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Classic surgical skill evaluation is performed by an expert surgeon examining an apprentice 

in a hospital operating room. This method suffers from being subjective and expensive. As 

surgery becomes more complex and specialized, there is an increase need for an automated 

surgical skill evaluation system that is more objective and determines more exactly the skills 

(or lack thereof) the apprentice has. The main purpose of our proposed approach is to use an 

existing skill database with known proficiency levels to evaluate the skills of a given 

apprentice. The skill of the apprentice will be assessed to be similar to the closest skill example 

found in the database (case-based reasoning). A key element of the system is the skill distance 

measure employed, as each skill example is a multidimensional time series (sequence) with 

widely varying values. In this paper, we discuss a new surgery skill distance measure denoted 

as Procrustes dynamic time warping (PDTW). PDTW integrates the search for exact 

alignment between two skill sequences using DTW and Procrustes distance as a measure for 

the similarity. The Procrustes approach is a shape distance analysis that involves rotation, 

scaling, and translation. We evaluated our proposed distance on three surgical motion data, 

a widely used JIGSAWS robot surgery dataset, a wearable sensor dataset, and a Vicon motion 

system dataset. The results showed that the proposed framework produced a better 

performance for surgeon skill assessment when PDTW was used compared to other time 

series distances on all three datasets. Also, some experimental results for the JIGSAWS 

dataset outperformed existing deep learning-based methods. 
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1. Introduction   
 

This paper is an extension of work initially presented in the E-

Health and Bioengineering Conference (EHB) [1] . Recently, the 

need for objective surgical skills assessment has captured the 

interest of practitioners and medical institutions due to the ever- 

increasing complexity and degree of specialization of the surgical 

procedure [2]. Traditionally, a senior expert surgeon performs 

direct observation, scores, assess, and gives feedback to the trainee 

surgeon (apprentice) with less practice in the hospital operating 

room. This traditional surgical proficiency evaluation approach is 

problematic due to its subjectivity, time consumption and cost. 

Furthermore, it is prone to errors and sometimes insufficient as 

lacking details related to deficiencies. To address these difficulties, 

an automated skill assessment procedure is needed for an objective 

and detailed measure of proficiency levels [3, 4].  

As any healthcare domain, surgery is continuously changed by 

technological advances and medical innovations that alter 

everyday surgical procedures. The challenge is to assist surgical 

procedure via the quantifiable data analysis to a better 

understanding of the surgical operating and to obtain more 

knowledge about human activities during surgery for advance and 

further study [5]. A reasonable solution to these challenges is to 

use technological advances like Robotic Minimally Invasive 

Surgery (RMIS) that improve overall operating room efficiency 

[5]. For instance, da Vinci surgical technology provides data-

driven that potentially helps optimize and develop training skills 
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for surgeons [6]. This information includes kinematic and video 

data that conduct a useful resource of quantifiable human motion 

during surgical operating [7, 8]. Wearable sensing devices that 

provide detailed motion information for surgical activities are a 

further example [9]. These recorded data give spacious resources 

to assess surgical proficiencies by modeling and analyzing 

descriptive mathematical approaches. The emergence of using 

machine learning methods with recent robotic surgery systems 

such as da Vinci and wearable sensing devices via data-driven 

enable and encourage developers to build and analyze automatic 

models for evaluating surgeon expertise and may help better 

coaching potential apprentices [10–12] .  

Different earlier works focused on the automated surgical 

assessment seen good progress. The current techniques for 

objective surgical evaluation can be divided into three main 

research areas [10, 13]: 1) surgeon skill assessment, 2) surgical 

task analysis, and 3) surgemes recognition. These methods 

considered the surgeon movement using either: 1) kinematic 

information recorded by a robotic surgical system, 2) video records 

and 3) wearable sensors data. In this paper, we focused on the 

surgical skill evaluation based on kinematic and wearable sensors 

information. One of the initial works used Hidden Markov models 

(HMM) [14] to evaluate the surgical skills. This approach is 

structured-based and depends on the number of training samples, 

tuning parameters and it takes massive pre-processing. This type 

of model needs complicated preprocessing [3] and leads to low 

performance with a low number of samples [14]. Another method 

was proposed by [3] to predict the surgeon skill level (expert and 

novice) based on movement features of the surgical arms using 

logistic regression (LR) and support vector machines (SVM) 

classifiers for suturing surgical task. They extended their work to 

include eight global movement features (GMF) in [15], they 

applied LR, SVM, and kNN classifier to distinguish between the 

previous expertise levels for suturing and knot tying surgical tasks. 

