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 The fast-paced development of smart technologies and the prevalence of vehicles, created 
an urgent demand to study and improve safety issues related to driving. In order to reduce 
traffic accidents, driving behavior was found to be very important issues to study and 
investigate. Recently, the advent and widespread of smartphone platforms with advanced 
computing competence and embedment of a variety sensing elements have greatly 
contributed to the development of solutions that can detect, and evaluate driving behavior 
and skills. In this study the development of a real-time smartphone-based identification and 
classification system for highway driving maneuvers is presented. The proposed system has 
been designed to detect ten different maneuvers usually performed by drivers when driving 
on highways. The methodology is based on separating the identification and the 
classification processes. The identification process is performed by a hybrid pattern 
matching scheme that combines Dynamic Time Warping (DTW) and neural networks. 
While a second neural network has been used to classify maneuvers, severity based 
statistical and time features. The separation of the identification and classification 
processes simplifies and accelerates the learning processes of the neural networks and 
greatly improves both system’s reliability and accuracy 
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1. Introduction  

During the last century vehicles have prevailed all over the 
world and have greatly contributed to the development and 
prosperity of the world economy. According to [1], the number of 
registered vehicles in the world has increased from 1.015 billion in 
2010 to nearly 1.5 billion in 2020. In spite of all their positive 
impacts, vehicles have negative consequences on environmental 
pollution, global warming and greenhouse gas emissions, 
congested roads and noises, fuel consumption, social impacts, road 
accidents and many others to list. These negative consequences 
have stringent the environmental and safety regulations and 
standards for automotive industry. Therefore, to be in compliance 
with the regulations and standards, innovative solutions and newly 
emerging technologies have been adopted and utilized to provide 
the utmost advanced, efficient, safest and comfortable 
transportation means. In these days, high-end vehicles are 
equipped with smart systems such as cruise control, advanced 
emergency braking, safety warning systems, GPS technology for 
navigation, fuel efficiency, and automated driving system. 
Furthermore, in the near future, the automotive industry is 
expected to evolve even further by the production of autonomous 

vehicles that operate in a fully connected and digitized 
environment. Such immense leap in transportation technologies is 
only made possible by intensive studies in the field of vehicular 
applications especially the studies of driving behaviors. 

Although that advanced technologies such as smart safety 
systems have been integrated within modern, still fully human 
driven vehicles is and will continue to dominate traffic safety since 
almost all of vehicles in use at the present time are of conventional 
type. Conventional vehicles are those fully driven and controlled 
by human drivers, and have few or none of the new technologies 
and accessories. The impediment in utilizing the new technologies 
is due to prohibitive cost that cannot be afforded by most of 
vehicles’ owners especially in developing countries in addition to 
insulation difficulties [2]. Based on this argument, safety and road 
accidents due to human errors are still urgent issues that need to be 
addressed and solved for the majority of conventional vehicles. 
Based on the World Health Organization reports, vehicle accidents 
are considered to be the ninth cause of death in the world in 
addition they are a leading cause of fatal injuries [3]. Previous road 
safety studies and statistics have showed that the majority of road 
accidents are attributed to both physiological and behavioral 
human factors [4]. Therefore, research in the field of driving 
behavior monitoring systems has gained great momentum and 
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several research institutes have developed systems to monitor and 
analyze the driving patterns and activities. Beside their urgent 
importance these studies serve the research and developments of 
different applications such as the design of advanced driver 
assistance system, intelligent transportation systems, and 
autonomous vehicles [5-6]. Additionally, they helped logistics 
companies to reduce their operational costs through tracking and 
monitoring their vehicles [7], and insurance companies to evaluate 
the driver performance, usage and can be used to resolve insurance 
tariffs and disputes [8].  

The study and analysis of the concepts related to driving 
processes and problems involve the utilization of Driving 
Monitoring and Assistance System (DMAS). DMASs are usually 
designed to at least provide two main tasks, data acquisition and 
driving maneuvers analysis. The first unit is responsible for 
automating the collection of driving data, such as driver’s 
attentiveness, vehicle dynamic state, driver’s actions and driving 
environment or surrounding. The second unit is designed to extract 
patterns and features from the driving data and then utilizes 
intelligent computational techniques to identify and classify the 
driving behavior. In general real-time acquisition of driving 
patterns and parameters can be achieved through various types of 
sensors, such as GPS, GNSSs, In-Vehicle sensors such as CAN-
BUS signals, costumed designed systems, vision systems and 
smartphones. Among this range of sensing platforms smartphone-
based DMAS have growing so rapidly in number and 
sophistication, due to the prevalence, continuous improvement of 
the computing power, advancement of integrated sensors and 
continuous reduction cost in smartphones. Therefore, smartphones 
are taking an important role in the field of Intelligent Transport 
Systems such as vehicle monitoring driver behavior analysis [9]. 

This paper is an extended version of the work published in [10] 
and it is intended to presents the development of a real-time 
smartphone-based highway driving maneuvers identification and 
classification system. The system consists of three layers namely, 
data acquisition layer, preprocessing layer and the identification 
and classification layer. It is well known that the estimation driving 
parameters with high degree of accurately greatly affects the 
detection and classification of driving maneuvers. Therefore, in 
this paper a new approach to estimate the speed of a moving 
vehicle derived from GPS and the IMUs is developed. The 
identification and classification layer consists of three main units, 
a pattern matching units, to identify the patterns of estimated 
driving parameters. The DTW technique is used to identify the 
pattern of each driving parameter during maneuver execution. The 
second unit consists of a single feed-forward neural network that 
will identify the type of the maneuver based on the combination of 
the identified patterns from the first unit. Finally the third unit is 
responsible for the manoeuver classification and it is performed by 
a second neural network. 

2. Literature Review 

 In the past decade several techniques and methodologies have 
been proposed and used to recognize and classify driving 
maneuvers and then infer an evaluation for driving behavior. Up 
to date there is no agreement on the parameters and techniques that 
could uniquely be used for this purpose. This section presents a 
short review of the existing technologies and methodologies used 

for driving maneuvers identification and classification. The 
literature review illustrates only two major issues related to this 
field of research namely, the data collection and identification and 
classification techniques. 

