

www.astesj.com 1178

Defeating Anti-Debugging Techniques for Malware Analysis Using a Debugger

Jong-Wouk Kim1, Jiwon Bang2, Mi-Jung Choi1,2,*

1Department of Computer Science, Kanwon National University, 24341, Republic of Korea

2Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, 24341, Republic of Korea

A R T I C L E I N F O A B S T R A C T

Article history:

Received: 31 August, 2020

Accepted: 25 November, 2020

Online: 14 December, 2020

 Cyberattacks such as spear phishing and malspam pretending to be companies, institutes, and

government officials are increasing and evolving. Malware has a variety of purposes, such as

collecting personal information and illegal access to the system. New types of malware are

increasing every day, and many malware programs spread all over the Internet, causing

severe problems. To analyze such malware effectively, analysts first need to understand the

inner structure of the malware. They can try to analyze malware manually and automatically.

However, attackers who create malware use many different kinds of techniques, such as anti-

reverse engineering, to hinder and delay analysis. They also extend malware life through a

combination of different techniques, such as social engineering and anti-debugging. These

techniques make the malware more sophisticated; thus, it is hard for an analyst to detect the

malware. Anti-debugging, one way to protect malware, is a deadly poison to malware analysts

because it makes the analysis more difficult by detecting a debugger or debugging

environments. Therefore, this paper describes malware’s anti-debugging techniques and how

to defeat them through anti-anti-debugging mechanisms. It applies its findings to analyze a

sample program, packed files, and actual malware with anti-debugging modules and

performs various experiments to verify the proposed techniques. After the experiments, it

confirms whether its countermeasure is useful for malware analysis.

Keywords:

Anti-Debugging

Malware Analysis

Malware

1. Introduction

In the past, the development of malware was mainly used for

malware programmers to show off. However, malicious

software(malware) such as virus and keylogger in recent years

illegally accesses server systems in various ways to steal personal

and financial information and computing power. Fatal damage,

such as the theft of essential data of institutes, corporations, public

institutions, and personal user information, occurs. The malware

damage can take many forms, from stealing personal information

such as a user’s financial information to destroying industrial

facilities such as Stuxnet [1]. According to Symantect’s “Internet

Security Threat Report 2019”, financial Trojans accounted for

16% of the many malware programs spread in 2018. In addition,

Trend Micro’s “Unseen Threats, Imminent Losses” said that a

vulnerability was found in the Supervisory Control And Data

Acquisition (SCADA) system, one of the industrial systems’

components. Also, attackers can penetrate the system through

malware that attacks this vulnerability and illegally controls the

SCADA system.

New types of malware appear every day and spread over the

Internet, causing serious problems frequently. The malware also

uses anti-reverse engineering techniques such as Self-Modifying

code, code compression, packing, and anti-debugging methods to

hide internal code structures and interfere with the analysis. This

paper is an extension of work initially presented in the

International Conference on ICT Convergence [2] to solve these

kinds of problems. It is challenging to analyze malware with these

anti-reverse engineering techniques accurately and requires

considerable time. Security experts reinforce security by using

anti-virus software and various equipment types to minimize

malware damage, while analysts scrutinize malware using various

techniques, it is more likely that anti-virus software or an

automated analysis tool fails to detect it. The workflow of malware

analysis is as in Figure 1. Usually, when an analyst analyzes

malware, an analyst gets information from automated and static

tools [3]. For example, if malware has anti-reverse engineering

analysis. After static analysis, the analyst analyzes malware

behavior through dynamic analysis and investigates its behavior in

more detail through advanced analysis. However, anti-debugging

techniques are hinder all analysis steps especially advanced

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Mi-Jung Choi, 305 Hanbit-Gwan, 1 Gangwondaehakgil,

Chuncheon-Si, Gangwon-Do, 24341 Repblic of Korea, mjchoi@kangwon.ac.kr

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj0506142

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0506142

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1179

analysis. Most of the tools in the advanced analysis are insufficient

to deal with anti-debugging techniques. The relevant APIs and

structures such as PEB and HEAP could be modified to defeat anti-

debugging techniques as soon as advanced analysis begins. This

step makes it more convenient for analysts to analyze malware, and

it could be analyzed more quickly because the malware

interference is gone.

Figure 1: Workflow in safe and accurate analysis of malware

When analyzing malware in virtual environments such as

QEMU, VMware, and VirtualBox, the virtual environments can be

constructed similarly to the physical environments. The virtual

environment analysis has advantages that are vastly similar to the

actual execution, and does not have to worry about infecting a

physical computer while performing malware analysis. However,

there is a disadvantage in that analysis may be disrupted through

the anti-VM (Virtual Machine) techniques. Anti-VM techniques

disable malware analysis using CPU emulators or virtualization

tools. The Dynamic Binary Instrumentation (DBI) tool can bypass

anti-debugging by inserting or replacing code chunks into the

operation command [4]. However, DBI has a disadvantage

because it is not convenient, and it cannot execute huge or complex

programs correctly.

The static analysis uses tools such as a decompiler and

disassembler to analyze the binary or code of malware to infer the

type of malware. However, this approach becomes more difficult

and complicated by evasion techniques such as code obfuscation

and packer [5]. A dynamic analysis examines the behavior of the

target file. However, dynamic analysis tools cannot provide both

accuracy and convenience when analyzing complex malware. The

debugger, widely used to analyze malware dynamically, can

examine changes in the machine’s state while executing each

command. However, the disadvantage of using a debugger is that

there are anti-debugging techniques that can detect and interfere

with the debugging process. Thus, if analysts can defeat anti-

debugging techniques that interfere with the debugger, it becomes

one of the most powerful methods for analyzing malware.