In [16], a framework based on trajectory shape using DTW and k-

nearest neighbor classifier proposed for surgical skill evaluation. 

This model can also provide online performance feedback through 

training. More recently, [13] proposed an approach based on 

symbolic aggregate approximation (SAX) and vector space model 

(VSM) to identify distinctive patterns of surgical procedure. They 

used the SAX to obtain the sequence of letters by discretizing the 

time series first. Then they utilize the VSM to find the 

discriminative patterns that represent a surgical motion which 

finally used them to be classified. A variety of holistic analysis 

features and a weighted features integrated approach proposed by 

[9] for automated surgical skill evaluation and GRS score 

prediction. These holistic features include approximate entropy, 

sequential motion texture, discrete Fourier and discrete cosine 

transform. They used the nearest neighbor as a classifier and linear 

support vector regression (SVR) for prediction. The works of 

literature mentioned above used the kinematic data information 

obtained from RMIS for surgical skill assessment. However, none 

of these methods were applied to the wearable sensors data like 

accelerometer which might give more information about the 

surgeon's motion during a surgical practice.  

Recently, several advanced techniques applied the convolution 

neural network and deep learning methods for automated surgical 

skill evaluation. A parallel deep learning framework was proposed 

by [17] to identify the surgeon skill and task recognition. In their 

approach, they used a fusion technique between convolution neural 

networks and gated recurrent networks. Alternative deep 

convolution neural architecture based on ten layers proposed by 

[12] for surgical expertise evaluation. Another parallel deep 

learning approach was proposed in [18] by combining the LSTM 

recurrent network and CNN to indicate the skill levels. 

Additionally, recent studies have suggested approaches that use 

motion from videos [19,20] and wearable sensors to evaluate 

surgical skills [21,22]. These methods platform various features to 

perform Objective Structured Assessment of Technical Skills 

(OSATS) assessments. An approach proposed for surgical skill 

assessment is based on the acceleration data of both hands 

performing a basic surgical procedure in dentistry [2]. Also, an 

entropy-based features technique that utilizes both video and 

accelerometer data proposed for surgical skill assessment [4]. 

Despite these techniques which are building the basis and inspire 

performance results in the surgical skill area, however, some limits 

and drawbacks occur for the existing methods. some methods need 

predefined boundaries of the surgemes which done usually by a 

chief surgeon, i.e., consuming a large time. In other methods, 

decomposing the motion sequence requires a massive and 

complicated preprocessing in addition to a deficiency of 

robustness. Alternatively, the need to developing a new distance 

measure might have an advantage to a more robust and accurate 

assessment framework. 

In this paper, our contribution to this work can be abridged as 

follows: 1) we defined a new surgical skill distance combined the 

best alignments between two multidimensional signals using DTW 

and measuring the distance between the two aligned sequences 

using Procrustes analysis 2) we proposed an automated skill 

classification framework based on using PDTW and kNN 

technique in the proposed framework to distinguish between the 

expertise levels focusing on overall performance 3) we 

investigated the proposed framework on a wearable sensor data for 

a surgical task. The purpose of this work is to present a technique 

that handles different kinds of sensor data in addition to the 

existing public JIGSWAS dataset. Some surgery motion results 

obtained by a Vicon camera with a 3D marker-based system and 

wearable device data are examples of the data we use.  

2. Methodology 

In this section, we illustrate the main components of our 

proposed framework, which are: motion alignment, Procrustes 

distance, and skills classifier, as shown in Figure 1. First, DTW is 

used to align two multidimensional time series performed by 

surgeons, while the Procrustes distance calculates similarity 

measure. Lastly, the skill levels of the surgeon are classified by 

kNN. 

2.1. Similarity Measure 

To obtain a useful classification, defining a reasonable distance 

is a crucial element to measure between two surgery tasks. Each 

http://www.astesj.com/


S. Albasri et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 912-921 (2021) 

www.astesj.com     914 

surgery task is represented by a set of features obtained from the 

traces (time series) of the motion capture sensors. One possible 

method is the Euclidean distance.  

 

Figure 1: kNN based PDTW evaluation Framework 

Euclidian distance is simple and widely used, whereas, it has 

some limitations and disadvantages. The Euclidean method is very 

sensitive to outlier and it is suffering from noise, shifting, and 

requires both signals to have the same length. Thus, we need a 

measure that can handle sequences with different lengths because 

the same surgery task might have different lengths even when 

operated by the same surgeon. A warping distance measure such 

as the Dynamic Time Warping (DTW), is one solution to do the 

job. The DTW can process time series with different lengths, it 

expands or contracts both signals (aligns them) such that their 

length becomes equal [23].  

