regression network
forward propagation, 2.8ms for fingertip neighboring points
search, and 0.3ms for fingertip refinement network forward
propagation.

3.1.2 Training by CNNs to Generate 2D Heat-map

The second approach based on depth image often trains annotated
joints of hand poses on a large dataset (synthesized data) by the
CNNs [45]. Those datasets contain most of the actual hand poses.
The estimation process evaluates the characteristics of the hand pose
on the input data and finds the most fitting pose in the synthesized
data as illustrated in Fig. 9. Many studies are using this method
whose difference is the used of CNN to predict the position of joints.
Fig. 5 illustrates the results of some prominent studies with the
NYU dataset.

Training stage

Synthesizer 

CNN

input image

Predictor 

CNN

3D hand pose

depth 

image pose 

annotation
Viewpoint and pose space

Testing stage

Figure 9: The estimation model of 3D hand pose from the depth image based on
training and predicting the position of joints on depth images.

Oberweger et al. [30] proposed a model called ”feedback loop”.
This model includes Deep Networks and is optimized to use training
data. This model is capable of updating the estimated hand pose and
provides the experimental results with the NYU dataset as in Fig. 5.
Zhang et al. [39] introduced a method for estimating the 3D pose
of the human hand, mouse, and fish from the depth images. This
method used CNN to predict joint locations that are represented
in the manifold space by Lie group, i.e. each joint of the skeleton
is represented in the manifold space by S E(3). Five fingers are
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modeled by five-subchains. And then, those chains are connected to
the palm center joint and integrated into a kinematic tree as the hand
skeletal model. There are two variants of this model called ”deep-
L2S-para” and ”deep-L2S-seq”, whose experimental results with
the NYU dataset are 15.84mm and 14.15mm, respectively. Wan et
al. [45] proposed a dual generative model that captures the latent
spaces of hand poses. This model uses the variation auto-encoder
(VAE) and the generative adversarial network (GAN) for estimating
3D hand pose. In more detail, this model generates the synthesized
realistic depth maps of highly articulated hand poses under dramatic
viewpoint changes and reduces the number of annotated training
data. The model of Neverova et al. [47] allows extracting informa-
tion automatically from real data by deploying a semi-supervised
and weakly-supervised training algorithm. These two learning meth-
ods are trained from two different datasets, i.e. the synthetic and the
real dataset. This method aims to the objective by which to perform
frame-by-frame without any dynamic information. The average
of 3D joints error is 14.8mm. Authors verify that this method is
better than some other methods like DeepPrior [25], Hand3D [41],
Crossing nets [45], etc.

The CNN model of Choi et al. [36] [44] uses paired depth im-
ages. Firstly, the position of the hand and the object in the image
are determined by using CNN to predict the heat-maps. And then,
those heat-maps are projected into the space of 3D hand and CAD
models of the synthetic dataset. At the same time, a synthetic dataset
of human grasps is also built. The next, authors then classify the
hand orientations and grasp type from the multi-channel network to
reduce the search space for pose estimation. The model is trained
by the synthetic dataset whose number of images is 16.5K. Each
grasp is captured by 500 depth maps that are rendered randomly
from different objects, orientations, and backgrounds. Being evalu-
ated additionally by a publicly available GUN-714 dataset [87], the
average of 3D joints error is smaller 20mm.

In the study of Baek et al. [52], the corresponding ground-truth
hand poses annotations, and the skeleton entries are the input depth
maps of the training stage. The skeleton entries of each dataset are
generated from separate hand pose generator (HPG) and 3D hand
pose estimator (HPE). This is because the training on input depth
maps and the corresponding ground-truth hand pose annotations are
not enough to cover variations in poses, shapes, views, etc. CNN
is trained by the skeletal hand shape model of the Big Hand 2.2M
dataset [42]. The number of added skeletal poses is greater than the
number of existing datasets, i.e. Big Hand 2.2M, ICVL, NYU, and
MSRA. In more detail, with the Big Hand 2.2M dataset, the average
of joints error reduces from 17.1mm to 12.5mm.