Therefore, this paper introduces anti-debugging techniques that

attack a debugger’s vulnerabilities to interfere with analysis, and

explains how to bypass analysis. In addition, it proposes anti-anti-

debugging techniques that can defeat anti-debugging techniques,

and verify the proposed method applying them to a sample

program, packed files, and actual malware with anti-debugging

modules. This paper aims to give direction for researchers who

analyze malware or those who dream of being analysts to develop

their methods or scripts that can defeat anti-debugging techniques

when using a debugger.

This paper is organized as follows. Section 2 introduces

research related to anti-debugging. Section 3 proposes anti-

debugging techniques based on artifacts and time and describes

correspondent anti-anti-debugging mechanisms. Section 4

presents the experiments performed and verifies anti-anti-

debugging techniques with a sample program, packed files, and

actual malware. Section 5 concludes the study.

2. Related Work

Analysts have continuously reviewed malware detection and

binary code analysis. On the other hand, anti-reverse engineering

research does not draw much attention from researchers except for

some category topics [6], [7]. There are various topics in anti-

reverse engineering such as anti-debugging, anti-VM, and code

encryption. To understand anti-analysis, first, malware analysis

must be briefly described. There are two different types of malware

analyses, namely static analysis and dynamic analysis. Static

analysis is a method of analyzing codes or binaries without

executing them. Analysts can observe the file’s operation code

with a decompiler or disassembler and analyze the program flow

and internal structure. Dynamic analysis probes its behavior by

executing them using a sandbox, debugger, or emulator.

Debugging refers to the process of detecting and eliminating errors

or bugs when a process operates unexpectedly or crashes. A

debugger is a tool or software that helps with this, therefore, it is a

useful tool for understanding malware’s inner workings. It

likewise helps to observe changes in registry, memory, and stack

closely while executing instructions in the target file (debuggee)

line by line. Also, analysts use debuggers because they can

manipulate elements such as code, environment, and memory. The

sandbox case runs the file to record and analyze the process and

network changes over a while [8].

However, malware developers use anti-analysis techniques

against each analysis. Therefore, anti-debugging techniques delay

malware detection and increase its life span by bypassing the anti-

virus software. Anti-analysis is a series of techniques in which

malware remains concealed, prevents detection, interferes with

analysis, and makes analyzing it challenging. It is analyzed 6,222

samples of malware and studied how malicious behaviors differed

in an environment with virtualization and a debugger [9]. As

results, they found about 40 percent malware in an environment

with a debugger performing less malicious behavior. Also, only

two percent of the samples in a virtual environment showed

malicious behavior when executed. This study shows malware

with anti-VM and anti-debugging can bypass dynamic malware

analysis tools such as a debugger, sandbox, and emulator.

Examples of anti-analysis techniques that interfere with static

analysis include packer [10]-[12], code obfuscation [5], [13], [14],

and opaque constants [15]. Packer is a technique that compresses

the executable file and creates a new program entirely different

from the original program. However, the new packed file has the

same or similar behavior with various techniques such as Portable

Executable (PE) relocation and anti-analysis. In the case of code

obfuscation and opaque constants, these are the process of

encrypting text, binary data, or code to make it difficult to

understand. For these reasons, the malware detection method

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1180

based on signature became ineffective. Thus, dynamic analysis

emerged to solve these kinds of problems. Debugging, which

analyzes malware, carefully examines details such as behaviors,

registers, and stacks while executing malware instructions by line.

However, dynamic analysis using the debugger suffers from anti-

analysis, such as anti-debugging, anti-VM, code compression,

Self-Modifying, and blocking input devices. Among the anti-

analysis, anti-debugging is an attempt by the debuggee to find or

detect evidence of an analysis environment or debugger’s

presence. It is provided an overview of the analysis disruption

techniques used by malware such as anti-debugging, anti-VM, and

obfuscation [16]. Shang Gao and Qian Lin gave an overview of

Windows’s debugging mechanism, categorized according to the

debugging methods used by the debugger, and explained the

debugging functions and anti-debugging through exceptions [17].

It is classified general malware, targeted malware to attack specific

systems and investigate how many anti-debugging techniques

applied to it [18]. Most malware had anti-debugging techniques,

however, it is found that the general malware had more anti-

debugging techniques than targeted malware.

To defeat anti-analysis techniques, analysts can defeat most

anti-debugging techniques using many CPU emulator and

virtualization tools. However, these tools are not suitable for

analyzing malware because they can analyze only a specific

process or program. Dynamic Binary Instrumentation (DBI)

framework can insert, modify, and delete code at the arbitrary

address during the program’s running [4], [19], [20], [21].

Therefore, the DBI can bypass the anti-debugging techniques by

code insertion. However, analysis is inconvenient, and some DBIs

cannot execute complex programs correctly [22]. Recently It is

proposed the Apate framework to analyze malware [23]. Apate is

a framework that hides the debugger from anti-debugging. The

spectrum of powerful anti-debugging techniques is analyzed and

classified into 79 attack vectors and six categories.

Apate is designed to defeat anti-debugging techniques by: (1)

performing just-in-timed disassembling based on single-stepping

and; (2) monitoring the execution flow of the debuggee and

modifying the state of the debuggee to hide WinDbg. It is defined

anti-debugging rule sets and proposed replacing the matching part

of the binary with other instructions. The method proposed and

modified the part that calls the anti-debugging functions in the

debugger to other instructions [24], [25]. It is proposed a new

framework for classifying, detecting and bypassing reverse

engineering prevention techniques used by malware and protecting

systems [9]. It is proposed UBER, a new system to neutralize anti-

sandbox [26]. Sandbox has many artifacts of analysis environment.

