
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 6, 211-220 (2020)

www.astesj.com
Special Issue on Multidisciplinary Innovation in Engineering Science &

Technology

ASTES Journal
ISSN: 2415-6698

Trace-Driven Simulation of LoRaWAN Air Channel Propagation in an Ur-
ban Scenario
Eugen Harinda, Hadi Larijani *, Ryan M. Gibson

Glasgow Caledonian University, Networks and Cybersecurity, School of Computing and Built Environment, Glasgow, G4 0BA, United
Kingdom

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 31 August, 2020
Accepted: 18 October, 2020
Online: 08 November, 2020

Keywords:
LoRaWAN
Trace-Simulation
Received Signal Strength
Deterministic models
Empirical Models
Urban Environment

Long-range, Low-Power Wide Area Network (LoRaWAN) is a very scalable solution for the
Internet of Things (IoT). Due to the air channel environment’s complexity, connectivity is a
crucial parameter for successfully planning and deploying the IoT networks. Measurements and
simulations have been used to evaluate LoRaWAN propagation models in the Urban environment,
but it is a challenging task. While practical propagation evaluation has been prohibitively
expensive, the theoretical modeling results have been less accurate. This paper uses real-world
measurements and a trace-driven simulation technique to evaluate the RF propagation models’
prediction performance for LoRaWAN 868 MHz propagation. First, a novel LoRaWAN trace-
driven simulation of Glasgow city centre has been performed. Second, LoRaWAN 868 MHz
measurements have been used to perform a critical analysis of LoRaWAN trace-driven Radio
Frequency (RF) propagation models and validation. The processed trace dataset is composed of
GPS coordinates, and the corresponding LoRaWAN received signal strength. The dataset has
been extracted from 5017 datasets of LoRaWAN measurements taken from Glasgow city centre.
A trace simulation program built-in ICS-Telecom was used to simulate LoRaWAN propagation
in the real-world urban environment. Comparison of LoRaWAN simulation traces and the
real-world data was performed to evaluate the prediction performance accuracy of Deygout
94, ITU-R 525/526, and COST-Walfish Ikegami (COST-WI) propagation models. All models
over-estimated LoRaWAN trace-simulated RSS levels in comparison to collected measurement
samples. While Deygout 94 prediction accuracy was higher with mean absolute error (MAE) at
0.83 dBm and standard deviation (SD) at 4.17 dBm, COST-WI performed poorly with MAE and
SD at 2.87 dBm and 10.96 dBm respectively.

1 Introduction

This paper is an extension of work originally presented in The
International Conference on UK-China Emerging Technologies,
Glasgow, UK, August 2019 [1]. The purpose of this work was
the application of a trace-based approach to evaluate the prediction
capabilities of the conventional propagation models for LoRaWAN
networks. As the Internet of Things (IoT) network is steadily grow-
ing, an understanding of conventional radio propagation models’
prediction accuracy is key to the successful planning and deploy-
ment of Long-range, Low-Power Wide Area Network (LoRaWAN).

Unlicensed IoT technologies allow anyone with an idea to create
and deploy IoT applications. Authors in [2] have predicted that a
global number of IoT connected devices will rise to 75.44 from 15.4

billion in 2025. LoRaWAN [3] is one of the Low Power Wide Area
Network (LPWAN) technologies for the interconnection of physical
things. It uses Long-Range (LoRa) modulation technology [4] at
the physical layer to achieve long-distance connectivity among the
connected things. LoRaWAN end-devices connect to LoRa gateway
using Radio Frequency (RF) propagation through the air channel
and LoRaWAN network and application servers. Due to the com-
plexity of the air channel environment, connectivity is a crucial
parameter for the successful deployment of the IoT networks. To
understand whether a LoRaWAN network meets the acceptable con-
nectivity performance, a detailed investigation of the network using
radio propagation prediction models is requisite to the network’s de-
ployment. However, Received Signal Strength (RSS) prediction in
LoRaWAN networks has become a complex task due to prediction
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performance differences in RF propagation models. These models’
ability to accurately predict the RSS depends on how correctly they
capture factors affecting RF signal propagation in the air channel.

Propagation models rely on natural and environmental factors
to calculate signal power attenuation, path loss in the air channel.
In the Line-of-Sight (LOS), the signal power attenuators include
RF and the distance between end-devices and LoRa gateways. On
the other hand, in cities, where Non-Line-of-Sight (NLOS) is dom-
inant, environmental attenuators of signal power include human-
made structures such as dense tall and short buildings, cars, and
bridges. The path loss incurred by the propagating signal due to
these obstructions is a consolidation of LOS and NLOS path loss
due to multipath, scattering, diffraction, and reflection losses. To
incorporate sufficient natural and environmental factors in the RF
propagation models, numerous empirical propagation models [5]
and deterministic propagation models [6] have been designed.

