Performance Analysis and Enhancement of Spline Adaptive Filtering based on Adaptive Step-size Variable Leaky Least Mean Square Algorithm

Sethakarn Prongnuch¹, Suchada Sitjongsataporn²

¹Department of Computer Engineering, Faculty of Industrial Technology, Suan Sunandha Rajabhat University Bangkok, 10300, Thailand
²Department of Electronic Engineering, Mahanakorn Institute of Innovation (MHI), Faculty of Engineering, Mahanakorn University of Technology, Bangkok, 10530, Thailand

ABSTRACT

This paper presents an adaptive step-size and variable leaky least mean square algorithm based on nonlinear adaptive filter with the adaptive lookup table using spline interpolation. An adaptive step-size approach is proposed with the energy of squared previous and present errors to boost up the convergence rate. A modified variable leaky mechanism is proposed with the optimal leaky parameter by using the recursion form. The proposed algorithm merges an adaptive step-size and a modified variable leaky method with least mean square algorithm for linear and nonlinear part of spline adaptive filtering in term of fast convergence enhancement. Experimental results demonstrate that proposed algorithm can notably achieve a competitive performance on the convergence rate in comparison with the conventional least mean square algorithm for spline adaptive filter. Simulation results suggest that mean square error performance of proposed algorithm can be partially assessed using adaptive step-size with the variable leaky parameters indicating better than the conventional least mean square algorithm by 16.76%.

1 Introduction

This paper is an extension of work originally presented in the International Electrical Engineering Congress [11], which has been proposed the variable leaky mechanism based on the least mean square (LMS) algorithm for spline adaptive filter. The combination of a linear finite impulse response (FIR) filter and a nonlinear adaptive lookup table (LUT) based on the spline interpolation is called the spline adaptive filtering (SAF) with the adaptation process [2]. It is a class of nonlinear adaptive filtering with a spline function [1]-[2].

According to the practical models, the linear adaptive filter should be inadequate [3]. The models of nonlinear dynamic systems have demonstrated with more robust performance. Linear adaptive filtering should be insufficient in real-world models. Moreover, many dynamic systems using model of nonlinear structure have been extended to the operating model.

Based on the SAF, many research works have achieved efficiently in the practical system identification. In [2], the authors have presented the sign approach with the normalized version of least mean square (NLMS) based on Wiener spline adaptive filter in order to fight against the impulsive noise environment. In [4], the authors have analyzed the convergence and stability analysis of SAF based on LMS algorithm. A steady-state performance of SAF has been examined in [5].

In order to model the nonlinear system identification, the SAF is more attention for the practical use [6]-[7]. The linear time-invariant model with the cubic spline function [8] can obtain the good performance working with the adaptive lookup table (LUT) [9] and the spline basis matrix on the adaptive control points coefficient vector.

Applications of SAF architecture have been applied in the infinite impulse response [10] and the system environment with impulsive noise [11]. A set-membership mechanism with the Wiener spline adaptive filtering and normalized least M-estimate algorithm have been obtained significantly the fast convergence in the environment of impulsive noise [11]. In [12], the authors have proposed the Hammerstein function with SAF based on LMS algorithm for improving the convergence rate. Further, a SAF based on the maximum correntropy criterion [13], [14] has been discussed that correntropy is robustness to non-Gaussian noise.

Least mean square (LMS) algorithm which is simple and low computation has been widely used [15]. Most researchers have modified accurately on LMS and NLMS algorithms [16] and [17], the variable step-size LMS [18], the sign mechanism with NLMS [3] and so on.
As stated in a steady-state of convergence analysis, a variable leaky mechanism has been depicted in use of tracking the systems. In [19], a variable leaky LMS algorithm based on the greedy heuristic in the field programmable gate array implementation. The results have been shown that the algorithm can explore the various digital filter architecture.

