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 Cyberattacks such as spear phishing and malspam pretending to be companies, institutes, and 

government officials are increasing and evolving. Malware has a variety of purposes, such as 

collecting personal information and illegal access to the system. New types of malware are 

increasing every day, and many malware programs spread all over the Internet, causing 

severe problems. To analyze such malware effectively, analysts first need to understand the 

inner structure of the malware. They can try to analyze malware manually and automatically. 

However, attackers who create malware use many different kinds of techniques, such as anti-

reverse engineering, to hinder and delay analysis. They also extend malware life through a 

combination of different techniques, such as social engineering and anti-debugging. These 

techniques make the malware more sophisticated; thus, it is hard for an analyst to detect the 

malware. Anti-debugging, one way to protect malware, is a deadly poison to malware analysts 

because it makes the analysis more difficult by detecting a debugger or debugging 

environments. Therefore, this paper describes malware’s anti-debugging techniques and how 

to defeat them through anti-anti-debugging mechanisms. It applies its findings to analyze a 

sample program, packed files, and actual malware with anti-debugging modules and 

performs various experiments to verify the proposed techniques. After the experiments, it 

confirms whether its countermeasure is useful for malware analysis. 
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1. Introduction 

In the past, the development of malware was mainly used for 

malware programmers to show off. However, malicious 

software(malware) such as virus and keylogger in recent years 

illegally accesses server systems in various ways to steal personal 

and financial information and computing power. Fatal damage, 

such as the theft of essential data of institutes, corporations, public 

institutions, and personal user information, occurs. The malware 

damage can take many forms, from stealing personal information 

such as a user’s financial information to destroying industrial 

facilities such as Stuxnet [1]. According to Symantect’s “Internet 

Security Threat Report 2019”, financial Trojans accounted for 

16% of the many malware programs spread in 2018. In addition, 

Trend Micro’s “Unseen Threats, Imminent Losses” said that a 

vulnerability was found in the Supervisory Control And Data 

Acquisition (SCADA) system, one of the industrial systems’ 

components. Also, attackers can penetrate the system through 

malware that attacks this vulnerability and illegally controls the 

SCADA system. 

New types of malware appear every day and spread over the 

Internet, causing serious problems frequently. The malware also 

uses anti-reverse engineering techniques such as Self-Modifying 

code, code compression, packing, and anti-debugging methods to 

hide internal code structures and interfere with the analysis. This 

paper is an extension of work initially presented in the 

International Conference on ICT Convergence [2] to solve these 

kinds of problems. It is challenging to analyze malware with these 

anti-reverse engineering techniques accurately and requires 

considerable time. Security experts reinforce security by using 

anti-virus software and various equipment types to minimize 

malware damage, while analysts scrutinize malware using various 

techniques, it is more likely that anti-virus software or an  

automated analysis tool fails to detect it. The workflow of malware 

analysis is as in Figure 1. Usually, when an analyst analyzes 

malware, an analyst gets information from automated and static 

tools [3]. For example, if malware has anti-reverse engineering  

analysis. After static analysis, the analyst analyzes malware 

behavior through dynamic analysis and investigates its behavior in 

more detail through advanced analysis. However, anti-debugging 

techniques are hinder all analysis steps especially advanced 
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analysis. Most of the tools in the advanced analysis are insufficient 

to deal with anti-debugging techniques. The relevant APIs and 

structures such as PEB and HEAP could be modified to defeat anti-

debugging techniques as soon as advanced analysis begins. This 

step makes it more convenient for analysts to analyze malware, and 

it could be analyzed more quickly because the malware 

interference is gone. 

 
Figure 1: Workflow in safe and accurate analysis of malware 

When analyzing malware in virtual environments such as 

QEMU, VMware, and VirtualBox, the virtual environments can be 

constructed similarly to the physical environments. The virtual 

environment analysis has advantages that are vastly similar to the 

actual execution, and does not have to worry about infecting a 

physical computer while performing malware analysis. However, 

there is a disadvantage in that analysis may be disrupted through 

the anti-VM (Virtual Machine) techniques. Anti-VM techniques 

disable malware analysis using CPU emulators or virtualization 

tools. The Dynamic Binary Instrumentation (DBI) tool can bypass 

anti-debugging by inserting or replacing code chunks into the 

operation command [4]. However, DBI has a disadvantage 

because it is not convenient, and it cannot execute huge or complex 

programs correctly. 