Madadi et al. [55] used a novel hierarchical tree-like structured
CNN, whose branches are trained to become specialized in prede-
fined subsets of hand joints, called ”local poses”. Being extracted
from hierarchical CNN branches, local pose features are fused to
learn higher-order dependencies among joints in the final pose by
end-to-end training. Especially, the used loss function is also defined
to incorporate appearance and physical constraints about double
hand motion and deformation. This function is used to optimize net-
work parameters during training and regression stages. The averages
of joints error are 11.0mm and 9.7mm when evaluated by NYU and
MSRA datasets, respectively. Rad et al. [56] use a Deep Network
to predict a 3D pose from an image. This Deep Network is trained

by the features that are computed for a real image and in a synthetic
image of the same pose. The average result of 3D joints error of this
approach with the NYU dataset is 7.4mm. Zhang et al. [60] used
the cascaded hierarchical regression in [31] to get rough locations
of hand joints and proposed a refinement stage to re-estimate joint
locations of stretching-out fingers. Therein, the authors used the
method in [88] to predict the key joints localization. Evaluating
by MSRA and ICVL datasets, the average errors for estimating all
fingers are 18.02mm and 13.65mm, respectively. For estimating all
fingertips, there are 20.12mm and 14.30mm, respectively. Consider-
ing the physical constraints of human hand kinematics, Wohlke et
al. [61] proposed a hybrid approach that has embedded a kinematic
layer into the CNN. The size of the input image is standardized
over BoxNet, RotNet, and ScaleNet whose size is 176 × 176 pixels.
The residual network [89] is used to estimate hand parameters and
a kinematic hand model layer (FKINE) forwards kinematics from
hand parameters to joint locations. The hand has 61 parameters.
The average of 3D joints error is 11mm with the NYU dataset.
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Figure 10: The HCRNN architecture for 3D hand pose estimation from a single
depth image [72].

In the past year, the depth image also is used to estimate 3D
hand pose in some studies. Yoo et al. [72] divide the hand into six
parts, i.e. the palm and five fingers, as in Fig. 10. Then authors
proposed a hierarchically-structured convolutional recurrent neural
network (HCRNN) with six branches that correspond with those
parts. This study exploits effectively the 2D characteristics of the
depth image as input of the CNNs. Due to each branch of CNN
trains and predicts a part of the hand, this approach has a very fast
processing time, up to 240 fps on a single GPU. Being evaluated on
the ICVL, NYU and MSRA datasets, the average of 3D joints error
is 6.6mm, 9.4mm, and 7.8mm, respectively.

The presented studies are based on two methods [79] as illus-
trated in Fig. 7, including detection-based method (as the first
branch) and regression-based method (as the second one). Facing
lose spatial information of hand structure problem and lack direct
supervision of joint coordinates problem, a new method of Zhang et
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al. [79], called ”Pixel-wise Regression”, use spatial form represen-
tation (SFR) and differentiable decoder (DD). The authors explain
their method as a combination of the two former above methods.
Comparing with the state-of-the-art technique, this method reduces
mean 3D joint error by more than 25%. Specifically, 3D joints error
on the MSRA dataset is 5.186mm.

3.2 Estimating by RGB Image

As illustrated in Fig. 11, the 3D hand pose estimation process from
RGB image usually contains five steps as follows:

• Predicting heat-maps on image space by a CNN.

• Predicting 2D hand pose.

• Training 2D hand pose and the ground truth of 3D hand pose
of the synthetic dataset to generate a 3D model.

• Predicting 2D hand pose by real input data.

• Using 3D hand pose estimated model and 2D hand pose of
the real data as input data to output 3D hand pose.

A few years ago, i.e. from 2015 to 2017, depth images are
usually considered as input data of CNN to estimate 3D hand pose
and skeleton. However, depth data is less common than color data
in real-life because of the unpopularity and the expensive of depth
sensors/cameras. Furthermore, CNN technologies have developed
strongly. Therefore, in the last two years, researchers also use RGB
images in their studies.
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Figure 11: The model of 3D hand pose estimation from the RGB image.

