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Reconfigurable systems are considered as promising technology that enables the design of 

more flexible and dynamic applications. However, actually existent design flows are either 

low-level (so complex) or they lack support for automatic synthesis. In this paper, we 

present an ontology-based modeling approach for reconfigurable systems. Our approach 

is based on model-driven engineering process and addresses dynamic features on 

application-level enabling early exploration of the execution behavior of the system. The 

model is characterized by a logical and syntactical description conform with application 

domain knowledge and respect a number of metamodel constraints. These elements are 

semantically presented by an ontology language. We successfully implemented a system 

model with several tasks and resources and made scheduling test for the application graph. 
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1. Introduction 

The system designers have been relying two choices for 

computing system implementing, varying largely in terms of 

performance and flexibility [1]. One is considered for the general-

purpose systems built to accommodate flexibility problem. The 

compromise, in this case, is the system performance because of the 

absence of hardware resources dedicated for specific application. 

The second is carried out to develop an optimized hardware circuit 

dedicated and adapted to meet the demands of a specific 

application. Such system will be at issue following a minor need 

for change, because a costly redesign will be carried out in order 

to adapt new system parameters.  

The present work introduces a new paradigm based on 

configurable computing that can solve performance problems as 

well as flexibility problems, and hardware design. We offer the 

performance of dedicated circuits by changing hardware 

configurations. The reprogram ability of the computing hardware 

explains that new architecture needs to emulate different computer 

architectures [2]. Mapping software operation is facilitated with 

getting the ability to reconfigure its connections. A number of 

manufacturers introduce FPGAs characterized by partial and 

dynamic reconfiguration abilities [3]. When a part of FPGA logic 

resources and interconnections is reconfigured while the remainder 

device continues operating, the partially reconfigurable FPGA is. 

Dynamic reconfiguration deals with logic and interconnections 

reconfiguration in FPGA from an application to the next, that is 

what we call dynamic reconfiguration or run-time reconfiguration 

(RTR) [4]. In such situation, without adding external physical 

(hardware) resources, in a static or dynamic state at run time, when 

the system can change/adapt its basic computational structure to 

suit the changing requirements of a program, this is referred to as 

a Configurable Computing System (CCS) [5]. Our current CCS 

realizations has a general-purpose microprocessor augmented set 

with an FPGA. Using reconfigurable logic as a resource shared by 

multiple applications, a hardware operating system (HwOS) 

facilitates system setting operations to overcome the problems due 

to real time considerations. Real time multi-task systems’ 

requirement is tasks scheduling to complete their execution 

depending on their deadlines [6]. Tasks known periodic in advance 

are scheduled off-line. Instead, irregular and unknown tasks in 

advance are scheduled on-line. That makes specific constraints 

concerning computing resource recovery, preemption and 

interruption time, tasks’ migration between different executing 

resources, limited memory and power use, hardware costs, etc. [7]. 

To overcome such complexities, high-level development 

techniques are required. That researching methods dealing with 

modeling and simulation of complex and heterogeneous systems 

are called model driven engineering approaches. 
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Model-Driven Engineering (MDE) methods tackle with the 

specific constraints of a specific domain and execute model 

checking that may identify many errors and limit failure risks at an 

early period of the system's life cycle [8]. In this context, the 

present paper focuses on the use of an ontology model [9] in order 

to describe the dynamic behaviors of the components of a system 

within the schedulability analysis and verification context [10]. 

 
Figure 1: Process of Ontology Engineering 

The proposed ontology is based on component behavior 

representation (Figure 1). Motivation behind our proposal is: 

• System abstraction at a high level expressed in an ontology 
language enabling a prior evaluation and analysis of the 
impacts of possible online changes and reconfigurations. 

• As a consequence of different multiple tools use, probable 
incoherencies may appear between design model and safety 
(normal) model. 

• For architectural design, there is a heterogeneity in textual 
description, semantic representations, and syntax of the 
existing modeling languages. 

• The need of reusable knowledge repository. 

• Generating a safe executing model to be implemented.  