The static analysis uses tools such as a decompiler and 

disassembler to analyze the binary or code of malware to infer the 

type of malware. However, this approach becomes more difficult 

and complicated by evasion techniques such as code obfuscation 

and packer [5]. A dynamic analysis examines the behavior of the 

target file. However, dynamic analysis tools cannot provide both 

accuracy and convenience when analyzing complex malware. The 

debugger, widely used to analyze malware dynamically, can 

examine changes in the machine’s state while executing each 

command. However, the disadvantage of using a debugger is that 

there are anti-debugging techniques that can detect and interfere 

with the debugging process. Thus, if analysts can defeat anti-

debugging techniques that interfere with the debugger, it becomes 

one of the most powerful methods for analyzing malware. 

Therefore, this paper introduces anti-debugging techniques that 

attack a debugger’s vulnerabilities to interfere with analysis, and 

explains how to bypass analysis. In addition, it proposes anti-anti-

debugging techniques that can defeat anti-debugging techniques, 

and verify the proposed method applying them to a sample 

program, packed files, and actual malware with anti-debugging 

modules. This paper aims to give direction for researchers who 

analyze malware or those who dream of being analysts to develop 

their methods or scripts that can defeat anti-debugging techniques 

when using a debugger. 

This paper is organized as follows. Section 2 introduces 

research related to anti-debugging. Section 3 proposes anti-

debugging techniques based on artifacts and time and describes 

correspondent anti-anti-debugging mechanisms. Section 4 

presents the experiments performed and verifies anti-anti-

debugging techniques with a sample program, packed files, and 

actual malware. Section 5 concludes the study. 

2. Related Work 

Analysts have continuously reviewed malware detection and 

binary code analysis. On the other hand, anti-reverse engineering 

research does not draw much attention from researchers except for 

some category topics [6], [7]. There are various topics in anti-

reverse engineering such as anti-debugging, anti-VM, and code 

encryption. To understand anti-analysis, first, malware analysis 

must be briefly described. There are two different types of malware 

analyses, namely static analysis and dynamic analysis. Static 

analysis is a method of analyzing codes or binaries without 

executing them. Analysts can observe the file’s operation code 

with a decompiler or disassembler and analyze the program flow 

and internal structure. Dynamic analysis probes its behavior by 

executing them using a sandbox, debugger, or emulator. 

Debugging refers to the process of detecting and eliminating errors 

or bugs when a process operates unexpectedly or crashes. A 

debugger is a tool or software that helps with this, therefore, it is a 

useful tool for understanding malware’s inner workings. It 

likewise helps to observe changes in registry, memory, and stack 

closely while executing instructions in the target file (debuggee) 

line by line. Also, analysts use debuggers because they can 

manipulate elements such as code, environment, and memory. The 

sandbox case runs the file to record and analyze the process and 

network changes over a while [8]. 

However, malware developers use anti-analysis techniques 

against each analysis. Therefore, anti-debugging techniques delay 

malware detection and increase its life span by bypassing the anti-

virus software. Anti-analysis is a series of techniques in which 

malware remains concealed, prevents detection, interferes with 

analysis, and makes analyzing it challenging. It is analyzed 6,222 

samples of malware and studied how malicious behaviors differed 

in an environment with virtualization and a debugger [9]. As 

results, they found about 40 percent malware in an environment 

with a debugger performing less malicious behavior. Also, only 

two percent of the samples in a virtual environment showed 

malicious behavior when executed. This study shows malware 

with anti-VM and anti-debugging can bypass dynamic malware 

analysis tools such as a debugger, sandbox, and emulator. 

Examples of anti-analysis techniques that interfere with static 

analysis include packer [10]-[12], code obfuscation [5], [13], [14], 

and opaque constants [15]. Packer is a technique that compresses 

the executable file and creates a new program entirely different 

from the original program. However, the new packed file has the 

same or similar behavior with various techniques such as Portable 

Executable (PE) relocation and anti-analysis. In the case of code 

obfuscation and opaque constants, these are the process of 

encrypting text, binary data, or code to make it difficult to 

understand. For these reasons, the malware detection method 
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based on signature became ineffective. Thus, dynamic analysis 

emerged to solve these kinds of problems. Debugging, which 

analyzes malware, carefully examines details such as behaviors, 

registers, and stacks while executing malware instructions by line. 

However, dynamic analysis using the debugger suffers from anti-

analysis, such as anti-debugging, anti-VM, code compression, 

Self-Modifying, and blocking input devices. Among the anti-

analysis, anti-debugging is an attempt by the debuggee to find or 

detect evidence of an analysis environment or debugger’s 

presence. It is provided an overview of the analysis disruption 

techniques used by malware such as anti-debugging, anti-VM, and 

obfuscation [16]. Shang Gao and Qian Lin gave an overview of 

Windows’s debugging mechanism, categorized according to the 

debugging methods used by the debugger, and explained the 

debugging functions and anti-debugging through exceptions [17]. 