In their article, Zimmermann et al. [50] estimate 3D hand poses
from regular RGB images by three deep networks. The first CNN
[90] provides a hand segmentation to locate the hand in the image.

The second CNN [90] models 2D hand pose in the 2D images. The
last CNN [91], [92] predicts the 3D hand pose from this model.
Being evaluated on the Percentage of Correct Keypoints (PCK)
measurement with the RWTH German Fingerspelling dataset, the
result is 32%.

Panteleris et al. [67] recover the 3D hand pose by using least-
squares minimization to fits a 3D model of the hand to the estimated
2D joint positions. Those 2D data are generated by the pre-trained
network of OpenPose [93] from the detected hand in the image us-
ing YOLO v2 [94]. Authors evaluate their method by three datasets,
including the Stereo hand pose dataset, Synthetic dataset, and Hands
in action RGB-D dataset. The result of error thresholds is less than
30mm.

A method of Spurr et al. [65] generates a 3D hand pose from an
RGB image by learning a single unified latent space via an exten-
sion of the VAE (Variational AutoEncoders) framework. The data
of latent space, i.e. the RGB images and 3D joint configurations,
are illustrated by the blue and green colors. The Stereo Hand Pose
Tracking Benchmark (STB) and the Rendered Hand Pose Dataset
(RHD) datasets are used to evaluate their model.

Chen et al. [59] develop tonality-alignment generative adversar-
ial networks (TAGANs) that have high-quality ability to generate
hand pose. The working mechanism of this network is aligning the
tonality and color distributions between synthetic hand poses and
real backgrounds. However, hand pose datasets are not large enough
to learn a stable CNN hand pose estimator. Therefore this method
adopted an opensource AR simulator to produce large-scale and
high-quality hand pose images with accurate 2D/3D hand-keypoint
labels. The authors used the convolutional pose machine (CPM)
[90] for predicting and the Hand3D [50] for estimating 3D hand
pose. The experimental results are 19.9mm and 7.3mm with RHP
and STB datasets, respectively.

The idea of He et al. [95] is a hand-model regularized graph
CNN trained under a generative adversarial learning framework
(GraphPoseGAN) that contains two modules. The first ”hand model
module” generates a template 3D hand pose as a prior. Its inside
encoder extracts the latent code z from the input image and a para-
metric hand model. The second ”GCN refinement module” is used
to refine 3D hand pose from 3D ground truth to choose a hand pose
whose parameter is the best. Being evaluated by Stereo Hand Pose
Tracking Benchmark (STB) and the Rendered Hand Pose (RHD)
datasets, this model gets the average error in Euclidean space be-
tween the estimated 3D joints and the ground truth joints is 12.4mm
(RHD) and 4.2mm (STB).

Being introduced at CVPR in 2019, the method of Baek et al.
[80] predicts 2D heatmaps from 2D feature extractor and 2D hand
mask. After that, the 3D skeleton of the input data is regressed by
a 2D skeleton and 3D skeleton of the supervision stage. The used
datasets are the Stereo Hand pose Dataset (SHD).

3.3 Estimating by RGB-D Image and Other Data

Choi et a. [27] developed a real-time algorithm to use RGB-D data.
This method used the local shape descriptors to retrieve nearest
neighbors from the labeled dataset. And then this information is
used to evaluate the unknown pose parameters by a joint matrix fac-
torization and completion (JMFC) approach on a hand pose library.
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The method of Mueller et al. [10] provides a real-time, robust,
and accurate hand pose estimation that uses RGB-D data of egocen-
tric cameras. The collected data is clutter and occlusions. Firstly,
this method uses a HALNet CNN to estimate the 2D position of the
hand center in the input. And then a generated normalized cropped
image is fed into a JORNet CNN to regress relative 3D hand joint
locations. Both of those CNNs are trained with the new SynthHands
dataset. Being evaluated by the EgoDexter benchmark dataset, the
lowest average error is 32.6 mm.

