

www.astesj.com 801

A Model-Driven Approach for Reconfigurable Systems Development

Ismail Ktata*,1,2, Naoufel Kharroubi1

1Computer Science Department, Khurma University College, Taif University, Taif, 21944, Kingdom of Saudi Arabia

2CES laboratory LR11ES49, National Engineering School, University of Sfax, Sfax, 3038, Tunisia

ARTICLE INFO ABSTRACT

Article history:

Received: 27 September, 2020

Accepted: 18 November, 2020

Online: 24 November, 2020

Reconfigurable systems are considered as promising technology that enables the design of

more flexible and dynamic applications. However, actually existent design flows are either

low-level (so complex) or they lack support for automatic synthesis. In this paper, we

present an ontology-based modeling approach for reconfigurable systems. Our approach

is based on model-driven engineering process and addresses dynamic features on

application-level enabling early exploration of the execution behavior of the system. The

model is characterized by a logical and syntactical description conform with application

domain knowledge and respect a number of metamodel constraints. These elements are

semantically presented by an ontology language. We successfully implemented a system

model with several tasks and resources and made scheduling test for the application graph.

Keywords:

Model-Driven Engineering

Ontology

Semantic Rules

SWRL Reasoner

Reconfigurable Architecture

Scheduling

1. Introduction

The system designers have been relying two choices for

computing system implementing, varying largely in terms of

performance and flexibility [1]. One is considered for the general-

purpose systems built to accommodate flexibility problem. The

compromise, in this case, is the system performance because of the

absence of hardware resources dedicated for specific application.

The second is carried out to develop an optimized hardware circuit

dedicated and adapted to meet the demands of a specific

application. Such system will be at issue following a minor need

for change, because a costly redesign will be carried out in order

to adapt new system parameters.

The present work introduces a new paradigm based on

configurable computing that can solve performance problems as

well as flexibility problems, and hardware design. We offer the

performance of dedicated circuits by changing hardware

configurations. The reprogram ability of the computing hardware

explains that new architecture needs to emulate different computer

architectures [2]. Mapping software operation is facilitated with

getting the ability to reconfigure its connections. A number of

manufacturers introduce FPGAs characterized by partial and

dynamic reconfiguration abilities [3]. When a part of FPGA logic

resources and interconnections is reconfigured while the remainder

device continues operating, the partially reconfigurable FPGA is.

Dynamic reconfiguration deals with logic and interconnections

reconfiguration in FPGA from an application to the next, that is

what we call dynamic reconfiguration or run-time reconfiguration

(RTR) [4]. In such situation, without adding external physical

(hardware) resources, in a static or dynamic state at run time, when

the system can change/adapt its basic computational structure to

suit the changing requirements of a program, this is referred to as

a Configurable Computing System (CCS) [5]. Our current CCS

realizations has a general-purpose microprocessor augmented set

with an FPGA. Using reconfigurable logic as a resource shared by

multiple applications, a hardware operating system (HwOS)

facilitates system setting operations to overcome the problems due

to real time considerations. Real time multi-task systems’

requirement is tasks scheduling to complete their execution

depending on their deadlines [6]. Tasks known periodic in advance

are scheduled off-line. Instead, irregular and unknown tasks in

advance are scheduled on-line. That makes specific constraints

concerning computing resource recovery, preemption and

interruption time, tasks’ migration between different executing

resources, limited memory and power use, hardware costs, etc. [7].

To overcome such complexities, high-level development

techniques are required. That researching methods dealing with

modeling and simulation of complex and heterogeneous systems

are called model driven engineering approaches.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: I. KTATA, i.ktata@tu.edu.sa, ismail.ktata@enis.rnu.tn

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050695

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050695

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 802

Model-Driven Engineering (MDE) methods tackle with the

specific constraints of a specific domain and execute model

checking that may identify many errors and limit failure risks at an

early period of the system's life cycle [8]. In this context, the

present paper focuses on the use of an ontology model [9] in order

to describe the dynamic behaviors of the components of a system

within the schedulability analysis and verification context [10].

Figure 1: Process of Ontology Engineering

The proposed ontology is based on component behavior

representation (Figure 1). Motivation behind our proposal is:

• System abstraction at a high level expressed in an ontology
language enabling a prior evaluation and analysis of the
impacts of possible online changes and reconfigurations.

• As a consequence of different multiple tools use, probable
incoherencies may appear between design model and safety
(normal) model.