Depending on the purpose and functionalities that is required 
to be achieved, there are various types of data acquisition systems 
(DAS) developed in the past ten years. The first category of DAS 
relies on the in-vehicle sensors which broadcast their data through 
the CAN-BUS which can be captured through the OBD II port. 
These systems can only provide information that can be used to 
monitor vehicle’ state such as speed, fuel consumption and engine 
RPM and some limited information related to the driver actions 
such as throttle pedals positions [11, 12]. Many research centers 
have developed customized monitoring systems that combine in-
vehicle sensors with GPS unit, inertial measurement units, and 
video systems of the external road and traffic environment and 
inside the vehicle itself [13]. In general sensors are configured to 
perceive external and internal environments to provide contextual 
details about the driving and drivers states. The drawbacks of the 
simple plug and play monitoring systems are the limited data that 
can be extracted with. On the other hand, drawbacks of in-vehicle 
customized systems are their high cost, installation complexity, 
compatibility and customer acceptance [5]. The developments of 
smartphones in terms of computational power and integration of 
sensing devices such as Inertial Measurement Units (IMUs), GPS 
and many other sensors combined with their ubiquitous presence 
have led to wide prevalence of smartphones in vehicular 
applications. Nevertheless, there are shortcomings when 
employing smartphones as monitoring systems such noisy 
measurement, coordinates orientation due smartphone placement, 
battery life and they cannot access vehicles data by their own. 
Several techniques, as they will be explained later, have been 
developed to provide the required remedies to overcome these 
problems [14]. Smartphones have also been utilizes as an 
intermediate processing hub with the aid of special applications to 
collect vehicle’s sensors data and perform the necessary 
computation. In general, these applications enable the smartphone 
to communicate with the OBD-II port, either through Bluetooth or 
WiFi, and to collect a number of vehicle’s sensors data such as the 
speed, engine RPM and many other diagnosis parameters. The 
processing of these in-vehicle sensors’ data streams can be 
combined with smartphone sensors to further enrich the analysis 
[15]. 

Based on the collected data or the estimated driving parameters 
and the maneuvers to be detected, different techniques have been 
suggested to identify the type of a maneuver and classify it. A 
straightforward approach used to process the driving data is based 
on specifying a number of thresholds for each maneuver, that are 
defined merely based on the range of collected driving data and the 
experience. Once the sensed signals exceed a predefined threshold 
for a specified period of time then a maneuver is detected [16-19]. 
The main disadvantage in using threshold-based approaches is 
related to the absence of both the sensitivity and specificity that are 
required to obtain accurate identification and classification since 
improper definition of thresholds can result in poor performance. 
In a different approach, researchers considered the vehicle driving 
as a reasoning process, hence rule-base and fuzzy logic systems 
have been used to model driving behavior in terms of driving 
maneuvers classification only, i.e. it is not possible to detect the 
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type of the maneuver by using fuzzy logic schemas [13,20-24]. 
The implementation of a classical fuzzy logic classifier depends on 
the definition and setting of fuzzy input variables, the rule-based 
inference system and the fuzzification and defuzzification 
processes.  Therefore, fuzzy logic classifiers are not constantly 
precise, since the both the fuzzy rules and conclusions are based 
on postulation, so it may not be widely accepted. Furthermore, they 
don't have the capability of machine learning and the setting of the 
precise inference rules and, membership functions is a difficult 
task. To overcome the aforementioned limitations in both 
threshold-based and fuzzy logic classifiers several adaptive 
methods have been proposed to automatically generate thresholds 
and fuzzy rules from numerical data [20-24]. Adaptive systems 
have showed distinctive superiority over classical fuzzy systems 
due to their learning capabilities, their ability to be modified and 
extended and finally the ability to extract newly modified rules and 
fuzzy variables. As a consequence of this combination between the 
adaptive learning and human experience adaptive vigorous 
classification systems can be designed with high degree of 
reliability and accuracy. 

Since the data and information used in the identification and 
classification of driving behaviors and maneuvers are time varying 
signals, pattern matching techniques, such as DTW, have been 
employed. In this approach the maneuvers are identified and 
classified by comparing the similarity of the collected sensors’ 
signals or estimated driving parameters patterns with predefined 
templates. If the incoming measured sequence has adequate 
similarity to one of the standard templates, then the system will 
indicate that a specific driving maneuver has been executed or 
detected. The major advantage of pattern matching techniques is 
that the system can sense maneuvers in spite of any differences, in 
their amplitudes or durations, with predefined templates. 
Therefore, it would be possible to develop a single set of standard 
templates that be used for matching maneuvers for different drivers 
to the same template set [25-28]. The main drawback of pattern 
matching approach is excessive computational requirements since 
the algorithms compute the similarity differences for all elements 
in two signals. This problem will be more significant when the 
classification analysis is dependent on multidimensional time 
series. Furthermore, enormous effort is required to extract and 
select the reference templates and it is also very hard to gather all 
types of templates due to the exclusive driving styles and behaviors 
of drivers.  

Very recently, machine learning algorithms have been adopted 
and implemented to identify and classify driving maneuvers. 
Machine learning algorithms, when are well trained can generate 
specific rules that will enable them to identify and classify abrupt 
irregularity on a large set of data. Different approaches have been 
suggested and implemented to extract features for training these 
approaches such as simple threshold-based discriminators, 
statistical values, time domain parameters, frequency domain 
parameters, and most importantly rules inferred from clustering 
algorithms. Machine learning algorithms are generally categorized 
into three different approaches namely the supervised learning, 
unsupervised learning and semi-supervised learning. In 
Supervised learning techniques a dataset is first collected and 
labeled to certain predefined classes. Then a learning model is 
chosen and trained with some of the labeled dataset to produce a 
predicted output in different testing samples. Several algorithms 

under the supervised learning category have been used in the 
identification and classification of driving maneuvers and behavior 
such as K-Nearest Neighbor, Naive Bayes, Decision Trees [29], 
linear regression [30], Support Vector Machines (SVM) [31-32] 
and Neural Networks [33]. Unsupervised learning methods are 
used when there are no pre-knowledge about ground truth labels. 
Therefore, they are used to classify collected unknown data into 
groups depending on common trends, attributes, patterns, or 
relationships. There are different unsupervised approaches such as 
clustering techniques and self-organizing maps. Each approach 
uses different algorithm for classifying data into groups, and these 
algorithms could be simple straightforward that can divide 
collected data based on the common attributes or similar trends in 
their features. Nevertheless, when performing a pre-processing 
step of the data, unsupervised learning techniques are usually used 
with other techniques to enable specific characteristics of the 
learning model,. The K-means clustering [34] and Principal 
Component Analysis algorithms [30] are samples of the 
approaches used in driving behavior analysis. 