Different empirical and deterministic RF propagation modeling
techniques highlight contrasts in prediction performance accuracy
and application scenario. Empirical models were designed to predict
the RSS in the event of insufficient knowledge of terrain profile data.
These models were designed based on actual measurements taken
from the propagation environment conditions. They are made of
simple mathematical formulae with no reliance on the digital terrain
data and are less accurate for a distance range of less than 1 km
[7]. On the other hand, deterministic models largely depend on the
digital terrain models to predict the RSS. These models take into
consideration the free space and NLOS path loss. Accordingly, de-
tailed knowledge of digital terrain models is a prerequisite for their
prediction performance. Further contrasts exist within empirical and
deterministic models in terms of parametric design consideration
and prediction performance accuracy. Empirically, measurements
and simulation methods are accurately used to investigate these
models’ ability to predict the RSS in radio networks.

Taking measurements from the real-world networks and simula-
tion of the air channel propagation are vital methods used to evaluate
the RF models. Studies [5], [6] and [8] have used measurements
and simulations to evaluate the performance of various propagation
models, but less has been done to validate their applicability on
LoRaWAN networks in an urban environment. The studies in [9]–
[13] have used only measurements to understand the behavior of
air channel propagation on LoRaWAN network operations, but this
is an expensive approach as best practices involve taking measure-
ments at the later stages of network optimization. To validate the
applicability of empirical propagation models for LoRaWAN in the
city environment, our previous work in [14] showed less satisfactory
empirical models’ prediction performance against measurements.
Trace-driven simulation can bridge the gap between measurement
and simulation to evaluate RF propagation models’ performance for
LoRaWAN networks.

In this paper, we use real-world measurements and trace-driven
simulation technique to evaluate the RF propagation models’ predic-
tion performance for LoRaWAN networks. Trace-driven simulation
method can be used to evaluate computer-based models, but it works
well if a trace contains the experience required by the trace simula-
tion program [15]. The RF models are implemented in ICS-Telecom
[16], and the simulation required a digital terrain model of Glas-
gow city centre. The simulation that uses a trace that contains the

system’s experience makes a more realistic simulation performance
[17]. The study utilized a digital terrain model at 25 m and a dataset
from Glasgow city centre. This dataset contained 5017 measure-
ments with GPS coordinates and their corresponding LoRaWAN
RSS. Trace-driven simulation results were compared against the
real-world measurements to evaluate the prediction accuracy of Dey-
gout 94, ITU-R 525/526, and COST-WI. All models over-estimated
LoRaWAN trace-simulated RSS but showed superior prediction
performance over empirical models in [14]. The result shows that
the LoRaWAN network’s trace-driven simulation with these mod-
els provides a more realistic RSS prediction than the conventional
simulations.

The main contributions of this work are given in the summary
below:

• A novel use of measurement and trace-driven simulation of
LoRaWAN 868MHz propagation prediction for Glasgow city
centre.

• The trace-driven simulation and extraction of LoRaWAN RSS
traces spread over the digital terrain model of Glasgow city
centre with the minimum, maximum range of trace signal
levels, and the total number of trace measurements.

• Critical analysis of LoRaWAN trace-driven RF propagation
models and validation with real-world measurements. Dey-
gout 94 prediction accuracy was higher with MAE at 0.83
dBm and SD at 4.17 dBm.

• Visual comparative analysis of trace patterns between the
LoRaWAN real-world measurement site in Figure 2. and
trace-simulated site in Figure 5.

• Shown the functional relationship (Figure 4.) between trace-
driven simulation and the data collection, data processing,
and input to the prediction models.

This paper is arranged as follows: Section I briefly introduces
LoRa technology, LoRaWAN network, conventional RF propaga-
tion models, motivation for performance and evaluation of RF mod-
els with trace-driven simulation, and the related work. Section II
provides details about measurements and simulation. Section III
contains the RF models’ performance analysis and discussion. Fi-
nally, section IV presents the conclusion and prospective future
work.

1.1 Overview of LoRaWAN and LoRa

LoRaWAN is one of the media access control protocol for low-
power Wide Area Network (WAN). It is a long-range wireless com-
munication technology that enables low-powered IoT devices and
applications to communicate over the Internet [18]. LoRaWAN spec-
ification V1.0 [3] published in 2015, provides LoRaWAN details to
describe the network communication protocol and architecture. The
typical LoRaWAN network architecture is a star topology consisting
of the end-devices, applications, gateway, and the server. These
devices may be connected through the air or cables. LoRaWAN-
enabled devices may be categorized as Class A, B, or C, depending
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on the capacity for a trade-off between downlink latency and battery-
life saving. Figure 1. describes a typical star-topology of LoRaWAN
architecture. While LoRaWAN defines the architecture and system
communication protocol, LoRa is a modulation technology defined
at the physical layer.

