

www.astesj.com 1282

An Overview on CryptDb and Word2vec Approaches

Hana Yousuf 1, Asma Qassem Al-Hamad2, Said Salloum1,3,*

1Faculty of Engineering & IT, The British University in Dubai, 345015, UAE

2Librarian and information department, Imam Abdulrahman Bin Faisal University, 1982, KSA

3Research Institute of Sciences & Engineering, University of Sharjah, 27272, UAE

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 24 June, 2020
Accepted: 07 October, 2020
Online: 24 October, 2020

 Big data is a vast data set that was used in many areas. Online applications are subject to
theft of confidential information because opponents can exploit software errors to access
private data, and because curious or malicious officials can capture and lose data.
CryptDB is a functional system that provides security and confidentiality through a set of
operations. The obvious confidentiality of these attacks is for applications supported by
SQL databases. It works by executing SQL queries on encrypted data using robust coding
systems that support SQL. Word2Vec outputs word vectors that can be displayed as a large
piece of text, or even we first train data. Word2Vec forms and word similarity assessment.
Without a doubt, this article calls for proper research that sheds light on the security
features using CryptDB to prevent data theft and privacy breaches in the server. The
motivation of this research is to have an overview of CryptDB and Word2Vec
implementation on the existing research approaches.

Keywords:
Big data
CryptDB
SQL databases
Word2Vec
Secure vectorization

1. Introduction

The theft of private data is a big issue [1–3], especially for
online applications [4–11]. The SQL databases may be attacked
and vulnerable to sensitive information or theft since they can
exploit the bugs to gain access to private information. Also, the
attackers can capture and leak the data to those who require them.
Hence, the dataset must be safeguarded. CryptDB provides
confidentiality against the attackers through SQL databases [10].
The processes are encrypted in SQL by collecting effective SQL
aware encryption schemes. The process can also be used to encrypt
the credential keys so that an item can be decrypted with simply a
password. Since the processes and data are encrypted, the database
administrator will not view the data. Even if there is an attack on
the server, the attacker will not access the decrypted data. CryptDB
can handle multiple queries simultaneously and has less overhead.

Word2vec is one type of word embedding technique used to
represents a string in a set of real numbers. This is a technique used
in Natural Language Processing (NLP) through deep learning to

extract data from the requested document. Word2Vec represents
the input text as a statistical or vector form using a two-layer neural
net that process text using. Word2vec's applications extend on the
far side than analyzing sentences; it can be used in an application
that has a well-defined pattern

The motivation to carry out this research is to have an
overview of Word2Vec and CryptDB approaches and identify the
challenges in the current process in both techniques.

1.1. CryptDb

One of the most widely known machines is employed in
various shifts in classification tasks. Two threats are tackled by
CryptDB [12]. The first of these is a curious database administrator
(DBA) that attempts to learn private data (such as financial
statements, health records, personal information, etc.) by sneaking
into the DBMS server; however, CryptDB does not allow the DBA
to access the private data. The other threat is an adversary that
acquires full control of the application and DBMS services. Here,
no guarantees can be offered by CryptDB for users logged in the
application when an attack occurs; however, it can make sure that
the data of the users who are not logged in is protected from threats.
A simple solution is to create a different database encryption key

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Said Salloum, University of Sharjah, UAE. Tel:
+971507679647 Email: ssalloum@sharjah.ac.ae

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj0505154

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0505154

H. Yousaf et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com 1283

for every user not applicable for their data in applications,
including shared data, such as conference review sites and bulletin
boards [13].

The CryptDB's function is to perform queries on encrypted
information. The main reason for this practice is that SQL uses a
specific set of factors; each can effectively support encrypted data
[13]. CryptDB combats with these challenges using three core
ideas:

• The first one is to run SQL questions on encrypted information.
CryptDB applies this concept by employing an encryption
methodology that supports SQL and takes advantage of the
truth that all SQL inquiries comprise a well-defined set of
primitive factors, like Equality Confirmation, framework
comparisons, total (amounts), and links. By adjusting known
encryption systems (for correspondence, increments, and
work confirmation) and employing a new encryption strategy
to ensure the protection of joins, CryptDB encrypts each data
component so that DBMS can execute the converted
information [14]. CryptDB is practical security since it uses
essentially symmetric-key encryption in order to prevent
completely identical encryption, and runs an unmodified
DBMS program (utilizing custom capacities).