For safety assessment, we elaborate, an ontology-based model 

description [11], [12]. We have several error behavior items that 

are stored in the ontology. Such reusable elements are a result of 

nominal models mixed with failure modes: each object is 

executable design system specification components under nominal 

behavior models. We transformed into formal safety models the 

obtained extended system models. A series of constraints (such as 

temporal and precedence constraints) are then added to the model 

in order to make it eligible to be analyzed and simulated by 

different tools, and so be reliable to making right decisions. All 

constraints are mapped onto an OWL domain ontology [13] 

written with the Protégé editor (Figure 2) [14]. Incorporated OWL 

description checked, the inference rules logic reasoned, and the 

ontology are able to detect mainly semantically inconsistent parts 

[15] as well as lack of model elements.  

All errors interpreting cost are avoided: these errors 

encountered in the extended system model formal representation, 

are hardly to conceive. During the work, proposed architecture 

design is formulated in the Architecture Analysis and Design 

Language (AADL) [16], [17]. As a result, precise execution 

semantics are expressed for modeling software systems and their 

target hardware architecture. Safety models are generated in the 

AltaRica formal language [18]. We have opted for AADL and 

AltaRica languages, but we might as well have opted for other 

similar formalisms. The AADL language is adapted to describe 

functional and software architectures of embedded systems. The 

AltaRica language is an event-centric formal language suited for 

safety functioning modeling. Its translation is implemented in the 

form of model transformation. It would also have been possible to 

use other software such as ATL for example. There are series of 

analysis tools processed this language [19]-[21]. The proposed 

approach can be applied to validation contexts.  

This work takes advantage of all previously cited domains: it 

is related to the scheduling problem in reconfigurable systems with 

a high degree of dynamicity. To overcome such complexity, we 

propose to work at a high abstraction level using an MDE approach 

combined with ontology description. The considered ontology 

language is OWL which gives a formal description of the database 

and the knowledge base and a semantic hierarchy of the whole 

system domain. In addition, after implementing the application 

constraints as rules, the ontology reasoning engine enhances the 

knowledge/data bases with new inferred axioms and data. All this 

is in order to have a perfect scheduling decision that takes into 

account all parameters/conditions and is flexible and dynamic 

according to the rule changes that may take place. 

Related works are reviewed in Section 2. The domain ontology 

and the model-driven engineering process is presented in the 

Section 3. Section 4 is for the model transformation process and in 

the Section 5 we deal with the experimental case study. Then we 

conclude with a summary of the proposed process and we 

comment on its potential impact. 

 
Figure 2: Protégé Framework Interface 

2. Related Works 

Reconfigurable embedded systems are very complex and 

include different Hw/Sw components. This led researchers to 

address new high-level design approaches to abstract that 

complexity, to facilitate development and to give more degree of 

flexibility when making changes and fixing errors. In this way, 

most research works on two principle modeling approaches: 

Architecture Analysis & Design Language and MARTE 
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(Modeling and Analysis of Real-Time Embedded systems) [22]. 

Those two methods consider only predefined reconfiguration 

models, so they cannot respond to the dynamicity of 

reconfigurable systems. MDE methods cope with that and permit 

to transform the model to another model until reaching a target one 

which responds better to a specific architecture and application 

domain. Moreover, the ontology is considered as a language that 

gives a formal description of a variety of knowledge (e.g. 

properties, features, relations) and different components (e.g. data, 

entities) forming a specific domain. Ontology languages are used 

in many domains, such as system engineering, semantic web 

application, logistics, artificial intelligence, system architecture, 

etc. It combines different techniques (e.g. semantic search, model 

matching) and formulates rules in order to tackle with systems 

complexity and domain conflicts. In [23] authors focus on e-health 

applications and propose a description for the whole software 

based on model-driven-architecture (MDA) approach. They 

exploit all steps of that approach, but especially the first stage 

called Computation-Independent-Model, with the integration of 

domain ontologies to represent particular information and all 

structures and relations existing in the system. In [24] authors 

apply the MDE approach on semantic web applications and 

provide an output model that generates annotated user interfaces 

and reduces some repetitive processes that may occur on the web 

pages.  

To our knowledge, works related to model transformation 

based on an ontology language are not abundant. The main work 

related to that subject is [25]. Even in that paper, the purpose was 

to enhance cross-organizational modelling by adopting automatic 

generation then evolution of transformed model, a concern which 

is out of the scope of this paper. Two works on AADL 

transformation to AADL Altarica were made [26]: firstly, a model 

transformation [27], [28] based on system hardware architecture 

from the AADL and selected model reused from a project to 

another. Secondly, transformations were enriched with failure 

propagations written in AADL Error [29] and derived from AADL 

code. Transformation operation can be done if analysis and 

component relationships are defined. The important difference of 

our ontology-based model can be resumed in the semantic 

connection between the AADL and Altarica languages which 

permits to overcome the difference between them in term of syntax 

and scope [30], [31]. 