The anti-sandbox looks for various system artifacts expected to

exist in the system for identifying the sandbox environment.

UBER does not replicate artifacts or folders in use or directly

simulate user behavior. Instead, it generalizes the user’s computer

usage pattern with an abstract behavioral profile, adopts the profile

to simulate user and artifact creation operations, and then replicates

the system with the created artifacts into a sandbox. Through this,

UBER can defeat the anti-sandbox (i.e., usage artifacts analysis),

while malware in the Windows or macOS malware is increasing.

Since the tools for analyzing macOS based on malware are very

limited. It is proposed Mac-A-Mal, a framework for analyzing Mac

based malware [27]. It is developed a kernel extension to monitor

malware behavior and bypass several evasion prevention

techniques used in the wild, which uncovered 74 unknown

malware programs.

3. Defeating anti-debugging techniques

This section first finds out how anti-debugging techniques

work in Windows. Afterward, it explains how to defeat them [28].

3.1. Process Environment Block (PEB) Structure

The Process Environment Block (PEB) structure is a data

structure in the Windows NT operating system. Each process has

this structure and it contains each process information. Malware

can detect the presence of debugger without using a specific

function such as IsDebuggerPresent(). If implemented

manually, there is no way to detect this in a static analysis or initial

analysis. The anti-debugging based on PEB structure protects

programs not only by malware but also many by many packers

such as PECompact, ASPack, and ASProtect [29].

It confirms the BeingDebugged, NtGlobalFlag, and HEAP

structure to perform anti-debugging among many PEB structure

members. BeingDebugged is set to 0x0 if not debugged, and 0x1

if debugged. NtGlobalFlag has a value of 0x0 if not debugged,

and is set to a value of 0x70 if debugged. Table 1 shows the flags

of NtGlobalFlag while debugging. Not only the PEB structure,

but HEAP structure can also detect the presence of a debugger.

Table 1: Flag configurations of NtGlobalFlag member in the PEB structure

Flag Value

FLG_HEAP_ENABLE_TAIL_CHECK 0x10

FLG_HEAP_ENABLE_FREE_CHECK 0x20

FLG_HEAP_VALIDATE_PARAMETER 0x40

Table 2: Flag configurations of Flags member in the HEAP structure

Flag Value

HEAP_GROWABLE 0x2

HEAP_TAIL_CHECKING_ENABLED 0x20

HEAP_FREE_CHECKING_ENABLED 0x40

HEAP_SKIP_VALIDATION_CHECKS

(only in Windows XP or under)

0x1000000

0

HEAP_VALIDATE_PARAMETERS_ENABLE

D

0x4000000

0

Table 3: Flag configurations of ForceFlags member in the HEAP structure

Flag Value

HEAP_TAIL_CHECKING_ENABLED 0x20

HEAP_FREE_CHECKING_ENABLED 0x40

HEAP_VALIDATE_PARAMETERS 0x40000000

Anti-debugging can detect debuggers using the Flags and

ForceFlags members of the HEAP structure. Flags has a value

of 0x2 if not debugged. It has a value of 0x50000062 in Windows

XP or 0x40000062 in Windows 7 or later versions, if debugged.

ForceFlags has a value of 0x0 if not debugged, and 0x40000060

if debugged. Table 2 shows the configuration flags of Flags and

Table 3 shows the configuration flags of ForceFlags. To bypass

anti-debugging based on PEB structure, analysts can defeat anti-

debugging by modifying each member to an appropriate value,

such as 0x0 in BeingDebugged.

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1181

3.2. IsDebuggerPresent()

IsDebuggerPresent() is the function in which software can

easily detect the presence of a debugger. Malware and general

software use this function to protect itself from reverse engineering.

This function is also one of the anti-debugging techniques that

most packers such as UPX and PECompact can apply to the

original program. This function returns the BeingDebugged

member of the PEB structure. To defeat this function, one must

modify the code to return 0x0 or change the value of

BeingDebugged member of the PEB structure. This paper uses

PUSH and POP instructions to store 0x0 in the EAX register, shown

in Figure 2. The original code of IsDebuggerPresent() is the

left side of Figure 2, and the modification code of

IsDebuggerPresent() is the right side of Figure 2.

Figure 3: The original code (left) and modification code (right) of

CheckRemoteDebuggerPresent()

3.3. CheckRemoteDebuggerPresent()

CheckRemoteDebuggerPrenset() function takes the

Process Identifier (PID) of a particular process to detect whether it

is debugged or not. It calls the NtQueryInformationProcess()

function from inside to perform anti-debugging not only on

malware but also on general software, and some packers use it to

prevent debugging. The code on the left of Figure 3 is the original

code of CheckRemoteDebuggerPrenset() and as shown on the

left side of Figure 3, it calls NtQueryInformationProcess()

from inside. There are two ways to defeat this function. Firstly,

defeat the function called NtQueryInformationProcess()

internally. Secondly, store 0x0 in the EAX register to make it

always return 0x0.

This paper stores 0x0 in the stack using the PUSH instruction,

as shown on the right side of Figure 3. It then stores 0x0 in the EAX

register with POP instruction and terminates the function using

RETN. There are three essential things to defeat this function. First,

three existing instructions from the top of this code must be

maintained. The second is to store 0x0 in the EAX register and

return it. Last is to save the return address stored in the stack to the

EBP register with POP instruction, then end with RETN. Otherwise,

the flow of the debuggee gets tangled, and the analysis cannot

proceed further.