In their research, Iqbal et al. [96] introduce a novel 2.5D pose
representation to and a solution to reconstruct the 3D pose from
this 2.5D model. In this scaled and invariant representation, the 2D
coordinates are the coordinates of the points on the image and the
remaining 0.5D is the coordinates of the palms that are predicted
from the depth. The average End-Point-Error (EPE) is 25.56mm
and 31.86mm with SHP and RHP datasets, respectively. Cejnog
et al. [76] used the Pose-REN method [97] to train the Hands2017
dataset.

Extending the success of detecting, identifying, and estimating
objects from the color image and depth image, CNNs have been
used to work with 3D data, i.e. point cloud. Li et al. [98] pro-
posed a novel CNN for working with an un-organization point cloud
data. There are 1024 points in this 3D data. This CNN computes
the point-wise features from each point by the PEL (Permutation
Equivariant Layer) residual network. And then those features are
used by the point-to pose voting to estimate the point of hand pose.
By the NYU dataset, the mean joint error is 8.99mm and 8.35mm
corresponds with the single view and the three views, respectively.
Besides, several CNNs use 3D points as the input data including
point-wise CNN [99], Deep KD-Networks [100], Self-Organizing
Net [101], and Dynamic Graph CNN [102].

4 Findings/Results

Based on the surveys of 3D hand pose estimation using the CNNs
presented in Tab. 1. The second issue discussed in this paper (ii) is
the results of it when using 2D CNN and 3D CNN. As shown above,
the objective of existing methods is the location joints estimation
based on the 2D, 2.5D, and 3D data. So there are two types of
CNNs, i.e. 2D and 3D, as illustrated in Fig. 12. We collect the
results of estimating 3D hand pose by CNNs as in the Tab. 3. The
average 3D distance error when using 3D CNN is lower than using
2D CNN. This problem happens because the input data of the 3D
CNNs is the 3D data. Therefore, the accuracy of 3D CNN is better
than 2D CNN, as shown in Tab. 3. When training on the 3D data to
generate a 3D hand pose estimation model. Therefore, the 3D data
has a higher number of dimensions than 2D data, the computational
time is higher, as shown in the Tab. 4.

The third issue (iii) is discussed in this paper is the results and
challenges of egocentric vision datasets. Most of the proposed meth-
ods for estimating 3D hand pose are quantitatively evaluated on
MSRA, NYU, ICVL, etc. In these databases, the hands are often
the full joints thus the results are high accuracy. Figure 13 shows
the results of 3D hand pose estimation on the egocentric vision
(EgoDexter) dataset [10] and based on reading paper, the average
3D error is 32.6mm.
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Figure 12: Illustration of two CNNs types: 2D CNN, 3D CNN.

This error is very high compared to other datasets (ICVL is 6.28
- 10.4mm, NYU is 8.42 - 20.7mm, MSRA is 7.49 - 13.1mm). Figure
14 is also shown a comparison of 3D hand pose estimation results
on BigHand dataset and egocentric dataset [103]. The results on the
BigHand dataset have more than 90% of 3D distance errors being
less than 10mm (Fig. 14(top)). On the egocentric dataset is about
30% of 3D distance errors being less than 10mm (Fig. 14(bottom)).
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Table 3: The average 3D distance error of the CNNs on the ICVL, NYU, MSRA
datasets for 3D hand pose estimation [72].

Method Mean error (mm) Input
ICVL NYU MSRA 2D 3D

Multi-view CNNs[40] - - 13.1 X
DISCO [104] - 20.7 - X
DeepPrior [25] 10.4 19.73 - X
Feedback [30] - 15.97 - X
Global2Local [55] - 15.6 12.8 X
CrossingNets [45] 10.2 15.5 12.2 X
HBE [105] 8.62 - - X
REN (4x6x6) [106] 7.63 13.39 - X
REN (9x6x6) [107] 7.31 12.69 9.79 X
DeepPrior++ [51] 8.1 12.24 9.5 X
Pose-REN [97] 6.79 11.81 8.65 X
Generalized [33] - 10.89 - X
CrossInfoNet [83] 6.73 10.07 7.86 X
HCRNN [72] 6.58 9.41 7.77 X
3D CNN [46] - 14.1 9.58 X
SHPR-Net [64] 7.22 10.78 7.96 X
3D DenseNet [58] 6.7 10.6 7.9 X
Hand PointNet [108] 6.94 10.5 8.5 X
Point-to-Point [69] 6.33 9.04 7.71 X
V2V-PoseNet [62] 6.28 8.42 7.49 X
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Table 4: The test speed of the CNNs with a single GPU [72].