• For architectural design, there is a heterogeneity in textual
description, semantic representations, and syntax of the
existing modeling languages.

• The need of reusable knowledge repository.

• Generating a safe executing model to be implemented.

For safety assessment, we elaborate, an ontology-based model

description [11], [12]. We have several error behavior items that

are stored in the ontology. Such reusable elements are a result of

nominal models mixed with failure modes: each object is

executable design system specification components under nominal

behavior models. We transformed into formal safety models the

obtained extended system models. A series of constraints (such as

temporal and precedence constraints) are then added to the model

in order to make it eligible to be analyzed and simulated by

different tools, and so be reliable to making right decisions. All

constraints are mapped onto an OWL domain ontology [13]

written with the Protégé editor (Figure 2) [14]. Incorporated OWL

description checked, the inference rules logic reasoned, and the

ontology are able to detect mainly semantically inconsistent parts

[15] as well as lack of model elements.

All errors interpreting cost are avoided: these errors

encountered in the extended system model formal representation,

are hardly to conceive. During the work, proposed architecture

design is formulated in the Architecture Analysis and Design

Language (AADL) [16], [17]. As a result, precise execution

semantics are expressed for modeling software systems and their

target hardware architecture. Safety models are generated in the

AltaRica formal language [18]. We have opted for AADL and

AltaRica languages, but we might as well have opted for other

similar formalisms. The AADL language is adapted to describe

functional and software architectures of embedded systems. The

AltaRica language is an event-centric formal language suited for

safety functioning modeling. Its translation is implemented in the

form of model transformation. It would also have been possible to

use other software such as ATL for example. There are series of

analysis tools processed this language [19]-[21]. The proposed

approach can be applied to validation contexts.

This work takes advantage of all previously cited domains: it

is related to the scheduling problem in reconfigurable systems with

a high degree of dynamicity. To overcome such complexity, we

propose to work at a high abstraction level using an MDE approach

combined with ontology description. The considered ontology

language is OWL which gives a formal description of the database

and the knowledge base and a semantic hierarchy of the whole

system domain. In addition, after implementing the application

constraints as rules, the ontology reasoning engine enhances the

knowledge/data bases with new inferred axioms and data. All this

is in order to have a perfect scheduling decision that takes into

account all parameters/conditions and is flexible and dynamic

according to the rule changes that may take place.

Related works are reviewed in Section 2. The domain ontology

and the model-driven engineering process is presented in the

Section 3. Section 4 is for the model transformation process and in

the Section 5 we deal with the experimental case study. Then we

conclude with a summary of the proposed process and we

comment on its potential impact.

Figure 2: Protégé Framework Interface

2. Related Works

Reconfigurable embedded systems are very complex and

include different Hw/Sw components. This led researchers to

address new high-level design approaches to abstract that

complexity, to facilitate development and to give more degree of

flexibility when making changes and fixing errors. In this way,

most research works on two principle modeling approaches:

Architecture Analysis & Design Language and MARTE

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 803

(Modeling and Analysis of Real-Time Embedded systems) [22].

Those two methods consider only predefined reconfiguration

models, so they cannot respond to the dynamicity of

reconfigurable systems. MDE methods cope with that and permit

to transform the model to another model until reaching a target one

which responds better to a specific architecture and application

domain. Moreover, the ontology is considered as a language that

gives a formal description of a variety of knowledge (e.g.

properties, features, relations) and different components (e.g. data,

entities) forming a specific domain. Ontology languages are used

in many domains, such as system engineering, semantic web

application, logistics, artificial intelligence, system architecture,

etc. It combines different techniques (e.g. semantic search, model

matching) and formulates rules in order to tackle with systems

complexity and domain conflicts. In [23] authors focus on e-health

applications and propose a description for the whole software

based on model-driven-architecture (MDA) approach. They

exploit all steps of that approach, but especially the first stage

called Computation-Independent-Model, with the integration of

domain ontologies to represent particular information and all

structures and relations existing in the system. In [24] authors

apply the MDE approach on semantic web applications and

provide an output model that generates annotated user interfaces

and reduces some repetitive processes that may occur on the web

pages.