Based on the variable leaky LMS algorithm which has been orchestrated against and attenuating the drifting [21]. In the field of adaptive signal processing, a variable leaky based on the orthogonal gradient adaptive algorithm with the minimized cost function has been applied for the wireless communications [22].

The novelty of this paper is to merge an adaptive step-size and a modified variable leaky method with least mean square algorithm for linear and nonlinear network part of spline adaptive filtering in term of fast convergence enhancement. The analysis of the convergence performance of the proposed algorithm is derived in forms of the properties and mean square error performance.

In this paper, we organize this paper as follows. Section 2 explains shortly in the structure of SAF. Next, Section 3 introduces the modified adaptive step-size mechanism and the modified variable leaky criterion on the minimization cost function based on the LMS algorithm. Section 4 describes the performance analysis of the proposed adaptive step-size and variable leaky LMS algorithm in terms of the properties and the mean square error performance. Further, the experiment results and discussion show in Section 5 and Section 6, respectively. Finally, Section 7 summarizes the proposed algorithm.

2 Spline Adaptive Filter

Spline adaptive filter (SAF) is namely a combination of linear and nonlinear structures shown in Fig. 1, where \(x_k \) is the input of SAF structure and \(y_k \) is the output of system.

The objective is that adaptive lookup table in the nonlinear structure generates an output of SAF \(y_k \) nearly to a desired sequence \(d_k \) as

\[
d_k = y_k + e_k ,
\]

where the error of system \(e_k \) should be small. Thus, the adaptive FIR filter brings an output \(\phi_k \) in the linear structure, while the input signal is a sequence of \(x_k \) at the linear structure.

An adaptive FIR filter output \(\phi_k \) is given by

\[
\phi_k = w_k^T x_k ,
\]

where \(w_k \) is the update FIR coefficient vector.

Following [3], the SAF output \(y_k \) can be examined by following

\[
y_k = u_k^T C_b g_{m,k} ,
\]

\[
v_k = [v_{1,k}^2, v_{2,k}, v_{3,k}, 1]^T ,
\]

where \(g_{m} \) is the coefficient of control point vector and \(C_b \) is a spline basis matrix.

The local parameter \(v_k \) and index \(m \) are usually indicated as

\[
v_k = \frac{\phi_k}{\Delta x} - \left| \frac{\phi_k}{\Delta x} \right| ,
\]

\[
m = \left| \frac{\phi_k}{\Delta x} \right| + \frac{P-1}{2} ,
\]

where \(\Delta x \) is the uniform space between two adjacent-coefficients of control points [6], \(P \) is the size of control point coefficient, and the floor operator \(\lfloor \cdot \rfloor \) is applied.

By using the minimized objective function based on least mean square (LMS) [5], it becomes

\[
J_{w,g}^{LMS}(k) = \min_{w,g} \left\{ \frac{1}{2} | e_k |^2 \right\} ,
\]

where a priori error \(e_k \) is defined as

\[
e_k = d_k - y_k = d_k - v_k^T C_b g_{m,k} .
\]

The update FIR coefficient vector \(w_k \) can compute by the gradient vector of (7) with respect to the coefficients \(w_k \) in terms of the recursion form as

\[
w_{k+1} = w_k - \mu_w \nabla J_{w,g}^{LMS} ,
\]

where \(\mu_w \) is a step-size and \(\nabla J_{w,g}^{LMS}(k) \) is the gradient vector for \(w_k \).

Similarly, the update control points vector \(g_{m,k} \) can be expressed by the gradient vector of (7) with respect to the coefficients \(g_{m,k} \)

\[
g_{m,k+1} = g_{m,k} - \mu_g \nabla J_{g}^{LMS}(k) ,
\]

where \(\mu_g \) is a step-size and \(\nabla J_{g}^{LMS}(k) \) is the gradient vector for \(g_{m,k} \). Thus, the FIR weight vector \(w_k \) and the control points update coefficient vector \(g_{m,k} \) are the particularly simple forms as

\[
w_{k+1} = w_k + \mu_w v_k^T C_b g_{m,k} x_k \]

\[
g_{m,k+1} = g_{m,k} + \mu_g C_b^T v_k e_k ,
\]

where \(v_k \) is given by

\[
v_k = [3 v_{1,k}^2, 2 v_{2,k}, 1, 0]^T .
\]

and the local parameter \(v_k \) is given in (5).
3 Proposed Adaptive Step-size and Variable Leaky Least Mean Square based on Spline Adaptive Filter