3.4. ZwQueryInformationProcess()

The developer uses ZwQueryInformationProcess()

functions for various reasons, such as finding a process path not

only for anti-debugging. However, this section, only describes

anti-debugging based on ZwQueryInformationProcess().

Figure 4 is a parameter for ZwQueryInformationProcess().

Among these parameters, ProcessInformationClass is the

type of process information to be retrieved. It performs by set a

specific value to the ProcessInformationClass parameter. If

ProcessInformationClass is set to 0x7 which means

ProcessDebugPort, it can determine whether it is debugged or

not. In case of debugging, it returns 0xFFFFFFFF (-1). If not, it

returns 0x0. Not only ProcessDebugPort, this function can

executes anti-debugging bypassing 0x1E, which means

ProcessDebugObjectHandle or 0x1F, which means

ProcessDebugFlags to the parameter

ProcessInformationClass. In the case of

ProcessDebugObjectHandle, this function returns

0x000000B4 if debugged, and it returns 0x0 if not debugged. In

the case of ProcessDebugFlags, this function returns 0x0 if

debugged, and it returns 0x1 if not debugged. The code on the left

of Figure 5 is the original code of

ZwQueryInformationProcess().

Figure 4: Parameter of ZwQueryInformationProcess()

Figure 5: The original code (left) and modification code (right) of

ZwQueryInformationProcess()

In order to bypass ZwQueryInformationProcess(), three

things are crucial: (1) the first two instructions from the top of the

original code must be executed; (2) it must return an appropriate

Figure 2: The original code (left) and modification code (right) of

IsDebuggerPresent()

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1182

value; (3) it should not interfere with the flow of the debuggee. It

needs a new virtual memory that must be allocated to handle the

number of cases and consider non-anti-debugging cases. Also,

ZwQueryInformationProcess() enters the kernel area through

KiFastSystemCall and SYSENTER instructions. Since the

debugger cannot enter the kernel, one can bypass these powerful

instructions by writing new instructions in allocated virtual

memory, as shown on the right of Figure 5. It determines whether

the received ProcessInformationClass parameter is 0x7

(ProcessDebugPort), 0x1E (ProcessDebugObjectHandle),

or 0x1F (ProcessDebugFlags). In each case, it jumps to the

address with the specific instructions. Otherwise, it returns to the

original instruction with RETN. The reason for returning to the

original function is not to disturb the flow of the debuggee.

3.5. FindWindow()

The family of FindWindow functions can find the name of the

specific window. It consists of FindWindowW(), FindWindowA(),

FindWindowExW(), and FindWindowExA(). These are anti-

debugging techniques that confirm the debugger’s window name

to see if the debuggers are running on the operating system. Figure

6 shows the parameters of FindWindowA() and FindWindowW().

The lpClassName gets a specific class name, and the

lpWindowName gets a specific window name when calling these

functions. If it finds the name of a specific window, it returns the

handle of the window. If not, it returns 0x0. If malware calls these

functions, it passes a particular debugger’s window name to the

lpWindowName parameter for anti-debugging. However, the

analysts can defeat it always to returns 0x0.

The code on the left of Figure 7 is the original code of

FindWindowW(), and the code on the right of Figure 7 is the code

to defeat it. This study allocates a virtual memory and writes new

instructions to disable anti-debugging techniques. After moving to

the allocated address through the PUSH and RETN instructions, one

must execute the existing CALL instruction. Next, it needs to get

the debugger’s window handle and compare it with the EAX

register using CMP instruction. If it is the same, it jumps by JE

instruction and stores 0x0 in the EAX register. Otherwise, it jumps

by JMP instruction and restores the return address to the EBP

register. The analysts can defeat this anti-debugging technique by

writing new instructions in virtual memory. In Figure 7, the

address of virtual memory is 0x00220000. However, this address

must point to empty virtual memory.

3.6. GetCurrentProcessId(), BlockInput()

The commercial packer such as Yoda’s Protector uses the

two functions described in this section. The malware packed with

Yoda’s Protector, it calls CreateToolHelp32Snapshot()

to obtain the PIDs and process all running processes’ information.

Next, it uses the GetCurrentProcessId() to get its process

information and then compares the two results. If the parent

process is a debugger, it interrupts analysis by terminating the

process. Therefore, to defeat this anti-debugging technique,

GetCurrentProcessId() always returns the PID of a debugger

or analysis tool by modifying the PID of the debugger and

debuggee to be the same. Analysts can defeat this technique. The

code on the left side of Figure 8 is the original code of

GetCurrentProcessId(), and the code is modified the same as

on the right side of Figure 8 to defeat this function. To match the

PID of the debugger and debuggee, it stores the PID of the

debugger (0x0EA0 in Figure 8) in the EAX register and returns it.

At this point, NOP instruction fills the remaining space of memory.

The BlockInput() blocks the input events such as keyboard and

mouse. When software calls this function, the computer blocks all

events from input devices. By blocking all input devices’ events,

signals from devices do not affect the input queue’s synchronous

key state and asynchronous key state. If the software calls this

function while running, the computer blocks the input devices’

events, and there is no solution until the software calls again. The

malware exploits this. If malware calls this function while

debugging, the computer blocks all events from input devices, and

Figure 6: Parameters of FindWindowA() and FindWindowW()

Figure 7: The original code (left) and modification code (right) of
FindWindowW()

Figure 8: The original code (left) and modification code (right) of the

GetCurrentProcessId()

Figure 9: The original code (left) and modification code (right) of BlockInput()

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1183

analysis stops. The only solution is to reboot the computer and

analyze the malware again from the beginning. This function has

a BOOL value as a parameter. If the parameter is TRUE, the

computer blocks the events. If FALSE, the computer unblocks the

events. This function returns to non-zero if it ends with no errors.