To our knowledge, works related to model transformation

based on an ontology language are not abundant. The main work

related to that subject is [25]. Even in that paper, the purpose was

to enhance cross-organizational modelling by adopting automatic

generation then evolution of transformed model, a concern which

is out of the scope of this paper. Two works on AADL

transformation to AADL Altarica were made [26]: firstly, a model

transformation [27], [28] based on system hardware architecture

from the AADL and selected model reused from a project to

another. Secondly, transformations were enriched with failure

propagations written in AADL Error [29] and derived from AADL

code. Transformation operation can be done if analysis and

component relationships are defined. The important difference of

our ontology-based model can be resumed in the semantic

connection between the AADL and Altarica languages which

permits to overcome the difference between them in term of syntax

and scope [30], [31].

The focus of this work is to transform traditional

representations of reconfigurable systems and make them more

significant and related to their application domain. This led us to

implement MDE approach combining the ontology languages

(describing domain constraints in semantic rules) and applied them

to solve scheduling problem.

3. Ontology Domain and the Model-Driven Approach

We propose an engineering process to model a dynamic

application mapped on configurable computing system. The

process is based on (1) modelisation of the application to be

created, (2) analysis and verification of the rules relating different

models, and (3) test of the schedulability of the application from

the resulting model. We assume that a CCS is computer-based

system consisting of hardware and software components,

integrated in a physical environment, and requiring different

timing/ressource requirements on the final outcome.

3.1. Application Modeling Approach

We aim in this work to exploit domain knowledge in design

models. We want to formalize the system domain design, its

annotations and its knowledge in a single model. To do this, we

followed a four-step approach (shown in Figure 3):

Figure 3: Proposed Application Modeling Approach

• The first step is to formalize and explicitly define the

information (knowledge) of the domain of application in a

formal ontology (entities, relationships, constraints, etc.). The

properties of the ontology thus designed are domain-linked

and completely independent of any context of use. In many

cases, this ontology can be constructed from pre-existing

standard ontologies.

• The second phase concerns the definition of design models.

This means the formal definition of the properties

corresponding to a given specification of the application

domain.

• The third step, called annotation, is to define specific

relationships between the different entities of the two previous

models (design and ontology). Different relationships are

available, they have their specific properties and describe

specific rules related to the application domain.

• A verification step is required in any approach. This consists

of validating the context of design models and domain

properties expressed in the ontology, as well as the logic of

the rules defined in the annotation step.

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 804

At the end, the final designed model has the advantage of well

describing the domain knowledge with more details and properties

derived from the ontology and rules generated during the

annotation.

3.2. Scheduling Model

As mentioned above, we consider highly dynamic applications

with soft real-time constraints. With such applications, missing a

deadline does not cause catastrophic consequences, but only a

performance degradation (quality of service parameter). In order

to schedule these applications, we need a description that exhibits

dependencies between the tasks and their own characteristics.

Each task is defined as a class in the ontology model. It

represents a computational activity that needs to be performed

according to a set of constraints (called slots in the ontology

model). Each task i, for i = {1, 2, …, k} is defined by:

• ξ represents a set of active tasks Ti forming the application.

Considered tasks could be sporadic and aperiodic.

• ai : stand for the arrival time of task Ti.

• Ci : stand for the maximum computation (execution) time of

task Ti.

• ci : stand for the computation time of task Ti, i.e., the remaining

worst case execution time WCET is needed for a computing

elements (processor or logic circuit), at the current time, to

complete the execution of task Ti without interruption.

• di : stand for the absolute deadline of task Ti.

• Di : stand for the relative deadline of task Ti.

• Si : stand for the first start time of task Ti.

• si : stand for the last start time of task Ti.

• fi : stand for the estimated finishing time of task Ti.

• Li : stand for the laxity of task Ti.

• Ri : stand for the remaining time of task Ti.

Baruah et al. [32] present a necessary and sufficient

test for synchronous tasks with pseudo-polynomial complexity.

For that reason, we present the following equations defining

relations among the parameters defined above:

 di = ai + Di ()

 Li = di - ai - Ci ()

 Ri = di - fi ()

 f1 = t + c1 ; fi = fi-1 + ci ∀ i > 1 ()

 R1 = d1 - t - c1 ()

 Ri = Ri-1 + (di - di-1) - ci ()

For any other task Ti, with i > 1,

 fi = fi-1 + ci ()

and, by equation (3), we have:

 Ri = di - fi = di - fi-1 - ci = di - (di-1 - Ri-1) - ci = Ri-1 + (di - di-1) - ci ()

The information above present the major inputs of the task

class ontology. In our model, we define the scheduling ontology

basic classes as follows:

• Basic scheduling elements (including tasks, resources and

activities) and relation between them.

• Basic required components and constraints (including

hard/soft constraints, temporal restrictions and resource

limitations).