Based on the least mean square (LMS) algorithm, the advantage of the leaky LMS algorithm is that it avoids the drift of weights [23]. Meanwhile, the step-size parameter is an efficient approach to improve the convergence rate [16].

Following [11] and [11], the cost function using adaptive step-size and variable leaky criterion for SAF based on least mean square (AS-VLLMS-SAF) algorithm can be minimized as

\[
J(w_k, g_{m,k}) = \min_{w_{k},g_{m,k}} \left\{ \frac{1}{2} | e_k |^2 + \gamma_w \| w_k \|^2 + \gamma_g \| g_{m,k} \|^2 \right\},
\]

where \(\gamma_w \) and \(\gamma_g \) are the leaky paramters for the linear FIR coefficient vector \(w_k \) and the control points weight vector \(g_{m,k} \), respectively. The \textit{a priori} error of system \(e_k \) is given as

\[
e_k = d_k - v'_k C \phi g_{m,k}.
\]

Considering the chain rule on the cost function in (14) with respect to (w.r.t) \(w_k \), we get

\[
\frac{\partial J(w_k, g_{m,k})}{\partial w_k} = \left\{ -e_k \frac{\partial v'_k}{\partial w_k} + \gamma_w w_k \right\} \\
= \left\{ -\frac{e_k}{\Delta x} v'_k C g_{m,k} x_k + \gamma_w w_k \right\}.
\]

where \(v'_k \) is defined as

\[
v'_k = [3v_k^2 \ 2v_k \ 1 \ 0].
\]

The gradient of cost function in (14) w.r.t \(g_{m,k} \) can be expressed by using the chain rule in the form of vector below

\[
\frac{\partial J(w_k, g_{m,k})}{\partial g_{m,k}} = \left\{ -e_k \frac{\partial v'_k}{\partial w_k} + \gamma_g g_{m,k} \right\} \\
= \left\{ -e_k C^T v_k + \gamma_g g_{m,k} \right\}.
\]

Hence, the proposed update linear FIR coefficient vector \(w_k \) of AS-VLLMS-SAF algorithm is the stochastic adaptation formula as

\[
w_{k+1} = w_k - \mu_{w_k} \frac{\partial J(w_k, g_{m,k})}{\partial w_k},
\]

where \(\mu_{w_k} \) is a adaptive step-size parameter at symbol \(k \).

By substituting (16) into (19), the proposed update tap-weight vector \(w_k \) can be expressed as

\[
w_{k+1} = (1 - \mu_{w_k}) w_k + \frac{\mu_{w_k}}{\Delta x} v'_k C \phi g_{m,k} x_k e_k,
\]

where \(\gamma_{w_k} \) is a variable leaky parameter for \(w_k \). It is noticed that \((1 - \mu_{w_k}) \) is also defined as the leakage factor [23] for updated weight \(w_k \) in which its value is generally close to 1.

The adaptive control points coefficient vector \(g_{m,k} \) of AS-VLLMS-SAF becomes

\[
g_{m,k+1} = g_{m,k} - \mu_{g_k} \frac{\partial J(w_k, g_{m,k})}{\partial g_{m,k}},
\]

where \(\mu_{g_k} \) is a adaptive step-size parameter at symbol \(k \).