Figure 1: Basic LoRaWAN Network Architecture

LoRa is a spread spectrum technique adapted by Semtech [4]
and implemented at the physical layer for digital wireless modula-
tion. It was derived from chirp spread spectrum technology [19]
to achieve a long-range radio communication in LoRaWAN net-
works while retaining the ability to operate at low-power levels.
Furthermore, the LoRaWAN network employs different spreading
factors (SF), another key technology to allow a trade-off between
the coverage and data rates [20]. Higher SF configuration helps the
LoRaWAN network to transmit further, but at the cost of low data
rates, and vice-versa. Thus, the LoRaWAN network delivers the
required connectivity to enable the LoRa end-devices to transmit
data over the air channel to the gateway and then to the network and
application servers.

1.2 Radio Propagation Models

RF propagation models[21] characterize the propagation of radio
waves as function carrier frequency, distance, and other NLOS
factors in the air channel environment. These RF models, deter-
ministic, semi-empirical, and empirical, employ several attenuation
factors, including LOS, diffraction, multipath, to estimate the RSS.
These models perform connectivity analysis in radio networks to
fast-track radio coverage information. Radio propagation effects
are heavily site-specific and depend on configuration parameters

such as terrain cover, operating frequency, distance, transmitter, and
receiver antenna height. In this study, commonly used RF mod-
els in ICS-Telecom, Deygout 94, ITU-R 525/526, and COST-231
Walfish-Ikegami models are evaluated for RSS prediction accuracy
in LoRaWAN network. These models are respectively, deterministic,
semi-deterministic, and empirical.

1.3 Deygout 94

Deygout 94 model determines diffraction attenuation for N suc-
cessive knife-edge or rounded obstacles. The model is based on
the idea of the main signal blocking component [22], which exerts
considerably high obstruction losses to the link between the trans-
mitting and receiving ends. The overall diffraction loss, LD, is given
as:

LD =

N∑
i=1

L1(Vi) (1)

where L1 is the diffraction loss in case of one main obstruction
between the transmitter and receiver, and Vi is the diffraction param-
eter for the ith knife-edge. The total path loss is the sum of Deygout
94 diffraction losses, free space, sub-path attenuation, and 3D losses
that are implemented in ICS-Telecom.

1.4 ITU-R 525/526

The ITU-R 525/526 uses ITU-R P 525 [23] to calculate the free
space loss and ITU-R P 526 to calculate attenuation due to diffrac-
tion [24]. The concept of ITU-R 526 calculation of diffraction
losses is similar to Deygout 94. It calculates sub-path and diffrac-
tion losses using the Delta Bullington diffraction model [25]. The
ITU-R 525 calculates the basic free space transmission loss, PA0

between isotropic antennas, as follows:

PA0 = 32.4 + 20log10(d) + 20log10( f ) (2)

where f is frequency (MHz) and d is the distance (km).

1.5 COST-231 Walfish-Ikegami

COST 231 Walfish-Ikegami (COST-WI) the model [26] is a com-
bination of Walfish and Ikegami models. Unlike the deterministic
model that requires digital terrain models, including the buildings
layer, COST-WI is an empirical model that requires characteristic
values. It improves the path loss prediction by considering more data
to characterize medium-sized flat urban environments [27]. Com-
pared to other empirical models, the COST-WI parameters include
the heights hb of the building, the separation between buildings d,
the widths of roads w, and the angle θ to the direct radio path. The
range of fundamental parameters considered is 800-2000 MHz for
frequency, 1-3 m, 4-50 m, 0.02-5 km for distance, and end-device
and gateway antenna height, respectively. The model calculates
path loss due to the LOS and NLOS. The mathematical formulae
for LOS and NLOS are respectively defined in (3) and (4) below.

PLOS = 42.64 + 26log10(d) + 20log10( f ) (3)
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If NLOS is the case, then path loss calculation is a combina-
tion of attenuation due to free space PLOS , the rooftop to street
diffraction, and the scattering Lrts, and the multiple screen diffrac-
tion loss Lmsd. The totality of this (NLOS) path loss is described
mathematically [27? ] as follows:

PNLOS = PLOS + Lrts + Lmsd (4)

The Lrts, the diffraction loss from the rooftop to the street is deter-
mined as in the following formula:

Lrts = −16.9 − 10log10(w) + 10log10( f ) + 20log10(hb − hr)
+ Lori (5)

where, w is width of the roads, hb and hm are the height of building
and end-device mobile station respectively. The street orientation
correction factor, Lori[28] is given as:

Lori =


−10 + 0.35α for 0◦ < α < 35◦

2.5 + 0.0755(α − 35) for 35◦ < α < 55◦

4 − 0.0114(α − 55) for 55◦ < α < 90◦
(6)

where α is the street orientation angle, Lmsd, the multiscreen loss,
represents diffraction loss from multiple obstacles. The following
mathematical representation determines it:

Lmsd = Lbsh + Ka + Kdlog10(d) + K f log( f ) − 9log10(sb) (7)

where the correction factors, Lbsh and Ka represent path loss when
the gateway is above and below the rooftops, respectively. sb rep-
resents buildings separation. The terms Kd and K f quantify the
diffraction loss as a factor of the distance, d and frequency, f , and
are defined in[26] as follows:

Lbsh =

−181log(1 + ht − hb) ht>hb

0 ht≤hb
(8)

Ka =


54 ht>hb

54 − 0.8(ht − hb) ht<hb and dkm≥0.5km
54 − 1.6(ht − hb)d dkm<0.5km

(9)

Kd =

18 ht>hb

18 − 15(ht − hb)/hb ht≤hb
(10)

K f = −4 +


0.7( fMHz/925 − 1) for medium-size city and

suburban
1.5( fMHz/925−1) for metropolitan centres

(11)

1.6 Motivation for Performance and Evaluation of RF
Models with Trace-driven Simulation

The evaluation of how the air channel affects the propagation of
wireless communication signals is a challenging task. In cities, the
physical environment, including buildings, bridges, people’s motion,
and vehicles, adversely affect propagating RF signals. To accurately
evaluate the effects of the physical environment in cities, simula-
tion methods and models have become an integral part of wireless
communication systems’ planning and deployment. However, it has
been challenging to identify which RF propagation models, from
their significant number, produce realistic predictions of the RSS.
The assumption that simulation models can be applied to model-
ing propagation effects in different environments, protocols, and
applications have often been proved less accurate.

The literature is yet to contain either the RF propagation pre-
diction models or an established understanding of the actual RF
propagation prediction models’ performance for the LoRaWAN
propagation system in cities. Studies that attempted to evaluated
LoRAWAN propagation system performance in different urban sce-
narios used the analysis of the real-world measurements [9]–[13].
However, the use of field measurement to characterize the impact
of the air channel on RF propagation is usually costly as it involves
real systems. In wireless communication networks, taking real-
world measurements is usually the last phase of network planning
and deployment, aiming to optimize a wireless network system
performance. Instead, the network planning tools use propagation
prediction models to estimate path loss due to air channel condi-
tions. In our previous work [14], we evaluated conventional em-
pirical propagation models’ performance to determine applicability
for predicting LoRaWAN RSS in an urban scenario. Although the
study showed that COST-WI had better prediction performance for
LoRaWAN RSS than other models considered for the study, this
result was over-predicted by 6.48 dBm. Therefore, this indicates
that empirical RF models lack accuracy in attempts to capture paths
loss over the rooftops, diffraction, and reflections arising from the
buildings and streets set up, and these factors are better handled
with deterministic models.

In this paper, we intend to evaluate Electromagnetic Wave (EM)
based deterministic models to understand the applicability of these
models to predict LoRaWAN RSS in urban areas. The EM deter-
ministic models’ ability to accurately consider the phenomena of
path loss over the rooftops, diffraction, reflections from buildings,
dispersion, and wave running are essential features for dense ur-
ban outdoor RF propagation [29]. Deterministic models require
the use of accurate and high-quality terrain models of the environ-
ment. However, in the presence of low-quality terrain models, the
use of trace-driven simulation for evaluation of deterministic and
semi-deterministic models produced more accurate LoRaWAN RSS
prediction than empirical RF models. This study can give insight
into the effectiveness of trace-simulation with standard propagation
models for evaluation of IoT connectivity with LoRaWAN networks
at 868 MHz in the NLOS urban environment.
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1.7 Related Work

Trace-driven simulation is a technique that utilizes both measure-
ments and simulation for evaluation and prediction of the perfor-
mance of the computer-based systems [30]. All the trace-driven
studies reviewed in this paper used a software probe to collect mea-
surement trace data except [31], which used device-specific data
collection from the testbed. Trace-driven simulation technique has
been introduced in [32] as a technique that uses analysis of mea-
surement trace data to redo similar experimental circumstances in
the simulations. Trace-driven simulation has been used to perform
a realistic simulation.