The focus of this work is to transform traditional 

representations of reconfigurable systems and make them more 

significant and related to their application domain. This led us to 

implement MDE approach combining the ontology languages 

(describing domain constraints in semantic rules) and applied them 

to solve scheduling problem.  

3. Ontology Domain and the Model-Driven Approach 

We propose an engineering process to model a dynamic 

application mapped on configurable computing system. The 

process is based on (1) modelisation of the application to be 

created, (2) analysis and verification of the rules relating different 

models, and (3) test of the schedulability of the application from 

the resulting model. We assume that a CCS is computer-based 

system consisting of hardware and software components, 

integrated in a physical environment, and requiring different 

timing/ressource requirements on the final outcome. 

3.1. Application Modeling Approach 

We aim in this work to exploit domain knowledge in design 

models. We want to formalize the system domain design, its 

annotations and its knowledge in a single model. To do this, we 

followed a four-step approach (shown in Figure 3): 

 
Figure 3: Proposed Application Modeling Approach 

• The first step is to formalize and explicitly define the 

information (knowledge) of the domain of application in a 

formal ontology (entities, relationships, constraints, etc.). The 

properties of the ontology thus designed are domain-linked 

and completely independent of any context of use. In many 

cases, this ontology can be constructed from pre-existing 

standard ontologies. 

• The second phase concerns the definition of design models. 

This means the formal definition of the properties 

corresponding to a given specification of the application 

domain. 

• The third step, called annotation, is to define specific 

relationships between the different entities of the two previous 

models (design and ontology). Different relationships are 

available, they have their specific properties and describe 

specific rules related to the application domain. 

• A verification step is required in any approach. This consists 

of validating the context of design models and domain 

properties expressed in the ontology, as well as the logic of 

the rules defined in the annotation step. 
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At the end, the final designed model has the advantage of well 

describing the domain knowledge with more details and properties 

derived from the ontology and rules generated during the 

annotation. 

3.2. Scheduling Model 

As mentioned above, we consider highly dynamic applications 

with soft real-time constraints. With such applications, missing a 

deadline does not cause catastrophic consequences, but only a 

performance degradation (quality of service parameter). In order 

to schedule these applications, we need a description that exhibits 

dependencies between the tasks and their own characteristics.  

Each task is defined as a class in the ontology model. It 

represents a computational activity that needs to be performed 

according to a set of constraints (called slots in the ontology 

model). Each task i, for i = {1, 2, …, k} is defined by: 

• ξ represents a set of active tasks Ti  forming the application. 

Considered tasks could be sporadic and aperiodic. 

• ai : stand for the arrival time of task Ti. 

• Ci : stand for the maximum computation (execution) time of 

task Ti. 

• ci : stand for the computation time of task Ti, i.e., the remaining 

worst case execution time WCET is needed for a computing 

elements (processor or logic circuit), at the current time, to 

complete the execution of task Ti without interruption. 

• di : stand for the absolute deadline of task Ti. 

• Di : stand for the relative deadline of task Ti.  

• Si : stand for the first start time of task Ti.  

• si : stand for the last start time of task Ti. 

• fi : stand for the estimated finishing time of task Ti. 

• Li : stand for the laxity of task Ti. 

• Ri : stand for the remaining time of task Ti.  

Baruah et al. [32] present a necessary and sufficient 

test for synchronous tasks with pseudo-polynomial complexity. 

For that reason, we present the following equations defining 

relations among the parameters defined above: 

 di  =  ai   +  Di () 

 Li  =  di  -  ai  -  Ci () 

 Ri  =  di  -  fi () 

 f1 = t + c1 ;  fi = fi-1 + ci   ∀ i > 1 () 

 R1 = d1 - t - c1 () 

 Ri = Ri-1 + (di - di-1) - ci () 

For any other task Ti, with i > 1, 

 fi = fi-1 + ci () 

and, by equation (3), we have: 

 Ri = di - fi = di - fi-1 - ci = di - (di-1 - Ri-1) - ci = Ri-1 + (di - di-1) - ci () 

The information above present the major inputs of the task 

class ontology. In our model, we define the scheduling ontology 

basic classes as follows:  

• Basic scheduling elements (including tasks, resources and 

activities) and relation between them. 

