
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 5, 63-68 (2020)

www.astesj.com
Special Issue on Multidisciplinary Innovation in Engineering Science &

Technology

ASTES Journal
ISSN: 2415-6698

Fast Stream Cipher based Chaos Neural Network for Data Security in
CAN Bus
Zhongda Liu*,1, Takeshi Murakami2, Satoshi Kawamura3, Hitoaki Yoshida4

1Faculty of Science and Engineering, Ishinomaki Senshu University, Ishinomaki, 986-8580, Japan
2Technical Division, Iwate University, Morioka, 020-8550, Japan
3Faculty of Humanities, Morioka University, Takizawa,020-8550, Japan
4Faculty of Education, Iwate University, Morioka, 020-8550, Japan

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 02 July, 2020
Accepted: 24 August, 2020
Online: 09 September, 2020

Keywords:
Stream cipher
CAN
Chaos
Encryption and decryption

Vehicle systems are controlled by embedded electronic devices called electronic control units
(ECUs). These ECUs are connected together with network protocols. The Controller Area
Network (CAN) protocol is widely implemented due to its high fault tolerance. However, the
CAN is a serial broadcast bus, and it has no protection against security threats. In this paper,
we propose a fast stream cipher based on a chaos neural network (CNN) that is able to generate
pseudo-random numbers at a high speed, faster than that of the Advanced Encryption Standard,
to protect ECUs on the CAN bus by encrypting CAN messages. We discuss the chaotic orbit
of the CNN and statistical properties of pseudo-random numbers from the CNN. For a stream
cipher, it is very important to share the symmetric key. We designed a symmetric key that is
shared with ID-based encryption without the need to use digital certificates. We evaluated our
method’s performance with embedded boards and showed that the stream cipher is efficient for
the embedded software of the ECU. Further, it does not need a hardware security module to
accelerate the encryption.

1 Introduction

This paper is an extension of work originally presented at the IEEE
10th International Conference on Awareness Science and Technol-
ogy [1]. In that work, we found that a chaos neural network (CNN)
is able to generate pseudo-random numbers (PRNs) at high speed,
49% faster than that produced with the Advanced Encryption Stan-
dard (AES) [2], [3], and it can be easily implemented even for
embedded devices.

Generally, electronic devices embedded in vehicles to control ve-
hicle systems are called electronic control units (ECUs). A modern
vehicle is usually equipped with more than 70 ECUs [4]. To share
information and control the subsystems, those ECUs are connected
together with network protocols, such as a Controller Area Net-
work (CAN), Local Interconnect Network (LIN), Media Oriented
Systems Transport (MOST), or FlexRay.

The CAN is a broadcast serial communications bus that is widely

introduced because of its fault tolerance. The CAN identifier (ID)
(see Sec. 2 and Fig. 1) is used for prioritizing messages on the
bus and avoids collisions by design. However, security issues were
ignored during designing since people took it for granted that a
vehicle would be a closed system [5], [6]. Unfortunately, messages
are broadcast on the CAN bus, and external devices, such as on-
board diagnostics readers, are able to access the CAN bus in modern
vehicles.

A pseudo-random number generation (PRNG) is crucial to a
stream cipher in information security field. We have reported vari-
ous PRNG methods [7]–[11] and the property of PRNs from a CNN
[9] has been confirmed [10] by National Institute of Standards and
Technology (NIST) Special Publication 800-22 [12]. An ultra-long
period PRNs that has reached 1022432 [11] can be generated with the
chaotic time series from the CNNs. The chaotic time series is hard
to predict because it is sensitive to tiny change of the initial status.

In this paper, we propose a fast stream cipher based on a CNN to
*Corresponding Author: Zhongda Liu, Faculty of Science and Engineering,

Ishinomaki Senshu University, Ishinomaki, 986-8580, Japan
Email: liuzd@isenshu-u.ac.jp

www.astesj.com
https://dx.doi.org/10.25046/aj050509

63

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050509


Z. Liu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 63-68 (2020)

protect CAN messages by encrypting them. The remainder of this
paper is organized as follows: Section 2 introduces CAN and secu-
rity issues and surveys some related work. Section 3 describes our
CNN and discusses some of its characteristics. Section 4 presents
the CNN stream cipher, including sharing of the symmetric key and
the procedure for encryption and decryption of the stream cipher.
A performance evaluation of the proposed CNN stream cipher is
given in Section 5. Finally, Section 6 concludes this paper.

