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 This article copes with the formal verification of properties of the missions building module 
of PILOT’s software. PILOT is a language dedicated to remote control of robots. An 
incremental syntax-oriented editor was built in order to increase the dependability of 
PILOT’s missions and we showed that, under a maximum size of plan, this editor allows 
building only all plans that are syntactically correct. The limitation in size was due to state 
space explosion problem inherent to the Model-checking approach used for the proof. In 
order to extend the proof to all plans without any limitation in size, we investigated the 
theorem-proving approach, and especially PVS (Prototype Verification System). This paper 
therefore focuses more on modeling of PILOT plans and related building operations and 
the use of PVS to verify properties of the built models, in view of proving the aforementioned 
properties of PILOT software’s missions building module. 
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1. Introduction  

This paper extends the work originally presented in [1]. In the 
prolongation of preceding works aiming at enhancing the 
dependability of robotic applications [2-12], it targets the use of 
verification systems, and especially PVS (Prototype Verification 
System), for properties verification of a syntax-oriented editor of 
missions plans conceived for PILOT, a programming language 
devoted to the control of robots from remote. PILOT is developed 
within the Laboratory of Sciences and Techniques of Information, 
Communication and Knowledge (Lab-STICC). Proof systems rest 
on methods of formal proof or verification that can be described as 
approaches enabling to define systems properties and check their 
correctness using mathematics techniques and inference rules. In 
an earlier work, with the help of Prolog and University of 
Amsterdam’s SWI-Prolog tool, we proved that the syntax-oriented 
editor allows building all and only plans having a correct syntax. 
Nevertheless, we could only do this proof for plans whose size was 
under a maximum limit, due to the explosion of state-space 
inherent to the model-checking approach implemented using the 
SWI-Prolog tool. Theorem proving approaches and related tools 
such PVS should make it possible to get rid of the constraint on 
plans size, and to extend the proof to all plans whatever their size. 
PVS has been chosen because of our experiment in its use for 
protocol verification [13, 14]. The formal verification of properties 
of PILOT’s syntax-oriented editor involves a proper formalization 

of the language syntax and of the editor’s working. This article is 
dedicated to the modeling of PILOT plans and building operations 
of plans, and the use of PVS to verify properties of the built 
models, in view of proving the correctness of PILOT’s incremental 
syntax-oriented editor. 

The rest of this paper is structured as follows. A state of the art 
of robotic systems’ formal verification is presented in the second 
section. The third section addresses preliminaries on formal proof 
methods and gives an overview of PVS. The language PILOT as 
well as PILOT plans construction and checking method are 
presented in the fourth section. The fifth section deals with 
verification of properties with the help of SWI-Prolog tool. The 
sixth section is dedicated to the modeling of plans and building 
operations of plans, and verification of properties on the models 
using PVS.  Conclusions are presented in the seventh and last 
section. 

2. Related works 

In [15], the authors reminded, firstly that formal methods of 
verification were only recently introduced in the control 
community to assist developers in the construction of complex 
robotic systems’ control architectures, and secondly that the hybrid 
nature of such systems (combination of discrete and continuous 
behaviors) makes their formal treatment hard and necessitates new 
methods that are both operational and efficient.  

In [16], the authors tackle issues and outlooks in robotics. One 
of the issues they pinpoint is long-term mission execution 
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capability. Despite the fact that dependability, formal verification 
and fault tolerance methods are not directly referred, they are 
needed to reach that objective. 

In [17], the authors address the inclusion of operations into the 
control architecture of a UUV (unmanned underwater vehicle) for 
the mapping and the watching of the ocean. The proposed control 
system integrates safety mechanisms to lessen hazards at the 
Mission level and necessitates to use formal verification 
approaches. 

In [18], the authors portray an approach for the use of formal 
tools to verify the controllers of unmanned autonomous vehicles 
(UAV) working in congested areas. They mention that the design 
of controllers of such systems is difficult, in consequence of the 
required speed and responsiveness. They also notify that, since it 
is costly to test and compare distinct UAV controllers, formal 
verification is the number one phase for their performance and 
efficiency optimization. 