• Basic required components and constraints (including 

hard/soft constraints, temporal restrictions and resource 

limitations). 

• Ontology of instances: each class has one or more related 

subclasses. 

The Protégé editor provides the definitions for basic object 

types and properties such as application graph (Figure 4), tasks set 

properties (Figure 5), relations, numbers, etc. Figure 6 shows the 

data properties of a created task refereed to its temporal features in 

the ontology framework. Figure 7 is related to processor creation, 

where processor is either a software processor or a CLB for 

hardware task. Figure 8 represents slots where defined the 

properties of a task, their status and needed executing resources. 

We mean by resources all hardware components that are 

responsible for the execution of tasks. Resources could be a 

processor (for software tasks) or a discrete number of logic circuit 

called CLB (configurable logic blocks) for hardware tasks in an 

FPGA architecture. Resources are defined in separate classes and 

are characterized by their execution time and/or number of CLB.  

Rules and constraints are modelled as distinctive class. The 

class constraint has the same definition for both hard and soft 

constraints, and is applied to tasks or resources. The hard 

constraints are the rules that cannot be violated under any 

conditions, while the soft ones have to be satisfied by the 

completion time of the scheduler. For example, if we consider the 

temporal constraints in the EDF (Earliest Deadline First) scheduler 

[33], the semantic rule would be:  

Task (?Ti) ∧ has_Di (?Ti, ?di)  
                  → sqwrl:select (?Ti) ∧ sqwrl:orderBy (?di)          () 

as EDF is a preemptive algorithm which assigns the highest 

priority to be executed to the task Ti that has the lowest deadline 

Di. 

The both soft and hard constraints are applied to a task as well 

as a resource through the class schedule, which helps to satisfy 

schedulability conditions of the application execution.  

3.3. Model Implementation 

The Ontology-based model engineering architecture (Figure 9) 

is based on the Architecture Analysis & Design Language (AADL) 

and describes how the proposed ontology organizes the error 

models and the components into structural and functional 

interdependent  hierarchies.  AADL  is   considered  as  a  textual  
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Figure 4: Application Graph Description 

 
Figure 5: Task Class Properties 

 
Figure 6: Task Creation With its Temporal Features  
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Figure 7: Processors Class Creation 

language and graphical one too. It is used to specify the software 

(SW) and hardware (HW) architecture for the needed critical level 

of real time systems [34]. 

 
Figure 8: Task Properties, Status and Resources 

In A_A_D_L language, each system is defined by its components. 

Each component identifies a number of elements of the actual 

system architecture. In our case, systems based on reconfigurable 

architecture are composed of a hardware part and software one. 

The AADL language permits to define software components 

(process, thread, data), as well as hardware components (device, 

processor, memory, etc.). Moreover, this design language defines 

precise legality rules that control the different component 

assemblies, and this in both static and dynamic (on-execution) 

way. To describe the communication between components, 

A_A_D_L defines the connectors and ports. A port performs a 

particular task in the context of the connector that connects 

components. All instances of connectors (including their ports and 

roles), compositions of components and components define the 

implementation operation. To enable linking flows to internal 

states, a model describes what initial states may evolve and it 

includes events, states, transitions to perform various analyses with 

different constraints on the model. 

 
Figure 9: Model Engineering Process Based on Ontology 

The objective of the design of the ontology is to prove the 

correlation of constructs related to the A_A_D_L specification, the 

retrieval, the storage operation’s permission, and to offer the 

desirable reasoning capabilities among them. We specified the 

ontology [33] in the OWL_DL fragment of OWL and we applied 

Pellet_DL reasoner combined with the Protégé ontology editor, and 

this to customize inference rules’ determination.  

The proposed ontology is mainly based on three aspects [36]. 

Firstly, specify all necessary constructs for AADL core that permit 

to model components (e.g. data) with their corresponding 

characteristics and so facilitate ontology to add or extract new 

components. Secondly, for each AADL error, ontology offers the 

needed concepts to represent error models in terms of states and 

events, as hardware errors, computational problems and memory 
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exceptions, and thirdly, the ontology offers the connections and 

subcomponents (constructs) for component implementation. To 

achieve this task, we use ontology-based representation of 

component to detect rules custom inference [37]. The system 

detects three inconsistencies types making certain formal analysis 

models invalid: error of incomplete or missing transition; conflict 

transition that may occur when more than one event is triggered 

simultaneously; and finally, error in the state of a component due 

to an error in the failure scheduling scenario. The rules related to 

inconsistent semantics permit new inconsistent levels to be added. 