2 Related Work
A CAN is a serial communications bus defined by the International
Organization for Standardization (ISO) and originally developed for
the automotive industry to replace the complex wiring harness with
a two-wire bus [13]. Balanced differential signaling reduces noise
coupling and enables high noise immunity in the CAN bus.

Figure 1: Structure of the CAN data frame

The CAN communication protocol is a carrier-sense multiple
access protocol with collision detection and arbitration on message
priority. A CAN message contains a unique ID field that represents
the priority and function of the message. The CAN protocol sup-
ports four different message types: overload, error, remote, and data
frame. The CAN data frame begins with a start-of-frame (SOF) bit
and is followed by the ID, a control field (6 bits), 4-bit data length
code (DLC), 0-64 bits of data, a cyclic redundancy check (CRC)
sequence (15 bits), a 2-bit acknowledgment (ACK), and a 7-bit end
of frame (EOF) sequence that marks the end of the frame. Between
CAN frames, a 7-bit inter-frame space (IFS) is required by the CAN
controller to provide time for moving a received frame to a message
buffer area (see Fig. 1).

The CAN was subsequently adopted as ISO standards. ISO
11519 (low-speed CAN) is for applications up to 125 kbps with a
standard 11-bit ID, while ISO 11898 (high-speed CAN) provides for
signaling rates from 125 kbps to 1 Mbps. Furthermore, high-speed
CAN supports two data frame formats, where the standard frame
consists of an 11-bit ID, while the extended format contains a 29-bit
ID.

Unfortunately, security issues were ignored during designing
because people took it for granted that CANs would be a closed
system in automobiles [5], [6]. Security issues with CANs relate
mainly to authentication and encryption at the present time.

Authentication: To identify whether an ECU is authorized, sev-
eral authentication proposals based on message authentication codes
(MACs) have been released. Key sharing is a matter of grave con-
cern. CANAuth [14] implements a backward-compatible message
authentication protocol on the CAN bus. One or more pre-shared
128-bit MAC keys are to be available on each CANAuth node.
CANAuth assumes that the keys are intended to be stored in tamper-

proof storage that cannot be queried by anything but the node itself.
LiBrA-CAN [15] splits authentication keys between groups of mul-
tiple nodes, rather than achieving authentication independently for
each node.

Encryption: A CAN frame is broadcast over the bus. In modern
vehicles, external devices, such as on-board diagnostics readers, are
able to access the CAN bus, making it is easy to intercept a CAN
message. Cryptographic approaches based on the AES have been
proposed to guard against such interception. The problem is the
computation load of the AES, which might have an undue influ-
ence on the response of the ECU. Wolf and Gendrullis [16] and the
EVITA Project [17], [18] implemented a hardware security module
(HSM) to accelerate the AES measures. However, even if a HSM
is used, the cryptographic measure requires 60 clock cycles (at 100
MHz) for the encryption of one AES block [18]. This is insufficient
for dealing with the real-time response required of an ECU. Also,
the additional hardware increases the cost of the ECU.

In this study, we focused on the encryption issues in CANs. We
propose a fast stream cipher based on a CNN that does not need the
additional HSM hardware.

3 Chaos Neural Network
As a chaos generator the CNN consisted of 4 neurons in a discrete
time system (see Fig. 2).

Figure 2: CNN consisting of four artificial neurons

An output from the jth neuron at time t + 1 is defined as:

x j(t + 1) = f [u j(t)] (1)

Here, An activation-function f (see Fig. 3) is an asymmetric
piecewise-linear function (APLF).