In [19], the authors propound a model-checking tool for user 
assistance in properties checking of systems having complex 
behaviors. The system modeling is done with the help of a finite-
state automaton. The latter is very large and its manual verification 
is therefore very difficult. The model-checking tool helps the user 
by automating part of the verification process. 

In [20], the authors propose a review of research works related 
to the application of formal specification and verification methods 
to the autonomous robotic domain. They pinpoint the insufficiency 
of testing on real deployment or simulation of autonomous robots. 
Indeed, the complexity of these robotic systems and their use in 
safety critical applications do not allow to test some of their 
behaviors. The authors claim the necessity to use formal methods 
to guarantee the exactness of such systems. 

In [21], the authors propose an integration of the modeling 
language Timed Rebeca in ROS, a middleware for mobile robots’ 
program development. A conceptual model of ROS programs in 
Timed Rebeca is proposed and used to verify the correctness of 
properties defined by users on ROS programs. Timed Rebeca is 
based on a model checking approach. 

In [22], the authors deal with the formal proof of a robotic 
system. Model checking approach is applied as well as theorem 
proving approach of higher-order logic. The first one requires the 
discretization of the differential equations describing the 
continuous dynamics of the system and therefore limits the model 
to an abstracted view of the system, whereas the second one allows 
using it in its true form and makes it possible to take into account 
all the real possibilities of the dynamics of the system. Different 
techniques used for the analysis of the robotic system are 
compared, based on expressiveness, accuracy and automation.  

Above works show the usefulness of formal verification 
approaches in robotics. They also show that solutions and tools are 
needed to facilitate the use of formal verification methods in the 
robotic domain. Analysis of state of the art reveals that the majority 
of works on formal verification of robotic systems use model 
checking techniques. In [20], only 3 between 49 works related to 
formal verification of robotic systems use theorem proving, despite 
their ability to avoid the state-space explosion issue that sometimes 
occur when using model checking. It is necessary to develop the 

use of theorem provers for robotic systems, given their complexity 
that makes their verification with model checkers prone to the 
state-space explosion problem.    

In the next section, preliminaries on formal proof methods are 
first introduced, then the theorem prover PVS is presented. 

3. Preliminaries on formal proof methods and Prototype 
Verification System 

3.1. Formal proof methods 

Two main formal proof methods exist: model-checking and 
demonstration also called theorem proving.  

In the model checking approaches (illustration in figure 1), 
system’s state-space model is built and its properties are first 
specified. Both are then input to the model checking system that 
goes through the state space exhaustively and checks if the system 
satisfies the given properties. When a property is not satisfied, the 
model checker generates error information.  

 

 

 

 

 
Figure 1: Model checking 

In the theorem proving approaches (illustration in figure 2), 
system’s mathematical model is built and its properties are 
formalized using a well-defined logic. Both are then input to the 
theorem proving system as theorems. Using axioms, hypothesis 
and deductive reasoning (inference rules), the theorem prover 
helps the user to develop his proof and to verify if the system 
satisfies the given properties. Inference rules together with 
theorems that have already been verified make it possible to prove 
new theorems. When the theorem proving relies on a decidable 
(propositional) logic, it can be automatic. When it is based on an 
un-decidable (higher-order) logic, it is interactive.  

 

 

 

 

 
Figure 2: Theorem proving 

In comparison to theorem proving, the advantage of model-
checking is its entire automation. Its disadvantage is that it is 
subject to state-space size explosion that could cause problems due 
to limited computer memory space and limited computational 
resources. 

3.2. Prototype Verification System 

PVS [23] is a deductive verification system. It manages a tree 
of proofs and helps the user to build a full proof tree, i.e. a tree 
whose terminal nodes are all admitted as being true. Each non-
terminal node is a goal from which children nodes are obtained by 
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a step of the proof. Goals are sequents having each the following 
shape: 

p1, p2, …, pn ├ q1, q2, …., qm 

where the pi are the antecedents and the qi are the consequents. 