Meta-modeling design approach followed the ontology and 

determines instantiations and implementation steps. We represent 

the AADL component as an ontology class. The error models are 

presented as the ontology hierarchy subclass. The proposed model-

driven engineering process enforces rules and constraints on the 

associations between the error models and the components’ 

constraints. It permits to select and resume the failure modes from 

the error model hierarchy, then associate them with the nominal 

mode. The ontology model is then checked for possible component 

inconsistencies and transform the extended architecture model to 

the safety one and finally analyze the safety model with tools that 

provide model checking  and simulation. 

4. Model Transformation Process 

For discovering structurally equivalent constructs, existing 

modeling experience is considered a basic step for model 

transformation, and the first set of rules is dedicated to the 

transformation of AADL components into AltaRica nodes. The 

transformation rules are therefore driven by the mapping of 

knowledge with the constructs used through the underlying 

domain ontology. The benefit of the transformation from AADL 

models to AltaRica is to expand the set of safety evaluation tools 

for AADL. Hence, all system components (tasks, data, CLBs, 

processors, memory, etc.) are transformed to AltaRica nodes while 

conserving their same original features.  

Then, AltaRica state statements are generated based on the 

AADL components’ properties. We manage a set of rules which 

concern the components' error models. The AADL error, states and 

transitions are transformed to corresponding AltaRica which are 

filled with assignments found in the matched AADL. Another set 

of rules focuses on failure propagation. Since no support failure 

capabilities are made, a transition declaration creates additional 

component variants and other transformation rules set related to 

the used architecture design process and the associated AADL 

editor is made. The problem is that the editor tool follows a 

control-flow based approach, which make a semantic gap 

compared to the data-flow approach of the AltaRica specification. 

An AADL component can be of two kinds from a safety point 

of view: either its properties are filled or are not filled {lost}. In the 

following, we will focus on the generic transformation. The names 

of the variables vary according to the connection ports of the 

component and the formulas of the component assertion depend on 

the data flow path. Indeed, any component of an AADL system: 

C = {Din, Dout, K, Ty}, where D refers to data dependencies related 

to the task data flow, K refers to the knowledge related to 

properties of safe operation of the component, and Ty refers to the 

type of the component, 

is translated into an AltaRica node: 

N = { F, S, Din, Dout, Σ, σ, I}, where F is a field of finite values of 

the variables, S is for state, Σ is a set of events, σ is an affirmation 

function S × Din → Dout, and I refers to initial conditions, 

such as: 

• the state variable s takes its {correct} value if the component 

is working normally otherwise its value is equal to the name 

of the failure mode {lost} declared in AADL ; 

• the dependency connections Din and Dout form the AADL (and 

also the AltaRica) component interface; 

• a failure transition is produced by events Evts  Σ leading to 

a failure mode; 

• for each outgoing flow variable Outj ∈ Dout, we consider the 

set {Ini | (Ini, Outj) ∈ Din × Dout } of incoming flow variables 

on which the Outj variable depends. Then, if we consider only 

the loss of a component, the statement associated with Outj is 

the following Outj = {if s = correct and Ini = correct then 

correct, else lost); 

• finally, we consider that, initially, components states are 

correct I(s) = {correct}. 

Considering an AADL system 𝛙 = {Din, Dout, 𝛙1, …, 𝛙n, A, R}, 𝛙 

is transformed into an AltaRica node N = {N0, N1,…,Nn, V} with: 

• each subsystem 𝛙i is transformed into an AltaRica Ni node; 

• N0 has for dependencies variables Din and Dout ; 

• R refers to connections between components and is equivalent 

to the σ function; 

• the synchronization vector V is given by the allocation relation 

A: if a task 𝛙i is allocated to a processor 𝛙j then (evti, evtj) ∈ 

V for evt ∈ Σ. 

5. Experimental Case Study 

We choose as a case study a 3D image synthesis application. It is 

a complex application with some flexibilities related to the 

computation time of some tasks and their executing occurrence. 