Figure 1: Linear-Nonlinear structure of proposed adaptive step-size variable leaky LMS algorithm for spline adaptive filter (AS-VLLMS-SAF).
By substituting $[18]$ into $[21]$, the proposed control points vector $g_{m,k}$ is given as
\begin{equation}
\therefore g_{m,k+1} = (1 - \mu_g \gamma_{g})g_{m,k} + \mu_g c_b^T v_k e_k,
\end{equation}
where μ_g is a step-size parameter and γ_{g} is a variable leaky parameter for $g_{m,k+1}$. It is noted that $(1 - \mu_g \gamma_{g})$ is also defined as the leakage factor $[23]$ for updated weight $g_{m,k+1}$ in its which its value is generally close to 1.

3.1 Modified Variable Leaky mechanism

Following $[24]$, we introduce the modified variable leaky algorithm with the optimal parameter for weights w_k and $g_{m,k}$ in the recursion form as
\begin{equation}
\begin{aligned}
\gamma_{w} &= \gamma_{w_{-1}} + \rho_w \gamma_{w_{opt}}, \\
\gamma_{g} &= \gamma_{g_{-1}} + \rho_g \gamma_{g_{opt}},
\end{aligned}
\end{equation}
where ρ_w, ρ_g and $\gamma_{w_{opt}}$, $\gamma_{g_{opt}}$ are the adaptation rate and the optimal parameters of weights w_k and $g_{m,k}$.

We rewrite $[20]$ as
\begin{equation}
w_{k+1} = w_k - \mu_w \gamma_{w} w_k + \frac{\mu_w}{\Delta x} v_k^T C_b g_{m,k} x_k e_k,
\end{equation}

Assumption 1: We consider the steady-state value of $E[w_{k+1}]$ for $k \to \infty$ by
\begin{equation}
E[w_{k+1}] \approx E[w_k].
\end{equation}

We determine the optimal leaky parameter for w_k by using this assumption above in $[25]$, we arrive at
\begin{equation}
\gamma_{w_{opt}} \simeq \frac{v_k^T C_b g_{m,k} w_k^{-1} x_k e_k}{\Delta x}.
\end{equation}

Therefore, the modified variable leaky algorithm in the recursion form can be expressed as
\begin{equation}
\gamma_{w} = \gamma_{w_{-1}} - \rho_w \frac{v_k^T C_b g_{m,k} w_k^{-1} x_k e_k}{\Delta x},
\end{equation}
where ρ_w is an adaptation rate for w_k.

Consequently, the *a posteriori* AS-VLLMS error $[11]$ is rewritten as
\begin{equation}
\begin{aligned}
e_{p_k}^{VL-LMS} &= (1 - \mu_g \gamma_{g})v_k^T C_b v_k e_k + \mu_g \gamma_{g} C_b x_k e_k, \\
\text{Assumption 2:} \text{ We consider the steady-state value of proposed algorithm is stable for } k \to \infty \text{ by} \\
E[e_k^{VL-LMS}] &\approx E[e_k].
\end{aligned}
\end{equation}

By using Assumption 2 in $[28]$, the optimal leaky parameter can be defined as
\begin{equation}
\gamma_{g_{opt}} \simeq \frac{\Omega_k^T \Omega_k e_k}{\Omega_k^T g_{m,k}},
\end{equation}
where $\Omega_k = v_k^T C_b$.

Table 1: Proposed Variable Leaky Least Mean Square based on Spline Adaptive Filtering with the adaptive step-size (AS-VLLMS-SAF) algorithm.

<table>
<thead>
<tr>
<th>ϕ_k</th>
<th>w_k</th>
<th>x_k</th>
<th>$g_{m,k}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_k = w_k^T x_k$</td>
<td>$w_k = [w_0 \ w_1 \ \cdots \ w_{X-1}]$</td>
<td>$x_k = [x_k \ x_{k-1} \ \cdots \ x_{k-K+1}]$</td>
<td>$g_{m,k} = [g_{m,k} \ g_{m+1,k} \ g_{m+2,k} \ g_{m+3,k}]$</td>
</tr>
</tbody>
</table>

for $k = 0, 1, 2, \ldots, K - 1$.