• Ontology of instances: each class has one or more related

subclasses.

The Protégé editor provides the definitions for basic object

types and properties such as application graph (Figure 4), tasks set

properties (Figure 5), relations, numbers, etc. Figure 6 shows the

data properties of a created task refereed to its temporal features in

the ontology framework. Figure 7 is related to processor creation,

where processor is either a software processor or a CLB for

hardware task. Figure 8 represents slots where defined the

properties of a task, their status and needed executing resources.

We mean by resources all hardware components that are

responsible for the execution of tasks. Resources could be a

processor (for software tasks) or a discrete number of logic circuit

called CLB (configurable logic blocks) for hardware tasks in an

FPGA architecture. Resources are defined in separate classes and

are characterized by their execution time and/or number of CLB.

Rules and constraints are modelled as distinctive class. The

class constraint has the same definition for both hard and soft

constraints, and is applied to tasks or resources. The hard

constraints are the rules that cannot be violated under any

conditions, while the soft ones have to be satisfied by the

completion time of the scheduler. For example, if we consider the

temporal constraints in the EDF (Earliest Deadline First) scheduler

[33], the semantic rule would be:

Task (?Ti) ∧ has_Di (?Ti, ?di)
 → sqwrl:select (?Ti) ∧ sqwrl:orderBy (?di)  ()

as EDF is a preemptive algorithm which assigns the highest

priority to be executed to the task Ti that has the lowest deadline

Di.

The both soft and hard constraints are applied to a task as well

as a resource through the class schedule, which helps to satisfy

schedulability conditions of the application execution.

3.3. Model Implementation

The Ontology-based model engineering architecture (Figure 9)

is based on the Architecture Analysis & Design Language (AADL)

and describes how the proposed ontology organizes the error

models and the components into structural and functional

interdependent hierarchies. AADL is considered as a textual

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 805

Figure 4: Application Graph Description

Figure 5: Task Class Properties

Figure 6: Task Creation With its Temporal Features

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 806

Figure 7: Processors Class Creation

language and graphical one too. It is used to specify the software

(SW) and hardware (HW) architecture for the needed critical level

of real time systems [34].

Figure 8: Task Properties, Status and Resources

In A_A_D_L language, each system is defined by its components.

Each component identifies a number of elements of the actual

system architecture. In our case, systems based on reconfigurable

architecture are composed of a hardware part and software one.

The AADL language permits to define software components

(process, thread, data), as well as hardware components (device,

processor, memory, etc.). Moreover, this design language defines

precise legality rules that control the different component

assemblies, and this in both static and dynamic (on-execution)

way. To describe the communication between components,

A_A_D_L defines the connectors and ports. A port performs a

particular task in the context of the connector that connects

components. All instances of connectors (including their ports and

roles), compositions of components and components define the

implementation operation. To enable linking flows to internal

states, a model describes what initial states may evolve and it

includes events, states, transitions to perform various analyses with

different constraints on the model.

Figure 9: Model Engineering Process Based on Ontology

The objective of the design of the ontology is to prove the

correlation of constructs related to the A_A_D_L specification, the

retrieval, the storage operation’s permission, and to offer the

desirable reasoning capabilities among them. We specified the

ontology [33] in the OWL_DL fragment of OWL and we applied

Pellet_DL reasoner combined with the Protégé ontology editor, and

this to customize inference rules’ determination.

The proposed ontology is mainly based on three aspects [36].

Firstly, specify all necessary constructs for AADL core that permit

to model components (e.g. data) with their corresponding

characteristics and so facilitate ontology to add or extract new

components. Secondly, for each AADL error, ontology offers the

needed concepts to represent error models in terms of states and

events, as hardware errors, computational problems and memory

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 807

exceptions, and thirdly, the ontology offers the connections and

subcomponents (constructs) for component implementation. To

achieve this task, we use ontology-based representation of

component to detect rules custom inference [37]. The system

detects three inconsistencies types making certain formal analysis

models invalid: error of incomplete or missing transition; conflict

transition that may occur when more than one event is triggered

simultaneously; and finally, error in the state of a component due

to an error in the failure scheduling scenario. The rules related to

inconsistent semantics permit new inconsistent levels to be added.