It is classified general malware, targeted malware to attack specific 

systems and investigate how many anti-debugging techniques 

applied to it [18]. Most malware had anti-debugging techniques, 

however, it is found that the general malware had more anti-

debugging techniques than targeted malware. 

To defeat anti-analysis techniques, analysts can defeat most 

anti-debugging techniques using many CPU emulator and 

virtualization tools. However, these tools are not suitable for 

analyzing malware because they can analyze only a specific 

process or program. Dynamic Binary Instrumentation (DBI) 

framework can insert, modify, and delete code at the arbitrary 

address during the program’s running [4], [19], [20], [21]. 

Therefore, the DBI can bypass the anti-debugging techniques by 

code insertion. However, analysis is inconvenient, and some DBIs 

cannot execute complex programs correctly [22]. Recently It is 

proposed the Apate framework to analyze malware [23]. Apate is 

a framework that hides the debugger from anti-debugging. The 

spectrum of powerful anti-debugging techniques is analyzed and 

classified into 79 attack vectors and six categories. 

Apate is designed to defeat anti-debugging techniques by: (1) 

performing just-in-timed disassembling based on single-stepping 

and; (2) monitoring the execution flow of the debuggee and 

modifying the state of the debuggee to hide WinDbg. It is defined 

anti-debugging rule sets and proposed replacing the matching part 

of the binary with other instructions. The method proposed and 

modified the part that calls the anti-debugging functions in the 

debugger to other instructions [24], [25]. It is proposed a new 

framework for classifying, detecting and bypassing reverse 

engineering prevention techniques used by malware and protecting 

systems [9]. It is proposed UBER, a new system to neutralize anti-

sandbox [26]. Sandbox has many artifacts of analysis environment. 

The anti-sandbox looks for various system artifacts expected to 

exist in the system for identifying the sandbox environment. 

UBER does not replicate artifacts or folders in use or directly 

simulate user behavior. Instead, it generalizes the user’s computer 

usage pattern with an abstract behavioral profile, adopts the profile 

to simulate user and artifact creation operations, and then replicates 

the system with the created artifacts into a sandbox. Through this, 

UBER can defeat the anti-sandbox (i.e., usage artifacts analysis), 

while malware in the Windows or macOS malware is increasing. 

Since the tools for analyzing macOS based on malware are very 

limited. It is proposed Mac-A-Mal, a framework for analyzing Mac 

based malware [27]. It is developed a kernel extension to monitor 

malware behavior and bypass several evasion prevention 

techniques used in the wild, which uncovered 74 unknown 

malware programs. 

3. Defeating anti-debugging techniques 

This section first finds out how anti-debugging techniques 

work in Windows. Afterward, it explains how to defeat them [28]. 

3.1. Process Environment Block (PEB) Structure 

The Process Environment Block (PEB) structure is a data 

structure in the Windows NT operating system. Each process has 

this structure and it contains each process information. Malware 

can detect the presence of debugger without using a specific 

function such as IsDebuggerPresent(). If implemented 

manually, there is no way to detect this in a static analysis or initial 

analysis. The anti-debugging based on PEB structure protects 

programs not only by malware but also many by many packers 

such as PECompact, ASPack, and ASProtect [29]. 

It confirms the BeingDebugged, NtGlobalFlag, and HEAP 

structure to perform anti-debugging among many PEB structure 

members. BeingDebugged is set to 0x0 if not debugged, and 0x1 

if debugged. NtGlobalFlag has a value of 0x0 if not debugged, 

and is set to a value of 0x70 if debugged. Table 1 shows the flags 

of NtGlobalFlag while debugging. Not only the PEB structure, 

but HEAP structure can also detect the presence of a debugger. 

Table 1: Flag configurations of NtGlobalFlag member in the PEB structure 

Flag Value 

FLG_HEAP_ENABLE_TAIL_CHECK 0x10 

FLG_HEAP_ENABLE_FREE_CHECK 0x20 

FLG_HEAP_VALIDATE_PARAMETER 0x40 

Table 2: Flag configurations of Flags member in the HEAP structure 

Flag Value 

HEAP_GROWABLE 0x2 

HEAP_TAIL_CHECKING_ENABLED 0x20 

HEAP_FREE_CHECKING_ENABLED 0x40 

HEAP_SKIP_VALIDATION_CHECKS 

(only in Windows XP or under) 

0x1000000

0 

HEAP_VALIDATE_PARAMETERS_ENABLE

D 

0x4000000

0 

 

Table 3: Flag configurations of ForceFlags member in the HEAP structure 

Flag Value 

HEAP_TAIL_CHECKING_ENABLED 0x20 

HEAP_FREE_CHECKING_ENABLED 0x40 

HEAP_VALIDATE_PARAMETERS 0x40000000 

Anti-debugging can detect debuggers using the Flags and 

ForceFlags members of the HEAP structure. Flags has a value 

of 0x2 if not debugged. It has a value of 0x50000062 in Windows 

XP or 0x40000062 in Windows 7 or later versions, if debugged. 