2.1. Data Collection  

As it has been stated modern smartphones are integrated with 
sensors that can be utilized to collect vehicle driving data for 
driving maneuver analysis. Previous work [35, 36] showed that 
precisely preprocessed and calibrated smartphone sensors are 
becoming a competitive approach to the high price in-vehicle 
customized DAS. In this study ten frequent maneuvers usually 
executed by drivers during highway driving are going to be 
detected and classified. Four of these maneuvers namely, braking, 
acceleration and left and right lane changes will be analyzed for 
both straight and curved road segments, in addition to another two 
maneuvers which are the merging on or exiting a highway. In the 
preliminary stages of this study an online vehicle driving data 
recording system has be developed and installed on three different 
android-based smartphones. The sensors that have been used are 
the Accelerometer, Gyroscope and the GPS. The developed App 
has been test by comparing its performance with well-established 
available Apps like AndroSensor. The sampling rate for the IMUs 
is in the range between 50 and 100 Hz, from which the optimal 
sampling rate then will be obtained.    

 
Figure 1: The route used to collected training data 

The development of the system proposed in this study passed 
through two phases, the development and testing phase and the 
final real-time testing phase. In the first phase adequate data for 
training and testing the system were first collected. Ten drivers 
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with different vehicles were enlisted to drive along a highway route 
of 16km long that covers varying road conditions as shown in 
Figure 1. In order to have adequate data for training and testing 
each driver repeat each of the basic divining maneuvers for at least 
five times with different severity levels from the defensive to the 
aggressive level. Data collected from inertial sensors in these tests 
are first pre-processed, then segmented and finally labeled into 
types and classes.  

In addition to the collected data by the smartphone the state of 
the surrounding vehicles and the state of the driver have been 
recorded by two video cameras. These two recorded videos are 
combined with the manually segmented vehicle’s driving data to 
define each recorded maneuver’s irregularity levels by three 
experts. Each expert examined all recorded maneuver and assigned 
a category or a score for them. Each extracted maneuver will be 
assigned with an inter-rater agreement score that is calculated from 
the scores provided by each expert. If the inter-rater agreement 
score is low then the maneuver is assigned with deviated scores by 
the experts and there is no agreement on the classification. 
Therefore, experts are requested to iterate their evaluation to reach 
a high inter-rater agreement score for most of the extracted 
maneuvers.   

 
Figure 2: The route used to test data 

One of the common problems that obstruct the development of 
reliable and accurate classification systems is the lack of adequate 
training and testing data. The lack of sufficient data for any 
classification problem could results in a noisy and instable class 
distribution. Therefore, for the sake of improving the system a 
second dataset was collected by installing a special app, developed 
by the author, in the smartphones of different 15 drivers, whom 
they drive on a daily base from the city of Nizwa to the capital 
Muscat over the route shown in Figure 2. The aim of collecting the 
second dataset is to enrich the training and testing data by 
performing a naturalistic driving through a route that is very 
dynamic and contains almost every different road types. 

3. Calibration and Signal Processing 

Smartphones’ sensors are cheap low-grade sensors that have 
several deficiencies that may impose restrictions to their use in 
certain class of applications. In vehicular applications, it is hard to 
measure and guarantee smartphones accuracy and reliability due 
to five main prominent problems and limitations namely:  

1- Sensor and algorithm complexity  

2- Limited battery power. 
3- The perturbation of the measurements due to the usage 
of the device that causes change in its orientation.  

4- The low accuracy of smartphone sensors. 

3.1. Sensors Calibration 

Smartphones’ IMUs have poor performance and are prone to 
error when especially used in measuring dynamic motion 
applications such as vehicle driving patterns. Therefore, sensors 
calibrations are used to correct sensors’ deterministic errors. The 
most common types of these sources of errors are biases, scale 
factors and axes misalignment. In addition to the above mentioned 
deterministic errors, smartphones’ sensors are also exposed to 
random noise and vibration, non-linearity due to thermal and 
magnetic effect and many others [37, 38]. To overcome these 
deficiencies a proper calibration process has been employed to 
eliminate Smartphones’ sensors deterministic errors namely, fixed 
biases, scale factor errors, and misalignment errors.   

The accelerometers are used to measure the instantaneous 
forces acting on the sensor. The measured acceleration along any 
axis consists of three components namely; linear acceleration, 
gravitational acceleration field and noise. On the other hand, the 
gyroscope measures the rate of change in the device's angular 
displacement, i.e. angular velocity, along the smartphone’s three 
orthogonal axes. As mentioned errors in an IMU’s measurements 
are contributed to three main categories: biases, scale-factor errors, 
and misalignment errors. The following equations (1) and (2) are 
used to model the accelerometer and gyroscope instantaneous 
measurement:  

am(t) = SaaL(t) − g + ba + na                                                  
(1) 

ωm(t) = Sgω(t) + bg + ng                                                        
(2) 

Here am, aL, Sa, g, ba and na represent the instantaneous 
measured acceleration component, the linear acceleration, scaling 
factor, gravitational acceleration, bias and noise respectively. 
While ωm, ω, Sg, bg and ng represent the measured angular velocity 
along one of the three axes, the true angular velocity, scaling 
factor, bias and noise respectively.  In this paper a new set of 
calibration procedures were proposed and used to estimate and 
calibrate smartphone’s IMU sensors deterministic errors by 
considering the effects of vehicle vibration and noise [39-40].  

3.2. Filtering 

It is well known that data collected using IMU sensors contains 
substantial noise level, specially the accelerometer and the 
gyroscope readings. The noise in raw data can be contributed to 
several sources but mainly it is due to vibration noise and white 
Gaussian noise. There are different sources of vibration in vehicles 
such as road roughness, engine induced vibration, whirling of 
shafts, worn out parts, speed bumps, wheels, etc. In general, the 
data collected from the sensors contains random white Gaussian 
noise signals that oscillate with high frequency and typically have 
zero mean value. A sample for the measured noisy accelerometer 
and gyroscope signals are shown in Figure 3). In order to attain 
reliable and accurate recognition, the noise needs to be eliminated 
as much as possible. There are different approaches to filter 
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distorted signals; for example statistical filters [41], digital filters 
[27], Kalman Filter [42] and many others.  