The corresponding code is the left code of Figure 9. The way to

defeat this technique is more straightforward than others. As

shown on right side of Figure 9, this is defeated by modification

with NOP instruction, which does nothing.

3.7. GetTickCount(), timeGetTime()

The anti-debugging techniques described so far are anti-

debugging based on artifacts. Those are techniques in which

malware detect analysis signs, analysis environment, or debugger.

The anti-debugging based on artifacts is the most common and

useful technique for malware to evade analysis. If a debugger runs

the program, there are differences from normal execution. The

anti-debugging based on artifacts confirms the debugger through

these differences.

However, the anti-debugging described in this section is

slightly different from the previous ones. The anti-debugging

described in this section uses time elements. The anti-debugging

based on time measures the time between a particular routine. It

compares the execution in the real system and the execution

analysis environment and indirectly detects the debugger. It

measures the time stamp counter cycle before and after starting a

particular routine in a program to confirm a debugger’s presence

because the analysis using a debugger takes a long time.

GetTickCount() starts counting after Windows boots.

Through this function, malware or software can easily determine

how long it has been since the computer booted up and got time

value every time stamp counter cycle. The return value is the 32-

bit form to keep the count for up to 49.7 days. Many developers

use this function to measure elapsed time, and malware developers

use it as well. The code on the left in Figure 10 is the original code

of GetTickCount(). To defeat this, it must return the same value

by hard coding. Hard coding is the way to develop software by

embedding data directly into the source code or memory. In this

way, it stores a meaningless value in the EAX register. Therefore,

the return value of GetTickCount() is always meaningless value

which hard coded. In other words, the measured time for a specific

routine is always same.

timeGetTime() has less overhead than

timeGetSystemTime(), because timeGetSystemTime() uses a

MMTIME structure, which contains timing information for

different multimedia data types. However, timeGetTime() uses a

DWORD structure. Moreover, timeGetTime() reacts directly to

timer interruptions and returns the time in milliseconds that have

elapsed since the Windows booted, thus GetTickCount(). The

debuggee can determine the presence of the debugger by using

precise functions such as timeGetTime(). Disabling this is not

much different with GetTickCount(). To defeat this function,

one must to return the same value all the time. The code on the left

of Figure 11 is the original code of timeGetTime(). However, if

modified as the code on the right side of Figure 11, debuggee fails

to detect the presence of debugger because it always returns the

same value.

4. Experiments

This study implemented a sample program which includes anti-

debugging techniques for the (i) Sample-ex experiment. The

sample program has various anti-debugging techniques such as the

PEB, and HEAP, among others. The sample program printed the

return value to verify the results of the anti-anti-debugging

intuitively. In the second experiment, (ii) Packed-ex, packed

programs were used for packed malware or packed software. This

study confirms the effectiveness of the proposed anti-anti-

debugging mechanisms using these programs. Finally, real

malware was employed in the in (iii) Malware-ex experiment. The

anti-anti-debugging proposed in this paper works well with benign

files, packed files, and actual malware through the step by step

experiments.

Table 4: Anti-debugging techniques of each packer

Packer Anti-Debugging Techniques

PECompact IsDebuggerPresent()

Armadillo IsDebuggerPresent()

ACProtect
IsDebuggerPresent()

ZwQueryInformationProcess()

Themida
IsDebuggerPresent()

ZwQueryInformationProcess()

Yoda’s Protector
IsDebuggerPresent()

GetCurrentProcessId()

BlockInput()

Figure 10: The original code (left) and modification code (right) of the

GetTickCount()

Figure 11: The original code (left) and modification code (right) of
timeGetTime ()

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1184

Table 5: Information of real virus

File Type Win.32.EXE

Virus Type Worm/Win32.Abuse

MD5 068c3b80106b3300548bv6vv673a3db5

Anti-Debugging

Techniques

GetTickCount()

FindWindowExA()

FindWindowA()

4.1. Experimental Data

This paper implemented a sample program including various

anti-debugging techniques for (i) Sample-ex experiment, as shown

in Figure 12. This program prints different results depending on

the presence of a debugger. Next, sample files used in the (ii)

Packed-ex experiment, packed the calculator program provided by

Windows 7 (32bit) into five packers or protectors. The common

feature of used packers or protectors is that they protect the original

software by applying one or more anti-debugging techniques. Five

packers called Yoda's Protector, Themida, ACProtect,

Armadillo, and PECompact for (ii) Packed-ex experiment were

used. These packers apply one or more anti-debugging techniques

to protect original program against reverse engineering. Table 4

shows the anti-debugging techniques applied by each packer.

Among these, the most commonly used function is

IsDebuggerPresent(), and the unusual cases are

GetCurrentProcessId() and BlockInput() used by Yoda's
Protector. Table 5 shows information about one of the malware

samples collected from VirusShare**, which is for the (iii)

Malware-ex experiment. This malware sample uses

GetTickCount(), FindWindowExA(), and FindWindowA()

functions for anti-debugging. However, it is impossible to analyze

some samples using different anti-debugging techniques such as

RDTSC instruction and Self-Modifying technique.

RDTSC is an instruction that reads the current time-stamp

counter variable. Unlike function such as timeGetTime(), RDTSC

is executed as a single instruction. In order to bypass this

instruction, it is necessary to modify the debuggee. However,

modifying the debuggee requires careful attention. Self-Modifying

is one of anti-analysis techniques. It is a technique to alter its own

codes while the file is executing. Therefore, an analyst fails to

identify the real instructions before executing Self-Modifying.