ForceFlags has a value of 0x0 if not debugged, and 0x40000060 

if debugged. Table 2 shows the configuration flags of Flags and 

Table 3 shows the configuration flags of ForceFlags. To bypass 

anti-debugging based on PEB structure, analysts can defeat anti-

debugging by modifying each member to an appropriate value, 

such as 0x0 in BeingDebugged. 
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3.2. IsDebuggerPresent() 

IsDebuggerPresent() is the function in which software can 

easily detect the presence of a debugger. Malware and general 

software use this function to protect itself from reverse engineering. 

This function is also one of the anti-debugging techniques that 

most packers such as UPX and PECompact can apply to the 

original program. This function returns the BeingDebugged 

member of the PEB structure. To defeat this function, one must 

modify the code to return 0x0 or change the value of 

BeingDebugged member of the PEB structure. This paper uses 

PUSH and POP instructions to store 0x0 in the EAX register, shown 

in Figure 2. The original code of IsDebuggerPresent() is the 

left side of Figure 2, and the modification code of 

IsDebuggerPresent() is the right side of Figure 2. 

 

Figure 3: The original code (left) and modification code (right) of 

CheckRemoteDebuggerPresent() 

3.3. CheckRemoteDebuggerPresent() 

CheckRemoteDebuggerPrenset() function takes the 

Process Identifier (PID) of a particular process to detect whether it 

is debugged or not. It calls the NtQueryInformationProcess() 

function from inside to perform anti-debugging not only on 

malware but also on general software, and some packers use it to 

prevent debugging. The code on the left of Figure 3 is the original 

code of CheckRemoteDebuggerPrenset() and as shown on the 

left side of Figure 3, it calls NtQueryInformationProcess() 

from inside. There are two ways to defeat this function. Firstly, 

defeat the function called NtQueryInformationProcess() 

internally. Secondly, store 0x0 in the EAX register to make it 

always return 0x0. 

This paper stores 0x0 in the stack using the PUSH instruction, 

as shown on the right side of Figure 3. It then stores 0x0 in the EAX 

register with POP instruction and terminates the function using 

RETN. There are three essential things to defeat this function. First, 

three existing instructions from the top of this code must be 

maintained. The second is to store 0x0 in the EAX register and 

return it. Last is to save the return address stored in the stack to the 

EBP register with POP instruction, then end with RETN. Otherwise, 

the flow of the debuggee gets tangled, and the analysis cannot 

proceed further. 

3.4. ZwQueryInformationProcess() 

The developer uses ZwQueryInformationProcess() 

functions for various reasons, such as finding a process path not 

only for anti-debugging. However, this section, only describes 

anti-debugging based on ZwQueryInformationProcess(). 

Figure 4 is a parameter for ZwQueryInformationProcess(). 

Among these parameters, ProcessInformationClass is the 

type of process information to be retrieved. It performs by set a 

specific value to the ProcessInformationClass parameter. If 

ProcessInformationClass is set to 0x7 which means 

ProcessDebugPort, it can determine whether it is debugged or 

not. In case of debugging, it returns 0xFFFFFFFF (-1). If not, it 

returns 0x0. Not only ProcessDebugPort, this function can 

executes anti-debugging bypassing 0x1E, which means 

ProcessDebugObjectHandle or 0x1F, which means 

ProcessDebugFlags to the parameter 

ProcessInformationClass. In the case of 

ProcessDebugObjectHandle, this function returns 

0x000000B4 if debugged, and it returns 0x0 if not debugged. In 

the case of ProcessDebugFlags, this function returns 0x0 if 

debugged, and it returns 0x1 if not debugged. The code on the left 

of Figure 5 is the original code of 

ZwQueryInformationProcess(). 

 

Figure 4: Parameter of ZwQueryInformationProcess() 

 

Figure 5: The original code (left) and modification code (right) of 

ZwQueryInformationProcess() 

 

In order to bypass ZwQueryInformationProcess(), three 

things are crucial: (1) the first two instructions from the top of the 

original code must be executed; (2) it must return an appropriate 

Figure 2: The original code (left) and modification code (right) of 

IsDebuggerPresent() 
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value; (3) it should not interfere with the flow of the debuggee. It 

needs a new virtual memory that must be allocated to handle the 

number of cases and consider non-anti-debugging cases. Also, 

ZwQueryInformationProcess() enters the kernel area through 

KiFastSystemCall and SYSENTER instructions. Since the 

debugger cannot enter the kernel, one can bypass these powerful 

instructions by writing new instructions in allocated virtual 

memory, as shown on the right of Figure 5. It determines whether 

the received ProcessInformationClass parameter is 0x7 

(ProcessDebugPort), 0x1E (ProcessDebugObjectHandle), 

or 0x1F (ProcessDebugFlags). In each case, it jumps to the 

address with the specific instructions. Otherwise, it returns to the 

original instruction with RETN. The reason for returning to the 

original function is not to disturb the flow of the debuggee. 