Let X𝑛×𝑣 = [𝑋1, 𝑋2, … , 𝑋𝑛] and Y𝑚×𝑣 = [𝑌1, 𝑌2, … , 𝑌𝑚] be two 
sequences having v features and of length n and m respectively. To 
align X and Y, we form a two-dimensional (𝑛 × 𝑚) grid distance. 
Each point 𝑑𝑖𝑗  of the grid corresponds to the distance measure 

(usually Euclidean) between every possible combination of two 
instances 𝑥𝑖 from X and 𝑦𝑗 from Y of the same features length (v) 

as follow [24]: 

dij(xi, yj) = √∑ (xik − yjk)2v
k=1            (1) 

The next step is to find the warping path through the grid, the 

path that attempts to minimize the total distance (warping cost) and 

give the best match between two signals and satisfy boundary 

conditions, continuity, and monotonicity constraints. It is usually 

achieved by using a dynamic program to calculate the cumulative 

distance 𝛾(𝑖, 𝑗), which is the distance of the current cell (𝑑𝑖𝑗) and 

the minimum of the cumulative distance of the adjacent cells [24]: 

γ(i, j) = dij + min{γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)}   (2) 

Despite the wide use of DTW in many applications and is a 

more robust distance measure than Euclidean distance, it fails for 

complex multidimensional signals. Also, when the unevenness 

occurred in the Y-axis, DTW can produce singularities by warping 

the X-axis. Inflection points, valleys, and peaks features can cause 

DTW to fail to align two signals properly [24].   

The Procrustes analysis is a standard method in statistical 

analysis to compare the similarity of shape objects [25, 26]. The 

Procrustes distance is a shape metric that involves matching two 

shapes using similarity transformations (rotation, reflection, 

scaling, translation) to be as close as possible in the least-squares 

sense [27]. The Procrustes analysis also can estimate the mean 

shape to examine the shape variability in a dataset [28].  

Assume 𝑋1 and 𝑋2 be two configuration matrices of the same 

𝑘 × 𝑚 dimension (𝑘 points in 𝑚 dimensions) that can be centered 

(normalized) using the following equation [28]: 

(Xi)c = CXi      , i = 1,2 (3) 

𝐶 = HTH  is the centering matrix and 𝐻  is the Helmert 
submatrix, let 𝑍1 and 𝑍2 be the pre-shapes unit size of 𝑋1 and 𝑋2 
respectively, where the original configuration is invariant under 
the scaling and translation with the pre-shape [28]:  

Zi =
(Xi)H

‖(Xi)H‖
=

H(Xi)

‖H(Xi)‖
       ,    i = 1,2   (4) 

(Xi)H = HXi         ,    i = 1,2 (5) 

The full Procrustes distance between 𝑋1 and 𝑋2 is achieved by 
fitting the pre-shape 𝑍1  and 𝑍2  as closely as possible as the 
following [25]: 

DP(X1 , X2) = inf
𝑠,𝑎,𝑏,𝜃,

‖𝑍1 − 𝑍2 𝑠 𝑒𝑗𝜃 − (𝑍2 + 𝑗𝑏)1𝑘‖      (6) 

where ‖. ‖  is the Euclidean norm, s is the scale, Ө  is the 
rotation, and (𝑎 + 𝑗𝑏) is the translation, 1𝑘  is a k-dimensional 
vector of ones. 

This work presents a distance measure PDTW based on a 
pairwise synchronization between two time series by utilizing a 
combination of Procrustes distance and DTW to overcome the 
drawbacks of using DTW alone. First, we use DTW as an 
alignment approach and then use Procrustes as a distance measure. 
DTW is used to locate the best matching between two signals, 
whereas Procrustes is used to minimize the distance. 

2.2. Classification 

The simplicity of the k-Nearest Neighbors (kNN) method and 

its reasonable results made it a handy feature classifier. It predicts 

the new unlabeled query point by using the labels of training data 

based on their similarity measure. kNN classifier assigns a label 

for the test point to the majority label of the k-closet neighborhoods 

[29]. We found k = 3 is a reasonable value and the one we utilize 

in this paper.  