PVS system uses backward reasoning: each proof step results 
in sequents that are at least as strong as previous ones. The root of 
the proof is the sequent ├ q where q is the theorem to prove. 

PVS system furnishes a specification language that is strongly 
typed [24] as well as an interface that makes it possible to specify 
systems under Emacs, to formally specify properties on those 
systems and to prove them with the help of the proof system of 
PVS [25].  

PVS’s specification language is founded upon a logic of higher 
order. It provides various types and subtypes, including elementary 
ones (strings, numbers, predicates, etc.), abstract data and 
compound types (records, union, etc.). PVS system offers several 
useful functions for the process of formal verification. The main 
commands implementing the decision procedures are the 
following:  

• typecheck: it makes it possible to analyze the file containing 
the specification of the system and to detect semantic errors. 

• prove: it makes it possible to start the proof of properties that 
are non-trivial for the system. 

• flatten: enables to flatten the structure of the current goal 

• split: enables to separate a goal into subgoals 

• inst: makes it possible to instantiate variables with given terms 

• expand: enables to expand/develop a definition or an 
expression 

• skolem: it makes it possible to “skolemize” quantified 
variables (quantifiers are removed and quantified variables are 
replaced by skolem constants). 

• grind/ground: enable to launch the process of 
decision/simplification of a rule. 

• induct: makes it possible to perform an induction on a 
variable. 

• undo: enables to go back in the proof. 

• lemma: makes it possible to add a lemma to the assumptions. 

• More elaborated commands, such as skosimp that iterates the 
application of skolem and flatten commands on the current 
rule. 

The next section presents the language PILOT and the method 
of construction and checking of plans. 

4. Language PILOT and method of incremental 
construction and checking of missions’ plans 

4.1. The language PILOT 

PILOT [5, 26, 27] is founded on the action concept. An action 
is composed of an order that the robot can execute, a rule of 
precondition and rules of supervising each having a tied treatment. 
An action is either elementary or continuous. Elementary actions 

end by themselves, in general once they reach their goal, while 
continuous actions’ termination is provoked by a parallel or a 
preemption primitive. Whether elementary or continuous, an 
action only executes if its precondition is true. Similarly, when a 
supervision rule of an action becomes true during its execution, the 
corresponding treatment is launched. For each supervising rule, the 
default treatment consists in stopping the related action. 
Precondition and supervision rules are usually conditions 
expressed on values of sensors. Figure 3 shows the graphical 
representation of elementary and continuous actions. 

 
 

Figure 3: Elementary action and continuous action 

In PILOT language, the following control primitives are 
available for missions’ plans programming:  

• Sequentiality: it starts by a “sequence beginning” and ends by 
a “sequence end”. It enables to define an order of execution on 
other primitives of the language (actions and control primitives). 
A graphical symbol named “intersequence” is used to connect the 
primitives of the sequence. Figure 4 illustrates a sequence 
comprising 2 elementary actions. 

 

 
Figure 4: Sequentiality 

• The conditional: it is formed by branches, each composed of a 
Boolean expression and a sequence following it. Starting from top, 
the first sequence whose condition is true is the only one to be 
executed. Figure 5 shows an example of conditional primitive with 
2 alternatives. 

 

 

 

 

 
Figure 5: Conditional 

• Iteration: it is constituted of a criterion of continuation and a 
sequence following it. Depending on the continuation criterion, the 
iteration is said to be fixed or to be conditional. In the first case, 
the criterion is a number of loops. In the second one, the criterion 
is a boolean condition. Figure 6 shows and example of fixed 
iteration on the left and an example of conditional iteration on the 
right. In the example of fixed iteration, elementary action A1 is 
executed 3 times. In the example of conditional iteration, 
elementary action A2 is executed while condition s>2 is true. 
 