 

3.5. FindWindow() 

The family of FindWindow functions can find the name of the 

specific window. It consists of FindWindowW(), FindWindowA(), 

FindWindowExW(), and FindWindowExA(). These are anti-

debugging techniques that confirm the debugger’s window name 

to see if the debuggers are running on the operating system. Figure 

6 shows the parameters of FindWindowA() and FindWindowW(). 

The lpClassName gets a specific class name, and the 

lpWindowName gets a specific window name when calling these 

functions. If it finds the name of a specific window, it returns the 

handle of the window. If not, it returns 0x0. If malware calls these 

functions, it passes a particular debugger’s window name to the 

lpWindowName parameter for anti-debugging. However, the 

analysts can defeat it always to returns 0x0. 

The code on the left of Figure 7 is the original code of 

FindWindowW(), and the code on the right of Figure 7 is the code 

to defeat it. This study allocates a virtual memory and writes new 

instructions to disable anti-debugging techniques. After moving to 

the allocated address through the PUSH and RETN instructions, one 

must execute the existing CALL instruction. Next, it needs to get 

the debugger’s window handle and compare it with the EAX 

register using CMP instruction. If it is the same, it jumps by JE 

instruction and stores 0x0 in the EAX register. Otherwise, it jumps 

by JMP instruction and restores the return address to the EBP 

register. The analysts can defeat this anti-debugging technique by 

writing new instructions in virtual memory. In Figure 7, the 

address of virtual memory is 0x00220000. However, this address 

must point to empty virtual memory. 

3.6. GetCurrentProcessId(), BlockInput() 

The commercial packer such as Yoda’s Protector uses the 

two functions described in this section. The malware packed with 

Yoda’s Protector, it calls CreateToolHelp32Snapshot() 

to obtain the PIDs and process all running processes’ information. 

Next, it uses the GetCurrentProcessId() to get its process 

information and then compares the two results. If the parent 

process is a debugger, it interrupts analysis by terminating the 

process. Therefore, to defeat this anti-debugging technique, 

GetCurrentProcessId() always returns the PID of a debugger 

or analysis tool by modifying the PID of the debugger and 

debuggee to be the same. Analysts can defeat this technique. The 

code on the left side of Figure 8 is the original code of 

GetCurrentProcessId(), and the code is modified the same as 

on the right side of Figure 8 to defeat this function. To match the 

PID of the debugger and debuggee, it stores the PID of the 

debugger (0x0EA0 in Figure 8) in the EAX register and returns it. 

At this point, NOP instruction fills the remaining space of memory. 

The BlockInput() blocks the input events such as keyboard and 

mouse. When software calls this function, the computer blocks all 

events from input devices. By blocking all input devices’ events, 

signals from devices do not affect the input queue’s synchronous 

key state and asynchronous key state. If the software calls this 

function while running, the computer blocks the input devices’ 

events, and there is no solution until the software calls again. The 

malware exploits this. If malware calls this function while 

debugging, the computer blocks all events from input devices, and 

Figure 6: Parameters of FindWindowA() and FindWindowW() 

Figure 7: The original code (left) and modification code (right) of 
FindWindowW() 

Figure 8: The original code (left) and modification code (right) of the 

GetCurrentProcessId() 

Figure 9: The original code (left) and modification code (right) of BlockInput() 
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analysis stops. The only solution is to reboot the computer and 

analyze the malware again from the beginning. This function has 

a BOOL value as a parameter. If the parameter is TRUE, the 

computer blocks the events. If FALSE, the computer unblocks the 

events. This function returns to non-zero if it ends with no errors. 

The corresponding code is the left code of Figure 9. The way to 

defeat this technique is more straightforward than others. As 

shown on right side of Figure 9, this is defeated by modification 

with NOP instruction, which does nothing. 

 

 

3.7. GetTickCount(), timeGetTime() 

The anti-debugging techniques described so far are anti-

debugging based on artifacts. Those are techniques in which 

malware detect analysis signs, analysis environment, or debugger. 

The anti-debugging based on artifacts is the most common and 

useful technique for malware to evade analysis. If a debugger runs 

the program, there are differences from normal execution. The 

anti-debugging based on artifacts confirms the debugger through 

these differences. 