$\phi_k = w_k^T x_k$

$\gamma_{g} \simeq \gamma_{g_{-1}} - \rho_g \frac{\Omega_k^T \Omega_k e_k}{\Omega_k^T g_{m,k} + \epsilon}$

$\Omega_k = v_k^T C_b$

$\mu_{w} = \alpha_{u} \mu_{w_{-1}} + \beta_w \xi_{w_{k}}$

$\xi_{w} = \lambda \xi_{w_{-1}} + (1 - \lambda)e_{k-1} e_k$

$\mu_{g} = \alpha_{g} \mu_{g_{-1}} + \beta_g \xi_{g_{k}}$

$w_{k+1} = w_k - \mu_w \gamma_{w} w_k + \frac{\mu_w}{\Delta x} v_k^T C_b g_{m,k} x_k e_k$

$q_{k+1} = g_{m,k} - \mu_{g} \gamma_{g} q_{k} + \mu_{g_{-1}} C_b^T v_k e_k$

Therefore, the modified variable leaky algorithm can be expressed in the recursion method as
\begin{equation}
\gamma_{g} \simeq \gamma_{g_{-1}} - \rho_g \frac{\Omega_k^T \Omega_k e_k}{\Omega_k^T g_{m,k} + \epsilon},
\end{equation}
where ρ_g is an adaptation rate for $g_{m,k}$ and ϵ is a regularization parameter with a small constant.

3.2 Modified Adaptive Step-size Approach

According to the better convergence of proposed AS-VLLMS-SAF algorithm, the step-size parameter should be adapted recursively.

The behavior of convergence rate is which the algorithm starts converging, the value of step-size parameter should be large in order to boost up the learning rate of convergence. At closely to the steady-state, the step-size parameter might be increased adequately to get the lower adjustment. This leads to adjust accordingly the step-size parameter.
We assume that the step-size parameters μ_m and μ_g are regulated by squared estimated error. Hence, the proposed adaptive step-size μ_w for weight w_k based on AS-VLLMS algorithm is introduced for spline adaptive filtering as \(34\)

$$
\mu_w = \alpha_w \mu_{w-1} + \beta_w \xi_k^2 ,
$$

(31)

and the proposed adaptive step-size μ_g for weight g_{mk} can be expressed as

$$
\mu_g = \alpha_g \mu_{g-1} + \beta_g e_{k-1}^2 e_k ,
$$

(32)

A summary of proposed variable leaky least mean square for spline adaptive filtering based on adaptive step-size algorithm (AS-VLLMS) is depicted in Table 1.

4 Performance Analysis

In this section, we analyze the convergence performance of the proposed variable leaky LMS based on SAF. Compared to the LMS-SAF algorithm, the proposed AS-VLLMS algorithm is presented by introducing an additional concept.

Variable leaky algorithm is used in the iterative of weights w_k and g_{mk}, respectively. So, the computational complexity of AS-VLLMS-SAF is more complex than that of the LMS-SAF algorithm.

4.1 Properties of AS-VLLMS Algorithm

The properties of adaptive step-size and variable leaky LMS algorithm may be derived by examining the behaviour of $E\{w_k\}$ and $E\{g_{mk}\}$ of SAF.

Taking expectation value and using the independence assumption \(25\), we then have

$$
E\{w_k\} = (1 - \mu_w \gamma_w) E\{w_k\} + \frac{\mu_w}{\Delta x} E\{v_k' \ C_b \ g_{mk} \ x_k \ e_k\} .
$$

(34)

Specially, we note that if w_k converges to the steady-state solution, we get

$$
\lim_{k \to \infty} E\{w_k\} = \frac{v_k' C_b g_{mk} x_k e_k}{\gamma_w \Delta x} .
$$

(35)

In a similar fashion, we substitute a priori error e_k in \(15\) into \(22\), then we have

$$
g_{mk+1} = \left[I - \mu_g \{ \gamma_g I + \tilde{U}_k^T \tilde{U}_k \} \right] g_{mk} + \mu_g \tilde{U}_k d_k ,
$$