3. Experimental Evaluation 

We used three datasets to evaluate the proposed PDTW-kNN 

model on the public surgical data JIGSAWS [7], and our two data 

MU-EECS [30], and EM-Cric. The JIGSAWS is a minimally 

invasive surgical skill assessment working set consist of various 

fundamental surgical tasks. Each task performed by a surgical 

surgeon with a different proficiency degree; an expert surgeon who 

performs the da Vinci Surgical System (dVSS) more than 100 

hours of training, a novice surgeon who practice less than 10 hours 

on dVSS, and an intermediate surgeon (practice on dVSS between 

10 and 100 hours). A motion capture based on markers, a Vicon 

system is used to collect the data from a resident surgeon in the 

MU-EECS data. The surgeon presented a tracheostomy surgery 

performed the same procedure six times. The EM-Cric data 

includes data from four surgeons with different expertise levels 

who performed the Emergency Cricothyrotomy task. Each surgeon 

performs the task four times, where the wrist wearable sensors are 

used to capture both hand motions. More details about the three 

datasets in the following parts:  

http://www.astesj.com/
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3.1. JIGSAWS Data 

We evaluate the proposed PDTW-kNN method for surgical 

proficiency assessment on a public widely used JIGSAWS dataset 

[7]. Moreover, we use this dataset for direct comparisons with 

other state-of-the-art approaches for surgical skill evaluation. MIS 

surgeons performed many types of elementary procedures on Da 

Vinci robotic systems because it gives confidence, precision, and 

real-time feedback to improve overall surgical treatment for the 

patient in the operation room [31].   

JIGSAWS dataset consists of kinematic and video data 

collected from surgical surgeons with various surgical robotic 

skills performing basic surgical training curricula. All surgeons 

were right-handed: two expert surgeons (E) with > 100 robotic 

surgical practice hours, four novice trainee surgeons (N) having < 

10 practice hours, and four intermediate surgeons (I) reported 

between 10 and 100 surgical robotic experience practice hours. 

The dataset provides two types of data: video and kinematic 

records for each trail get done by a subject in each task. All the 

subjects were required to do three fundamental surgical tasks five 

times repetitively. In this work, we use only kinematic data 

captured as 76-dimensional time series at 30 Hz from the da Vinci 

Surgical System (dVSS) using its Application Programming 

Interface (API).  The three elementary surgical tasks are identified 

as suturing (SU), knot-tying (KT), and needle-passing (NP). Figure 

2 presented sample frames of the three surgical tasks achieved by 

a surgical surgeon and defined them as follows [7]: 

• Suturing: the surgeon picks the needle up, first and advances it 

to the bench-top model toward the incision. Then, the subject 

stitches up the needle through a dot-marked tissue on one 

aspect of the incision and extracts it out from the corresponding 

dot-marked on the other part of the incision. Lastly, the surgeon 

passes it to the right-hand and repeats the same process till the 

surgeon gets four times in total.  

• Knot Tying: the surgeon makes one tie after selecting one side 

of a stitch that is tied to an elastic tube connected by its rims to 

the surface of the bench-top model. 

• Needle Passing: the surgeon selects the needle. Then, passes 

the needle from the right side to the left through 4 tiny metal 

hoops that are placed over the surface of the bench-top model.  

 

Figure 2: RMIS basic surgery tasks [7]. 

This dataset consists of a surgical manual annotation for the 

surgical skill of each trial. An annotating surgeon, with extensive 

robotic surgical experience, watched the entire trial and appointed 

a score based on a modified global rating score (GRS). GRS is the 

measure of the surgical technical skill of the surgeon who 

performed the trial. GRS presents the total score of six elements 

illustrated in Table I. Where each component rating scale is 

between 1 and 5 and the best with a higher total score [7]. 

Table 1: Elements of Global Rating Score (GRS) [7] 