Trace-driven simulation use analysis of the experimental trace
data in an attempt to recreate simulation of the experimental condi-
tions. Authors in [33] stated that sufficient and accurate measure-
ment datasets could directly serve as a basis of propagation perfor-
mance prediction or fitting the RF models. Trace-driven simulation
was used in [34] to model the error behavior of the WaveLAN wire-
less channel. Chia et al [35] proposed an Automata-Synchronized
Replay (EAR) system software to perform trace-based simulation
of the measured packets received over the Wireless Local Area
Network. The EAR was used to control trace packet, synchro-
nize the environmental effects in trace packet with the packets, and
other signals received from the real-world environment. The system
implementation results show that the EAR achieved an event repro-
duction rate of 92.45% under a fading environment. Trace-driven
simulation can be used to evaluate wireless link models.

In [36], the authors presented a Wireless Link Simulator (WiL-
inkSim). This simulator implemented models based on mathemati-
cal distribution to correctly represent wireless errors (bit error rate)
due to the air channel’s effects. WiLinkSim utilizes trace-driven
models for realistic simulation of Rayleigh and multipath fading
and during the deployment of a real-world network. G. Judd and
P. Steenkist [37] indicated that trace-driven simulation is one of
the accurate methods to model RF signal propagation. Authors in
[38] used measurement error traces to configure stochastic error
models to reproduce the signal-to-noise-plus-interference ratio er-
rors of the received wireless signal. The accuracy for Bernoulli,
Gilbert-Elliot, and chaotic map error models’ ability to reproduce
or estimate the measured dataset was performed by comparing the
measured traces with models’ simulated traces. The results showed
that Gilbert-Elliot and chaotic map error models attained enough
accurate reproduction of the measured traces.

2 Measurement Setup and Simulation

In the first step, the measurement trace dataset was collected, and
then, the RF propagation prediction models were trace simulated us-
ing the measurement processed trace data. The measurement trace
dataset was collected from an experimental LoRaWAN network
installed in Glasgow City using LoRaWAN end-devices and Servers.
The processed trace data needed for trace-simulation was selected
from the measured data. This trace data served as input data to the
trace simulation program. Below is the detailed description of data
collection, data processing, and trace-simulation setup.

Table 1: Measurement and Trace-simulation Parameters.

S/N Parameters Values

1 Operating frequency Band 868 MHz
2 Bandwidth 125 kHz
3 End-device transmit power 14 dBm
4 Number of Gateway 3 m
5 Gateway antenna heights 30, 27 and 27 m
6 End-device antenna height 1.5 m
7 Measurement spreading factor (SF) 7-12
8 Trace-simulation spreading factor (SF) 7, 8 and 12
9 Maximum transmit and receive distance 2275 m

2.1 Data Collection Setup

Capturing the field measurements is essential in characterizing air
channel impact on LoRaWAN system applications under real-world
conditions. We performed an experimental field study to acquire
real-world LoRaWAN measurements from Glasgow city, Scotland,
the UK. On the map, the city’s latitude and longitude are 55.8642◦

N and 4.2518◦ W, respectively. The city is built at the bank of River
Clyde and constitutes tall and huge buildings and open spaces. Data
collection was performed in this city’s environment to characterize
the effects the NLOS has on the air channel for RF propagation of
the LoRaWAN network. The leading equipment used to collect data
is the LoRaWAN end-device and three gateways. The former was a
Multitech mDot module [39] with LoRa and LoRaWAN protocol,
regulated by a single board Raspberry Pi computer, whereas the
later constituted Kerlink gateways, enabled with Semtech LoRa
SX1301 chip [40]. The Raspberry Pi computer was connected to
a 3G/GPS module to keep location records for the received from
transmitting end-device operated at 868 MHz and 14 dBm.

Figure 2: A Google map showing the location of the three LoRa Gateways installed
in Glasgow city centre and measurements waypoints. The blue markers on the map
represent GPS and their corresponding LoRaWAN RSS waypoints obtained during
the measurements

The gateways operated at three locations. The first gateway at
Glasgow Caledonian University, 30 m on top of George More build-
ing. The second gateway at Strathclyde University, 27 m on top of
James Weir building, and the third gateway placed at 27 m on top of

www.astesj.com 215

http://www.astesj.com


E. Harinda et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 211-220 (2020)

Skypark. The distance between gateway at Skypark and James Weir
building is 2005 m apart, and both buildings are respectively, 590 m
and 1900 m from George More building. Figure 2. is the display of
a 1:300 Google map showing the topography of Glasgow city centre
used for the LoRaWAN RSS measurements. It indicates the location
of the three LoRa Gateways and measurement waypoints. The three
gateways utilize the cable and mobile networks to connect to the
network server to record packets received from the transmitting end-
device. The mobile end-device transmissions operated the 868 MHz
and 14 dBm. Table 1. shows details of LoRaWAN transmission
parameters. The packets were sequentially transmitted, and success
or failure to receive an ACK message was recorded. These packets
altered between 7-12 the spreading factor. We collected the data in
a backpack logger unit at the walking speed in Glasgow city. The
data collected in the network server and backpack logger unit were
combined and processed in a database. This data shall be known as
measurement trace data.