 
Figure 3: Noisy Smartphone Sensors Signals: (a) Accelerometer Signal x-

Direction, (b) Accelerometer Signal y-Direction, (c) Gyroscope Signal x-
Direction and (d) Gyroscope Signal z-Direction 

In this paper three types of low-pass filters have been 
investigated namely; one-dimensional Kalman filter, simple 
moving average filter, and locally weighted running line smoother 
(LOSS). The performances of the aforementioned filters were 
compared to select the filter that effectively removes high 
frequency noise and maintain the real time variation of different 
driving patterns to the utmost extent.  

 
Figure 4: Filtering Results for Test Signal; (a) Original Test Signal; (b) 

Moving Average Filtering; (c) Kalman Filtering; (d) LOSS Filtering 

The simplest filter is the moving average filter which filters the 
measured sampled signal by replacing each sampled value with the 
average of the neighboring sampled values defined within a given 
span or window. Kalman filter is a recursive predictive filter that 
is based on the use of state space techniques and recursive 
algorithms. The filter observes over time a series of measured data 
values, including noise, and then estimates new values that tend to 
be more accurate than those based on the actual measurement. The 
LOESS filter estimates the latent function in a point-wise fashion, 
where for each value of the measured sampled signal a new 
estimated value is found by using its weighted neighboring 
sampled (known) values.  Detailed theory and implementation of 
this type of filters is presented in [43]. Due to the random irregular 
road pavement and vehicle vibration, it is found that the separation 
between of the real signals through total elimination of noise is not 
possible. Therefore, a test sinusoidal signal with imposed noise is 
used to assess the performance of the three filtering approaches. 
Figure 4 shows the results obtained for the three filters. It is clear 
that the LOESS technique can achieve very close results to Kalman 
filter where both effectively remove the nose while preserving the 
shape of the original signal. Figure 5 shows a sample of the 

measured accelerometer signals, from which the same conclusion 
regarding the two filters can be drawn. The LOSS filter has been 
used in the implementation of noise filtering unit of the complete 
system because of it is simpler to implement and faster to execute. 

 
Figure 5: Raw and Filtered Accelerometer Signal 

3.3. Smartphone Orientation 

When smartphones are used to detect vehicle’s driving patterns 
they could be placed at any location with any arbitrary orientation. 
Since sensors’ measured signals are expressed in a specific frame 
that is static relative to the device, then one of the most interesting 
problems of smartphone-based vehicular applications is the 
separation of the dynamics of the smartphone from the dynamics 
of the vehicle. In this paper the smartphone is fixed to the 
windshield by a holder and it could have any orientation. 
Therefore, a reorientation correction process for the smartphone’s 
coordinate systems is integrated as a pre-processing module to 
transform the measured sensors data to the vehicle coordinate 
system. This process is performed by a sequence of geometrical 
rotations using Euler Angles by assuming that the vehicle is 
horizontally aligned during the initial calibration period, so that the 
vehicle roll and pitch angles relative to a tangent frame both are 
zero. Assuming that the vehicle does not experience any 
acceleration, the smartphone’s roll and pitch angles can be 
estimated from accelerometer measurements of the gravity vector 
as shown in Figure 6.  

The determination of Euler angles has fully detailed in [44]. 
Upon the determination of rotational angles, the referenced 
coordinate system for the smartphone can be transformed to the 
vehicle-referenced coordinate system by multiplying with the 
reorientation matrices as follows: 

 
Figure 6:  Smartphone and Vehicle Coordinate Systems 
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�
fxv
fyv
fzv
� = ℝ ∗ �

fxp
fyp
fzp
�                                                                   (3) 

where fiv is the transformed measured signal to the vehicle 
reference, fip the measure signal in the phone reference and R is 
rotation matrix defined by: 

ℝ = R(θx) ∗ R�θy� ∗ R(θz) =  �
1 0 0
0 cosθx sinθx
0 −sinθx cosθx

� ∗

�
cosθy 0 −sinθy

0 1 0
sinθy 0 cosθy

� ∗ �
cosθz sinθz 0
−sinθz cosθz 0

0 0 1
�                         (4) 

4. System Overview 

The general architecture of the proposed system and its design 
methodology is shown in Figure 7). The system contains five main 
modules: raw data acquisition, pre-processing, driving parameters 
estimation, maneuvers detection unit and maneuvers identification 
and classification unit. The function of each module is briefly 
described as follows: 

a. Android smartphones were used to capture vehicle’s raw 
data through by using its IMUs, i.e. the accelerometer and 
gyroscope at a rate of 50 samples/second. Furthermore, 
smartphone’s GPS data are also collected and used to 
provide vehicle’s location and to correct speed estimation.  

b. The pre-processing unit is designed to perform four 
functions namely; signals filtering, sensors error correction, 
transformation of sensors data to vehicle’s coordinate 
system and finally estimates the driving parameters.  

c. The manoeuvre detection unit is designed to detect and slice 
and executed manoeuvre in real-time by implementing the 
endpoint detection algorithm that identifies the starting and 
ending time.  

d. The identification and classification unit is responsible to 
identify manoeuvre’s type and its irregularity class. In this 
study the identification and the classification processes were 
performed separately by using a hybrid pattern matching and 
neural networks schemes. 
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Figure 7: The Proposed System Architecture 

5. Driving Parameters Estimation 

A successful implementation of a driving maneuvers 
identification and classification system depends on the set of 
features and parameters that are used in the this process.  In the 
literature there are two main approaches used to define the set of 
features and parameters namely, driver actions based approach and 
vehicle state based approach. In the first approach a number of 
essential driving signals can be collected from the vehicle’s CAN-

BUS such as vehicle speed, gas pedal pressure, brake pedal 
pressure, steering wheel angle, and acceleration. The second 
approach utilizes different approach by monitoring the vehicle’s 
dynamic state in terms of longitudinal and lateral movements. 
These longitudinal and lateral movements can be detected and 
identified by using IMUs, GPS and the fusion of both the IMUs 
and the GPS. In this study it is believed that the description of 
vehicle’ dynamical state in terms of actual driving parameters is 
more informative than other approaches and useful for future 
investigations. Therefore, the vehicle’s acceleration, orientation 
and speed are used and represented as a time-series signals. 