Element Rating scale 

Respect for 

tissue 

Force on 

tissue 

Careful tissue 

handling 

Consistent 

handling 

Suture/needle 

handling 

Poor knot 

tying 

Majority 

appropriate 
Excellent suture 

Time and 

motion 

Unnecessar

y moves 

Efficient time/ 

unnecessary 

moves 

Economy moves/ 

Max efficiency 

Flow of 

operation 

Frequent 

interrupted 

Reasonable 

progress 

Planned operation/ 

efficient transitions 

Overall 

performance 
Very poor Competent Superior 

Quality of the 

final product 
Very poor Competent Superior 

Rating score 1 3 5 

Min. score = ∑ = 6 Max. score = ∑ = 30 

3.2. MU-EECS Vicon Data 

In this dataset, a Vicon system and IR reflective markers were 

used synchronously to trace and visualize the arms movement of 

the surgeon while carrying out a surgical procedure. Ten IR 

reflective markers were placed in different positions on both 

surgeon's arms as displayed in Figure 3 (a). Also, we can see seven 

Vicon cameras were located inside the lab to capture the resident 

surgeon's motions. The MU-EECS includes data presented by a 

resident surgeon who performed the same tracheostomy surgical 

procedure six times repeatedly. The earliest three procedures 

repeat in a consistently appropriate manner, whereas the remaining 

practices were performed with inaccurately way. This working set 

was collected through a project at the Center for Eldercare and 

Rehabilitation Lab in the Dept. of EECS at the University of 

Missouri Columbia [30].  

 

Figure 3: Tracheostomy surgery with Vicon Camera 

3.3. EM-Cric Dataset 

Emergency Cricothyrotomy (Cric) is a procedure for 

potentially lifesaving a human being under a high-stress situation, 

it happens when a person fails to restore enough oxygenation. Cric 
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is an incision through the skin and cricothyroid, which results in a 

better patient airway [32]. There are three main steps of the 

surgical Cric procedure skin incision, incision cricothyroid, and 

endotracheal tube placement membrane [33]. 

The EM-Cric dataset includes data from four surgical surgeons 

(subjects) who performed the Cric procedure with varying 

expertise levels to study skilled surgical human motion. Two 

residents reported as Novice (N) surgeon, one intermediate (I) 

surgeon, and one expert (E) surgeon, respectively. All surgeons are 

reportedly right-handed except one lefty hand. All surgeons 

perform the Cric procedure five times on a Trauma Man Surgical 

Simulator at the Medical Intelligent System Laboratory (MISL) in 

the Medicine School at the University of Missouri-Columbia. We 

placed the wristband sensors on both wrists of the surgeon's hands 

to capture the data, as shown in Figure 4. We use low cost 

synchronized data transmission MetaMotionR (MMR) sensors 

introduced by MbientLab. MMR is a 9-axis IMU wearable device 

that provides continuous monitoring of movement and real-time 

sensor data [34]. 

 

Figure 4: Cric surgical operation on TraumaMan Simulator by a medical 

surgeon. 

The data was conducted for a total of three male right-handed, 

and one female left-handed participants with different expertise 

levels were recruited for this study. Two MMR sensors were used 

for the Cric procedure task, one attached to each wrist of the 

surgeon's hand. The captured data consists of three-dimensional 

acceleration with respect to time for each accelerometer, and result 

in 6-dimensional time series for both sensors. For this study, we 

use only raw accelerometer data which range was set to ±16 g. The 

sampling rate of data collection was set to 100Hz. 

3.4. Performance Evaluation 

We used different cross-validating schemes to evaluate our 

skill assessment framework on both kinematic and accelerometer 

data to compare our results with other approaches.  

• Leave-One-Trial-Out (LOTO): For each surgical task, training 

all the trials except one i-th trial reserved for testing  (𝑖 =
1, . . , 𝑁). 𝑁 is the total number of trials in a task. 

• Leave-One-Supertrial-Out (LOSO): Different from LOTO 

setup, where we created five folds (𝑗 = 1,2. .5). The j-th fold 

combines all the j-th trials from all the surgeons for a given 

surgical task. Then, we repetitively training on four sets and 

keeping a single set for testing and reporting the average 

classifying results. The fold j-th is known as supertrial j-th. In 

this scheme, the robustness of a technique can be assessed by 

keeping a supertrial out each time [7]. Also, repeating the task 

in a row can possibly impact the performance of the surgical 

apprentice in terms of boredom or tiredness, hence keeping the 

supertrial out perhaps catch that effect on the surgeons.  

To evaluate the performance of our proposed technique and to 

quantitatively compare with other methods, we used the mean 

accuracy of surgical classification for each output class on the data-

driven to validate the performance. The average accuracy, defined 

in (10), is the percentage of the sum of accurately predicted 

(TP+TN) over the total number of predictions (TP+TN+FP+FN) 

[35]: 

ACC =  
TP+TN

TP+TN+FP+FN
   (10) 

where TP, TN, FP, and FN represent the number of true positive 

(predicted correctly belong to the target class), true negative 

(correctly classified not belong to the target class), false positive 

(incorrectly predicts to the target class), and false negative 

(incorrectly predict not belong to the class level) respectively [35]. 