Method Test speed (fps) Input
2D 3D

V2V-PoseNet [62] 3.5 X
Point-to-Point [69] 41.8 X
HandPointNet [108] 48 X
3D DenseNet [58] 126 X
3D CNN [46] 215 X
DeepPrior++ [51] 30 X
Generalized [33] 40 X
CrossingNets [45] 90.9 X
CrossInfoNet [83] 124.5 X
Feedback [30] 400 X
HCRNN [72] 240 X
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Figure 14: The distribution of 3D distance errors by baseline CNN on BigHand
dataset (a) and Egocentric dataset (b) [103].

Based on the survey of 3D hand pose estimation on the egocen-
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tric datasets, the estimated distance error is high because the hand
is obscured by many objects or the view of the camera just looks at
the palm hand, as illustrated in Fig. 15.

In reality, the real-time hand pose estimation from moving, the
camera viewpoints in cluttered real-world scenes of the hand is often
occluded as it naturally interacts with objects, remains an unsolved
problem. In real activities as game playing, human interaction, the
image data of scenes are collected from cameras mounted on the
head (for VR/AR applications), shoulder, or chest. Occlusions,
cluttered backgrounds, manipulated objects, and field-of-view limi-
tations make this scenario particularly challenging. Therefore, the
problem of estimating 3D hand pose on the egocentric datasets must
be studied in the future.

Figure 15: The illustration data of hands are lost or obscured [109].

5 Discussion
To verify the proposed CNN, researchers often use some standard
datasets. The greater number of those datasets lets many challenges
when building CNN. The properties of datasets, i.e. the training
set, testing set, validation set, and evaluation matrix, and those
challenges are shown as followings:

5.1 Benchmark Datasets

5.1.1 Obtained Datasets from A Fixed Number of Perspectives

NYU dataset [26] includes 72757 and 8252 images of training and
testing set, respectively. Each frame consists of a pair of RGB im-
ages and depth images from three MS Kinect v1, i.e. a frontal view
and two side views. Those images are annotated by the ground-
truth hand-pose. The authors used the Randomized Decision Forest
(RDF) to train a binary classification model by this dataset. And
then this classification segments each pixel that belongs to a hand or
background in the depth image. 3D ground truth includes 42 DOF
of 25 joints.

76k depth images of 9 subjects’ right hands are captured using
Intel’s Creative Interactive Gesture Camera in MSRA dataset [110].
Each subject has 17 gestures captured. There are about 500 frames
and 21 3D ground truth hand joints per frame, including wrist, in-
dex mcp, index pip, index dip, index tip, middle mcp, middle pip,
middle dip, middle tip, ring mcp, ring pip, ring dip, ring tip, little

mcp, little pip, a little dip, little tip, thumb mcp, thumb pip, thumb
dip, and thumb tip. The resolution of the image is 320 × 240 pixels.
The camera’s intrinsic parameters are also provided, i.e. principal
point of the image is (160, 120) and the focal length is 241.42.

ICVL dataset [111] includes 22K training frames and 1.6K
testing frames that captured by the Intel’s Creative Interactive Ges-
ture Camera. It also provides 3D ground truth with 16 hand joints,
including palm, thumb root, thumb mid, thumb tip, index root, index
mid, index tip, middle root, middle mid, middle tip, ring root, ring
mid, ring tip, pinky root, pinky mid, and pinky tip.

Stereo Hand Pose Tracking Benchmark (STB) dataset [39]
includes 18,000 stereo and depth images with the 3D ground-truth
of 21 hand joints. Those truths are palm center(not wrist or hand
center), little mcp, little pip, a little dip, little tip, ring mcp, ring pip,
ring dip, ring tip, middle mcp, middle pip, middle dip, middle tip,
index mcp, index pip, index dip, index tip, thumb mcp, thumb pip,
thumb dip, and thumb tip. The stereo is captured by a Point Grey
Bumblebee2 stereo camera and the depth image is captured from
an Intel Real Sense F200 active depth camera. This dataset also
provides the camera parameters.