5.1. Longitudinal and Lateral Accelerations 

The first and the simplest parameters that can be estimated 
directly are the longitudinal and the lateral acceleration 
components. The two components can be determined directly by 
subtracting the gravity the from the filtered accelerometer’s 
Cartesian components, axp, ayp and azp.  The resulted singles are 
then transformed from the smartphone’s to the vehicle’s 
coordinate system by using Eqn. (4). The two components of the 
acceleration can be obtained by: 

alat = axvsin (γ) + ayvsin (ρ)                                               (5-a) 

alon = axvcos (γ) + ayvcos (ρ)                                             (5-b) 

where, alat and alon are the lateral and longitudinal accelerations, 
axv, ayv are the x and y components of the acceleration represented 
in the vehicle coordinate system and the angles γ and ρ are given 
by: 

γ = cos−1 axv

�axv2 +ayv2
   and ρ = cos−1 ayv

�axv2 +ayv2
                           (6) 

5.2. Vehicle’s Orientation 

The second estimated parameter is vehicle’s heading or 
orientation. The attitude of a vehicle can be described by its angles 
of rotation along three axes as indicated in Figure 6). The attitude 
of any object can be modeled by different methods such as 
Direction Cosine Matrix, Quaternions and Euler angles. The first 
method has nine parameters to be estimated, hence it is difficult to 
implement. On the other hand, Quaternions has less parameters 
and it has advantages over Euler angles since it does not suffer 
from the gimbal lock problem, but still the Euler angles method is 
used in this study because it is more comprehensible and easier to 
decompose the rotations into separate degrees of freedom. 
Furthermore, since the smartphone is held in a fixed position inside 
the vehicle then the gimbal lock problem will not appear.     

Euler angles can be found directly by using the measured 
gyroscope’s data and integrate them with respect to time [45]. The 
accelerometer can also be used to estimate Euler angles, where 
simple trigonometric projections can be utilized to obtain both the 
Roll and the Pitch angles. Nevertheless, both methods could results 
in low prediction accuracy due to the stochastic bias variation in 
gyroscopes and the noisy accelerometer signals that results in an 
accumulated drift error [45]. To overcome the limitations of the 
direct approaches, sensor fusion techniques are developed to join 
all sensors’ data to compensate the deficiency of each method. 
There are two filtering techniques namely; Kalman and 
complementary filters are widely used for sensor fusion. Because 
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of its simplicity and reliability, the digital complementary filter is 
utilized to estimate of the orientation. The filter uses a low-pass 
filter for the accelerometer’s data to remove the high frequency 
noise and the dynamic bias, and utilizes a high-pass filter to 
suppress the drift from the gyroscope’s data. Figure 8) shows a 
simple block diagram illustrating the implementation of a digital 
complementary filter. The filter can determine the angles using the 
following equation: 

θi = α�θi−1 + ∆θgi� + (1 − α)θa i                                            
(7) 

Accelerometer 

Gyroscope

LPF Σ 

∫  HPF

 θai α−1

θgi

α

 θi

Σ  θi-1

 
Figure 8: The Implementation of Digital Complementary Filter 

In Eqn. (7), θi represent any of the estimated angles (Roll, 
Pitch or Yaw) and θi-1 is the formerly determined angles, while 
the subscripts g and a designate the sensor type. The empirical 
constant α is selected to set the time constant of the error-signal 
calculations and stabilize the rate-sensor angle calculation.  

5.3. Vehicle’s Speed 

Based on the kinematic equations, vehicle’s speed can be found 
directly from the smartphone accelerometer data by integrating the 
corresponding acceleration component, longitudinal or lateral, as 
follows: 

νf(t) = νi(𝑡𝑡) + ∫ a(t)dtt
0                                                       (8) 

where νf(t)  is final speed,νi(t)  is the initial speed and a(t) is 
vehicle’s acceleration.  The system is a discrete one, hence a 
sequence of the acceleration data is collected and equation (8) can 
be rewritten as: 

νf(n) = νi(0) + ∑ 1
n

nT
i=0 a(i)                                                        

(9) 

where T is the sampling rate, n is the present nth sample and a(i) is 
the ith accelerometer value.  

As it can be noted the basic idea of estimating the speed is very 
simple, and it is expected that with rigorous calibration and noise 
filtering of the raw data will improve the estimation process and a 
reasonable accuracy would be achieved. Nonetheless, speed 
estimation by the direct integration of accelerometer data suffer 
from significant deviations and unrealistic drifts because the 
accelerometer data is not pure and still contains some noise and 
other effects.  This can be clearly shown in Figure 9), where the 
variation of the speed obtained from the GPS and those obtained 
by using the direct integration are shown. The doted green curve 
shows the estimated speed when the accelerometer data are not 
calibrated neither filtered while the dashed orange curve shows the 
trend in the estimated velocity for the preprocessed accelerometer 

data. As it can be seen, the error is accumulated over time and will 
obviously cause serious errors in the estimation of the speed. 
Therefore, a correction method is required to instantaneously 
correct the speed estimation by eliminating the accumulative error. 

 
Figure 9: Comparison between Measured and Estimated Speed 

In the literature there are mainly three methods that can be used 
to correct the accumulated error in numerical integration of the 
accelerometer data namely; high pass correction filter, Kalman 
filter and sensor fusion techniques. In this study, a simple but 
effective sensor fusion technique has been adopted and utilized to 
provide accurate velocity estimation [46].The basic idea of the 
technique is based on fusing the high frequency estimated speed 
with a low frequency ground truth speed obtained through the 
GPS. To illustrate the implementation of the vehicle speed 
estimator, consider Figure 10) that shows two equally spaced time 
intervals at which correction process take place at these instants. 
Suppose that the estimated speed and that measured by the GPS at 
time instant t = TA are νAE and νAG respectively, while those at the 
instant t = TB are νBE and νBG. The error of the speed at reference 
points then are given by: 

 
Figure 10: Vehicle Speed Correction Process 

εA = νAG − νAE  and  εB = νBG − νBE                                (10) 