Figure 3: LoRaWAN 868 MHz simulation without traces over a Bing digital terrain
model of Glasgow city centre. The three green squares in a reddish/brown color
represent the simulated LoRa gateways. Colors represent the variation of signal
levels, with blue indicating the weakest and reddish the strongest signals.

2.2 Data Processing and Input to Models

To prepare LoRaWAN system measurements for a trace simulation
program, we processed measurement trace data. Measurement trace
data contained feature data and metadata not required by the trace
simulation program. A total of 5008 measurement trace data col-
lected in the backpack logger unit and network server was loaded
into the database. We used the command line manipulation com-
mands to pare measurement trace data down to locations coordinates
and the RSS suitable trace simulation. Consequently, manipulation
of measurement raw data resulted in 5008 datasets for latitude, lon-
gitude, and corresponding RSS required for the ICS-Telecom trace
simulation function.

The trace simulation program is built from LoRaWAN and RF
propagation system models. LoRaWAN system configuration pa-
rameters in Table I. and RF propagation models are introduced in
section I. The LoRaWAN parameters in this table are based on the
LoRaWAN band regulation in the European Union and the physical

position of gateway and end-device antenna heights used during
the measurements. Similarly, the maximum transmission is the
distance between the transmission and reception attained during
the measurements. However, due to lack of mobility during the
simulation, the SF was heuristically fixed at 7, 8, and 12. The trace
simulation program imported the processed trace data through the
measurement import function to perform a trace-driven simulation.
It executes the LoRaWAN and RF propagation environment using
the processed trace data. The trace-driven simulation program’s
output, which is of interest to this work, was the trace-driven RSS.
This output is compared with the RSS in the processed trace data
for performance analysis. Figure 4. shows a block diagram of the
trace-driven simulation model. This model’s main parts are; data
collection, data processing, and LoRaWAN and RF propagation
conceptual models.

Figure 4: Block Diagram of Trace-driven simulation

2.3 Trace-Driven Simulation

The trace-driven simulation requires a combination of system mea-
surements and simulation [41]. In this paper, trace-simulation set
up involved importing processed trace data and configuration of the
Glasgow city centre digital terrain model. When the trace simula-
tion program starts, it loads the processed measurement trace data
and the LoRaWAN RF propagation system model to reproduce the
same experimental conditions in the ICS-Telecom. Authors in [?
] showed that trace-simulation produces more realistic simulation
results than conventional simulation. In [42], the authors provided
a detailed account of the advantages of trace-simulation over the
conventional simulation. To simulate Glasgow city centre terrain,
we imported and configured a 1:300 Bing terrain model of Glasgow
city centre at 25 m resolution into ICS-Telecom. However, low-
resolution terrain maps such as 25 m provided a digital elevation
model and the city’s clutter to the simulator, leaving out the build-
ing layer. This input facilitated the simulation of the LoRaWAN
system in Glasgow city centre. Over the terrain map, we placed
three system gateway models. Each gateway model location con-
figuration on the terrain map matched the latitude and longitude of
system gateways used during the LoRaWAN measurements. Like
the measurement system, the distance between LoRaWAN gateway
models at Strathclyde University and Skypark on the terrain map
represents 2005 m apart. The respective distance between these
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gateway models from Glasgow Caledonian University represents
590 m and 1900 m on the ground. Figure 3. shows the LoRaWAN
868 MHz simulation system set up without traces over a Bing digital
terrain model of Glasgow city centre. The next step was to load the
processed trace data for trace-driven simulation of the LoRaWAN
868 MHz system.

Figure 5: A trace-driven simulation of LoRaWAN 868 MHz over a Bing digital
terrain model of Glasgow city centre. The three green squares at the base of red
triangles represent the simulated LoRa gateways. Colors represent trace-driven
RSS data. The blue color refers to the weakest signals, and reddish/brown refers
to the strongest signals. The trace-driven data follows waypoints of the real-world
measurements.

Through the measurement import function, the trace simulation
program imported the processed trace data. Presented to the digital
terrain map are LoRaWAN system measurement locations, a set of
latitude and longitude coordinates. Figure 5. shows a trace-driven
simulation of LoRaWAN 868 MHz over a 1:300 Bing digital terrain
model of Glasgow city centre. It presents the trace-simulated RSS
in the previously identified location with the processed trace data,
which contains latitude, longitude, and corresponding RSS. At the
base of the trace simulation program, there are LoRaWAN and RF
propagation system models. These models are the designed base of
the trace-driven simulation program. LoRaWAN and RF conceptual
system models comprise LoRa modulation, LoRaWAN network,
RF propagation models, and the terrain model. The configuration
of the LoRaWAN simulation system parameters is similar to Lo-
RaWAN system parameters shown in Table I. On the other hand,
the configured RF propagation models are described in Section I.
After the trace-simulation, extraction of the predicted trace-driven
LoRaWAN RSS followed for each of the RF models.

