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This paper presents an adaptive step-size and variable leaky least mean square algorithm
based on nonlinear adaptive filter with the adaptive lookup table using spline interpolation.
An adaptive step-size approach is proposed with the energy of squared previous and present
errors to boost up the convergence rate. A modified variable leaky mechanism is proposed
with the optimal leaky parameter by using the recursion form. The proposed algorithm merges
an adaptive step-size and a modified variable leaky method with least mean square algorithm
for linear and nonlinear network part of spline adaptive filtering in term of fast convergence
enhancement. Experimental results demonstrate that proposed algorithm can notably achieve a
competitive performance on the convergence rate in comparison with the conventional least
mean square algorithm for spline adaptive filter. Simulation results suggest that mean square
error performance of proposed algorithm can be partially assessed using adaptive step-size
with the variable leaky parameters indicating better than the conventional least mean square
algorithm by 16.76%.

1 Introduction
This paper is an extension of work originally presented in the In-
ternational Electrical Engineering Congress [1], which has been
proposed the variable leaky mechanism based on the least mean
square (LMS) algorithm for spline adaptive filter. The combination
of a linear finite impulse response (FIR) filter and a nonlinear adap-
tive lookup table (LUT) based on the spline interpolation is called
the spline adaptive filtering (SAF) with the adaptation process [2].
It is a class of nonlinear adaptive filtering with a spline function
[1]-[12].

According to the practical models, the linear adaptive filter
should be inadequate [3]. The models of nonlinear dynamic systems
have demonstrated with more robust performance. Linear adaptive
filtering should be insufficient in real-world models. Moreover,
many dynamic systems using model of nonlinear structure have
been extended to the operating model.

Based on the SAF, many research works have achieved effi-
ciently in the practical system identification. In [2], the authors have
presented the sign approach with the normalized version of least
mean square (NLMS) based on Wiener spline adaptive filter in order
to fight against the impulsive noise environment. In [4], the authors
have analyzed the convergence and stability analysis of SAF based

on LMS algorithm. A steady-state performance of SAF has been
examined in [5].

In order to model the nonlinear system identification, the SAF is
more attention for the practical use [6],[7]. The linear time-invariant
model with the cubic spline function [8] can obtain the good perfor-
mance working with the adaptive lookup table (LUT) [9] and the
spline basis matrix on the adaptive control points coefficient vector.

Applications of SAF architecture have been applied in the in-
finite impulse response [10] and the system environment with im-
pulsive noise [11]. A set-membership mechanism with the Wiener
spline adaptive filtering and normalized least M-estimate algorithm
have been obtained significantly the fast convergence in the environ-
ment of impulsive noise [11]. In [12], the authors have proposed the
Hammerstein function with SAF based on LMS algorithm for im-
proving the convergence rate. Further, a SAF based on the maximum
correntropy criterion [13], [14] has been discussed that correntropy
is robustness to non-Gaussian noise.

Least mean square (LMS) algorithm which is simple and low
computation has been widely used [15]. Most researchers have
modified accurately on LMS and NLMS algorithms [16] and [17],
the variable step-size LMS [18], the sign mechanism with NLMS
[2] and so on.
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As stated in a steady-state of convergence analysis, a variable
leaky mechanism has been depicted in use of tracking the systems.
In [19], a variable leaky LMS algorithm based on the greedy heuris-
tic algorithm has been leveraged to enhance with the high eigenvalue
input. In [20], the authors have implemented the variable leaky LMS
in the field programmable gate array implementation. The results
have been shown that the algorithm can explore the various digital
filter architecture.

Based on the variable leaky LMS algorithm which has been
orchestrated against and attenuating the drifting [21]. In the field of
adaptive signal processing, a variable leaky based on the orthogonal
gradient adaptive algorithm with the minimized cost function has
been applied for the wireless communications [22].

The novelty of this paper is to merge an adaptive step-size and a
modified variable leaky method with least mean square algorithm
for linear and nonlinear network part of spline adaptive filtering in
term of fast convergence enhancement. The analysis of the conver-
gence performance of the proposed algorithm is derived in forms of
the properties and mean square error performance.