• The second strategy is flexible encryption based on the query.
A few encryption systems pass more data to the DBMS server
than others but should undergo some queries. To avoid
leaking all information encryption to the database
management system, CryptDB carefully alters the SQL
encryption framework for any specific data element, based on
queries. To execute these modifications effectively, CryptDB
utilizes 'onions of encryption'. Onions are a new approach to
store numerous encryption texts within the database and
maintain a distance from exorbitant re-encryption [13].

• The third concept is to link encryption keys to users' passwords
so that every information within the database can be decrypted
by employing a keychain established within the client's
password who can approach that data. If the client does not
log on to the app and the rival does not know the password,
the adversary will not decode the user's information even if
the DBMS and the application server are completely under
threat [13]. To form a critical chain that captures the app's
protection and sharing arrangement, CryptDB permits the
developers to give policy comments through the SQL app
chart and identifying clients who have access to each part of
the information.

1.2. Word2Vec

Google developed Word2vec in 2013 [12], which is a neural
network through which text data is processed. Word2vec is not a
single algorithm, it is made up of two learning models, which are
the Common Bag of Word bag (CBOW) and Skip grams. The
word is predicted by CBOW based on its context, while in Skip-
Gramm, context determines a word. Word2Vec ultimately
developed in a model word vector by feeding the text. Word2Vec
first generates a vocabulary from group training text and learning
vector representations for every word [12]. The architecture of the
word2vec algorithm is given in Figure 1.

Figure 1: Word2Vec Architecture

Figure 2: CryptDB along with traditional DB [12].

The purpose of using Word2vec is to cluster the vectors of
similar words along in vector-space, then detect the similarity by
measuring cosine similarity; it creates vectors that are distributed
numerical representations of the word. Word2vec will build
extremely accurate guesses of a word's definition based on
previous presences. The guesses are used to construct a word that
associate with the other word in the sentence.

2. Literature Review

A study by [15] has used effective Galois Field mathematical
environments for encrypting algorithms effectively. The increase
in network sensor systems and network databases has led to more
interest in using cryptology in sensors algorithms and databases.
Vectorized Advanced Encrypted Standard (AES) has been
implemented for the database systems. Due to vectorization, the
implementation is very small and requires 100 times smaller code
than ordinary AES implementation. It is also fast and has an
effective design. The implementation achieves higher speed
which is comparable to real-time prototyping with OpenSSL with
good database analytics and processing.

Researchers of [16] have introduced a ciphertext policy with
constant sizes known as Cipher-text Policy Hidden Vector
Encryption (CP-HVE). An HVE is a unique type of anonymous
IBE, which uses identity as the main parameters where the
attributes linked with the ciphertext or secret keys contain wild-
cards. Two different schemes have been used, one with a
composite ordered bi-linear group and a prime ordered bilinear
group. Both of these schemes have high security by differentiating

http://www.astesj.com/

H. Yousaf et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com 1284

the ciphertext from plaintext. This vectorized encryption has the
ability to have a regular size than the other HVE methods.

HVE was also implemented by [17], a type of predictive
encryption technique that supports conjunctive equality and
ranges on the encrypted data. A novel HVE scheme has been built
that is fully secure under standard assumptions. The proposed
scheme is based on bilinear maps that are more advantageous for
the private keys and pairing computations for decryptions. Tag-
based dual system encryption has been developed to hide the
vector components and compress the tag's values into one. It is
challenging to extend the HVE along with IBE for supporting a
higher hierarchical mechanism. Hence, it is still challenging to
construct HVE for providing encryption-based security. The
number of pairings in the computations is high, which must be
reduced in the future to increase the speed of the processes.

In [18], author has described the types of CryptDB. Random
(RND) is a type of CryptDB that relatively provides the most
security that is selected under a probabilistic adaptive plain text
attack. Here, two equal halves of data are mapped into different
ciphertexts. RND ensures that computations are performed on
ciphertexts directly. RND uses encryptions like AES and
Blowfish simultaneously with a random initialization vector. AES
is used more than Blowfish for 64-bit block sizes since AES has
128-bit blocks that cause the ciphertexts to be very long. For high
security, it is assumed that the server does not change results.

3. CryptDB is a solution for facing the threats

CryptDB works by intercepting all SQL queries in that
database proxy and rewrites queries to perform for encrypted data.
All inquiries pass through the agent. The agent encrypts and
decrypts all data, and some parameters change while maintaining
the query's semantics. The DBMS server never receives
decryption. A clear text key so that confidential data is not
displayed to ensure that strange DBA cannot access private
information (Threat 1).