For the jth neuron, the total value of inputs at time t is defined
as :

u j(t) =

n∑
i=1

wi jxi(t) + I j (2)

I j is an external input of the jth neuron. xi(t) is an input from
the ith neuron at time t, and wi j is a synaptic. Generally, the start
value of xi is set as 0, and the synaptic weights are set as follows:
w12 = −12.60001, w14 = 4.511, w23 = 5.951, w34 = −4.7004 and
w41 = −7.345007. The synaptic weights adjust the input values

www.astesj.com 64

http://www.astesj.com


Z. Liu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 63-68 (2020)

from other neurons. If extreme synaptic weights were set, the out-
put range of neurons would be limited [19]. The external inputs I1
and I4 share a common value (I1 = I4), and I2 and I3 are set as 0
(I2 = I3 = 0). Thus, a different CNN would be obtained if a different
value for I1 and I4 were set.

Figure 3: An activation-function f (APLF)

An activation-function APLF can avoid a periodic window cor-
responding to a non-chaotic periodic orbit. The activation-function
APLF composed of linear functions by connecting five points. Those
points can be changed as independent parameters. In a cipher sys-
tem, the points of APLF can be selected as secret keys [9], [10],
[20].

Figure 4: The extraction method of a PRN from a CNN output

Generally, discrete time system of the CNN is implemented
with floating-point arithmetic [9]. But many embedded devices
do not support 64-bit floating-point arithmetic. In this paper, the
CNN is computed by 32-bit fixed-point arithmetic (Q5.26) and it
allows overflow and underflow of variables. Comparing to 32-bit
floating-point arithmetic, the fractional part of Q5.26 has enough
long bit length. PRNs are extracted by the method presented in
Figure 4. With regard to the CNN output, the lowest 3 bits of the
fraction are discarded [8] and the lower 8 bits of the fraction are
extracted as a PRN. Those PRNs from the CNN are applied to the
proposed stream cipher .

3.1 Chaotic Orbit

A chaotic orbit is hard to predict because it is sensitive to tiny
changes of the initial status. Here, Figure 5 shows time series from
a CNN (Q5.26). Corresponding to all external inputs, output time

series in the diagram present no bifurcation pattern but chaotic char-
acteristics. It suggests that all external inputs can be used for chaos
generation. In fact, the CNN generates the same time series on
the ARM CPU and X86 CPU when the same parameters are set.
Therefore the CNN is portable between different machines. More-
over, the Lyapunov exponents λ are computed per time series. The
maximum Lyapunov exponents is about 2.5 and all of value is λ > 0.
The Kolmogorov-Sinai entropy [21] is also computed by use of
Lyapunov exponents, it is about 4.2. Those results demonstrate that
the time series from the CNN has chaotic orbit and a high degree of
randomness.

Figure 5: The input-output characteristics of time series from a CNN

3.2 Randomness

Randomness of the PRNs that were extracted from the CNN was
confirmed by NIST Special Publication 800-22 statistical test suite
[12]. Since NIST test has a couple of trouble (asymptotic approx-
imation, etc.) even the test suite is updated [22], [23], NIST test
method presented in the literature [24] was adopted.

We performed the NIST test for 1,000 times. And 106 × 1, 000
bits of PRNs were generated by the method shown in Fig. 4 for per
test. NIST test results are presented in Table 1. The failure ratio
for the proportion is under 1%, and the failure ratio for the P-values
that check for uniformity of distribution is less than 0.1%. All of
those results suggest that all of tests passed these criteria, and the
tested PRNs from the CNN have good statistical properties.

4 CNN Stream Cipher
The proposed stream cipher has two phases: an ID-based encryption
(IBE) phase and a stream phase (see Fig. 6). Each phase uses dif-
ferent CAN IDs; that is, the CAN ID associates a CAN frame with
a specific phase. In the advance IBE phase, the symmetric key is
shared with IBE [25], [26] among authorized ECUs. Subsequently,
an authorized ECU sends encrypted data frames to other authorized
ECUs and those ECUs can decrypt data using the symmetric key in
the stream phase.

www.astesj.com 65

http://www.astesj.com


Z. Liu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 63-68 (2020)

Table 1: NIST SP800-22 statistical test results

FRa BFa CSa RUa LRa RKa FFa NTa

Proportion 0.3 0.2 0.3 0.5 0.4 0.4 0.9 0.2
P-value 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0

OTa UNa AEa REa RVa SEa LCa

Proportion 0.3 0.7 0.2 0.4 0.2 0.2 0.1
P-value 0.0 0.0 0.0 0.0 0.0 0.0 0.1

FR: Frequency, BF: Block Frequency, CS: Cumula-
tive Sums, RU: Runs, LR: Longest Run, RK: Rank,
FF: FFT, NT: Non-overlapping Template, OT: Over-
lapping Template, UN: Universal, AE: Approximate
Entropy, RE: Random Excursions, RV: Random Ex-
cursions Variant, SE: Serial, LC: Linear Complexity

a Numbers are average ratio of failed tests (%).