In this paper, we organize this paper as follows. Section 2 ex-
plains shortly in the structure of SAF. Next, Section 3 introduces
the modified adaptive step-size mechanism and the modified vari-
able leaky criterion on the minimization cost function based on the
LMS algorithm. Section 4 describes the performance analysis of
the proposed adaptive step-size and variable leaky LMS algorithm
in terms of the properties and the mean square error performance.
Further, the experiment results and discussion show in Section 5 and
Section 6, respectively. Finally, Section 7 summarizes the proposed
algorithm.

2 Spline Adaptive Filter

Spline adaptive filter (SAF) is namely a combination of linear and
nonlinear structures shown in Fig. 1, where xk is the input of SAF
structure and yk is the output of system.

The objective is that adaptive lookup table in the nonlinear struc-
ture generates an output of SAF yk nearly to a desired sequence dk

as

dk = yk + ek , (1)

where the error of system ek should be small. Thus, the adaptive
FIR filter brings an output φk in the linear structure, while the input
signal is a sequence of xk at the linear structure.

An adaptive FIR filter output φk is given by [3]

φk = wT
k xk , (2)

where wk is the update FIR coefficient vector.
Following [3], the SAF output yk can be examined by following

yk = uT
k Cb gm,k , (3)

vk = [v3
k , v2

k , vk, 1]T , (4)

where gmk
is the coefficient of control point vector and Cb is a spline

basis matrix.

The local parameter vk and index m are usually indicated as [5]

vk =
φk

∆x
−

⌊
φk

∆x

⌋
, (5)

m =

⌊
φk

∆x

⌋
+

P − 1
2

, (6)

where ∆x is the uniform space between two adjacent-coefficients of
control points [6], P is the size of control point coefficient, and the
floor operator b·c is applied.

By using the minimized objective function based on least mean
square (LMS) [5], it becomes

JLMS
w,g (k) = min

w,g

{1
2
| ek |

2
}
, (7)

where a priori error ek is defined as

ek = dk − yk = dk − vT
k Cb gm,k . (8)

The update FIR coefficient vector wk can compute by the gradi-
ent vector of (7) with respect to the coefficients wk in terms of the
recursion form as [3]

wk+1 = wk − µw ∇JLMS
w , (9)

where µw is a step-size and ∇JLMS
w (k) is the gradient vector for wk.

Similarly, the update control points vector gm,k can be expressed
by the gradient vector of (7) with respect to the coefficients gm,k [3]

gm,k+1 = gm,k − µg ∇JLMS
g (k) , (10)

where µg is a step-size and ∇JLMS
g (k) is the gradient vector for

gm,k. Thus, the FIR weight vector wk and the control points update
coefficient vector gm,k are the particularly simple forms as [5]

wk+1 = wk + µw v′k Cb gT
m,k xk ek , (11)

gm,k+1 = gm,k + µg CT
b vk ek , (12)

where v′k is given by

v′k = [3 v2
k , 2 vk, 1, 0]T . (13)

and the local parameter vk is given in (5).
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Figure 1: Linear-Nonlinear structure of proposed adaptive step-size variable leaky LMS algorithm for spline adaptive filter (AS-VLLMS-SAF).

3 Proposed Adaptive Step-size and Vari-
able Leaky Least Mean Square based on
Spline Adaptive Filter

Based on the least mean square (LMS) algorithm, the advantage
of the leaky LMS algorithm is that it avoids the drift of weights
[23]. Meanwhile, the step-size parameter is an efficient approach to
improve the convergence rate [16].