Meta-modeling design approach followed the ontology and

determines instantiations and implementation steps. We represent

the AADL component as an ontology class. The error models are

presented as the ontology hierarchy subclass. The proposed model-

driven engineering process enforces rules and constraints on the

associations between the error models and the components’

constraints. It permits to select and resume the failure modes from

the error model hierarchy, then associate them with the nominal

mode. The ontology model is then checked for possible component

inconsistencies and transform the extended architecture model to

the safety one and finally analyze the safety model with tools that

provide model checking and simulation.

4. Model Transformation Process

For discovering structurally equivalent constructs, existing

modeling experience is considered a basic step for model

transformation, and the first set of rules is dedicated to the

transformation of AADL components into AltaRica nodes. The

transformation rules are therefore driven by the mapping of

knowledge with the constructs used through the underlying

domain ontology. The benefit of the transformation from AADL

models to AltaRica is to expand the set of safety evaluation tools

for AADL. Hence, all system components (tasks, data, CLBs,

processors, memory, etc.) are transformed to AltaRica nodes while

conserving their same original features.

Then, AltaRica state statements are generated based on the

AADL components’ properties. We manage a set of rules which

concern the components' error models. The AADL error, states and

transitions are transformed to corresponding AltaRica which are

filled with assignments found in the matched AADL. Another set

of rules focuses on failure propagation. Since no support failure

capabilities are made, a transition declaration creates additional

component variants and other transformation rules set related to

the used architecture design process and the associated AADL

editor is made. The problem is that the editor tool follows a

control-flow based approach, which make a semantic gap

compared to the data-flow approach of the AltaRica specification.

An AADL component can be of two kinds from a safety point

of view: either its properties are filled or are not filled {lost}. In the

following, we will focus on the generic transformation. The names

of the variables vary according to the connection ports of the

component and the formulas of the component assertion depend on

the data flow path. Indeed, any component of an AADL system:

C = {Din, Dout, K, Ty}, where D refers to data dependencies related

to the task data flow, K refers to the knowledge related to

properties of safe operation of the component, and Ty refers to the

type of the component,

is translated into an AltaRica node:

N = { F, S, Din, Dout, Σ, σ, I}, where F is a field of finite values of

the variables, S is for state, Σ is a set of events, σ is an affirmation

function S × Din → Dout, and I refers to initial conditions,

such as:

• the state variable s takes its {correct} value if the component

is working normally otherwise its value is equal to the name

of the failure mode {lost} declared in AADL ;

• the dependency connections Din and Dout form the AADL (and

also the AltaRica) component interface;

• a failure transition is produced by events Evts  Σ leading to

a failure mode;

• for each outgoing flow variable Outj ∈ Dout, we consider the

set {Ini | (Ini, Outj) ∈ Din × Dout } of incoming flow variables

on which the Outj variable depends. Then, if we consider only

the loss of a component, the statement associated with Outj is

the following Outj = {if s = correct and Ini = correct then

correct, else lost);

• finally, we consider that, initially, components states are

correct I(s) = {correct}.

Considering an AADL system 𝛙 = {Din, Dout, 𝛙1, …, 𝛙n, A, R}, 𝛙

is transformed into an AltaRica node N = {N0, N1,…,Nn, V} with:

• each subsystem 𝛙i is transformed into an AltaRica Ni node;

• N0 has for dependencies variables Din and Dout ;

• R refers to connections between components and is equivalent

to the σ function;

• the synchronization vector V is given by the allocation relation

A: if a task 𝛙i is allocated to a processor 𝛙j then (evti, evtj) ∈

V for evt ∈ Σ.

5. Experimental Case Study

We choose as a case study a 3D image synthesis application. It is

a complex application with some flexibilities related to the

computation time of some tasks and their executing occurrence.

The application class hierarchy is implemented in OWL Protégé

editor shown in Figure 10. The input of the application graph is a

set of the coordinates of the different polygons’ summits that

represent the 3D object. All coordinates are defined relative to a

local space where the 3D object is located. Those coordinates are

manipulated by different arithmetic functions (tasks) that create the

animation, such as : Loading, Scaling, Adding, Rotating,

Translating, etc. Tasks are implemented with their temporal

features, and precedence relation according to the application

graph. Rules are implemented by Semantic Web Rule Language

(SWRL) interface (Figure 11) and combined with the scheduling

ontology in order to improve the domain knowledge. Examples of

some temporal rules are defined in equations (1) to (8), other rules

related to allocation are like in (10) to indicate that processor can

hold only one task to execute.