The extraction of trace-simulated LoRaWAN RSS from the
LoRaWAN simulation system provided a trace-simulated dataset
required for prediction performance analysis. The minimum trace
signal level was set to -140 dBm and the maximum trace signal level
set to -61 dBm. The total number of trace data was set to 5008. The
trace-simulated LoRaWAN RSS are spread over the digital terrain
map of Glasgow city centre in Figure 5. and the color code shows
the varying signal strength, which depends on different factors,
including clutter obstructions in the environment. The predicted
trace-driven dataset for each propagation model was extracted from
the LoRaWAN simulation system digital terrain map. Alternatively,
the predicted trace-driven dataset can be exported from the simula-

tion system. To validate the obtained trace-simulated dataset, we
compared the RF propagation models’ trace-simulated LoRaWAN
RSS with the LoRaWAN system RSS, measured from Glasgow city
centre.

3 Performance Analysis and Discussion
To evaluate models’ prediction performance accuracy, we validated
LoRaWAN trace-simulation with measurement trace data. Common
mathematical error methods measured the prediction accuracy of
the models. The error performance metrics used to represent the
error between measurement and simulation are the Mean Square
Error (MSE), ∆

′

yi, Mean Absolute Error (MAE), |∆y|, and Standard
Deviation (SD), σe. In this paper, N indicates the total number
of measured or simulated data samples, whereas ∆yi denotes the
difference between predicted and measured datasets. While MAE is
used as a measure of RF models prediction error, SD measures the
average distance between measurement and the predicted dataset. C.
J. Willmott and K. Matsuura [43] examined the ability of MAE and
Root-Mean-Square Error (RMSE) to represent the average error per-
formance of a model. The authors concluded that MAE is a preferred
measure of one dimension average error performance compared to
RMSE, which is suitable for more than one error performance of a
model. However, in [44], authors argued that both MAE and RMSE
may be used to evaluate the average error prediction accuracy of
the models. In this study, the MAE is considered to be an intuitive
measure of average error prediction accuracy in RF models.

∆yi = (RS S predicted − RS S measured) (12)

∆
′

yi =
1
N

N∑
i=1

(RS S predicted − RS S measured)2 (13)

|∆y| =
1
N

N∑
i=1

|∆yi| (14)

σe =

√√√
1
N

N∑
i=1

(∆yi− | ∆y |)2 (15)

Table 2: Error Performance Metrics

Parameters Deygout94 ITU-R525/526 COST-WI

MSE 18.7812 20.978 24.2155
MAE 0.83 1.01 2.87
SD 4.17 5.84 10.96

The comparative analysis of RF models prediction accuracy
showed that all the three investigated models over-estimated the
RSS measurements. However, Deygout 94 registered higher pre-
diction accuracy with MAE at 0.83 dBm. The MAE for ITU-R
525/526 and COST-WI was 1.01 dBm and 2.87 dBm, respectively.
In terms of prediction error, Deygout 94 prediction had the lowest
Mean Square Error, MS E at 18.7812 dBm, followed by the ITU-
R 525/526 and COST-WI with MS E at 20.978 dBm and 24.2155
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dBm respectively. Furthermore, Deygout 94 exhibited the lowest
standard deviation, σe at 4.17 dBm, followed by the ITU-R 525/526
and COST-WI at 5.84 dBm and 10.96 dBm respectively. This result
implies that Deygout 94, a deterministic model, performs better RSS
predictions than the ITU-R 525/526 and COST-WI models. COST-
WI poor prediction performance is attributed to its reliance on the
buildings’ information. Table II. shows models’ prediction error
performance metrics calculated in equations 12-15 for MS E, MAE
and σe using measured and trace-driven dataset in the NLOS city
environment. Overall, it can be observed that Deygout 94 obtained
low prediction error performance.

Density and vertical obstructions presented to the application
through a high-resolution DTM is crucial for modeling RF propa-
gation [45]. The DTM at 25m resolution that presented the NLOS
obstructions over Glasgow city centre terrain landscape into the
ICS-Telecom lacked detailed buildings’ information. The graph-
ical representation in Figure 6. shows the relationship between
the LoRaWAN 868 MHz measurement dataset and models trace-
simulation performance in the NLOS conditions in Glasgow city
centre. The measurement and trace-driven simulated data are plotted
as a RSS function, in dBm and distance, d in meters. The visible
gap between measurements and trace-driven simulation may be
attributed to the low resolution of the DTM, which fails to repre-
sent actual NLOS conditions in Glasgow city centre to the Trace
Simulation Program. However, trace-driven RSS trend against the
distance follows RSS measurements with Walfish-Ikegami keeping
more distance and Deygout 94, making a closer drift with measure-
ments. The clustered data visible on the graph indicates many RSS
collected at specific locations due to reduced NLOS obstructions.
On the other hand, the flattened regions are an indicator of either
low variations of LoRaWAN RSS as signal reception reduce or
completely blocked due to an increase in density and the height of
buildings in the City’s air channel.