Following [1] and [11], the cost function using adaptive step-
size and variable leaky criterion for SAF based on least mean square
(AS-VLLMS-SAF) algorithm can be minimized as

J(wk, gm,k) = min
wk ,gm,k

{1
2
| ek |

2 + γw ‖wk‖
2 + γg ‖gk‖

2
}
, (14)

where γw and γg are the leaky paramters for the linear FIR coefficient
vector wk and the control points weight vector gm,k, respectively.
The a priori error of system ek is given as

ek = dk − vT
k Cb gm,k . (15)

Considering the chain rule on the cost function in (14) with
respect to (w.r.t) wk, we get

∂J(wk, gm,k)
∂wk

=
{
− ek

∂yk

∂vk

∂vk

∂φk

∂φk

∂wk
+ γwwk

}
=

{
−

ek

∆x
v′k C gm,k xk + γwwk

}
, (16)

where v′k is defined as

v′k = [3v2
k 2vk 1 0] . (17)

The gradient of cost function in (14) w.r.t gm,k can be expressed
by using the chain rule in the form of vector below

∂J(wk, gm,k)
∂gm,k

=
{
− ek

∂yk

∂vk

∂vk

∂φk

∂φk

∂gm,k
+ γggm,k

}
= {−ek CT vk + γggm,k} . (18)

Hence, the proposed update linear FIR coefficient vector wk of
AS-VLLMS-SAF algorithm is the stochastic adaptation formula as

wk+1 = wk − µwk

∂J(wk, gm,k)
∂wk

, (19)

where µwk is a adaptive step-size parameter at symbol k.
By substituting (16) into (19), the proposed update tap-weight

vector wk can be expressed as

∴ wk+1 = (1 − µwkγwk ) wk +
µwk

∆x
v′k Cb gm,k xk ek , (20)

where γwk is a variable leaky parameter for wk. It is noticed that
(1 − µwkγwk ) is also defined as the leakage factor [23] for updated
weight wk in which its value is generally close to 1.

The adaptive control points coefficient vector gm,k of AS-
VLLMS-SAF becomes

gm,k+1 = gm,k − µgk

∂J(wk, gm,k)
∂gm,k

, (21)
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By substituting (18) into (21), the proposed control points vector
gm,k is given as

∴ gm,k+1 = (1 − µgγgk ) gm,k + µq CT
b vk ek , (22)

where µg is a step-size parameter and γgk is a variable leaky param-
eter for gm,k+1. It is noted that (1 − µgγgk ) is also defined as the
leakage factor [23] for updated weight gm,k+1 in which its value is
generally close to 1.

3.1 Modified Variable Leaky mechanism

Following [24], we introduce the modified variable leaky algorithm
with the optimal leaky parameter for weights wk and gm,k in the
recursion form as

γwk = γwk−1 + ρw γ
opt
w , (23)

γgk = γgk−1 + ρg γ
opt
g , (24)

where ρw, ρg and γopt
w , γopt

g are the adaptation rate and the optimal
leaky parameters of weights wk and gm,k.

We rewrite (20) as

wk+1 = wk − µwkγwk wk +
µwk

∆x
v′k Cb gm,k xk ek , (25)

Assumption 1: We consider the steady-state value of E{wk+1} for
k → ∞ by

E{wk+1} ' E{wk}.

We determine the optimal leaky parameter for wk by using this
assumption above in (25), we arrive at

γ
opt
w '

v′k CT
b gm,k w−1

k xk ek

∆x
. (26)

Therefore, the modified variable leaky algorithm in the recursion
form can be expressed as

γwk = γwk−1 − ρw
v′k CT

b gm,k w−1
k xk ek

∆x
, (27)

where ρw is an adaptation rate for wk.
Consequently, the a posterior AS-VLLMS error [1] is rewritten

as

eVL-LMS
pk

=
(
1 − µgk vk CT

b vk Cb
)

ek + µgk γgk vk CT
b gm,k . (28)

Assumption 2: We consider the steady-state value of proposed
algorithm is stable for k → ∞ by

E{eVL-LMS
pk

} ' E{ek}.

By using Assumption 2 in (28), the optimal leaky parameter can
be defined as

γ
opt
g '

ΩT
k Ωk ek

ΩT
k gm,k

, (29)

where Ωk = vT
k C.

Table 1: Proposed Variable Leaky Least Mean Square based on Spline Adaptive
Filtering with the adaptive step-size (AS-VLLMS-SAF) algorithm.