If we can consider that the rate of change in the accelerometer 
error is constant, i.e. that the accelerometer error varies linearly in 
this short interval, then this rate change can be expressed as 
follows: 

∆a = εB−εA
TB−TA

                                                                                (11)                 

From Eqn. (11) the accumulative error at any instant (t) can be 
given by: 
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∅ = ∫ ∆at
TA

 dt = ∆akTs                                                           (12) 

The constant k is the number of samples passed from the time 
instant TA to t, and Ts is the sampling rate of the accelerometer. By 
knowing the accumulative error at any instant, then the estimated 
speed at instant (t) can be given by: 

νtE = νAG + ∑ 1
k

t
i=TA a(i) − ∅                                                  (13) 

Further enhancement been has been achieved by using 
exponential moving average correction to the error rate change as 
follows: 

∆a(i) = α∆a(i− 1) + (1 − α)
εB − εA
TB − TA

                                     (14) 

Figure 11 shows the estimated speed and the speed obtained 
through the GPS. It can be clearly seen that there is some small 
error between the estimation and the ground truth, which indicates 
that the estimator has excellent accuracy. 

6. Maneuvers Detection 

The main task that is required to be performed by any driving 
monitoring system is to reveal driving maneuver with reasonable 
level of reliability and accuracy. Table (1) presents a list of the 
maneuvers that are detectable by the proposed system. The system 
should be able to process the measured signals or the estimated 
parameters and attempts to detect the maneuver. The system 
detects the variation in the vehicle’s longitudinal and lateral states 
by continuously monitoring the variation in the speed and 
orientation at a rate of 10Hz. Once a maneuvers is detected, the 
system can then proceed to recognize and classify it. There are 
different methods that can be used to detect the starting ending 
times of a maneuver [47-48]. In this paper the short-term energy 
endpoint detection algorithm with sliding window has been 
adopted, where the speed and orientation are continuously 
separated to event and non-event segments.   

Table 1: Maneuvers Classes 

1- Acceleration straight 
road segment 2- Acceleration curved road 

segment 

3- Braking straight road 
segment 4- Braking curved road 

segment 

5- Left lane change straight 
road segment 6- Left lane change curved 

road segment 

7- Right lane change 
straight road segment 8- Right lane change curved 

road segment 

9- Merging into highway 10- Exit from highway 

 

The detection module consists of three key phases. In the first 
phase the signal is divided into non-overlapping windows of a 
100ms period. The short-term energy is first computed for the data 
sequence in each window. For an infinite sequence of a discrete 
signal the energy is defined by: 

x�[m] = x[m]Λ[n − m], n − N + 1 ≤ m ≤ n                          (15) 

where Λ is a window function given by: 

Λ[n − m] = �1 0 ≤ n ≤ N − 1
0 Otherwise                                             (16) 

The energy contained in this short interval then can be computed 
by: 

Ew = ∑ (x[m]Λ[n − m])2n
m=n−N+1                                          (17) 

The value of the energy computed by Eqn. (17) is then 
compared to a threshold value, see Figure 12, and if the computed 
energy is lower than a specific threshold, then this frame is rejected 
and considered as a non-event segment. Otherwise, if the 
computed energy is higher than a lower threshold level Tl then the 
second stage will be executed. 

Once the second stage is triggered, the starting time of the 
detected maneuvers is logged and the short-term energy is 
computed for a rectangular sliding window function as in Eqn. 
(17). Depending on the computed short-term energy in the second 
stage one of the following possibilities could be activated: 

 
(a) 

 
(b) 

Figure 11: (a) Estimated and Measured Speed (b) Maneuver Detection using 
Short-Term Energy 

• If the computed short-term energy is maintained to be less 
than the upper threshold Tu for less than 2 seconds or the 
energy fall back to a value lower than Tl, then this segment is 
treated as a non-event segment and the execution will resume 
from stage 1.  
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• If the computed short-term energy becomes higher than the 
upper threshold Tu for more than one second, then this 
segment will be treated as an event segment. In this case the 
system will continue computes the energy and compare it 
with the threshold until it drops back to the lower than Tl 
again. It is should be noted that if the energy falls down to be 
lower than Tu before the end of the first second then this 
segment will be regarded as a non-event segment, and the 
execution will start again from stage  

7. Driving Maneuvers Identification and Classification  

The Identification process is used to describe a driving 
maneuvers by a well-defined unique type. On the other hand the 
classification process evaluates the driving maneuvers to a certain 
class according to given criteria. In general there are two main 
approaches used for maneuver identification and classification, the 
first is based on the selection of a number of distinctive features 
and uses a machine learning technique, and the second approach is 
based on pattern matching algorithms. In this study 60% of the first 
dataset, described in section three, were used to study the time 
variation of each estimated driving parameters when a certain 
maneuvers has been executed. Figure 12) shows a sample of 
parameters’ variations for a brake maneuvers. Intensive off-line 
observations and investigation were made to study and analyze the 
behavior of the parameters variation for each maneuvers type and 
to infer a general trend in their variations. It has been clearly 
noticed that the variation of the parameters follow common 
variation patterns and this fact agrees with what been presented in 
the literature.  Figure 13) shows ideal approximated patterns that 
could be generated during any driving maneuver. As it can be 
notices that the driving parameters have limited number of 
patterns, for example the longitudinal acceleration, the lateral 
acceleration and the speed have three different patterns each, while 
the heading angle has five different patterns. Based on these facts, 
the identification and classification processes are performed 
separately where the identification process is performed by using 
a hybrid pattern matching neural network unit and the 
classification processed is performed by using another neural 
network. 

 
Figure 12: Driving Parameters Variation during a Break Manoeuvre 

Figure 14) shows the basic units of the identification and 
classification module. The module consist of three units, a pattern 
matching units, to identify the patterns of estimated parameters, the 
second unit consist of a single feed-forward neural network that 
will identify the type of the maneuvers based on the combination 
of the identified patterns. Finally the third unit, which is 

responsible for the manoeuver classification, is performed by 
another neural network. 

The pattern matching unit utilizes four DTW units, each one is 
designed to identify the pattern type for one of the parameters. The 
DTW is a pattern matching technique uses the discrete dynamic 
programming model to compute the alignment between two 
discrete time signals or sequences by assessing the similarity 
between them, regardless of the time/speed synchronization and 
distortion effects due to dynamic spatiotemporal differences. 