(36)

where \tilde{U}_k is given by

$$
\tilde{U}_k = C_f^T y_k .
$$

(37)

Thus, we take the expectation value and using the independence assumption \(25\), it becomes

$$
E\{g_{mk+1}\} = \left[I - \mu_g \{ \gamma_g I + \tilde{U}_k^T \tilde{U}_k \} \right] E\{g_{mk}\} + \mu_g \tilde{r}_{d\tilde{U}} ,
$$

(38)

where $\tilde{r}_{d\tilde{U}}$ and $\tilde{r}_{d\tilde{U}}$ are defined by

$$
\tilde{r}_{d\tilde{U}} = \tilde{U}_k^T \tilde{U}_k ,
$$

(39)

$$
\tilde{r}_{d\tilde{U}} = d_k \ U_k .
$$

(40)

Clearly, we note that if g_{mk} converges to the steady-state solution, we have

$$
\lim_{k \to \infty} E\{g_{mk}\} = \left(\gamma_g I + \tilde{U}_k^T \tilde{U}_k \right)^{-1} \tilde{r}_{d\tilde{U}} .
$$

(41)

It is noticed that the leakage coefficient introduces a bias into the steady-state solution.
4.2 The Leaky Adjustment

In this section, the leaky adjustment is investigated in form of the a posteriori error compared with a priori error in the spline adaptive filtering. We determine the a posteriori LMS error as

$$
\tilde{e}_{LMS}^{k} = d_k - v_k^T C_b g_{m,k+1} = e_k (1 - \mu_g \gamma_k^T U_k),
$$

(42)

where U_k is described in (37).

Correspondingly, we examine the a posteriori variable leaky least mean square (VL-LMS) error as

$$
\tilde{e}_{VL-LMS}^{k} \triangleq d_k - v_k^T C_b g_{m,k+1} = e_k (1 - \mu_g \gamma_k^T U_k) + \mu_g \gamma_k \gamma_k^T g_{m,k}.
$$

It is noticed that the leaky adjustment will be achieved based on a greedy heuristic algorithm with each iteration, which can get the appropriate leaky value, if $|\tilde{e}_{VL-LMS}^{k}| < |\tilde{e}_{LMS}^{k}|$. That means the proposed VL-LMS algorithm would allow to get the efficient LMS algorithm. Otherwise, the leak parameter should be diminished.
4.3 Mean Square Error Performance

We investigate the mean square error (MSE) performance of the proposed AS-VLLMS-SAF algorithm at the steady-state.

Assumption 3: We assume that the a priori and a posteriori optimal errors are identical, we have

\[E(\epsilon_{\text{opt}g}) \approx e_{\text{opt}g} \, . \]

Assumption 4: We consider the convergence condition for \(k \to \infty \), that is of

\[E(\epsilon_{\text{opt}g}) \to 0 \, , \ \text{as} \ k \to \infty \]

\[E(\mathbf{g}_{\text{opt}k}) \to \mathbf{g}_{\text{opt}k} \, , \ \text{as} \ k \to \infty \]

Following [12], we decompose the MSE under these assumptions above as follows.

\[J_{\text{MSE}}^P = J_{\text{MMSE}}^P + J_{\text{EX}}^P = E(\|\epsilon_g\|^2) \, , \quad (43) \]

where \(J_{\text{MMSE}}^P \) is the minimum mean square error (MMSE) as

\[J_{\text{MMSE}}^P = E(\|\epsilon_{\text{opt}g}\|^2) \, , \quad (44) \]

\[\epsilon_{\text{opt}g} = d_k - \mathbf{v}_k^T \mathbf{C}_b \mathbf{g}_{\text{opt}} \, , \quad (45) \]

where \(\epsilon_{\text{opt}g} \) is the a posteriori optimal error of \(\mathbf{g}_{\text{opt}} \).