However, the anti-debugging described in this section is 

slightly different from the previous ones. The anti-debugging 

described in this section uses time elements. The anti-debugging 

based on time measures the time between a particular routine. It 

compares the execution in the real system and the execution 

analysis environment and indirectly detects the debugger. It 

measures the time stamp counter cycle before and after starting a 

particular routine in a program to confirm a debugger’s presence 

because the analysis using a debugger takes a long time. 

GetTickCount() starts counting after Windows boots. 

Through this function, malware or software can easily determine 

how long it has been since the computer booted up and got time 

value every time stamp counter cycle. The return value is the 32-

bit form to keep the count for up to 49.7 days. Many developers 

use this function to measure elapsed time, and malware developers 

use it as well. The code on the left in Figure 10 is the original code 

of GetTickCount(). To defeat this, it must return the same value 

by hard coding. Hard coding is the way to develop software by 

embedding data directly into the source code or memory. In this 

way, it stores a meaningless value in the EAX register. Therefore, 

the return value of GetTickCount() is always meaningless value 

which hard coded. In other words, the measured time for a specific 

routine is always same. 

timeGetTime() has less overhead than 

timeGetSystemTime(), because timeGetSystemTime() uses a 

MMTIME structure, which contains timing information for 

different multimedia data types. However, timeGetTime() uses a 

DWORD structure. Moreover, timeGetTime() reacts directly to 

timer interruptions and returns the time in milliseconds that have 

elapsed since the Windows booted, thus GetTickCount(). The 

debuggee can determine the presence of the debugger by using 

precise functions such as timeGetTime(). Disabling this is not 

much different with GetTickCount(). To defeat this function, 

one must to return the same value all the time. The code on the left 

of Figure 11 is the original code of timeGetTime(). However, if 

modified as the code on the right side of Figure 11, debuggee fails 

to detect the presence of debugger because it always returns the 

same value. 

4. Experiments 

This study implemented a sample program which includes anti-

debugging techniques for the (i) Sample-ex experiment. The 

sample program has various anti-debugging techniques such as the 

PEB, and HEAP, among others. The sample program printed the 

return value to verify the results of the anti-anti-debugging 

intuitively. In the second experiment, (ii) Packed-ex, packed 

programs were used for packed malware or packed software. This 

study confirms the effectiveness of the proposed anti-anti-

debugging mechanisms using these programs. Finally, real 

malware was employed in the in (iii) Malware-ex experiment. The 

anti-anti-debugging proposed in this paper works well with benign 

files, packed files, and actual malware through the step by step 

experiments. 

Table 4: Anti-debugging techniques of each packer 

Packer Anti-Debugging Techniques 

PECompact IsDebuggerPresent() 

Armadillo IsDebuggerPresent() 

ACProtect 
IsDebuggerPresent() 

ZwQueryInformationProcess() 

Themida 
IsDebuggerPresent() 

ZwQueryInformationProcess() 

Yoda’s Protector 
IsDebuggerPresent() 

GetCurrentProcessId() 

BlockInput() 

 

Figure 10: The original code (left) and modification code (right) of the 

GetTickCount() 

Figure 11: The original code (left) and modification code (right) of 
timeGetTime () 
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Table 5: Information of real virus 

File Type Win.32.EXE 

Virus Type Worm/Win32.Abuse 

MD5 068c3b80106b3300548bv6vv673a3db5 

Anti-Debugging 

Techniques 

GetTickCount() 

FindWindowExA() 

FindWindowA() 

 

4.1. Experimental Data 

This paper implemented a sample program including various 

anti-debugging techniques for (i) Sample-ex experiment, as shown 

in Figure 12. This program prints different results depending on 

the presence of a debugger. Next, sample files used in the (ii) 

Packed-ex experiment, packed the calculator program provided by 

Windows 7 (32bit) into five packers or protectors. The common 

feature of used packers or protectors is that they protect the original 

software by applying one or more anti-debugging techniques. Five 

packers called Yoda's Protector, Themida, ACProtect, 

Armadillo, and PECompact for (ii) Packed-ex experiment were 

used. These packers apply one or more anti-debugging techniques 

to protect original program against reverse engineering. Table 4 

shows the anti-debugging techniques applied by each packer. 

Among these, the most commonly used function is 

IsDebuggerPresent(), and the unusual cases are 

GetCurrentProcessId() and BlockInput() used by Yoda's 
Protector. Table 5 shows information about one of the malware 

samples collected from VirusShare**, which is for the (iii) 

Malware-ex experiment. This malware sample uses 

GetTickCount(), FindWindowExA(), and FindWindowA() 

functions for anti-debugging. However, it is impossible to analyze 

some samples using different anti-debugging techniques such as 

RDTSC instruction and Self-Modifying technique. 