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 808

Tasks(?T) ∧ hasLi(?T, ?L) ∧ Processor(?P)
∧ hasProcessor(?T, ?P) → sqwrl:select(?T)

 ∧ sqwrl:orderBy(?L) ∧ sqwrl:groupBy(?P) ()

Figure 10: Class Hierarchy in Scheduling Ontology

After creating the SWRL rules, the reasoner component is able

to infer the user query based on the ontology knowledge and

predefined rules. To type queries, we tested two methods:

• The first method is simple and use existing information in the

knowledge base without the need to any inferences. We use

such method to verify existing properties in our ontology

knowledge. For example, if we want to verify which processor

is available for accepting a task execution, or the remaining

computation time of some tasks.

• The second query method triggers the rule-based reasoner for

the inference process with the knowledge which may lead to

enhance and enrich the knowledge base. For example, if we

consider tasks migration between processors or CLBs, and we

want to decide migration of task T executing on processor1

when processor1 is overloaded. Hence, the rule-based

reasoner has to infer the possibility of such migration based

on the status of each processor and check that whether this

change (so this query) is feasible or not.

Figure 11: Example of SWRL Rules

Inference results are resulting from SPARQL queries. The

SPARQL service permits to check different information as the

status of tasks and it provides feedback concerning events and

decision failures. The tested query results are correct, and the rule-

based reasoner is useful for the scheduling problem. Based on that

formalized temporal/resource rules combined with the semantic

reasoner and inference rules, the ontology model gives the

resulting possible tasks scheduling (Figure 12).

Some examples of successfully implemented scheduling rules

(EDF algorithm (9), Least Laxity First LLF algorithm (11), Rate

Monotonic algorithm RM (12):

Tasks(?T) ∧ hasLi(?T, ?L)
 → sqwrl:select(?T) ∧ sqwrl:orderBy(?L) ()

Tasks(?T) ∧ hasCi(?T, ?C)
 → sqwrl:select(?T) ∧ sqwrl:orderBy(?C) ()

Figure 12: SQWRL Rules Result

By using AADL, nominal models were designed and combined

also with failure models of the domain ontology. The system’s

adding process executes a simple add function, and it is defined in

the Adding task. The operation is called performed when the

required data context of the former task is provided to the data

context of the latter task. To validate operation, scheduler check

rules and constraint violation in the error model represented by the

Overflow Event State, shown in Table1.

Table 1: Example of incompleteness transition Error

6. Conclusion

We faced in this article the problem of modeling the

complexity of reconfigurable systems while taking advantage of

its flexibility and dynamic behavior. For this, we proposed a

model-driven engineering process that follows a set of steps. The

proposed modeling process makes a modular and extensible

representation of the system architecture. Model profits from the

ontology language capability to represent complex models and

address heterogeneous domains information of the dynamically

reconfigurable systems. We formalized the known temporal

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 809

scheduling problem in reconfigurable systems domain. The

ontology knowledge model was implemented using Protégé editor.

Moreover, the developed ontology is improved with SWRL

inferred rules. Model editing is enhanced, since errors can be

detected without the need to perform complex analyses. The model

and the rules reasoner and the resulting scheduling decision were

verified with a case study.

Future works aim to extend model transformation functionality

and involve more dynamic system characteristics such as tasks

migrations between hardware and software resources and the total

and partial reconfigurability. A filtering process should be added

to the reasoner in order to eliminate unnecessary rules and so avoid

ambiguity or conflict when making scheduling decision. Another

objective is to test more scheduling algorithms with the

incorporation of additional types of error models.

Acknowledgment

This work has been approved by the research grant program of the
deanship of scientific research at TAIF University.

References

[1] M.A. Cardin, “Enabling flexibility in engineering systems: A taxonomy of

procedures and a design framework,” Journal of Mechanical Design,

Transactions of the ASME, 136(1), 2014, doi:10.1115/1.4025704.
[2] S. Paul, S. Bhunia, S. Paul, S. Bhunia, “A Survey of Computing

Architectures, Springer New York”: 11–27, 2014, doi:10.1007/978-1-4614-

7798-3_2.

[3] S. Vassiliadis, D. Soudris, “Fine-and coarse-grain reconfigurable

computing”, Springer Netherlands, 2008, doi:10.1007/978-1-4020-6505-7.

[4] L. Gong, O. Diessel, “Functional verification of dynamically reconfigurable

FPGA-based systems”, Springer International Publishing, 2015,

doi:10.1007/978-3-319-06838-1.