Thus, RDTSC and Self-Modifying are out of our research scope and

this paper does not handle these techniques.

4.2. Experimental Results

Figure 13 shows the results of analyzing sample data in the

debugger in (i) Sample-ex. In the case of Figure 13 (a), all of the

anti-debugging techniques used in the sample program detected a

debugger. All of these anti-debugging techniques returned and

printed artifact or evidence which indicates the presence of a

debugger. However, an analysis was made again using anti-anti-

debugging, and the results were confirmed, as shown in Figure 13

(b). It showed a completely different artifact or evidence and

message against Figure 13 (a).

This research primarily confirmed that the anti-anti-debugging

works successfully. Next, it conducted (ii) Packed-ex and analyzed

using different data. The analysis from this point shows that the

results of the analysis are limited. Therefore, the actual memory

address and instructions were shown. Figure 14 (a) is the loaded

file with Yoda’s Protector in the debugger. The number series

on the left correspond to each address, and instructions on the right

correspond to the original code. Figure 14 (b) shows the new code

to defeat GetCurrentProcessId(). It stored the PID of the

debugger, which is 0x0B5C in the EAX register, to make it the same

as shown in Figure 14 (b). This study also confirmed the results of

ZwQueryInformationProcess() used by ACProtect, as

shown in Figure 15. Figure 15 (a) is the original code and address

of ZwQueryInformationProcess(), and Figure 15 (b) is the

new instructions to defeat it. At this time, 0x003E0000 is the

address of the virtual memory. Through this, whether the anti-anti-

debugging is effective even in packed samples was secondarily

ascertained.

(a) The code of PEB.BeingDebugged for sample program (b) The code of PEB.NtGlobalFlag for sample program

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1185

(c) The code of PEB.HEAP.Flags for sample program (d) The code of PEB.HEAP.ForceFlags for sample program

(e) The code of IsDebuggerPresent()for sample program (f) The code of CheckRemoteDebuggerPresent()for sample program

(g) The code of FindWindowW() for sample program (h) The code of FindWindowA() for sample program

(i) The code of GetTickCount() for sample program (j) The code of timeGetTime() for sample program

(k) The code of ZwQueryInformationProcess – ProcessDebugPort for sample program

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1186

(l) The code of ZwQueryInformationProcess – ProcessDebugObjectHandle for sample program

(m) The code of ZwQueryInformationProcess – ProcessDebugFlags for sample program

Figure 12: Anti-debugging functions for sample program

(a) Result without anti-anti-debugging (b) Result with anti-anti-debugging

Figure 13: Results of (i) Sample-ex; (a) results without anti-anti-debugging; (b) results with anti-anti-debugging

(a) The original code and address of GetCurrentProcessId() (b) The new code and address to defeat GetCurrentProcessId()

Figure 14: Results of (ii) Packed-ex in Yoda’s Protector; (a) the original code and address of GetCurrentProcessId(); (b) the new code and address to defeat

GetCurrentProcessId()

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1187

(a) The original code and address of

ZwQueryInformationProcess()

(b) The new code and address to defeat
ZwQueryInformationProcess()

Figure 15: Results of (ii) Packed-ex in ACProtect; (a) the original code and address of ZwQueryInformationProcess (); (b) the new code and address to defeat
ZwQueryInformationProcess ()

Figure 16: Results of (iii) Malware-ex; (a), (c) and (e) are the original code of each anti-debugging; (b), (d), and (f) are modification code to defeat each anti-debugging

techniques

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1188

Table 6: Comparison results of anti-anti-debugging experiments with other works (O: successful, X: failed)

Technique Proposed Work Pin Apate Binary Substitution

IsDebuggerPresent() O O O O

CheckRemoteDebuggerPresent() O O X O

FindWindow() O O X O

QueryInformationProcess()

(ProcessDebugPort)
O O X O

QueryInformationProcess()

(ProcessDebugFlags)
O X X O

QueryInformationProcess()

(ProcessDebugObjectHandle)
O O O O

GetTickCount() O O O X

timeGetTime() O O O X

GetCurrentProcessId() O X X X

BlockInput O X O X

PEB.BeingDebugged O O O O

PEB.NtGlobalFlag O O O O

HEAP.Flags O O O X

HEAP.ForceFlags O O O X

RDTSC Instruction X X O O

Self-Modifying X X X X

Success Rate 87.5% 68.8% 62.5% 56.3%

Finally, this paper collected and experimented with malware,

which has anti-debugging techniques for (iii) Malware-ex. As a

result of the (ii) Packed-ex experiment, this paper listed the address

and instructions in Figure 16, which shows the loaded malware

sample results used in (iii) Malware-ex on the debugger and the

results of defeating its anti-debugging techniques. Figure 16 (a) is

the original code of FindWindowExA(), and Figure 16 (b) is the

new code that defeats it. This study wrote a new code that was

occupied in 0x00190000 virtual memory to defeat the function.

Figure 16 (c) is the original code of FindWindowA(), and the code

that defeats it is Figure 16 (d). This study occupied and wrote the

new code on the memory address 0x00170000 to defeat this. As

mentioned before, virtual memory addresses cannot always be the

same and must occupy the memory with empty space. The last

anti-debugging technique is GetTickCount(). Figure 16 (e) is the

original code of this function, modified as in Figure 16 (f), in which

malware failed to detect the presence of a debugger, and the

malware analysis could proceed. Thus, this study experimented

and confirmed step by step that the anti-anti-debugging proposed

in this paper is effective.