Figure 6: Overview of CNN stream cipher

4.1 IBE phase

It is an important step for the stream cipher to create, manage, and
share the symmetric key. A public key infrastructure is used in
the Internet to ensure secure communication generally. With this
infrastructure, an on-line certificate authority (CA) is necessary, and
the cost for issuing digital certificates may become prohibitive [27].

Figure 7: IBE phase

In the proposed stream cipher, we use IBE [26] to create, man-
age, and share the symmetric key. Fig. 7 shows how the symmetric
key is shared among authorized ECUs. The private key generator

(PKG) can be offline and does not need to use digital certificates
instead of a CA. The PKG initially defines which CAN IDs are
used in the IBE phase. For each valid CAN ID, the PKG outputs a
public and private key pair that is issued to authorized ECUs. Thus,
an ECU can use the public key to encrypt the symmetric key that
is used in the stream phase and send it over the CAN bus. When
an ECU receives a CAN frame, it checks the CAN ID to confirm
the phase and decrypts the data in the CAN frame to obtain the
symmetric key in the IBE phase.

4.2 Stream phase

In the stream phase, authorized ECUs use the symmetric key that
was obtained during the IBE phase to encrypt and decrypt CAN
frames (see Fig. 8). The CNN implemented in authorized ECUs
generates a stream of pseudo-random bits: R1, R2, R3, ..., Ri with the
symmetric key. This stream is XORed with a stream of bits, D1, D2,
D3, ..., Di, which are from the data in a CAN frame, to produce the
stream of cipher text bits. Then each cipher text character is given
by Ci = Di ⊕ Ri, which is loaded into a CAN frame and translated
with the CAN bus. The procedure of decryption is almost the same:
when an authorized ECU has received a CAN data frame, the CNN
in the ECU generates the same stream of pseudo-random bits Ri and
the original data is obtained by Di = Ci ⊕ Ri.

Figure 8: Stream phase

5 Evaluation
It is most important to ensure the safety of the vehicle and its pas-
sengers. Therefore, the embedded software of the ECU must run
quickly to deal with the constraints of a real-time response. This
section describes the performance evaluation of the CNN stream
cipher with two embedded CAN boards (listed as Board A and B in
Table 2) that were provided by P&A Technologies Inc. These CPUs
have a different architecture, where Board A was implemented with
a SH2A CPU, while Board B used an ARM CPU. Those boards are
connected by a length of about 80cm twisted pair cable with D-sub
connector.

Table 2: Specifications of experimental CAN boards

Component Board A Board B
CPU R5S72630P200FP SAMA5D27C-D1G

SH2A-FPU core ARM Cortex-A5
(196 MHz) (492 MHz)

RAM SDR SDRAM DDR2-SDRAM
(64 MHz) (120 MHz)

CAN Controller Built-in CPU FPGA IP

www.astesj.com 66

http://www.astesj.com


Z. Liu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 63-68 (2020)

5.1 Experimental setup

In our experiments, we tested only the high-speed CAN whose bit
rate is typically 500 Kbps, up to 1 Mbps. In fact, another CAN
standard specifies low-speed CAN (see Sec. 2) at transmission rates
above 40 Kbps up to 125 Kbps. It is more difficult to deal with real-
time constraints at the high-speed CAN bit rate. Thus, we assumed
that our stream cipher would work well at the low-speed CAN bit
rate if it successfully ran with the high-speed CAN.

The PKG can be performed offline. Thus, we assume that Boards
A and B are two authorized ECUs and they have already gained the
symmetric key. Then we implemented the CNN on Boards A and B.
According to the symmetric key, the same stream of pseudo-random
numbers was generated in both boards and used to encrypt the data
part of a CAN frame in one board and decrypt it in the other board.