Figure 6: Models trace-simulated performance comparison with LoRaWAN 868
MHz measurements. The vertical axis plots real-world LoRaWAN RSS measure-
ments, dBm and models’ trace-simulated LoRaWAN RSS data, dBm. The horizontal
axis represents the distance, d in m.

The trace-driven simulated models improved prediction accu-
racy performance compared to empirical models in the previous
study [14]. Both studies were carried out for LoRaWAN 868 MHz
in Glasgow city centre, and the same measurement dataset was used
for validation. Table III. shows the comparison of prediction accu-
racy of empirical models, in cyan color heading and trace-simulated
models, in the yellow color heading. The improvement in trace-

simulated predictions compared to empirical RF models can be
attributed to measurement traces and differences in model design
and application. The spreading of LoRaWAN RSS over the Glasgow
city centre map shows how trace-driven simulation leads closer to
measurements.

Table 3: Comparison of Emprical and Trace-simulated Models Prediction Accuracy

Parameters Deygout94 ITU-R525/526 COST-WI-Traced Okumura-Hata COST231 COST-WI

MSE 18.7812 20.978 24.215 48.84021 57.2056 96.746

MAE 0.83 1.01 2.87 5.564 6.131 7.413

SD 4.17 5.84 10.96 9.158 11.425 7.454

The analysis of measurements and simulation mapping over
Glasgow city centre’s map shows significant variation in the RSS
spreading. The simulation mapping of RSS in Figure 3. spreads all
over the map compared to the mapping of RSS measurement, which
follows the data collection path. On the other hand, LoRaWAN
trace-driven simulation mapping in Figure 5. attains a close match
to the mapping of RSS measurements in Figure 2. when the mini-
mum and maximum trace signal level and the total number of trace
dataset is set. The closer pattern between the measured and trace-
driven RSS mapping matches the claims that trace-driven simulation
performs realistic simulation [32]. This pattern shows that the trace-
driven simulation technique can perform a realistic evaluation of RF
models for the planning and deployment of LoRaWAN in cities.

4 Conclusion and Future work
We have created a trace-driven simulation of LoRaWAN 868 MHz
for Glasgow city centre. Trace-driven simulation techniques us-
ing the real-world measurement trace dataset make it possible for
RF propagation models to produce realistic RSS predictions of
LoRaWAN radio links. This paper has used measurements to per-
form trace-driven simulation over the DTM of Glasgow city centre.
We have used LoRaWAN trace-driven RF propagation models to
analyse and evaluate several RF propagation models’ prediction
performance accuracy for LoRaWAN 868 MHz. The RF mod-
els considered in this study are Deygout 94, ITU-R 525/526, and
COST-WI. The trace simulation program, built in the ICS-Telecom,
imported 5017 processed trace datasets measured from an exper-
imental LoRaWAN 868 MHz network deployed in Glasgow city
centre. The processed trace dataset contained the latitude, longi-
tude, and the corresponding measurement RSS. The comparative
performance analysis of trace-driven LoRaWAN simulation traces
and the real-world measured LoRaWAN processed trace dataset
showed that RF propagation models produce realistic LoRaWAN
RSS predictions.

All models over-estimated LoRaWAN trace-simulated RSS lev-
els in comparison to real-world collected data samples. However,
a comparison of trace-driven simulated models and empirical RF
models shows that trace-simulated RF models produce a more ac-
curate prediction. Deygout 94 prediction accuracy was the higher
with MAE at 0.83 dBm and SD at 4.17 dBm. COST-WI cannot
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be used for simulation of LoRaWAN coverage estimation in an
urban environment unless high-resolution DTM models are used in
ICS-Telecom. Currently, most studies use measurements to evaluate
LoRaWAN performance. This approach is expensive, and trace-
driven simulation can be a better option. Although it requires DTM,
the use of even low-resolution DTM produces results better than
conventional models. The random neural network could be used to
design a more accurate and inexpensive RF propagation model in
the future.
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ITU-R International Telecommunication Union
COST-WI COST (European Cooperation in Science and Technology - Walfish Ikegami
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ICS-Telecom Image Cartography System - Telecommunication
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MAE Mean Absolute Error
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RMSE Root Mean Square Error
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