To protect themselves from compromises in applications,
proxy servers, and DBMS servers (Threat 2), developers comment
on the specific SQL schema different principles; its keys to decode
different parts database. They are also making a slight change to
their apps, providing encryption keys to the proxy. The agent
specifies which parts of the database are to encrypt under any key.
The result is that CryptDB guarantees the confidentiality of data
owned by users who are not logged in within one. The compromise
that just logs in the admin recognizes and corrects the settlement.
CryptDB protects data confidentiality, but it does not guarantee its
safety, freshness, or completeness of the results returned to
implementation. The opponent who threatens the application, the
agent, or a malicious DBMS or DBA server that can delete one or
all data stored in the database. Attacks on users' computers, Cross-
site scripting outside of CryptDB. The security guarantees are
provided for in these threat models [19].

3.1. Threat 1: DBMS Server compromise

CryptDB provides security against a curious DBA or another
external attacker in this threat while offering complete access to
the DBMS server's data. It focuses on confidentiality (data
privacy) rather than availability or integrity. It is presumed that the

attacker is passive, wanting to get access to confidential data
without modifying queries presented by the application, query
results, or the data within DBMS. This threat comprises DBMS
software being compromised, gaining root access to DBMS, and
access to the RAM of physical machines. There is now a greater
degree of database consolidation in enterprise data centers,
databases are being outsourced to public cloud computing
infrastructures, and third party-DBAs are being used, which is why
it is becoming very important to deal with this threat [19–21].

The goal of CryptDB is to ensure that the data remains secure
from this threat by carrying out SQL queries over the encrypted
data DBMS server. The agent uses secret keys for encrypting the
entire data; it includes or incorporates them in the outgoing DBMS
queries [22]. This tries to make it possible to use the DBMS server
to process queries for encrypted data, similar to an unencrypted
database. This is done by activating the particular functions for
data elements required for encrypted data. The DBMS should have
the ability to identify the factors it consists of. There is the same
column; however, the actual content items are different. Hence, the
DBMS server should be activated by the proxy to identify the
relationships among the data required for query processing. SQL-
enabled encryption should be used as it is capable of adapting
vigorously. CryptDB, when issuing requests, manages the
relationships it reveals between lines to the server. The order of the
items in the column is not known, which is not even required to
learn more about the rest of the columns. When DBMS is needed,
CryptDB will identify it by carrying out an ORDER command or
determine MAX or MIN items within this column, and not by any
other method [22].

3.2. Threat 2: Arbitrary threats

It is possible that the proxy and DBMS server infrastructure
experience arbitrary security breaches. Due to the opponent, the
method used in Threat 1 is not adequate. It is now possible to
access the keys used to encrypt the complete database. To deal with
this, different data elements (for example, data for various users)
should be encoded using different keys. The application database
schema should be suspended to present further privacy guidelines
to choose the key developers who would be using each data item.
It is still impossible for strange DBA to obtain private data on a
DBMS server (Threat 1). The application server or proxy can
become decrypted—data from only the presently registered (stored
in the proxy). Data from the users who are not active will not be
encrypted with the keys available to the attacker and will stay
confidential. CryptDB provides substantial guarantees in this
configuration in dealing with the arbitrary server-side breaches,
including the ones that obtain root access to the proxy or
application. CryptDB leaks the majority of the data users that have
been active for some time. Concerning an SQL attack, the
compromise duration comprises of the SQL queries of the attacker.
The system is considered vulnerable until the attacker's email
address stays within the database [22], [23].

4. CryptDB Implementation

 SQL queries are carried out by CryptDB using encrypted data.
There is a lack of trust in the DBMS machines and administrators;
however, the application and the proxy can be trusted. CryptDB
allows the DBMS server to perform SQL queries on encrypted
data, just like how it would be carrying out the same queries on

http://www.astesj.com/

H. Yousaf et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com 1285

plaintext data. No modifications in the existing applications are
required. Usually, the DBMS query plan for an encrypted query is
similar to the actual query, except that the operators forming the
query, like projections, selections, aggregates, joins, and orderings,
are done on cipher tests. In a few scenarios, modified operators are
used. A secret master key MK is stored by CryptDB's proxy, in
addition to the database scheme and the existing encryption layers
of each column [24]. An anonymized schema is observed by the
DBMS server (where the names of tables and columns are
substituted with opaque identifiers), encrypted user data, and
certain auxiliary tables utilized CryptDB. CryptDB-specific user-
defined functions (UDFs) are also provided by CryptDB to the
server, using which the server can use ciphertexts for specific
functions [24]. Four steps are followed when processing a query in
CryptDB.