4. Results and Discussions 

In this part, the proposed approach and evaluation metrics 

described in the preceding sections were evaluated on kinematic 

and accelerometer data. Also, the results for all the datasets that 

were explained previously were reported in the following sections, 

respectively. 

4.1. JIGSAWS Dataset 

For JIGSAWS data, we perform two sets of experiments for 

the LOSO validation set up to identify the three expertise levels (E, 

I, and N) on our proposed approach. For the first assortment, we 

made use of all the 76-dimensional movement features of the time 

series. Whilst, in the second set we utilized just the coordinates 

features (𝑥, 𝑦, 𝑧) of the two hands. 

Figure 5 (a) illustrates the comparison of classification 

accuracy for surgical expertise levels versus k (the number of 

neighborhoods) in each task using all kinematic information. For 

the LOSO scheme, the improvement in accuracy for almost all 

cases of k of our kNN classifier based PDTW for all surgical tasks. 

e.g., the mean accuracy for all tasks at k = 3 is 95.7%. Also, kNN-

PDTW provide an advantage over the traditional method (DTW) 

with a reduction in sensitivity to changing the number of neighbors 

(k) in k-NN.    

 

Figure 5: Accuracy of the proposed approach using PDTW and DTW as a 

function of k. 
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Figure 6: kNN-PDTW Confusion matrix of the three tasks SU, NP, KT for 

LOSO at k=3. 

We also perform another experiment by using only 3D location 

information of the two hands for the LOSO scheme. Some 

interesting intuitions results can be seen in Figure 5(b). The 

accuracy results of the proposed kNN-PDTW6 using the Cartesian 

coordinates almost achieved the same results as using all the 76-

dimensional motion data. This can be explained by the fact that 

Procrustes analysis works on the similarity of shapes and the 

motion data are traces in three dimensions space, which 

encourages us to use the wearable sensors later.  

For a further comprehensive comparison, the confusion 

matrices result for each task is shown in Figure 6 at k=3. For the 

suturing task, surgeon expertise levels are 100% correctly 

classified. However, for the other tasks, the misclassifying 

happened when distinguishing between intermediate level and 

other levels which in turn reduced the average accuracy to about 

94% and 93% for knot tying and needle passing tasks, respectively. 

We must put into our perspective that each surgeon performs the 

task in a different style from other surgeons, even within the same 

expertise level regardless of the hours spent on practice. Because 

individual surgeons like to improve their proficiencies following 

their mentor. Thus, small differences between an intermediate 

surgeon and an expert make the classifier to introduce an error to 

recognize their skill levels and vice versa. The same case between 

intermediate and novice surgeons happened.   

Another interest intended of our analysis, that we calculate the 

pairwise PDTW distance inside a group of expert-expert, expert-

intermediate, and expert-novice surgeons, separately for each task. 

Figure 7 illustrates the boxplot of each group distance in each task. 

From the results, it is clear that the smallest distance is among 

expert surgeons, and then between expert-intermediate surgeons 

followed by the expert-novice group for each task. Also, we can 

see that the differentiating among expert-intermediate surgeons is 

more complicated in needle-passing than other tasks. one 

explanation is the needle-passing might be more challenging to 

learn or more complicated than suturing or knot tying. This might 

be related to the complication level of the task as can be seen in 

Figure 6 for the needle-passing task where an expert surgeon 

classified as intermediate surgeon mistakenly.                

 
Figure 7: PDTW-distance within E/E, E/I, and E/N surgeons in each task. 

Table 1 shows the classification accuracy results of our 

proposed skill assessment for the JIGSAWS dataset using the 

kinematic data only. Also, we report the state-of-the-art results for 

comparative intent under the LOSO validation scheme for each 

task separately. The results show that the proposed kNN-PDTW 

properly recognizes the surgeon skill levels and matched the work 

from CNN [36] for suturing. From Figure 7 we can see that it is 

straightforward to differentiate between the expertise levels with 

the help of using PDTW measure. Additionally, the NN classifier 

learned the dynamic information which already comes from 

various motion patterns of the surgeons that might benefit this 

result. In knot-tying, our proposed kNN-PDTW approach 

outperforms both CNN [36] and Deep Learning [12] approaches 

in terms of accuracy. Also, our results were near the 

CNN+LSTM+SENET method [18]. Our results were improved 

more for suturing and knot-tying tasks than the needle-passing 
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task, and we did slightly better than [12] in this task. The small 

distinctions between intermediate surgeons with other surgeons in 

this task illustrated in Figure 7 might explain the less performance 

on the needle-passing task. Furthermore, we can notice from Table 

I that no technique is suitable for the three tasks. In other words, 

an integration methodology of various approaches is needed for 

surgical proficiency assessment purposes for these tasks. 