Certainly, \(J_{\text{EX}}^P \) is the a posteriori excess mean square error (EMSE) given by

\[J_{\text{EX}}^P = J_{\text{MSE}}^P - J_{\text{MMSE}}^P = E(\|\epsilon_g\|^2) - E(\|\epsilon_{\text{opt}g}\|^2) \, . \quad (46) \]
4.4 Experimental conditions on parameters setting

In this section, the theoretical experiments are simulated in system identification over the random process and under the Gaussian noise scenario. We evaluate the performance of proposed adaptive step-size variable leaky least mean square algorithm based on spline adaptive filter (AS-VLLMS-SAF) as compared to the conventional least mean square algorithm based on spline adaptive filter (LMS-SAF) [3].

The coloured input signal generates for all experiments over 100 Monte Carlo trials and 5,000 samples used that is generated by x_k = ð · x_{k-1} + √1 - ð^2ζ_k ,

where ζ_k is a unitary variance type of zero mean white Gaussian noise, ð = [0, 0.95] and an interval sampling Δx is used at 0.2 [11].

An unknown Wiener system is composed by a linear component as

\[w_0 = [0.6, -0.4, 0.25, -0.15, 0.1]^T , \]

and a 23-point length lookup table (LUT) \(g_0 \) is a nonlinear memory-less target function applied by

\[g_0 = [-2.2, \ldots, -0.8, -0.91, -0.4, -0.2, 0.05, 0, -0.4, 1.0, 1.0, 1.2, \ldots, 2.2]. \]

The linear filter \(w_0 \) is initialized as \(w_0 = [1, 0, \ldots, 0] \) and \(δ = 0.001 \). Other parameters are fixed at the length of coefficient vector \(T = 5 \), a signal to noise ratio \(SNR = 35dB \). The spline basis matrices are used as the *B-spline* matrix \(C_B \) and the *Catmul-Rom spline* matrix \(C_{CR} \) in [8] which are selected for simulation experiments as follows:

\[
C_B = \frac{1}{6} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
1 & -3 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
3 & -3 & 3 & 0
\end{bmatrix},
\]

\[
C_{CR} = \frac{1}{2} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
1 & -3 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
3 & -3 & 3 & 0
\end{bmatrix},
\]

The fixed parameters of proposed AS-VLLMS-SAF algorithm are as follows: \(α = 0.20, 0.95, α_w = 7.55 \times 10^{-3}, β_w = 2.75 \times 10^{-3}, \) \(α_ρ = 6.55 \times 10^{-3}, β_ρ = 1.85 \times 10^{-3}, λ = 9.75, ε = 1 \times 10^{-6} \) and \(ρ_w = 1.5 \times 10^{-6}, ρ_ρ = 1.125 \times 10^{-6} \). And the initial parameters for proposed AS-VLLMS-SAF are \(γ_o(0) = 3.25 \times 10^{-2}, γ_s(0) = 3.25 \times 10^{-2}, \) \(μ_w = 7.75 \times 10^{-4}, μ_ρ = 2.25 \times 10^{-4}. \) Other fixed parameter of SAF-LMS [3] are as: \(μ_w = 0.05 \) and \(μ_ρ = 0.05. \)

\[\begin{array}{|c|c|c|c|}
\hline
\text{Algorithm} & \theta & \text{Spline} & \text{MSE at steady-state condition} \\
& & \text{matrix} & \text{SNR} \\
\hline
\text{AS-VLLMS} & 0.20 & C_B & 1.286 \times 10^{-3} \quad -28.969 \\
& & C_{CR} & 1.448 \times 10^{-3} \quad -28.392 \\
\hline
\text{VL-LMS} & 0.20 & C_B & 1.768 \times 10^{-3} \quad -29.293 \\
& & C_{CR} & 2.342 \times 10^{-3} \quad -26.304 \\
\hline
\end{array}\]