RDTSC is an instruction that reads the current time-stamp 

counter variable. Unlike function such as timeGetTime(), RDTSC 

is executed as a single instruction. In order to bypass this 

instruction, it is necessary to modify the debuggee. However, 

modifying the debuggee requires careful attention. Self-Modifying 

is one of anti-analysis techniques. It is a technique to alter its own 

codes while the file is executing. Therefore, an analyst fails to 

identify the real instructions before executing Self-Modifying. 

Thus, RDTSC and Self-Modifying are out of our research scope and 

this paper does not handle these techniques. 

4.2. Experimental Results 

Figure 13 shows the results of analyzing sample data in the 

debugger in (i) Sample-ex. In the case of Figure 13 (a), all of the 

anti-debugging techniques used in the sample program detected a 

debugger. All of these anti-debugging techniques returned and 

printed artifact or evidence which indicates the presence of a 

debugger. However, an analysis was made again using anti-anti-

debugging, and the results were confirmed, as shown in Figure 13 

(b). It showed a completely different artifact or evidence and 

message against Figure 13 (a).  

This research primarily confirmed that the anti-anti-debugging 

works successfully. Next, it conducted (ii) Packed-ex and analyzed 

using different data. The analysis from this point shows that the 

results of the analysis are limited. Therefore, the actual memory 

address and instructions were shown. Figure 14 (a) is the loaded 

file with Yoda’s Protector in the debugger. The number series 

on the left correspond to each address, and instructions on the right 

correspond to the original code. Figure 14 (b) shows the new code 

to defeat GetCurrentProcessId(). It stored the PID of the 

debugger, which is 0x0B5C in the EAX register, to make it the same 

as shown in Figure 14 (b). This study also confirmed the results of 

ZwQueryInformationProcess() used by ACProtect, as 

shown in Figure 15. Figure 15 (a) is the original code and address 

of ZwQueryInformationProcess(), and Figure 15 (b) is the 

new instructions to defeat it. At this time, 0x003E0000 is the 

address of the virtual memory. Through this, whether the anti-anti-

debugging is effective even in packed samples was secondarily 

ascertained.  

 

  

(a) The code of PEB.BeingDebugged for sample program (b) The code of PEB.NtGlobalFlag for sample program 
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(c) The code of PEB.HEAP.Flags for sample program (d) The code of PEB.HEAP.ForceFlags for sample program 

  

(e) The code of IsDebuggerPresent()for sample program (f) The code of CheckRemoteDebuggerPresent()for sample program 

  

(g) The code of FindWindowW() for sample program (h) The code of FindWindowA() for sample program 

  

(i) The code of GetTickCount() for sample program (j) The code of timeGetTime() for sample program 

 

(k) The code of ZwQueryInformationProcess – ProcessDebugPort for sample program 

http://www.astesj.com/


J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020) 

www.astesj.com     1186 

 

(l) The code of ZwQueryInformationProcess – ProcessDebugObjectHandle for sample program 

 
(m) The code of ZwQueryInformationProcess – ProcessDebugFlags for sample program 

Figure 12: Anti-debugging functions for sample program 

  

(a) Result without anti-anti-debugging (b) Result with anti-anti-debugging 

Figure 13: Results of (i) Sample-ex; (a) results without anti-anti-debugging; (b) results with anti-anti-debugging 

 
 

(a) The original code and address of GetCurrentProcessId() (b) The new code and address to defeat GetCurrentProcessId() 

Figure 14: Results of (ii) Packed-ex in Yoda’s Protector; (a) the original code and address of GetCurrentProcessId(); (b) the new code and address to defeat 

GetCurrentProcessId() 

http://www.astesj.com/


J. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1178-1189 (2020) 

www.astesj.com     1187 

 

 
 

 

 

 

 

 

 

 

  
(a) The original code and address of 

ZwQueryInformationProcess() 

(b) The new code and address to defeat 
ZwQueryInformationProcess() 

Figure 15: Results of (ii) Packed-ex in ACProtect; (a) the original code and address of ZwQueryInformationProcess (); (b) the new code and address to defeat 
ZwQueryInformationProcess () 

 

 

Figure 16: Results of (iii) Malware-ex; (a), (c) and (e) are the original code of each anti-debugging; (b), (d), and (f) are modification code to defeat each anti-debugging 

techniques 
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Table 6: Comparison results of anti-anti-debugging experiments with other works (O: successful, X: failed) 

Technique Proposed Work Pin Apate Binary Substitution 

IsDebuggerPresent() O O O O 

CheckRemoteDebuggerPresent() O O X O 

FindWindow() O O X O 

QueryInformationProcess() 