Figure 6: Fixed and conditional iterations 
• Parallelism: it is composed of sequences executed in parallel. 
It terminates its execution when all its sequences have ended theirs. 
Figure 7 illustrates an example of parallel primitive. In this 
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example, elementary actions A1 and A2 are executed in parallel 
and the parallel execution ends when both actions reach the end of 
their execution. 

 

 

 

 
Figure 7: Parallelism 

• Preemption: it is composed of sequences executing in parallel, 
but unlike parallelism structure, the termination of its execution 
occurs as soon as one of the sequences ends. Figure 8 illustrates an 
example of preemption with 2 sequences. In this example, once 
one of the sequences ends, it causes the termination of the second 
one and leads to the end of the parallel execution. 

 

 

 

 

 

 
Figure 8: Preemption 

After the above presentation of the language PILOT, the next 
subsection describes the incremental syntax-oriented building 
approach of missions’ plans. 

4.2. Method of construction and checking of PILOT missions’ 
plans 

The syntax-oriented edition of PILOT plans guarantees that the 
plan is syntactically correct at each step of plan building. When the 
programmer starts building a mission plan, he obtains a sequence 
that is empty. In order to continue the construction of the plan, he 
uses operations insert, erase or modify. The modify operation 
makes it possible to change elements such as the Boolean 
expression of a conditional primitive, etc. Whenever an operation 
is applied by the user, the editor checks the syntactic validity of the 
plan obtained and only takes the modification into account in the 
positive case. When the syntax is incorrect, the editor informs the 
user through a message. For the purpose of ensuring the syntactic 
correctness of the plan whenever insertion operation is performed, 
the following default primitives are associated with the structures 
of PILOT language: 

• The default conditional structure which contains a unique 
alternative consisting in a condition set to “false” followed by 
an empty sequence. 

• The default iteration structure that contains a continuation 
criterion set to 0 followed by an empty sequence. 

• The default parallelism structure which contains a unique 
empty sequence. 

• The default preemption structure that contains a unique empty 
sequence. 

These default structures are illustrated in the example of plan 
shown in Figure 11. 

Assuming that: 

• plan is the current mission plan,  

• elt is the element to insert in the plan,  

• sel is the element of the plan selected by the user to indicate 
where to insert the new element (i.e. he wants elt to be inserted 
just before sel), 

• cont represents the immediate encapsulating structure 
containing sel. 

• Type (<param>) represents the type of <param>. Type values 
are BS, ES, BE, NL, EA, CA, CP, IP, PP. They respectively 
correspond to “Beginning of Sequence”, “End of Sequence”, 
Boolean Expression”, “Number of Loops”, “Elementary 
Action”, “Continuous Action”, “Conditional Primitive”, 
“Iteration Primitive”, and “Parallel Primitive”. Here, 
parallelism and preemption primitives are considered of type 
PP. 

• PredecessorOf (<param>) represents the element preceding 
<param> in the plan. 

• SetOfSequencesOf (<param>) defines the set of sequences of 
<param>. In this case <param> is supposed to be a parallel 
primitive.  

• IsContinuousActionSequence (<param>) is true if <param> is 
a sequence made of a beginning of sequence, followed by a 
continuous action followed by an end of sequence. Otherwise, 
it is false. 

The precondition of the implemented insertion operation can be 
represented as follows: 
∃ elt ∧  
(¬∃ sel ⇒ (∃ cont ⇒ (Type (cont) ≠ IP ∧ 
 (Type (cont) = PP ⇒ Type (elt) = BS) ∧ 
 (Type (cont) = CP ⇒ Type (elt) = BE)))) ∧ 
(∃ sel ⇒ ((Type (sel) = BS ⇒  
 (∃ cont ∧ Type (cont) = PP ∧ Type (elt) = BS)) ∧ 
 (Type (sel) = BE ⇒  
 (∃ cont ∧ Type (cont) = CP ∧ Type (elt) = BE)) ∧ (Type (sel) ≠ NL))) ∧ 
(Type (elt) = CA ⇒ 
 ((∃ cont ∧ Type (cont) = PP) ∧ 
  (∃ sel ∧ Type (sel) = ES ∧  Type (PredecessorOf (sel)) = BS) ∧ 
  (∃ seq / seq ∈ SetOfSequencesOf(cont) ∧ sel ∉ seq ∧  
   ¬IsContinuousActionSequence (seq)))) 
 

After this presentation of PILOT and the description of the method 
of construction and checking of PILOT missions’ plans, the next 
section deals with properties’ proof of the latter, based on Prolog 
and an associated tool.  