Initialize : w(0) = δ I and I is the identity matrix.

wk = [ w0 w1 . . . wK−1 ]
xk = [ xk xk−1 . . . xk−K+1 ]

gm,k = [ gm,k gm+1,k gm+2,k gi+3,k ]

for k = 0, 1, 2, . . . , K − 1.

φk = wT
k xk

vk =
φk

∆x
−

⌊
φk

∆x

⌋
m =

⌊
φk

∆x

⌋
+

P − 1
2

vk = [v3
k , v2

k , vk, 1]T

v′k = [3v2
k , 2vk, 1, 0]T

ek = dk − vT
k Cb gm,k

γwk = γwk−1 + ρw
v′k CT

b gm,k w−1
k xk ek

∆x

γqk = γqk−1 + ρq
ΩT

k Ωk ek

ΩT
k gm,k + ε

Ωk = vT
k Cb

µwk = αw µwk−1 + βw ξ
2
k

ξk = λ ξk−1 + (1 − λ) e∗k−1 ek

µqk = αq µqk−1 + βq e∗k−1 ek

wk+1 = wk − µwkγwk wk +
µwk

∆x
v′k CT

b gm,k xk ek

qi,k+1 = gm,k − µqkγqk gm,k + µqm,k CT
b vk ek

end

Therefore, the modified variable leaky algorithm can be ex-
pressed in the recursion method as

γgk = γgk−1 − ρq
ΩT

k Ωk ek

ΩT
k gm,k + ε

, (30)

where ρg is an adaptation rate for gm,k and ε is a regularization
parameter with a small constant.

3.2 Modified Adaptive Step-size Approach

According to the better convergence of proposed AS-VLLMS-SAF
algorithm, the step-size parameter should be adapted recursively.

The behavior of convergence rate is which the algorithm starts
converging, the value of step-size parameter should be large in or-
der to boost up the learning rate of convergence. At closely to the
steady-state, the step-size parameter might be decreased adequately
to get the lower adjustment. This leads to adjust accordingly the
step-size parameter.
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Figure 2: MSE of proposed AS-VLLMS-SAF and LMS-SAF [3] on the B-spline
matrix CB with the different ϑ = 0.20, 0.95 and SNR = 35dB.

We assume that the step-size parameters µwk and µgk are reg-
ulated by squared estimated error. Hence, the proposed adaptive
step-size µwk for weight wk based on AS-VLLMS algorithm is in-
troduced for spline adaptive filtering as [4]

µwk = αw µwk−1 + βw ξ
2
k , (31)

ξk = λ ξk−1 + (1 − λ) e∗k−1 ek , (32)

and the proposed adaptive step-size µgk for weight gm,k can be ex-
pressed as

µgk = αg µgk−1 + βg e∗k−1 ek , (33)

A summary of proposed variable leaky least mean square for
spline adaptive filtering based on adaptive step-size algorithm (AS-
VLLMS) is depicted in Table 1.

4 Performance Analysis

In this section, we analyze the convergence performance of the
proposed variable leaky LMS based on SAF. Compared to the LMS-
SAF algorithm, the proposed AS-VLLMS algorithm is presented
by introducing an additional concept.

Variable leaky algorithm is used in the iterative of weights wk

and gm,k, respectively. So, the computational complexity of AS-
VLLMS-SAF is more complex than that of the LMS-SAF algo-
rithm.

4.1 Properties of AS-VLLMS Algorithm

The properties of adaptive step-size and variable leaky LMS algo-
rithm may be derived by examining the behaviour of E{wk} and
E{gm,k} of SAF.

Figure 3: MSE of proposed AS-VLLMS-SAF and LMS-SAF [3] on the Catmul-Rom
matrix CCR with ϑ = 0.20, 0.95 and SNR=35dB.