Table 2: Skill Assessment Classification Comparative of kNN-PDTW 

Performance using LOSO for JIGSAWS Data. 

 

 

 

 

 

 

 

 

  

 

 

As mentioned previously in section 3.1, the modified global 

rating score measures the surgical technical skill done by the 

annotation surgeon for the entire trial provided in the JIGSAWS 

dataset. Figure 8 presents the boxplot of the surgeons' GRS scores 

for each task. We can see from this figure, the consistency of the 

expert surgeons compared to the novice and intermediate surgeons 

in all tasks. Where the lowest variance the expert surgeons have 

ultimately implied their steadiness. Another interesting viewpoint 

from Figure 8, that we can see the scores challenge to differentiate 

among the surgeon’s proficiency in the needle-passing task, which 

produces the misclassifications. One more thing to be observed in 

Figure 8, some intermediate subjects score better than expert 

subjects. This means that these surgeons might be eligible to be in 

a higher skill level or position.  

 
Figure 8: Boxplot of GRS scores for each task. 

4.2. MU-EECS dataset 

We experiment on the tracheostomy dataset to classify the trial 

level as either Good or Bad. In this experiment, we calculate the 

pairwise PDTW distance among the six trials that operated by a 

resident surgeon [30]. Figure 9 presents the resulting distance of 

this experience for the MU-EECS dataset, where the yellow color 

is the farthest and the closer trials to each other are in darker blue.  

 
Figure 9: PDTW distance matrix for MU-EECS data. 

Overall, the Good trials, which are the first three trials in Figure 

9, has a similarity less than or equal to 0.5. e.g., about 0.3 is the 

difference between trials 2 and 3. On the other hand, the pairwise 

distance between Bad procedures, the last three trials, is greater 

than 0.7 in distance to each other. Also, we can see those Good 

procedures are nearly 0.7 far away from Bad trials except among 

trial-Good 1 and trial-Bad 5 about 0.55 difference.   

Another insight from Figure 9, it is straightforward to cluster 

the trials into Good (the upper left corner) and Bad (in the lower 

right corner). That means the PDTW distance helps accurately to 

identify between the trials in this task where each group looks to 

cluster together. Finally, the boxplot of the PDTW measure among 

the Good and Bad trials separately is presented in Figure 10. In this 

figure and from a statistical viewpoint comparison, the mean and 

variance of the Good procedures (𝜇𝐺−𝐺 = 0.12,  𝜎𝐺−𝐺 = 0.08) is 

less than the Bad procedures (𝜇𝐵−𝐵 = 0.21, 𝜎𝐵−𝐵 = 0.16) which 

is consistent along with prior results.       

  
Figure 10: Boxplot of PDTW distance for MU-EECS dataset. 

4.3. EM-Cric dataset 

For the EM-Cric dataset, we performed two sets of cross-

validation schemes, the LOTO for the trial level and the LOSO to 

identify the surgical proficiency levels (Expert, Intermediate, or 

Novice) of the subjects. As we mentioned previously in section 

3.3, this dataset includes accelerometer data collected from four 

surgeons (expert, intermediate, and two novices) who performed 

the same task five times repetitively.  

Approach 
Accuracy 

SU NP KT 

Farad [15] 

kNN 89.7% - 82.1% 

LR 89.9% - 82.3% 

SVM 75.4% - 75.4% 

Wang [12] 93.4% 89.8% 84.9% 

Forestier [13] 89.7% 96.3% 61.1% 

Fawaz [36] 100% 100% 92.1% 

Anh [18] 98.4% 98.4% 94.8% 

kNN-PDTW (proposed) 100% 92.8% 94.4% 
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Before evaluating the classification accuracies, we calculate 

the pairwise distance among all the collected trials. Figure 11 (a) 

and (b) illustrate pairwise distance matrices comparison between 

DTW and PDTW measures, respectively. The first five trials 

represent the expert surgeon procedures, the second five stand for 

the intermediate surgeon trials, and the remaining ten trials are for 

the two novice surgeons, all performing the same task. Where the 

similar performances made by participants are indicated in strong 

blue squares in this figure. Also, the three separate square blocks 

in Figure 11 (b) give a visual insight for the possibilities of 

clustering expertise levels where the task is performed by different 

surgeons for this data using only the accelerometer data. Also, we 

can notice from this figure that PDTW distance separates well 

between expertise levels better than using DTW distance alone. 