• A query is presented by an application, which is intercepted
and rewritten by the proxy: each table and column name is
anonymized. With the master key MK's help, each constant is
encrypted in the query using an encryption scheme that is most
appropriate for the required operation.

• It is determined by the proxy whether the DBMS server should
be provided keys to modify the encryption layers before issuing
the query. If this is the case, then an UPDATE query is issued
at the DBMS server that brings about a UDF to modify the
relevant columns' encryption layer.

• The encrypted query is forwarded by the proxy to the DBMS
server, which performs it using standard SQL (often bringing
about UDFs for performing aggregation or keyword search).

• The encrypted query result s returned by the DBMS server that
is decrypted by the proxy and sent back to the application.

5. Word2Vec Implementation

We prepare our data to be trained using the Word2Vec model.
We are taking the below sentence as an example:

We must love life

Step-1: Consider the word 'we' as input and 'must listen' is the
output word as follows:

Input Output

We must

We love

Step-2: Now consider 'must' as input word; the output will be the
close words as follows

Input Output

We must

We love

Must we

Must love

Must life

Step-3: The same will be done for the rest of the sentence as
follows:

Input Output

We must

We love

Must we

Must love

Must life

Love we

Love must

Love life

Love must

Love live

At the end of creating a training sample for the sentence, we
gotten samples. After that, we will obtain Word2Vec embedding
by having a data set consists of 4000 unique words and word
vectors size 80 each.

• Vocabulary Size = 4000
• Word vector size =80

The input will be our input vector, and the output will be the
probability of nearby vectors. The learned weight matrix can be
extracted after the model finishes the training process, and the
word vector can be extracted, as shown in Figure 2 and Figure 3.

Figure 2: The weight matrix has a size of 4000 x 80.

http://www.astesj.com/

H. Yousaf et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com 1286

Figure 3: Vector representation for the 3rd word

The above shows how to have a word embedding using
Word2Vec. Similar words in the vocabulary set will have similar
vectors pointing toward the same direction for example, life and
living will have the same direction as shown in Figure 4.

Figure 4: The vector direction for similar words

6. Conclusions and Future Work

CryptDB is a system that offers a logical and powerful level
of confidentiality against two considerable threats that attack
database-backed applications, i.e., curious DBAs and arbitrary
compromises of the application server and the DBMS. Three steps
are followed by CryptDB to achieve its objectives: efficiently
performing queries over encrypted data through a novel SQL-
aware encryption strategy, dynamically modifying the encryption
level using onions of encryption to decrease the information given
to the untrusted DBMS server, and linking encryption keys to
under passwords such that only authorized users can get access to
encrypted data. Word2Vec method is an effective data processing
technique. It takes into account the significant data dimension issue
when handling large-scale training data to offer a means of

grouping similar data. This method may be employed to decrease
the data dimension.

The CryptDB and Word2Vec approaches will be used
together to provide a secure word embedding.

Acknowledgment

This is a part of project done in British University in Dubai.

References

[1] M. Alshurideh, B. Al Kurdi, S.A. Salloum, I. Arpaci, M. Al-Emran,
“Predicting the actual use of m-learning systems: a comparative approach
using PLS-SEM and machine learning algorithms,” Interactive Learning
Environments, 1–15, 2020.

[2] M. AlShamsi, S.A. Salloum, M. Alshurideh, S. Abdallah, Artificial
Intelligence and Blockchain for Transparency in Governance, Springer:
219–230.

[3] J. Almaazmi, M. Alshurideh, B. Al Kurdi, S.A. Salloum, “The Effect of
Digital Transformation on Product Innovation: A Critical Review,” in
International Conference on Advanced Intelligent Systems and Informatics,
Springer: 731–741, 2020.

[4] A.Y. Zainal, H. Yousuf, S.A. Salloum, “Dimensions of Agility Capabilities
Organizational Competitiveness in Sustaining,” in Joint European-US
Workshop on Applications of Invariance in Computer Vision, Springer:
762–772, 2020.

[5] H. Yousuf, S. Salloum, “Survey Analysis: Enhancing the Security of
Vectorization by Using word2vec and CryptDB.”