Taking expectation value and using the independence assump-
tion [25], we then have

E{wk+1} = (1 − µwkγwk ) E{wk} +
µw

∆x
E{v′k Cb gm,k xk ek} . (34)

Specially, we note that if wk converges to the steady-state solu-
tion, we get

lim
k→∞

E{wk} =
v′k Cb gT

m,k xk ek

γgk ∆x
. (35)

In a similar fashion, we substitute a priori error ek in (15) into
(22), then we have

gm,k+1 =
[
I − µgk

{
γgk I +fT

k fk
}]

gm,k + µgk fk dk , (36)

where fk is given by

fk = CT
b vk . (37)

Thus, we take the expectation value and using the independence
assumption [25], it becomes

E{gm,k+1} =
[
I − µgk

{
Rf + γgk I

}]
E{gm,k} + µgk rdf , (38)

where Rf and rdf are defined by

Rf = fT
k fk , (39)

rdf = dkfk . (40)

Clearly, we note that if gm,k converges to the steady-state solu-
tion, we have

lim
k→∞

E{gm,k} =
(
Rf + γgk I

)−1
rdf . (41)

It is noticed that the leakage coefficient introduces a bias into the
steady-state solution.
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Figure 4: Learning curves of adaptive step-size µwk of coefficient vector wk of pro-
posed AS-VLLMS-SAF on the B-spline matrix CB with α = 0.20, 0.95 and SNR =

35dB.

Figure 5: Learning curves of adaptive step-size µgk of coefficient vector gm,k of
proposed AS-VLLMS-SAF on the B-spline matrix CB with α = 0.20, 0.95 and SNR
= 35dB.

4.2 The Leaky Adjustment

In this section, the leaky adjustment is investigated in form of the a
posterior error compared with a priori error in the spline adaptive
filtering. We determine the a posteriori LMS error as [1]

ẽLMS
k , dk − vT

k Cb gm,k+1 = ek
(

1 − µgf
T
k fk

)
, (42)

where fk is described in (37).

Figure 6: Learning curves of adaptive step-size µwk of coefficient vector wk of pro-
posed AS-VLLMS-SAF on the Catmul-Rom matrix CCR with α = 0.20, 0.95 and
SNR = 35dB.

Figure 7: Learning curves of adaptive step-size µgk of coefficient vector gm,k of pro-
posed AS-VLLMS-SAF on the Catmul-Rom spline matrix CCR with α = 0.20, 0.95
and SNR = 35dB.

Correspondingly, we examine the a posteriori variable leaky
least mean square (VL-LMS) error as

ẽVLLMS
k , dk − vT

k Cb gm,k+1

= ek
(
1 − µgkf

T
k fk

)
+ µgkγgkf

T
k gm,k .

It is noticed that the leaky adjustment will be achieve based
on a greedy heuristic algorithm with each iteration, which can get
the appropriate leaky value, if |ẽVLLMS

k | < |ẽLMS
k |. That means the

proposed VL-LMS algorithm would allow to get the efficient LMS
algorithm. Otherwise, the leak parameter should be diminished.
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Figure 8: Learning curves of variable leaky γwk of coefficient vector wk of proposed
AS-VLLMS-SAF on CB with ϑ = 0.20, 0.95 and SNR = 35dB.

Figure 9: Learning curves of variable leaky γgk of coefficient vector gm,k of proposed
AS-VLLMS-SAF on CB with α = 0.20, 0.95 and SNR = 35dB.

4.3 Mean Square Error Performance

We investigate the mean square error (MSE) performance of the
proposed AS-VLLMS-SAF algorithm at the steady-state.
Assumption 3: We assume that the a priori and a posteriori optimal
errors are identical, we have

E{εopt
g } ≈ eopt,g .

Assumption 4: We consider the convergence condition for k → ∞,
that is of

E{εopt
g } → 0 , as k → ∞

E{gm,k} → gopt
m,k , as k → ∞

Figure 10: Learning curves of variable leaky γwk of coefficient vector wk of proposed
AS-VLLMS-SAF on CCR with ϑ = 0.20, 0.95 and SNR = 35dB.

Figure 11: Learning curves of variable leaky γwk of coefficient vector wk of proposed
AS-VLLMS-SAF on CCR with α = 0.20, 0.95 and SNR = 35dB.

Following [12], we decompose the MSE under these assump-
tions above as follows.