5.2 Experimental Results

One thousand CAN message frames were sent between Boards A
and B to confirm the validity of the CNN stream cipher and mea-
sure the encryption and decryption time. We tested with 500-Kbps
and 1-Mbps bit rates. The CAN bus was loaded with over 60%
higher-priority traffic.

Table 3: Results of performance testing with CAN boards

average time
Board A 44 µs
Board B 4 µs

We confirmed the CAN log data of Boards A and B, which
showed that each board encrypted and decrypted CAN data frames
successfully. With Board A, the procedure for encryption or de-
cryption was performed within 44 µs on average. With Board B,
the procedure only took 4 µs on average (see Table 3). The re-
sults suggest that the performance of the CNN stream cipher is
adequate for real-time requirements of an ECU without additional
HSM hardware.

6 Conclusions
In this paper, we have proposed and evaluated a fast stream cipher
based on a CNN to provide security for the ECUs on a CAN bus.
We have shown that the CNN is chaotic and have strong randomness,
and that PRNs with a high degree of randomness can be generated
from a CNN. In the proposed stream cipher, IBE is used to create,
manage, and share the symmetric key. The PKG can be performed
offline and does not need to use digital certificates. The stream ci-
pher was evaluated with embedded CAN boards. The performance
test results suggested that our method is efficient for software em-
bedded in an ECU and has no need for a HSM to accelerate the
encryption process.

As future work, we will design a new activation-function APLF
to extend randomness of the CNN and improve the performance of
the stream cipher based on the CNN.

References
[1] Z. Liu, T. Murakami, S. Kawamura, H. Yoshida, “Parallel Implementation of

Chaos Neural Networks for an Embedded GPU,” in 2019 IEEE 10th Interna-
tional Conference on Awareness Science and Technology (iCAST), 1–6, IEEE,
2019, doi:10.1109/ICAwST.2019.8923383.

[2] NIST FIPS PUB, “197, Advanced Encryption Standard (AES),” Federal
information processing standards publication, 197(441), 0311, 2001, doi:
10.6028/NIST.FIPS.197.

[3] J. Daemen, V. Rijmen, Rijndael/AES, 520–524, Springer US, 2005, doi:
10.1007/0-387-23483-7 358.

[4] A. Albert, et al., “Comparison of event-triggered and time-triggered concepts
with regard to distributed control systems,” Embedded world, 2004, 235–252,
2004.

[5] P. Carsten, T. R. Andel, M. Yampolskiy, J. T. McDonald, S. Russ, “A system
to recognize intruders in controller area network (CAN),” in 3rd International
Symposium for ICS & SCADA Cyber Security Research 2015 (ICS-CSR 2015)
3, 111–114, 2015, doi:10.14236/ewic/ICS2015.15.

[6] R. Buttigieg, M. Farrugia, C. Meli, “Security issues in controller area networks
in automobiles,” in 2017 18th International Conference on Sciences and Tech-
niques of Automatic Control and Computer Engineering (STA), 93–98, IEEE,
2017, doi:10.1109/STA.2017.8314877.

[7] H. Yoshida, Y. Nihei, T. Nakanishi, “Comparative study on structurally differ-
ent chaos neural network,” in Proceedings of Papers, International Symposium
on Information Theory and its Applications, ISITA 2004, 1046–1050, 2004.

[8] S. Kawamura, H. Yoshida, M. Miura, M. Abe, “Implementation of Uniform
Pseudo Random Number Generator and Application to Stream Cipher based
on Chaos Neural Network,” in The International Conference on Fundamentals
of Electronics, Communications and Computer Sciences, 2002, 4–9, 2002.

[9] H. Yoshida, T. Murakami, Z. Liu, “High-speed and highly secure pseudo-
random number generator based on chaos neural network,” New Trends on
System Science and Engineering: Proceedings of ICSSE, 276, 224–237, 2015,
doi:10.3233/978-1-61499-522-7-224.

[10] H. Yoshida, T. Murakami, T. Inao, S. Kawamura, “Origin of Randomness on
Chaos Neural Network,” Trends in Applied Knowledge-Based Systems and
Data Science, 9799, 587–598, 2016, doi:10.1007/978-3-319-42007-3 51.