 
Figure 13: Driving Parameters Variation for Different Maneuver 
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Figure 14: Structure of Identification and Classification Unit 

To illustrate how the DTW algorithm works, consider two 
discrete signals, R = {r1, r2..., rm} which is the reference signal and 
an unknown signal S = {s1, s2..., sn} that need to be identified, 
where m and n represent the number of samples in R and S, 
respectively. In Figure 15) the two time series that are highly 
similar, are shown. To align these two sequences an (m × n) local 
distance matrix is constructed by populating its elements with the 
Euclidean distances as follows: 

d(i, j) = (R(i) −  S(j))2                                                            (18) 

 
Figure 15: A DWT Matrix with a Warp Path 
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The correlation between the patterns of these two sequences is 
expressed by the cumulative distance measured over the optimal 
path within the distance matrix. For this purpose a warping matrix 
(D) is constructed and filled by searching for the minimum 
distance between the two sequences.  This minimum distance can 
be found by computing the total distance D(i, j) for each entry (i, 
j) as: 

D(i, j) = �
d(1,1),                                                                                             if i = j = 1
d(i, j) + min{D(i− 1, j), D(i, j − 1), D(i − 1, j − 1)},         otherwisw     

                                                                                                                           (19)   

In the final stage the optimal warping path (P), as shown in 
Figure 15), and the DTW distance are to be computed. The 
Warping path is a set of adjacent matrix elements that detect the 
similarity between R and S and it represents the minimum distance 
between R and S. The matrix (P) contains K elements which range 
in value as: 

max (|R|, |S|) ≤ K < (|R|, |S|)                                                 (20) 

Finally the optimal path Po is the one that minimizes the 
warping cost given by: 

DTE(R, S) = min �1
K
�∑ PkK

k=1                                                  (21) 

To reduce the complexity of the DTW technique and thus 
speeding up the execution time, not all the warping paths are 
evaluated. To reduce the number of paths considered during the 
matching process four constraints are usually applied namely; 
monotonicity, continuity, boundary and windowing. To prevent 
the warping path from rolling back on itself, the monotonicity 
constrain is imposed to assure that any two adjacent elements, 
pk = �pi, pj� and pk−1 = �p�i, p�j�  will follow the inequalities 
(pi − p�i) ≥ 0 and�pj − p�j� ≥ 0. On the other hand, to guarantee 
a one-step advancement in the warping path, the continuity 
constrain is used to restrict the movement of the point (i, j) to the 
next point must be (i+1, j+1), (i+1, j), or (i, j+1). Finally, to assure 
that the warping path contains all points of both sequences, the 
boundary constrain is used to force the warping path to start from 
the top left corner and ends at the bottom right corner. Finally the 
windowing will prevent pathological mappings between two 
sequences by restricting one point in the first sequence to be 
mapped to a limited number of points in the other sequence; hence 
the path is likely to be around the diagonal without deviating much 
from it [49]. 

In order to identify the types of the maneuver by the DWT 
technique, a set of templates for each maneuvers are required as 
reference signals. To find a template signals for different set of 
sequences, one can consider that template sequence could be the 
longest common sequence, or the medoid sequence, or the average 
sequence. The selection of the reference pattern for each specific 
maneuvers class is not a simple task because the set of sequences 
collected for each maneuvers class have different time durations 
and amplitudes.  In this study, the sequence with the minimum 
average distance from all other sequences for a specific class is 
selected as the reference template. The details of the averaging 
strategy are given in [50]. 

When dealing with single 1-D signal identification, the DTW 
technique will directly identify the test signal. Nevertheless, when 

it is required to identify a maneuvers or an action by using multiple 
measured signals, the DTW won’t be able to identify its type 
directly. This is because each signal will need a special DTW unit 
to identify the pattern of the signal only. In order to predict the type 
of the maneuvers, the combination of the DTW distances were 
used as features to train a neural network that will be used for the 
final identification of the maneuvers.  

Statistical and time metrics have been utilized as features to 
classify maneuvers’ irregularities. In general maneuvers are 
categorized into one of three main types; Hard, Normal and Light. 
By studying all the possible patterns for all the classes, see Figure 
13), it was found that there are seven distinctive patterns as shown 
in Figure 16). For each pattern time metrics and statistical values 
such as max, min, mean, standard of deviation and the variance are 
used as classification features. The segmented maneuvers 
collected in the first dataset were represented by a vector that 
contains the statistical and the time metrics for each driving 
parameter and the classification label. As it has been mentioned 
the classification labels are obtained from classification made by 
the experts. It is should be noted that the percentage of the rejected 
samples was less than 10%. 

 
Figure 16: Time features for the common signals 

8. System Validation  

This section presents an experimental evaluation for the three 
main components of the proposed system namely, detection, the 
identification and classification units. To test the performance of 
the system, two different datasets have been used. In the first phase 
the first dataset described in section three has been used to train 
and conduct a preliminary testing of the system. In this phase a 
single smartphone (Samsung Galaxy S5) have been calibrated and 
used in all the tests. As been mentioned ten drivers with different 
car models were asked to conduct each of the basic maneuvers, 
listed in table (1), at least five times with different severity levels 
from the Light to the Hard level. From this dataset 1500 maneuvers 
were collected and segmented then each was combined with two 
videos, the first used to record the surrounding traffic state and the 
second used to record the driver’s state, i.e. hands and feet. To 
obtain the ground truth classification of each maneuvers, experts 
were consulted to evaluate the abnormality level. Each assessor 
assigned abnormality level scores for the entire recorded 
maneuvers and the final score for every recorded maneuvers was 
calculated using the inter-rater reliability method.  

For this initial dataset 60% of the collected samples were 
utilized to extract the information and the features that were used 
in the training phase. The information and features includes the 
computation of the DTW reference templates, the DTW’s 
distances and the statistical and time metrics.  The DTW reference 
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templates have been stored and used to measure a vector that 
includes the distances of the warping for each recorded driving 
parameter of a specific tested sample. These vectors are used to 
train the first neural network which is used to identify the type of 
the maneuvers, while another set of vectors that contain the 
statistical and time metrics features used to train the classification 
neural network.  