Rendered Hand Pose Dataset (RHD) [50] provides 41258
training images and 2728 testing images whose resolution is
320 × 320 pixels. The images include the RGB and depth im-
ages. This dataset also provides the 3D ground truth with 21 joint
points. 214971 annotated depth images of the hands of the Hand-
Net dataset [34] are divided into three groups. The training set
includes 202198 images. The testing set contains 10000 images.
The validation set has 2773 images. The used sensor is RealSense
RGBD. The hand pose annotation is per pixel classes, 6D fingertip
pose, and heatmap. There are 102,000 depth images of a subject in
the MSRC dataset [112]. 100k of them belong to the training set.
The resolution is 512 × 424 pixels and the number of viewpoints
is 3. This dataset also provides the annotation data with 22 joint
points.

5.1.2 Obtained Datasets from Egocentric Vision

Being captured from the Intel Creative camera mounted on the chest
of humans from the right hand and left hand, the UCI-EGO dataset
[11] provides 400 frames. 3D annotations of keypoints with 26 joint
points are also provided. To annotate this dataset for evaluating 3D
hand pose estimation and hand tracking the authors developed a
semi-automatic labeling tool which allows to accurately annotate
partially occluded hands and fingers in the 3D space by using the
techniques: A few 2D joints are first manually labeled in the image
and used to select the closest synthetic exemplars in the training set;
A full hand pose is then created combining the manual labeling and
the selected 3D exemplar; This pose is manually refined, leading to
the selection of a new exemplar, and the creation of a new pose; This
iterative process is followed until acceptable labeling is achieved.

Graz16 dataset [113] has more than 2000 depth frames of sev-
eral egocentric sequences of six subjects. 3D annotations are made
with 21 joint points. The size of the image is 320 × 240 pixels. The
authors proposed a semi-automated the application that makes it
easy to annotate sequences of articulated poses in the 3D space.
This application asks a human annotator to provide an estimate of
the 2D re-projections of the visible joints in frames they are called
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reference frames. It proposes a method to automatically select these
reference frames to minimize the annotation effort, based on the
appearances of the frames over the whole sequence. It then uses this
information to automatically infer the 3D locations of the joints for
all the frames, by exploiting appearance, temporal, and distances
constraints.

Ego Dexter dataset is an RGB-D dataset for evaluating hand
tracking and 3D hand pose estimation in the cases of occlusions and
clutter. It is captured from Intel RealSense SR300. It consists of 4
sequences with 4 actors (2 female), and varying interactions with
various objects and cluttered background. Fingertip positions were
manually annotated 1485 frames in 3190 frames.

Dexter+Object dataset [114] provide 3014 frames with
ground truth annotations. The frames are collected in pairs: RGB
frame is captured from the Creative Senz3D color camera; The
depth frame is captured from Creative Senz3D close range TOF
depth camera. It consists of 6 sequences of a hand manipulating a
cuboid (2 different sizes) in different hand-object configurations and
grasps. The annotation of hand joints manually annotated pixels on
the depth image to mark 5 fingertip positions, and 3 cuboid corners.
It is illustrated in Fig. 16.

Figure 16: The illustration annotation of the Ego Dexter dataset [114].

Especially, the BigHand2.2M dataset [103] provides 2.2 mil-
lion depth maps of ten subjects (7 males, 3 females) with accurately
annotated joint locations. To determine the 3D annotations, the
authors use two hardware synchronized electromagnetic tracking
units, including six 6D magnetic sensors and one mid-range trans-
mitter. The captured device is the Intel RealSense SR300 camera
whose maximum speed is 60fps. The resolution is 640 × 480 pixels
and the number of degrees of freedom (DOF) is 31. This dataset is
divided into three parts, including 1.534 million images of the prior
predefined pose, 375K images of random poses, and 290K images
of egocentric poses.