[11] H. Yoshida, Y. Akatsuka, T. Murakami, “Implementation of High-Performance
Pseudo-Random Number Generator by Choas Neural Networks using Fix-Point
Arithmetic with Perturbation,” in Proceedings of Papers, The 2018 Interna-
tional Symposium on Nonlinear Theory and Its Applications, NOLTA2018,
46–49, 2018.

[12] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, editors, A statistical
test suite for random and pseudorandom number generators for cryptographic
applications, NIST Special Publication 800-22, 2001.

[13] S. C. HPL, “Introduction to the controller area network (CAN),” Appl. Rep.
SLOA101, 1–17, 2002.

[14] A. Van Herrewege, D. Singelee, I. Verbauwhede, “CANAuth - a simple, back-
ward compatible broadcast authentication protocol for CAN bus,” in ECRYPT
Workshop on Lightweight Cryptography, volume 2011, 2011.

[15] B. Groza, S. Murvay, A. Van Herrewege, I. Verbauwhede, “LiBrA-CAN: a
lightweight broadcast authentication protocol for controller area networks,”
in International Conference on Cryptology and Network Security, 185–200,
Springer, 2012, doi:10.1007/978-3-642-35404-5 15.

[16] M. Wolf, T. Gendrullis, “Design, implementation, and evaluation of a ve-
hicular hardware security module,” in International Conference on Infor-
mation Security and Cryptology, 302–318, Springer, 2011, doi:10.1007/

978-3-642-31912-9 20.

[17] O. Henniger, A. Ruddle, H. Seudié, B. Weyl, M. Wolf, T. Wollinger, “Securing
vehicular on-board IT systems: The evita project,” in VDI/VW Automotive
Security Conference, 41, 2009.

www.astesj.com 67

http://www.astesj.com


Z. Liu et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 63-68 (2020)

[18] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, D. Scheuermann, “Car2x
communication: securing the last meter-a cost-effective approach for ensur-
ing trust in car2x applications using in-vehicle symmetric cryptography,” in
2011 IEEE Vehicular Technology Conference (VTC Fall), 1–5, IEEE, 2011,
doi:10.1109/VETECF.2011.6093081.

[19] H. Yoshida, H. Fukuchi, T. Murakami, “Implementation of High-Speed Pseudo-
Random-Number Generator with Chaotic and Random Neural Networks,” in
Proceedings of the 53rd Hawaii International Conference on System Sciences,
2020, doi:10.24251/HICSS.2020.786.

[20] H. Yoshida, T. Murakami, Japan patent JP5504501B, 2014.

[21] T. S. Parker, L. O. Chua, “Chaos: A tutorial for engineers,” Proceedings of the
IEEE, 75(8), 982–1008, 1987, doi:10.1109/PROC.1987.13845.

[22] K. Hamano, T. Kaneko, “Correction of overlapping template matching test
included in NIST randomness test suite,” IEICE transactions on fundamentals
of electronics, communications and computer sciences, 90(9), 1788–1792,
2007, doi:10.1093/ietfec/e90-a.9.1788.

[23] H. Okutomi, K. Nakamura, “A study on rational judgement method of random-
ness property using NIST randomness test (NIST SP. 800-22),” IEICE Trans.
A, 93(1), 11–22, 2010.

[24] H. Yoshida, T. Murakami, S. Kawamura, “Study on testing for randomness
of pseudo-random number sequence with NIST SP800-22 rev. 1a,” Technical
report, IEICE Technical Report, 2012.

[25] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Workshop
on the theory and application of cryptographic techniques, 47–53, Springer,
1984, doi:10.1007/3-540-39568-7 5.

[26] D. Boneh, M. Franklin, “Identity-based encryption from the Weil pairing,” in
Annual international cryptology conference, 213–229, Springer, 2001, doi:
10.1007/3-540-44647-8 13.

[27] A. Nash, W. Duane, C. Joseph, PKI: Implementing and Managing E-security,
McGraw-Hill, Inc., 2001.

www.astesj.com 68

http://www.astesj.com

	Introduction
	Related Work
	Chaos Neural Network
	Chaotic Orbit
	Randomness

	CNN Stream Cipher
	IBE phase
	Stream phase

	Evaluation
	Experimental setup
	Experimental Results

	Conclusions