5. Verification of the method of construction and checking 
of PILOT missions’ plans using Prolog and an associated 
tool 

It is necessary demonstrating that the implementation of the 
syntax-oriented editor enables the construction of all but solely 
plans whose syntax is valid. For the sake of simplicity, only the 
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case of plans building using insertion operations is considered. In 
this case, the approach used for the validation can be illustrated by 
the colored Petri net of Figure 9. In colored Petri nets [28], colors 
are represented by associating values to tokens. 

 
Figure 9: Validation approach 

The initial marking of places “Plan_Before_Insertion” and 
“Element_To_Insert” are respectively {[beg_seq, end_seq]} and 
{beg_seq, end_seq, cont_act, elem_act, par, pre, iter, cond, 
bool_exp, loops_num}. Initially, place “Selected_Element” has an 
empty marking and so is place “Resulting_Plan”.  

The transition “Selection” (respectively “Insertion”) models an 
element selection (respectively insertion) of (respectively in) the 
plan. As far as transition “Validation” is concerned, it represents 
the formal syntax analyzer of the language PILOT. The 
mechanism implemented for the syntax-oriented building of plans 
is free of errors if the Petri net of Figure 9 does not contain any 
deadlock. 

For the application of this certification method to the syntax-
oriented editor of PILOT plans, a syntax-checker has been built in 
PROLOG based on the approach suggested in [29]. Thereafter, the 
plan construction has been modeled and the properties hereafter 
have been checked: 

• Are there insertions that lead to plans whose syntax is not 
correct? 

• Are there plans with correct syntax whose construction is not 
possible with the proposed insertion model? 

The first property aims at ensuring that the proposed syntax-
oriented building mechanism disallows the construction of plans 
whose syntax is not correct. Regarding the second property, the 
goal is to make sure that the mechanism does not disallow the 
building of correct plans. Indeed, the checking mechanism may be 
too restrictive and lead to the rejection of plans that are 
syntactically correct.  

Due to the working of PROLOG, it was necessary to limit the 
size of the set of plans built. If not, the PROLOG tool would have 
tried to generate all syntactically correct plans and this would have 
led to memory space problems. PROLOG parser and plan 
construction models were therefore modified to solely generate 
plans of size under a threshold. Here, the size is that of the list 
modeling the plan. Figure 10 shows the translation of the above 
properties in PROLOG, taking the size constraint into account. In 
this PROLOG code, convert converts a model representing the 

graphic plan into a model which the syntax analyzer can process. 
convert_set works similarly, but applies to set of models.  

 

Figure 10: Syntax analyzer’ properties validity translation in Prolog  

SWI-Prolog tool of University of Amsterdam were used for the 
programming. The tests performed for plans of size under 15 
showed no insertion problem and no anomalous rejection. 
Consequently, for plans whose size is under 15, the proposed 
syntax-oriented building mechanism enables constructing only but 
all plans whose syntax is valid. For greater sizes, an exception 
related to lack of memory space is raised. The lack of space is 
caused by the exponential increase of the set of plans. 

The next section presents the modeling of PILOT plans’ 
properties as well as the modeling of plans’ building operations, 
for their verification using Prototype Verification System. As 
indicated in the third section, Prototype Verification System offers 
a theorem proving system which enables to avoid the 
aforementioned memory space problem. 