[5] R. Tessier, K. Pocek, A. DeHon, “Reconfigurable computing architectures,”

Proceedings of the IEEE, 103(3), 332–354, 2015,

doi:10.1109/JPROC.2014.2386883.

[6] G. Gracioli, A.A. Fröhlich, R. Pellizzoni, S. Fischmeister, “Implementation

and evaluation of global and partitioned scheduling in a real-time OS,” Real-

Time Systems, 49(6), 669–714, 2013, doi:10.1007/s11241-013-9183-3.

[7] M. Alam, A. Khan, A.K. Varshney, “A review of dynamic scheduling

algorithms for homogeneous and heterogeneous systems,” in Advances in

Intelligent Systems and Computing, Springer Verlag: 73–83, 2018,

doi:10.1007/978-981-10-8533-8_8.

[8] A. Rodrigues Da Silva, “Model-driven engineering: A survey supported by

the unified conceptual model,” Computer Languages, Systems and

Structures, 43, 139–155, 2015, doi:10.1016/j.cl.2015.06.001.

[9] L. Yang, K. Cormican, M. Yu, “Ontology-based systems engineering: A

state-of-the-art review,” Computers in Industry, 111, 148–171, 2019,

doi:10.1016/j.compind.2019.05.003.

[10] B. Selić, S. Gérard, “Model-Based Schedulability Analysis”, Elsevier: 201–

220, 2014, doi:10.1016/b978-0-12-416619-6.00010-9.

[11] V. Mascardi, A. Locoro, P. Rosso, “Automatic ontology matching via upper

ontologies: A systematic evaluation,” IEEE Transactions on Knowledge and

Data Engineering, 22(5), 609–623, 2010, doi:10.1109/TKDE.2009.154.

[12] J. Li, J. Tang, Y. Li, Q. Luo, “RiMOM: A dynamic multistrategy ontology

alignment framework,” IEEE Transactions on Knowledge and Data

Engineering, 21(8), 1218–1232, 2009, doi:10.1109/TKDE.2008.202.

[13] G. Chen, T. Jiang, M. Wang, X. Tang, W. Ji, “Modeling and reasoning of

IoT architecture in semantic ontology dimension,” Computer

Communications, 153, 580–594, 2020, doi:10.1016/j.comcom.2020.02.006.

[14] M.A. Musen, “The Protégé Project: A Look Back and a Look Forward”. AI

Matters. Association of Computing Machinery Specific Interest Group in

Artificial Intelligence, 1(4), 2015, doi:10.1145/2557001.25757003.

[15] D.L. McGuinness, F. van Harmelen, “OWL Web Ontology Language -

Reference,” W3C Recommendation [Online], Available at:

Http://Www.W3.Org/TR/2004/REC-Owl, 1–53, [Accessed: 02 February

2016], 2004.

[16] P.H. Feiler, B.A. Lewis, S. Vestal, “The SAE architecture analysis & design

language (AADL) a standard for engineering performance critical systems,”

in Proceedings of the 2006 IEEE Conference on Computer Aided Control

Systems Design, CACSD, 1206–1211, 2007,

doi:10.1109/CACSD.2006.285483.

[17] SAE: Architecture Analysis and Design Language (AADL) AS-5506B. Tech.

rep., The Engineering Society For Advancing Mobility Land Sea Air and

Space, Aerospace Information Report, Version 2.1 (September 2012).

[18] Prosvirnova, T., Batteux, M., Brameret, P.A., Cherfi, A., Friedlhuber, T.,

Roussel, J.M., Rauzy, A.: “The altarica 3.0 project for model-based safety

assessment”. In: Proceedings of 4th IFAC Workshop on Dependable Control

of Discrete Systems, DCDS 2013. IFAC, York (Great Britain) (September

2013).

[19] P. Bieber, J. Blanquart, G. Durrieu, D. Lesens, J. Lucotte, F. Tardy, M. Turin,

C. Seguin, E. Conquet, “Integration of Formal Fault Analysis in ASSERT:

Case Studies and Lessons Learnt,” 4th European Congress on Embedded

Real-Time Software (ERTS), 1–9, 2008.

[20] P. Hönig, R. Lunde, F. Holzapfel, “Model Based Safety Analysis with

smartIflow †,” Information, 8(1), 7, 2017, doi:10.3390/info8010007.

[21] D. Bošnački, A. Wijs, “Model checking: recent improvements and

applications,” International Journal on Software Tools for Technology

Transfer, 20(5), 493–497, 2018, doi:10.1007/s10009-018-0501-x.