The remaining 40% of the first dataset have been used to 
validate the performance of the system. Figure 17 shows results 
obtained when the 40% testing samples fed to the identification 
module. It can be seen clearly that the identification rate is very 
high and reached a 100% successful rate for some of the maneuver 
and the minimum identification rate scored is 85%, and this is 
obvious since the identification process combines all the 
similarities for the four parameters. Figure 18, shows the confusion 
matrix classification for the 40% testing samples. Again it can be 
noticed that the classification rate is very high nearly 95% for some 
cases. This high identification and classification rates are expected 
since the two processes have been separated. 

In the second phase of this study, the author developed a 
complete Android-based APP that detects, identify and classify the 
highway driving maneuver in real-time. The architecture of the 
system is described in section five. The first test for the system was 
to check its ability to detect the starting and end of a driving 
maneuvers. The complete trips performed by the ten drivers, from 
which the first dataset was collected, were used just to detect the 
driving maneuver. Figure 19, shows the detection of maneuvers for 
a sample trip. It should be noted that the first 1500 maneuver 
collected in the first data set were used to determine the lower and 
upper thresholds for short-term energy for both the vehicle’s speed 
and orientation. The results obtained by the system were compared 
with those already registered manually by the author. The system 
showed a high detection rate where more than 96% of the manually 
registered maneuver were detected successfully by the detection 
unit. 

 
Figure 17: Confusion Matrix for Maneuvers Identification 

The developed application allows two types of analysis 
namely, the real-time analysis and off-line analysis. The graphical 
interface of the developed application is designed to achieve user 
friendly interaction with the driver. All the driving maneuver are 
presented instantly to the driver using both audio and visual 
indicators. Each maneuvers type is represented by a special icon 
that it will be lighted up; along with a human voice that utters the 

name of the maneuvers when it is detected by the application. 
Furthermore, the icon’s color will be changed in accordance to the 
class of the maneuvers. This attractive and user friendly interface 
helped in measuring the performance and the reliability of the 
system in the second stage of the study. As been mentioned in 
section three a second dataset was collected from a naturalistic 
driving performed by 15 drivers who are daily travel a distance of 
140km back and forth. We have asked driver’s companions to 
check the alerts produced by the application and check them. Data 
recoded by the companions and those stored in the SD card are 
then analyzed. Table (2), presents a comparison between the 
number of maneuver performed by each driver and those detected 
by the system. Note that the first number in any cell represents the 
performed maneuver, while the second number represents the 
detected maneuver. Figure 20 and 21 show the confusion matrix 
for the maneuvers’ identification and classification respectively. 

 
Figure 18: Confusion Matrix for Maneuvers Classification 

 
Figure 19: Driving Maneuvers Detection in a Complete Driving Trip 

 

Figure 20: Confusion Matrix for Maneuvers Identification (Second Dataset) 
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Table 2: Comparison between Performed and Detected Maneuver for each Driver 

 Driver ACC/S ACC/C B/S B/C LLC/S LLC/C RLC/S 37 : 34 Ent. Exit 

1 221: 210 95 : 87 184 : 176 48 : 42 112:109 37 : 33 114 : 111 40 : 36 60 : 57 60 : 56 

2 211: 207 86 : 81 159 : 156 41 : 36 105:99 30 : 26 104 : 99 35 : 32 58 : 52 59 : 54 

3 199: 189 85 : 81 154 : 142 43 : 38 108:100 41 : 36 107 : 102 39 : 36 59 : 57 59 : 57 

4 230: 222 87 : 84 200 : 194 44 : 40 110:104 36 : 33 109 : 105 31 : 28 58 : 56 58 : 56 

5 219: 213 93 : 86 194 : 186 46 : 42 114:109 40 : 36 111 : 106 34 : 29 60 : 56 60 : 57 

6 216: 209 91 : 85 188 : 181 45 : 40 107:104 39 : 34 106 : 101 41 : 35 59 : 56 60 : 56 

7 220: 212 89 : 83 166 : 162 41 : 36 109:108 38 : 32 110 : 104 37 : 34 59 : 55 59 : 55 

8 223: 214 90 : 85 172 : 168 42 : 37 111:107 34 : 30 113 : 108 40 : 36 58 : 57 59 : 57 

9 218: 210 94 : 86 190 : 187 47 : 40 112:110 37 : 34 105 : 100 35 : 32 55 : 51 55 : 52 

10 210: 202 93 : 88 185 : 179 48 : 44 108:102 40 : 36 108 : 104 39 : 36 56 : 53 57 : 54 

11 200: 193 92 : 84 184 : 180 43 : 39 115: 110 35 : 32 112 : 107 31 : 28 58 : 55 57 : 53 

12 207: 201 90 : 84 180 : 173 44 : 39 104:99 39 : 36 110 : 106 34 : 29 60 : 56 60 : 56 

13 215: 208 89 : 85 176 : 172 40 : 35 106:102 31 : 28 104 : 99 41 : 35 57 : 55 57 : 54 

14 201: 196 88 : 83 185 :180 42 : 37 110:106 34 : 29 101 : 97 37 : 34 59 : 56 60 : 56 

15 196: 191 95 : 89 190 : 186 45 : 41 114:108 41 : 35 110 : 104 40 : 36 57 : 52 56 : 51 

 

 
Figure 21: Confusion Matrix for Maneuvers Classification (Second Dataset) 

9. Conclusion 

This paper proposes a novel real-time smartphone-based 
highway driving maneuvers identification and classification 
system. The system collects vehicle’s longitudinal and lateral 
movements using smartphone’s IMU sensors and vehicle’s 
location by using the GPS. All the smartphones used in this 
investigation were calibrated the collected smartphone’s raw data 
were filtered and smoothed by using the statistical LOESS filter. 
Driving parameters namely vehicle’s acceleration, orientation and 
speed were used in the identification and classification of the 
driving maneuver. Sensor fusion techniques have been used to 
estimate vehicle’s orientation and speed.   

It was noted that driving parameters for each event class have 
common patterns, thus the DTW technique combined with a feed-
forward neural network are used for the identification. In the 
classification process a second neural network was employed, and 
it is trained to classify a maneuver classes. Two datasets were 
collected through a number of experiments conducted on highway 

routes. Results obtained in this study show an excellent detection, 
identification and classification rates were achieved. 
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