(ProcessDebugPort) 
O O X O 

QueryInformationProcess() 

(ProcessDebugFlags) 
O X X O 

QueryInformationProcess() 

(ProcessDebugObjectHandle) 
O O O O 

GetTickCount() O O O X 

timeGetTime() O O O X 

GetCurrentProcessId() O X X X 

BlockInput O X O X 

PEB.BeingDebugged O O O O 

PEB.NtGlobalFlag O O O O 

HEAP.Flags O O O X 

HEAP.ForceFlags O O O X 

RDTSC Instruction X X O O 

Self-Modifying X X X X 

Success Rate 87.5% 68.8% 62.5% 56.3% 

 

Finally, this paper collected and experimented with malware, 

which has anti-debugging techniques for (iii) Malware-ex. As a 

result of the (ii) Packed-ex experiment, this paper listed the address 

and instructions in Figure 16, which shows the loaded malware 

sample results used in (iii) Malware-ex on the debugger and the 

results of defeating its anti-debugging techniques. Figure 16 (a) is 

the original code of FindWindowExA(), and Figure 16 (b) is the 

new code that defeats it. This study wrote a new code that was 

occupied in 0x00190000 virtual memory to defeat the function. 

Figure 16 (c) is the original code of FindWindowA(), and the code 

that defeats it is Figure 16 (d). This study occupied and wrote the 

new code on the memory address 0x00170000 to defeat this. As 

mentioned before, virtual memory addresses cannot always be the 

same and must occupy the memory with empty space. The last 

anti-debugging technique is GetTickCount(). Figure 16 (e) is the 

original code of this function, modified as in Figure 16 (f), in which 

malware failed to detect the presence of a debugger, and the 

malware analysis could proceed. Thus, this study experimented 

and confirmed step by step that the anti-anti-debugging proposed 

in this paper is effective. 

Table 6 shows the experimental results for 16 anti-debugging 

techniques. The Binary Substitution [25], which shows the lowest 

success rate among each work, changes debuggee’s binary. It 

requires special attention. Pin [4] is an excellent analysis tool, but 

it cannot defeat the anti-debugging techniques used by Yoda’s 
Protector. Apate [23], which has a similar success rate to Pin, 

has also been unable to defeat the anti-debugging techniques used 

by Yoda’s Protector, and it can defeat fewer anti-debugging 

techniques than Pin. As shown in Table 6, most anti-debugging 

techniques are based on APIs, PEB, and HEAP structures. 

However, there are far more anti-debugging techniques, and their 

research is needed for future works. 

Among the many samples, there were some that this paper 

failed to analyze. Because this work can defeat some APIs and 

PEB structure-based anti-debugging techniques, the anti-

debugging using different artifacts could not be defeated, such as 

RDTSC instruction, Memory Breakpoint, Self-Modifying, and 

Single-Step Detection [22]. 

5. Conclusion 

Malware as well as commercial packers use various anti-

debugging techniques to protect themselves from the analysis by 

reverse engineering. Anti-debugging techniques can bypass or 

neutralize debugging analysis. An analyst needs an advanced 

debugger and related knowledge in order to analyze malware with 

anti-debugging techniques. Thus, this study proposed an anti-anti-

debugging against the anti-debugging techniques. In order to 

explain the anti-anti-debugging, we expounded the anti-debugging 

techniques used by malware and packers. Also, it set up a step by 

step experiment for verification. It implemented, experimented, 

and analyzed sample files, and packed files with anti-debugging 

techniques. Finally, it experimented with the actual malware with 

many anti-debugging techniques. As a result of a step by step 

experiment, it found that proposed anti-anti-debugging can defeat 

the anti-debugging techniques and deal with actual malware. It did 

not interfere with program execution flow as less as possible by 

minimizing the debuggee’s direct modification. Of course, the 

method proposed in this paper cannot defeat all anti-debugging 

techniques. Nevertheless, the method serves an essential part in 

analyzing malware with a debugger. Furthermore, it improves the 

ability to handle sophisticated debugging evasion techniques. 

Also, debuggees, such as Yoda’s Protector, can call the 

anti-debugging techniques more than once to interfere with the 

analysis. However, the anti-anti-debugging proposed in this paper 

has the advantage of being able to defeat the anti-debugging 
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technique that is called multiple times by only modifying it once. 

There are several tools and methods to disable anti-debugging 

techniques, however, none elaborate on how to disable it or explain 

with assembly code. Thus, this paper aims to discover for analysts 

new ways to defeat anti-debugging techniques and help 

researchers develop their scripts for research and analyze malware. 

Data Availability 
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https://github.com/goldbear564/antiantidebugging. 
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