Table 6 shows the experimental results for 16 anti-debugging

techniques. The Binary Substitution [25], which shows the lowest

success rate among each work, changes debuggee’s binary. It

requires special attention. Pin [4] is an excellent analysis tool, but

it cannot defeat the anti-debugging techniques used by Yoda’s
Protector. Apate [23], which has a similar success rate to Pin,

has also been unable to defeat the anti-debugging techniques used

by Yoda’s Protector, and it can defeat fewer anti-debugging

techniques than Pin. As shown in Table 6, most anti-debugging

techniques are based on APIs, PEB, and HEAP structures.

However, there are far more anti-debugging techniques, and their

research is needed for future works.

Among the many samples, there were some that this paper

failed to analyze. Because this work can defeat some APIs and

PEB structure-based anti-debugging techniques, the anti-

debugging using different artifacts could not be defeated, such as

RDTSC instruction, Memory Breakpoint, Self-Modifying, and

Single-Step Detection [22].

5. Conclusion

Malware as well as commercial packers use various anti-

debugging techniques to protect themselves from the analysis by

reverse engineering. Anti-debugging techniques can bypass or

neutralize debugging analysis. An analyst needs an advanced

debugger and related knowledge in order to analyze malware with

anti-debugging techniques. Thus, this study proposed an anti-anti-

debugging against the anti-debugging techniques. In order to

explain the anti-anti-debugging, we expounded the anti-debugging

techniques used by malware and packers. Also, it set up a step by

step experiment for verification. It implemented, experimented,

and analyzed sample files, and packed files with anti-debugging

techniques. Finally, it experimented with the actual malware with

many anti-debugging techniques. As a result of a step by step

experiment, it found that proposed anti-anti-debugging can defeat

the anti-debugging techniques and deal with actual malware. It did

not interfere with program execution flow as less as possible by

minimizing the debuggee’s direct modification. Of course, the

method proposed in this paper cannot defeat all anti-debugging

techniques. Nevertheless, the method serves an essential part in

analyzing malware with a debugger. Furthermore, it improves the

ability to handle sophisticated debugging evasion techniques.

Also, debuggees, such as Yoda’s Protector, can call the

anti-debugging techniques more than once to interfere with the

analysis. However, the anti-anti-debugging proposed in this paper

has the advantage of being able to defeat the anti-debugging

http://www.astesj.com/

J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020)

www.astesj.com 1189

technique that is called multiple times by only modifying it once.

There are several tools and methods to disable anti-debugging

techniques, however, none elaborate on how to disable it or explain

with assembly code. Thus, this paper aims to discover for analysts

new ways to defeat anti-debugging techniques and help

researchers develop their scripts for research and analyze malware.

Data Availability

The script file used in the experiments is available at

https://github.com/goldbear564/antiantidebugging.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was supported by the National Research Foundation of

Korea (NRF) grant funded by the Korea Government (MSIT) (No.

NRF-2020R1A2C1012117, Development of machine learning

based intrusion detection platform to secure end device in edge

computing environment) and Institute of Information &

communications Technology Planning & Evaluation (IITP) grant

by the Korea government (MSIT) (No.2017-0-00158,

Development of Cyber Threat Intelligence (CTI) analysis and

information sharing technology for national cyber incident).

References

[1] R. Goyda, S. Sharma, and S. Bevinakoppa, “Obfuscation of stuxnet and flame

malware,” In. Proc. of the 3rd international conference on applied informatics
and computing theory(AICT'12), 150--154, 2012.

[2] J. W. Kim, J. Bang, Y.S. Moon, and M. J. Choi, “Disabling anti-debugging

techniques for unpacking system in user-level debugger,” in 2019
International Conference on Information and Communication Technology

Convergence(ICTC), Jeju Island, South Korea, 2019,
doi:10.1109/ICTC46691.2019.8939719.

[3] M. N. Gagnon, S. Taylor, and A. K. Ghosh, “Software protection through anti-

debugging,” IEEE Security & Privacy, 5(3), 82--84, 2007,
doi:10.1109/MSP.2007.71.

[4] C.K. Luk, R. Chon, R. Muth, H. Patil, and A. Klauser, “Pin: building

customized program analysis tools with dynamic instrumentation, ” ACM
SIGPLAN Notices, 40(6), 190--200, 2005, doi:10.1145/1064978.1065034.

[5] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware: From

encryption to metamorphism, ” International Journal of Computer Science
and Network Security, 12(8), 74--83, 2012. doi:10.1007/s11416-017-0291-9

[6] S. Bardin, R. David, and J. Y. Marion, “Backward-bounded DSE: targeting

infeasibility questions on obfuscated codes,” 2017 IEEE Symposium on
Security and Privacy, 633--651, 2017, doi:10.1109/SP.2017.36.

[7] T. Blazytko, M. Contag, and C. Aschermann, “Syntia: Synthesizing the

Semantics of Obfuscated Code,” In Proc. of USENIX Security Symposium,
643--659, 2017.

[8] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandram, and S.

Venkatran man, “Robust intelligent malware detection using deep learning,”
IEEE Access, 7, 46717--46738, 2019, doi:10.1109/ACCESS.2019.2906934.

[9] X. Chen, J. Andersen, Z. M. Mao, and M. Bailey, “Towards an understanding

of anti-virtualization and anti-debugging behavior in modern malware,” in
2008 IEEE international conference on dependable systems and networks

with FTCS and DCC(DSN), 177--186, 2008,

doi:10.1109/DSN.2008.4630086.
[10] M. J. Choi, J. Bang, J. W. Kim, H. Kim, and Y. S. Moon, “All-in-one

framework for detection, unpacking, and verification for malware analysis,”

Security and Communication Network 2019, 2019(5278137), 1--16, 2019,
doi:10.1155/2019/5278137.