The results in Figure 11 (b) shows that the expert surgeon has a 

dissimilar pattern to both intermediate and novice surgeons. 

Moreover, novice surgeons themselves are quite like each other.  

 
Figure 11: The pairwise distance for each trial on EM-Cric using (a) DTW and 

(b) P-DTW 

 

 

Figure 12: Classification accuracy as a function for k (a) LOTO and (b) LOSO 

cross-validation for Cric data 

First, we performed experiments to compare how DTW and 

PDTW perform for classifying surgeon levels on Cric data using 

both LOTO and LOSO configurations. Figure 12 presents 

comparisons of the classification accuracy results of the proposed 

model for different values of K (number of neighbors) using 

LOTO and LOSO cross-validations, respectively. Figure 12 (a) 

shows that the results of our method based on PDTW performs 

better compared to using only DTW distance. These results 

indicate that our approach can identify the surgical skill levels well 

at trial levels because it utilizes the Procrustes analysis. Secondly, 

Figure 12 (b) presents the kNN-PDTW performance for the LOSO 

setup for the Cric dataset. The kNN based DTW approach 

performs slightly better for the accelerometer data. Whereas our 

approach results were improved, and the performance was 

reasonably well and still having a higher classification accuracy of 

90% at k = 3.  

Figure 13 shows the confusion matrix of our kNN based 

PDTW for surgeon expertise at k = 3 for Cric data using LOSO 

configuration. We can see that the intermediate surgeon was 

classified correctly, whereas both expert and novice surgeons were 

misclassified in one trial. From Figure 11 (b), we can notice that 

there is one trial (#3) from the expert surgeon that seems far from 

other trials with Expert trials and the same for novice surgeons 

with the trial (#11) in the same figure. The average classification 

accuracy was 90%. 

 
Figure 13: kNN-PDTW Confusion matrix for LOSO at k=3 for Cric data 

 

 
Figure 14: Balanced data classification results for the Cric data 

Lastly, for a more thorough comparison, we perform another 

experiment for Cric data by using balanced data and evaluating 

using LOSO with a k-fold cross-validating scheme. The balanced 

data was obtained by having equal trials from each surgeon level. 

The reason we chose the balanced data experiment because we had 

two novice surgeons, one expert, and one intermediate surgeon. In 

this conduct experiment, we pick five trials randomly from a total 

of ten novice surgeon’s trials and put them together with other 

trials from the expert surgeon and the intermediate surgeon trials. 

Then repeat the process ten times and report the average 

classification accuracy. Figure 14 shows the comparison 

classification accuracy as a function of k between PDTW and 

DTW based kNN classifier. Furthermore, Figure 15 presents the 

confusion matrix of kNN-PDTW predictions of the surgical skill 

classes. We can see from both above figures that the average 

accuracies of using PDTW much better than using DTW for all 

(b) (a) 

(a) (b) 
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values of k. Also, our approach using balanced data achieved 

average classification accuracy about 3% higher than using 

unbalanced data. the balancing data helps classified the novice 

surgeon's skill correctly with 100%. 

 
Figure 15: Balanced data confusion matrix for the Cric data 

5. Conclusions  

In this paper, we define a new surgery skill distance measure 

PDTW. It incorporates the exploration for best alignment using 

DTW and the similarity measure using Procrustes distance among 

two multidimensional time series. We show that the proposed 

framework based PDTW can enhance the overall performance for 

surgical proficiency evaluation. We attain an average accuracy of 

97% for the JIGSAWS dataset and the results outperform most 

state-of-the-art methods using kinematic data and are comparable 

to techniques based on deep schemes.       

Also, here we have examined the use of wearable motion 

sensor devices in proficiency assessment to achieve an entirely 

objective evaluation. Although our results are encouraging, there 

are quite a few limitations. The number of subjects is relatively 

small, not as desired. Furthermore, only one surgical task the 

subjects were asked to work on and there is no break between the 

trials which might impact the performing of the trials. Despite the 

limitations, our results indicate that PDTW distance can be used 

by classifying techniques to categorize the expertise levels 

accurately. In the future, we plan to increase the number of 

participants with a variety of expertise which might have the 

potential to give more information and robustness to our method. 

Also, more tasks to be utilized instead of only a given surgical task. 

Furthermore, consider using another or a combination of classifiers 

to improve the overall classification accuracy for skill assessment. 
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