JP
MS E = JP

MMS E + JP
EX = E{‖εg‖

2} , (43)

where JP
MMS E is the minimum mean square error (MMSE) as

JP
MMS E = E{‖εopt

g ‖
2} , (44)

ε
opt
g = dk − vT

k Cb gopt , (45)

where εopt
g is the a posteriori optimal error of gopt.

Certainly, JP
EX is the a posteriori excess mean square error

(EMSE) given by

JP
EX = JP

MS E − J
P
MMS E = E{‖εg‖

2} − E{‖εopt
g ‖

2} . (46)
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4.4 Experimental conditions on parameters setting

In this section, the theoretical experiments are simulated in sys-
tem identification over the random process and under the Gaussian
noise scenario. We evaluate the performance of proposed adap-
tive step-size variable leaky least mean square algorithm based on
spline adaptive filter (AS-VLLMS-SAF) as compared to the conven-
tional least mean square algorithm based on spline adaptive filter
(LMS-SAF) [3].

The coloured input signal generates for all experiments over 100
Monte Carlo trials and 5,000 samples used that is generated by [2]

xk = ϑ · xk−1 +
√

1 − ϑ2ζk , (47)

where ζk is a unitary variance type of zero mean white Gaussian
noise, ϑ = [0, 0.95] and an interval sampling ∆x is used at 0.2 [11].

An unknown Wiener system is composed by a linear component
as [3]

w0 = [0.6, −0.4, 0.25, −0.15, 0.1]T ,

and a 23-point length lookup table (LUT) g0 is a nonlinear memory-
less target function applied by

g0 = [ −2.2, . . . ,−0.8, −0.91, −0.4,
− 0.2, 0.05, 0, −0.4, 1.0, 1.0, 1.2, . . . , 2.2 ] .

The linear filter w0 is initialzed as w0 = [1, 0, . . . , 0] and
δ = 0.001. Other parameters are fixed at the length of coefficient
vector T = 5, a signal to noise ratio S NR = 35dB . The spline
basis matrices are used as the B-spline matrix CB and the Catmul-
Rom spline matrix CCR in [8] which are selected for simulation
experiments as follows:

CB =
1
6


−1 3 −3 1

3 −3 3 0
−3 0 3 0

1 4 1 0

 , (48)

CCR =
1
2


−1 3 −3 1

2 −5 4 −1
−1 0 1 0

0 2 0 0

 . (49)

The fixed parameters of proposed AS-VLLMS-SAF algorithm
are as follows: α = 0.20, 0.95, αw = 7.55 × 10−3, βw = 2.75 × 10−3,
αg = 6.55 × 10−3, βg = 1.85 × 10−3, λ = 0.97, ε = 1 × 10−6

and ρw = 1.5 × 10−6, ρg = 1.125 × 10−6. And the initial pa-
rameters for proposed AS-VLLMS-SAF are γw(0) = 3.25 × 10−2,
γg(0) = 3.25 × 10−2, µw = 7.75 × 10−4, µg = 2.25 × 10−4. Other
fixed parameter of SAF-LMS [3] are as: µw = 0.05 and µg = 0.05.

Table 2: Summary of MSE of proposed AS-VLLMS-SAF with the initial parameters:
µw(0) = 7.25× 10−5, µg(0) = 2.25× 10−5, γw(0) = 6.25× 10−4, γg(0) = 6.15× 10−4,
of VL-LMS in [1] with γw(0) = 3.15 × 10−4, γg(0) = 3.15 × 10−4 and of LMS-SAF
in [3] with µw = µg = 0.05 over 100 Monte Carlo trials and 5,000 samples used at
SNR = 35dB