[11] S. Cesare, Y. Xiang, and W. Zhou, “Malwise – an effective and efficient

classification system for packed and polymorphic malware,” IEEE
Transaction on Computers, 62(6), 1193--1206, 2013,

doi:10.1109/TC.2012.65.

[12] F. Guo, P. Ferrie, and T. C. Chiueh, “A study of the packer problem and its
solutions,” in International Workshop on Recent Advances in Intrusion

Detection, 98--115, 2008, doi:10.1007/978-3-540-87403-4_6.

[13] J. M. Borello, and L. Mé, “Code obfuscation techniques for metamorphic
viruses,” Journal in Computer Virology, 4(3), 211--200, 2008,

doi:10.1007/s11416-008-0084-2.

[14] I. You, and K. Yim, “Malware obfuscation techniques: a brief survey,” in
2010 International conference on broadband, wireless computing,

communication and applications, 297--300, 2010,

doi:10.1109/BWCCA.2010.85.
[15] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware

detection,” in 23rd Annual Computer Security Applications

Conference(ACSAC’07), 421--430, 2007, doi:10.1109/ACSAC.2007.21.
[16] R. R. Branco, G. N. Barbosa, and P. D. Neo, “Scientific but not academical

overview of malware anti-debugging, anti-disassembly and anti-vm

technologies,” in Blackhat, USA, 2012.
[17] S. Gao, and Q. Lin, “Debugging classification and anti-debugging strategies,”

in 4th International Conference on Machine Vision(ICMV): Computer Vision

and Image Analysis; Pattern Recognition and Basic Technologies, 729--734,
2012, doi:10.1117/12.924835.

[18] P. Chen, C. Huygens, L.Desmet, and W. Joosen, “Advanced or not? a

comparative study of the use of anti-debugging and anti-vm techniques in
generic and targeted malware,” in IFIP International Conference on ICT

Systems Security and Privacy Protection, 323--336, 2016, doi:10.1007/978-

3-319-33630-5_22.
[19] S. Bhansali, W. K. Chen, S. D. Jong, A. Edwards, “Framework for instruction-

level tracing and analysis of program executions,” In Proc. of the 2nd
International Conference on Virtual Execution Environments, 154--163, 2013,

doi:10.1145/1134760.1220164.

[20] P. Feiner, A. D. Brown, and A. Goel, “Comprehensive kernel instrumentation
via dynamic binary translation,” In Proc. of the 17th international conference

on Architectural Support for Programming Languages and Operating Systems,

135--146, 2012, doi:10.1145/2150976.2150992.
[21] N. Nethercote, and J. Seward, “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” ACM SIGPLAN Notices, 42(6), 89--100,

2007, doi:10.1145/1273442.1250746.
[22] S. Choi, T. Chang, S. Yoon, and Y. Park, “Hybrid emulation for bypassing

anti-reversing techniques and analyzing malware,” The Journal of

Supercomputing, 1--27, 2020, doi:10.1007/s11227-020-03270-6
[23] H. Shi, and J. Mirkovic, “Hiding debuggers from malware with apate,” In

Proc. of the Symposium on Applied Computing, 1703--1710, 2017,

doi:10.1145/3019612.3019791.
[24] J. K. Lee, B. J. Kang, and E. G. Im, “Rule-based anti-anti-debugging system,”

In Proc. of the 2013 Research in Adaptive and Convergent Systems, 353--354,

2013, doi:10.1145/2513228.2513301.
[25] J. K. Lee, B. J. Kang, and E. G. Im, “Evading anti-debugging techniques with

binary substitution,” International Journal of Security and its Applications,

8(1), 183--192, 2014, doi:10.14257/ijsia.2014.8.1.17.
[26] P. Feng, J. Sun, S. Liu, and K. Sun, “UBER: combating sandbox evasion via

user behavior emulators,” International Conference on Information and

Communications Security, 34--50, 2020, doi:10.1007/978-3-030-41579-2_3
[27] D. P. Pham, D. L. Vu, and F. Massacci, “Mac-A-Mal: macOS malware

analysis framework resistant to anti evasion techniques,” Journal of Computer

Virology and Hacking Techniques, 15(4), 249--257, 2019,
doi:10.1007/s11416-019-00335-w.

[28] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware

analysis in the modern era- a state of the art survey,” ACM Computing
Surveys (CSUR), 52(5), 1-48, 2019, doi: 10.1145/3329786.

[29] C. V. Liţă, D. Cosovan, and D. Gavriluţ. “Anti-emulation trends in modern

packers: a survey on the evolution of anti-emulation techniques in UPA
packers,” Journal of Computer Virology and Hacking Techniques, 14(2), 107-

-126, 2018, doi:10.1007/s11416-017-0291-9.

http://www.astesj.com/

	1. Introduction
	2. Related Work
	3. Defeating anti-debugging techniques
	3.1. Process Environment Block (PEB) Structure
	3.2. IsDebuggerPresent()
	3.3. CheckRemoteDebuggerPresent()
	3.4. ZwQueryInformationProcess()
	3.5. FindWindow()
	3.6. GetCurrentProcessId(), BlockInput()
	3.7. GetTickCount(), timeGetTime()

	4. Experiments
	4.1. Experimental Data
	4.2. Experimental Results

	5. Conclusion
	Data Availability
	Conflict of Interest
	Acknowledgment
	References