[22] M. Faugère, T. Bourbeau, R. De Simone, S. Gérard, “MARTE: Also an UML

profile for modeling AADL applications,” in Proceedings of the IEEE

International Conference on Engineering of Complex Computer Systems,

ICECCS, 359–364, 2007, doi:10.1109/ICECCS.2007.29.]

[23] N. Laaz, K. Wakil, Z. Gotti, S. Gotti, S. Mbarki, “Integrating domain

ontologies in an MDA-based development process of e-health management

systems at the CIM level,” in Advances in Intelligent Systems and

Computing, Springer: 213–223, 2020, doi:10.1007/978-3-030-36664-3_25.]

[24] N. Laaz, S. Mbarki, “OntoIFML: Automatic Generation of Annotated Web

Pages from IFML and Ontologies using the MDA Approach: A Case Study

of an EMR Management Application,” in Proceedings of the 7th

International Conference on Model-Driven Engineering and Software

Development, Scitepress: 353–361, 2019, doi:10.5220/0007402203530361.]

[25] S. Roser, B. Bauer, “Automatic generation and evolution of model

transformations using ontology engineering space,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Springer, Berlin,

Heidelberg: 32–64, 2008, doi:10.1007/978-3-540-92148-6_2.

[26] G. Guizzardi, R.A. Falbo, R.S.S. Guizzardi, “The role of Foundational

Ontologies for Domain Ontology Engineering: a case study in the Software

Process Domain,” IEEE Latin America Transactions, 6(3), 244–251, 2008,

doi:10.1109/tla.2008.4653854.

[27] N.F. Noy, M.A. Musen, “Ontology versioning in an ontology management

framework,” IEEE Intelligent Systems, 19(4), 6–13, 2004,

doi:10.1109/MIS.2004.33.

[28] W. Alakwaa, A. Salah, “Model Transformation from Ontology Model to

Content Analysis Model,” International Journal of Computer Applications,

7(3), 5–12, 2010, doi:10.5120/1147-1501.

[29] P. Wang, Z. Jin, L. Liu, G. Cai, “Building toward capability specifications

of web services based on an environment ontology,” IEEE Transactions on

Knowledge and Data Engineering, 20(4), 547–561, 2008,

doi:10.1109/TKDE.2007.190719.

[30] M.R. Khondoker, M.R. Khondoker, P. Mueller, “Comparing Ontology

Development Tools Based on an Online Survey,” 2010.

[31] T.C. Eskridge, R. Hoffman, “Ontology creation as a sensemaking activity,”

IEEE Intelligent Systems, 27(5), 58–65, 2012, doi:10.1109/MIS.2012.101.

[32] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, “On-

line scheduling in the presence of overload,” in Annual Symposium on

Foundations of Computer Science (Proceedings), Publ by IEEE: 100–110,

1991, doi:10.1109/sfcs.1991.185354.

[33] G.C. Buttazzo, “Hard Real-Time Computing Systems”, Springer US, 2011,

doi:10.1007/978-1-4614-0676-1.

[34] Y. Zhao, D. Ma, “Embedded real-time system modeling and analysis using

AADL,” in ICNIT 2010 - 2010 International Conference on Networking and

Information Technology, 247–251, 2010, doi:10.1109/ICNIT.2010.5508520.

http://www.astesj.com/

I. Ktata et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 801-810 (2020)

www.astesj.com 810

[35] T.C. Jepsen, “Just what Is an ontology, anyway?,” IT Professional, 11(5),

22–27, 2009, doi:10.1109/MITP.2009.105.

[36] Y. Ma, L. Liu, K. Lu, B. Jin, X. Liu, “A graph derivation based approach for

measuring and comparing structural semantics of ontologies,” IEEE

Transactions on Knowledge and Data Engineering, 26(5), 1039–1052, 2014,

doi:10.1109/TKDE.2013.120.

[37] K. Jetinai, N. Arch-int, S. Arch-int, “Ontology Mapping and Rule-Based

Inference for Learning Resource Integration,” Journal of Information and

Communication Convergence Engineering, 14(2), 97–105, 2016,

doi:10.6109/jicce.2016.14.2.097.

http://www.astesj.com/

	2. Related Works
	3. Ontology Domain and the Model-Driven Approach
	3.1. Application Modeling Approach
	3.2. Scheduling Model
	3.3. Model Implementation

	4. Model Transformation Process
	5. Experimental Case Study
	6. Conclusion
	Acknowledgment

	References