Algorithm ϑ in (47) Spline MSE at steady-state condition

matrix MSE dB

AS-VLLMS ϑ = 0.20 CB 1.268 × 10−3 -28.969

CCR 1.448 × 10−3 -28.392

ϑ = 0.95 CB 1.768 × 10−3 -29.293

CCR 2.342 × 10−3 -26.304

VL-LMS in[1] ϑ = 0.20 CB 1.815 × 10−3 -27.409

CCR 1.931 × 10−3 -27.144

ϑ = 0.95 CB 2.175 × 10−3 -26.625

CCR 2.592 × 10−3 -25.862

LMS in[3] ϑ = 0.20 CB 3.303 × 10−3 -24.811

CCR 1.352 × 10−2 -18.688

ϑ = 0.95 CB 8.345 × 10−3 -20.786

CCR 2.858 × 10−2 -15.439

5 Simulation Results
For the experiment results, the mean square error (MSE) is simu-
lated at ϑ = 0.20, 0.95. Fig. 2 and Fig. 3 show the MSE convergence
curves of proposed AS-VLLMS-SAF compared with the original
LMS-SAF [5] based on the B-spline matrix (CB) matrix and the
Catmul-Rom spline matrix (CCR) with the parameters ϑ = 0.2, 0.95
in (47) shown in dB and SNR=35dB, respectively. We notice that
the curves of MSE of proposed AS-VLLMS-SAF based on both
spline basis matrices outperform when comparable to that of the
LMS-SAF algorithm.

Furthermore, Fig. 4 and Fig. 5 based on the B-spline matrix and
Fig. 6 and Fig. 7 based on the Catmul-Rom spline matrix demon-
strate the curves of learning rate of µwk of coefficient vector wk

and µgk of control points gm,k for the proposed AS-VLLMS-SAF at
ϑ = 0.20, 0.95 and SNR=35dB, respectively. Their learning curves
are depicted to converge to their equilibrium at the steady-state,
even the initial of µwk and µgk are varied.

Finally, Fig. 8 and Fig. 9 based on the B-spline matrix and
Fig. 10 and Fig. 11 based on the Catmul-Rom spline matrix present
the curves of learning parameters of γwk of coefficient vector wk

and γgk of adaptive control points vector gm,k for the proposed AS-
VLLMS-SAF at ϑ = 0.20, 0.95 and SNR=35dB, respectively. It
can seen clearly that their learning rates are shown to converge
for the tracking ability at the steady-state with the different initial
parameters.

Summary of MSE of proposed AS-VLLMS-SAF with the ini-
tial parameters as µw(0) = 7.25 × 10−5, µg(0) = 2.25 × 10−5,
γw(0) = 6.25 × 10−4, γg(0) = 6.15 × 10−4 and of LMS-SAF in [3]
with the fixed parameter as µw = µg = 0.05 over 100 Monte Carlo
trials and 5,000 samples used at SNR = 35dB and ϑ = 0.20, 0.95 is
presented in Table. 2. Simulation results suggest that mean square
error performance of proposed algorithm can be partially assessed
using adaptive step-size with the variable leaky parameters indi-
cating better than the conventional least mean square algorithm by
16.76% with the B-spline matrix.
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6 Discussion
The comparison of MSE averaged over 100 trials are shown the ro-
bustness and superiority of proposed AS-VLLMS algorithm over the
conventional LMS algorithm. We have plotted the learning curves
of adaptive step-size µwk of coefficient vector wk, µgk of control
points gm,k for the proposed AS-VLLMS algorithm and of variable
leaky γwk of coefficient vector wk and γgk of adaptive control points
vector gm,k after 5,000 iterations, which are seen that their learning
curves converges to their equilibrium, even the initial values are
assigned to be varied.

7 Conclusion
We have orchestrated an adaptive step-size and a variable leaky
approach based on least mean square algorithm for spline adap-
tive filtering. The proposed AS-VLLMS-SAF algorithm has been
explained how to derive using the variable leaky mechanism. We
have designed an adaptive step-size algorithm with the methods
of an energy of squared previous and present estimated error. We
have designed a modified leaky algorithm with the methods of an
optimal leaky parameter. Simulation experiments have shown that
the proposed AS-VLLMS-SAF algorithm can perform well with
the corresponding LMS-SAF algorithm.

In general, spline adaptive filtering structure is already fasci-
natingly applied in many applications such as signal processing
for communications in nonlinear channel estimation and acoustic
processing in bio-acoustic signal.
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