5 Simulation Results

For the experiment results, the mean square error (MSE) is simulated at \(\theta = 0.20, 0.95 \). Fig. 2 and Fig. 3 show the MSE convergence curves of proposed AS-VLLMS-SAF compared with the original LMS-SAF [5] based on the *B-spline* matrix \((C_B) \) and the *Catmul-Rom* spline matrix \((C_{CR}) \) with the parameters \(\theta = 0.2, 0.95 \) in (47) shown in dB and SNR=35dB, respectively. We notice that the curves of proposed AS-VLLMS-SAF based on both spline basis matrices outperform when comparable to that of the LMS-SAF algorithm.

Furthermore, Fig. 4 and Fig. 5 based on the *B-spline* matrix and Fig. 6 and Fig. 7 based on the *Catmul-Rom* spline matrix demonstrate the curves of learning rate of \(μ_w \) and \(μ_ρ \) of control points \(g_{m,k} \) for the proposed AS-VLLMS-SAF at \(\theta = 0.20, 0.95 \) and SNR=35dB, respectively. Their learning curves are depicted to converge to their equilibrium at the steady-state, even the initial of \(μ_w \) and \(μ_ρ \) are varied.

Finally, Fig. 8 and Fig. 9 based on the *B-spline* matrix and Fig. 10 and Fig. 11 based on the *Catmul-Rom* spline matrix present the curves of learning parameters of \(γ_o \) of coefficient vector \(w_k \) and \(γ_s \) of adaptive control points vector \(g_{m,k} \) for the proposed AS-VLLMS-SAF at \(\theta = 0.20, 0.95 \) and SNR=35dB, respectively. It can see clearly that their learning rates are shown to converge for the tracking ability at the steady-state with the different initial parameters.

Summary of MSE of proposed AS-VLLMS-SAF with the initial parameters: \(μ_o(0) = 7.25 \times 10^{-5}, μ_s(0) = 2.25 \times 10^{-5}, \) \(γ_o(0) = 6.25 \times 10^{-4}, γ_s(0) = 6.15 \times 10^{-4} \) and of LMS-SAF in [3] with the fixed parameter as \(μ_w = μ_ρ = 0.05 \) over 100 Monte Carlo trials and 5,000 samples used at SNR = 35dB and \(\theta = 0.20, 0.95 \) is presented in Table. 3. Simulation results suggest that mean square error performance of proposed algorithm can be partially assessed using adaptive step-size with the variable leaky parameters indicating better than the conventional least mean square algorithm by 16.76% with the *B-spline* matrix.
6 Discussion

The comparison of MSE averaged over 100 trials are shown the robustness and superiority of proposed AS-VLLMS algorithm over the conventional LMS algorithm. We have plotted the learning curves of adaptive step-size μ_{as} of coefficient vector \vec{w}_k, μ_{sl} of control points $\vec{p}_{\text{m,sl}}$ for the proposed AS-VLLMS algorithm and of variable leaky γ_{as} of coefficient vector \vec{w}_k and γ_{sl} of adaptive control points vector $\vec{p}_{\text{m,sl}}$ after 5,000 iterations, which are seen that their learning curves converges to their equilibrium, even the initial values are assigned to be varied.

7 Conclusion

We have orchestrated an adaptive step-size and a variable leaky approach based on least mean square algorithm for spline adaptive filtering. The proposed AS-VLLMS-SAF algorithm has been explained how to derive using the variable leaky mechanism. We have designed an adaptive step-size algorithm with the methods of an energy of squared previous and present estimated error. We have designed a modified leaky algorithm with the methods of an optimal leaky parameter. Simulation experiments have shown that the proposed AS-VLLMS-SAF algorithm can perform well with the corresponding LMS-SAF algorithm.

In general, spline adaptive filtering structure is already fascinatingly applied in many applications such as signal processing for communications in nonlinear channel estimation and acoustic processing in bio-acoustic signal.

Conflict of Interest The authors declare no conflict of interest.

References