6. Plans and operations modeling for properties verification 
using Prototype Verification System 

6.1. Prolog approach model analysis 

In the approach used for PILOT’s syntax-oriented editor 
properties’ proof using SWI-Prolog, plan’s model is a numbered 
elements list, so as to be able to locate components of the plan as 
in its graphical version. Indeed, for operations such as insertion, it 
is necessary identifying where insertion is wished. In PILOT’s 
Graphical User Interface (Figure 11), in order to insert an element 
in a plan, the user selects the element among the operators list on 
the left, then he clicks on the location of the plan before which he 
wants to insert the element.  

 
Figure 11: Graphical User Interface of PILOT 
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The use of numbers to locate the components of the plan is 
suitable to produce all the plans buildable by insertion of a unique 
primitive of the language within a plan. Nonetheless, it becomes 
an obstacle to the generalization needed for theorem proving with 
the help of Prototype Verification System, the reasoning being 
done independently of the size of the plan. One of the main 
difficulties was therefore to find a model of representation of the 
plan, not based on the numbering of its elements, and making it 
possible to uniquely locate its elements. 

Building and syntax-checking operations necessitate 
identification of each plan element’s container. Indeed, the 
behavior of operations such as insertion is container-dependent. 
Mechanisms such as that provided by SWI-Prolog through the 
notation "par: number: List" make it easy to isolate blocks and 
locate the containers. PVS offers no similar mechanism. Therefore, 
the design of a solution for containers’ identification is needed for 
PVS. 

6.2. Models proposal for the proof of properties with PVS 

Proving PILOT editor’s properties with PVS, necessitates 
defining various models notably for PILOT plan, selection’s 
container and operation “selection” that specifies where to perform 
the insertion in the plan. The models proposed for these different 
entities are presented hereafter. 

a) Plan model 
The plan is represented as a list of elements belonging to the 

set {bs, es, e, c, exp, par, pre, condi, iter} (see example on Figure 
12). These elements refer to PILOT’ syntax terminals. bs denotes 
sequence beginning, es sequence end, e (respectively c) 
elementary (respectively continuous) action, exp expression of 
conditional. pre, par, condi and iter respectively denote 
preemption, parallelism, conditional and iteration primitives.  

 

Figure 12: Examples of plans modeled in PVS  

b) Modeling properties of syntactically correct plans 
In the proposed approach, each rule of the grammar of the 

language is represented using a two parameters function whose 
first parameter is the part of the plan submitted for parsing and the 
second is the remainder expected after retrieving the pattern 
matching the rule. The output of the function is true when the real 
and expected remainders are identical. Otherwise, it is false. In 
Prolog’s case, this approach enables to automatically generate the 
program that recognizes the language, as shown in Table 1. 

Using the same approach under PVS, the program recognizing 
the language PILOT has the shape shown in Figure 13. 

It turns out that this solution cannot be used as such under PVS. 
Indeed, in PVS’s description language, a function call can only be 
done after the definition of the function. So, in figure 13, the call 
to seq_base in the definition of validplan isn’t concretely allowed. 
An approach to solve this problem could be just to specify 
(declare) the function before the call without defining it 
completely, but it is disallowed in Prototype Verification System. 

A first method adopted to overpower these drawbacks has been 
to elaborate PILOT syntax rules’ dependencies graph, then using 
it to define the functions in the order of dependency, beginning by 
the functions not involving cross recursive calls, and then using the 
passing of functions as parameters to define functions involved in 
calls with cross recursion. The principle is shown hereafter through 
a definition of even and odd parities: 

Table 1: Description of PILOT’s syntax with Prolog 

PILOT Syntax rules Description in Prolog 
S : SEQ_BASE validplan (A,B)   :- seq_base (A,B). 
SEQ_BASE   : bs L_PRIMI_BASE es seq_base ([bs|A],B)  :-  l_primi_base (A, [es,B]). 
L_PRIMI_BASE : ε | l_primi_base (A,A).  