[6] S.K. Yousuf H., Lahzi M., Salloum S.A., “Systematic Review on Fully
Homomorphic Encryption Scheme and Its Application.,” In: Al-Emran M.,
Shaalan K., Hassanien A. (Eds) Recent Advances in Intelligent Systems and
Smart Applications. Studies in Systems, Decision and Control, Vol 295.
Springer, Cham, 2021.

[7] S.A. Salloum, R. Khan, K. Shaalan, “A Survey of Semantic Analysis
Approaches,” in Joint European-US Workshop on Applications of
Invariance in Computer Vision, Springer: 61–70, 2020.

[8] S.A. Salloum, M. Alshurideh, A. Elnagar, K. Shaalan, “Machine Learning
and Deep Learning Techniques for Cybersecurity: A Review,” in Joint
European-US Workshop on Applications of Invariance in Computer Vision,
Springer: 50–57, 2020.

[9] S.A. Salloum, M. Alshurideh, A. Elnagar, K. Shaalan, “Mining in
Educational Data: Review and Future Directions,” in Joint European-US
Workshop on Applications of Invariance in Computer Vision, Springer: 92–
102, 2020.

[10] S.A. Salloum, A.Q. AlHamad, M. Al-Emran, K. Shaalan, A survey of Arabic
text mining, 2018, doi:10.1007/978-3-319-67056-0_20.

[11] S.A. Salloum, M. Al-Emran, A.A. Monem, K. Shaalan, Using text mining
techniques for extracting information from research articles, 2018,
doi:10.1007/978-3-319-67056-0_18.

[12] Y.-C. Chang, M. Mitzenmacher, “Privacy preserving keyword searches on
remote encrypted data,” in International Conference on Applied
Cryptography and Network Security, Springer: 442–455, 2005.

[13] K.C. M. Viktor, “Big data: A revolution that will transform how we live,
work, and think,” Houghton Mifflin Harcourt, 2013.

[14] N. Aburawi, CryptDB mechanism on graph databases, 2020.
[15] J. Kepner, V. Gadepally, B. Hancock, P. Michaleas, E. Michel, M. Varia,

“Parallel vectorized algebraic AES in Matlab for rapid prototyping of
encrypted sensor processing algorithms and database analytics,” in 2015
IEEE High Performance Extreme Computing Conference (HPEC), IEEE: 1–
8, 2015.

[16] T.V.X. Phuong, G. Yang, W. Susilo, “Efficient hidden vector encryption
with constant-size ciphertext,” in European Symposium on Research in
Computer Security, Springer: 472–487, 2014.

[17] J.H. Park, K. Lee, W. Susilo, D.H. Lee, “Fully secure hidden vector
encryption under standard assumptions,” Information Sciences, 232, 188–
207, 2013.

[18] R.A. Popa, C.M.S. Redfield, N. Zeldovich, H. Balakrishnan, “CryptDB:
protecting confidentiality with encrypted query processing,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
85–100, 2011.

[19] K. Lang, “Newsgroups Data Set,” Available at: Qwone. Com/~
Jason/20Newsgroups/.[Accessed 30-Sep-2015], 20AD.

http://www.astesj.com/

H. Yousaf et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 1282-1287 (2020)

www.astesj.com 1287

[20] H.H.O. Nasereddin, A.J. Darwesh, “An Object Oriented Programming on
Encrypted Database System (CryptDB),” Journal of Talent Development
and Excellence, 12(1), 5140–5146, 2020.

[21] X. Jiang, X. Kong, Z. Xu, “Research on order-preserving encryption scheme
based on CryptDB,” in Journal of Physics: Conference Series, IOP
Publishing: 32106, 2020.

[22] S.S.M. Chow, J.-H. Lee, L. Subramanian, “Two-Party Computation Model
for Privacy-Preserving Queries over Distributed Databases.,” in NDSS,
Citeseer, 2009.

[23] H. Yousuf, A.Y. Zainal, M. Alshurideh, S.A. Salloum, Artificial Intelligence
Models in Power System Analysis, Springer: 231–242.

[24] S. Rizvi, A. Mendelzon, S. Sudarshan, P. Roy, “Extending query rewriting
techniques for fine-grained access control,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, 551–562, 2004.

http://www.astesj.com/

	1.1. CryptDb
	1.2. Word2Vec
	2. Literature Review
	3. CryptDB is a solution for facing the threats
	3.1. Threat 1: DBMS Server compromise
	3.2. Threat 2: Arbitrary threats

	4. CryptDB Implementation
	5. Word2Vec Implementation
	6. Conclusions and Future Work
	Acknowledgment
	References