The application class hierarchy is implemented in OWL Protégé 

editor shown in Figure 10. The input of the application graph is a 

set of the coordinates of the different polygons’ summits that 

represent the 3D object. All coordinates are defined relative to a 

local space where the 3D object is located. Those  coordinates are 

manipulated by different arithmetic functions (tasks) that create the 

animation, such as : Loading, Scaling, Adding, Rotating, 

Translating, etc.  Tasks are implemented with their temporal 

features, and precedence relation according to the application 

graph. Rules are implemented by Semantic Web Rule Language 

(SWRL) interface (Figure 11) and combined with the scheduling 

ontology in order to improve the domain knowledge. Examples of 

some temporal rules are defined in equations (1) to (8), other rules 

related to allocation are like in (10) to indicate that processor can 

hold only one task to execute. 
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Tasks(?T) ∧ hasLi(?T, ?L) ∧ Processor(?P)  
∧ hasProcessor(?T, ?P) → sqwrl:select(?T)  

                 ∧ sqwrl:orderBy(?L) ∧ sqwrl:groupBy(?P)            () 

 
Figure 10: Class Hierarchy in Scheduling Ontology 

After creating the SWRL rules, the reasoner component is able 

to infer the user query based on the ontology knowledge and 

predefined rules. To type queries, we tested two methods: 

• The first method is simple and use existing information in the 

knowledge base without the need to any inferences. We use 

such method to verify existing properties in our ontology 

knowledge. For example, if we want to verify which processor 

is available for accepting a task execution, or the remaining 

computation time of some tasks. 

• The second query method triggers the rule-based reasoner for 

the inference process with the knowledge which may lead to 

enhance and enrich the knowledge base. For example, if we 

consider tasks migration between processors or CLBs, and we 

want to decide migration of task T executing on processor1 

when processor1 is overloaded. Hence, the rule-based 

reasoner has to infer the possibility of such migration based 

on the status of each processor and check that whether this 

change (so this query) is feasible or not.  

 
Figure 11: Example of SWRL Rules  

Inference results are resulting from SPARQL queries. The 

SPARQL service permits to check different information as the 

status of tasks and it provides feedback concerning events and 

decision failures. The tested query results are correct, and the rule-

based reasoner is useful for the scheduling problem. Based on that 

formalized temporal/resource rules combined with the semantic 

reasoner and inference rules, the ontology model gives the 

resulting possible tasks scheduling (Figure 12). 

Some examples of successfully implemented scheduling rules 

(EDF algorithm (9), Least Laxity First LLF algorithm (11), Rate 

Monotonic algorithm RM (12): 

Tasks(?T) ∧ hasLi(?T, ?L)         
                  → sqwrl:select(?T) ∧  sqwrl:orderBy(?L)              () 

Tasks(?T) ∧ hasCi(?T, ?C)  
                 →  sqwrl:select(?T) ∧ sqwrl:orderBy(?C)             () 

 
Figure 12: SQWRL Rules Result 

By using AADL, nominal models were designed and combined 

also with failure models of the domain ontology. The system’s 

adding process executes a simple add function, and it is defined in 

the Adding task. The operation is called performed when the 

required data context of the former task is provided to the data 

context of the latter task. To validate operation, scheduler check 

rules and constraint violation in the error model represented by the 

Overflow Event State, shown in Table1. 

Table 1: Example of incompleteness transition Error 

 

6. Conclusion 

We faced in this article the problem of modeling the 

complexity of reconfigurable systems while taking advantage of 

its flexibility and dynamic behavior. For this, we proposed a 

model-driven engineering process that follows a set of steps. The 

proposed modeling process makes a modular and extensible 

representation of the system architecture. Model profits from the 

ontology language capability to represent complex models and 

address heterogeneous domains information of the dynamically 

reconfigurable systems. We formalized the known temporal 
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scheduling problem in reconfigurable systems domain. The 

ontology knowledge model was implemented using Protégé editor. 

Moreover, the developed ontology is improved with SWRL 

inferred rules. Model editing is enhanced, since errors can be 

detected without the need to perform complex analyses. The model 

and the rules reasoner and the resulting scheduling decision were 

verified with a case study. 

Future works aim to extend model transformation functionality 

and involve more dynamic system characteristics such as tasks 

migrations between hardware and software resources and the total 

and partial reconfigurability. A filtering process should be added 

to the reasoner in order to eliminate unnecessary rules and so avoid 

ambiguity or conflict when making scheduling decision. Another 

objective is to test more scheduling algorithms with the 

incorporation of additional types of error models. 
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