Hampali et al. [77] introduce a benchmark dataset with 80,000
frames of 10 different users. They manipulate one among 10 dif-
ferent objects from the YCB dataset. The size of both depth and
RGB image is 640 × 480 pixels. This dataset is synchronized from
five cameras. The authors also proposed a method to automatically
annotate each frame with accurate estimates of the poses, despite
large mutual occlusions.

From the reality of the egocentric datasets, the data of hands

are suffering from occlusions, cluttered backgrounds, manipulated
objects, and field-of-view limitations. Unlike human pose estima-
tion, the size of a person is large so it is easier to get a standard
benchmark with a hand, thus there exist no standard benchmarks
for hand pose estimation, especially in egocentric datasets. As illus-
trated in Fig. 17, the data of the fingers is obscured, the annotated
joints of these fingers are difficult. Although there are already some
semi-automatic annotation methods like in [11], [113]. However,
all methods have errors as shown in Table 3 [113]. Therefore, to
annotate the joints for evaluating 3D hand pose estimates on the
egocentric vision datasets requires further research. This is also the
fourth discussion (iv) in this paper.

Figure 17: The illustration of fingers is occluded of UCI-EGO dataset [11].

5.1.3 Evaluation Measurements

There are three measurements to evaluate 3D hand pose estimation
as follows:

• The first is 3D pose error, which is the average error in Eu-
clidean space between the estimated 3D joints and the ground
truth joints.

• The second is 3D PCK, as the percentage of correct key
points of which the Euclidean error distance is below a thresh-
old.

• The last is AUC, which is the area under the curve on PCK
for different error thresholds.

5.2 Challenges

The 2017 Hands in the Million Challenge [115] is built on the Big-
Hand2.2M [103] and First-Person Hand Action [109] datasets. This
challenge had two tasks, i.e. 3D hand pose tracking and 3D hand
pose estimation when hand interacts with different objects (e.g, juice
bottle, salt bottle, knife, milk bottle, soda can, etc.). Based on this
challenge, the proposed method of [116] is accepted in the IEEE
Conference on Computer Vision and Pattern Recognition 2018. The
tasks of the HANDS 2019 challenge [117] are Depth-Based 3D
Hand Pose Estimation in the BigHand2.2M [103], Depth-Based
3D Hand Pose Estimation while Interacting with Objects in the
F-PHAB [109] and RGB-Based 3D Hand Pose Estimation while
Interacting with Objects in the HO-3D [77].
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6 Conclusions

3D hand pose estimation problem is applied in many applications of
computer vision and robotics: human-computer interaction; gesture
recognition, interactive games, Computer-Aided Design (CAD),
sign languages, action recognition, etc. The studies of 3D hand
pose estimation for recognizing the grasping attributes of the ob-
jects, thereby promoting the development of robotic arms grasping
objects. Before building these applications, a 3D hand pose should
be fully estimated. When grasping objects, the data of the hand will
be lost, missing, obscured, and are collected from cameras mounted
on the head (for VR/AR applications), shoulder, or chest, thus, the
process of estimating the 3D hand pose is a challenge. In this paper,
we survey by the CNN methods, datasets, results of 3D hand pose
estimation according to the type input data. Studies have shown that
to estimate the 3D hand pose, it is necessary to use 3D hand pose
libraries or 3D ground truth data to regress 3D hand pose. We also
analyzed the challenges and current results of CNNs for 3D hand
pose estimation on the normal benchmark datasets and egocentric
datasets. In particular, we discussed internally on four issues in
estimating 3D hand pose: The number of valuable studies about
3D hand pose estimation; The estimated results of 3D hand pose
when using 3D CNNs and 2D CNNs; The challenges of the datasets
which are collected from egocentric vision sensors; The methods
to collect and annotate datasets from egocentric vision sensors. In
the future, we plan to build a benchmark dataset to evaluate 3D
hand pose estimation. This dataset will use the egocentric camera
to collect hand data while grasping the objects. We also plan to
propose a method for 3D location joints in manifold space that uses
the Lie group, then extract the characteristics for training to generate
an estimation model by CNNs to predict 3D location joints.
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