   PRIMI_BASE L_PRIMI_BASE l_primi_base (A,B)  :- primi_base (A,C), l_primi_base (C,B). 
PRIMI_BASE : PRIMI_PARALLEL | primi_base (A,B) :- primi_parallel (A,B). 
   PRIMI_PREEMPTION | primi_base (A,B) :- primi_preemption (A,B). 
   PRIMI_CONDITIONAL | primi_base (A,B) :- primi_conditional (A,B). 
   PRIMI_ITERATION | primi_base (A,B) :- primi_iteration (A,B). 
   PRIMI_ACT_ELEM primi_base (A,B) :- primi_act_elem (A,B). 
PRIMI_PARALLEL : par ‘(‘ LIST_SEQ ‘)’ primi_parallel ([par,‘(‘|A],B) :- list_seq (A, [‘)’| B]). 
LIST_SEQ : LIST_SEQ_A SEQ_BASE LIST_SEQ_A list_seq (A,B) :- list_seq_a (A,C), seq_base(C,D), list_seq_a (D, B). 

LIST_SEQ_A : ε | 
  SEQ  LIST_SEQ_A 

list_seq_a (A,A).  
list_seq_a (A,B) :- seq (A, C), list_seq_a (C,B). 

SEQ : SEQ_BASE | 
  SEQ_SPECIFIC 

seq (A,B)  :- seq_base (A,B). 
seq (A,B)  :- seq_specific (A,B). 

SEQ_SPECIFIC : bs PRIMI_ACT_CONT es seq_specific ([bs|A],B) :- primi_act_cont (A,[es|B]). 
PRIMI_ACT_CONT : c primi_act_cont ([c|A],A).  
PRIMI_PREEMPTION : pre ‘(‘ LIST_SEQ ‘)’ primi_preemption ([pre,‘(‘|A],B) :- list_seq (A, [‘)’| B]). 
PRIMI_CONDITIONAL : condi ‘(‘ LIST_CONDITIONAL ‘)’ primi_conditional ([cond,‘(‘|A],B)  :- list_conditional (A,[‘)’,B]). 
LIST_CONDITIONAL : CONDITIONAL LIST_CONDITIONAL | 

CONDITIONAL 
list_conditional (A,B) :- conditional (A,C), list_conditional (C,B). 
list_conditional (A,B) :- conditional (A,B). 

CONDITIONAL : exp SEQ_BASE conditional ([exp|A],B) :- seq_base (A,B). 
PRIMI_ITERATION : iter ‘(‘ SPEC_ITER ‘)’ primi_iteration ([iter,‘(‘|A],B) :- spec_iter (A, [‘)’|B]). 
SPEC_ITER : CONDITIONAL | 

   nb SEQ_BASE 
spec_iter (A,B) :- conditional (A,B). 
spec_iter ([nb|A],B) :- seq_base (A, B). 

PRIMI_ACT_ELEM : e primi_act_elem ([e|A],A).  
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Figure 13: Specification of PILOT syntax in PVS with same method as Prolog 

Even (n: N): Boolean = n=0 or (n ≠0 and odd (n-1)) 

Odd (n: N): Boolean = n=1 or (n ≠1 and even (n-1)) 

This definition of even and odd functions can be transformed 
in PVS as shown in figure 14. 

 

Figure 14: Representation of even and odd functions for PVS with resolution of 
recursive crossed calls 

Nevertheless, the syntax of PILOT contains several complex 
crossed calls involving more than 2 crossed calls. For example, 
“seq_base” refers to “l_primi_base” that refers to “primi_base” 
which refers in turn to “primi_parallel” that also refers to 
“seq_base”. 

Under PVS, defining a function that is recursive also 
necessitates adding a function called measure which decreases in 
the course of recursive calls and having a down side limit, so as to 
ensure recursive calls ending.  

Figure 15 illustrates the representation proposed in order to 
solve the problem related to recursive cross calls for the example 
mentioned above. 

A representation of PILOT’s syntax under PVS has been 
generated with the help of this approach. For its validation, the 
obligations of proofs produced by Prototype Verification System 
were proven and a few plans’ definition theorems, among which 
those in Figure 16, have been defined and proved with the help of 
PVS. 

a) Modeling of plan element selection  
The intention is to design a model representing the point of 

insertion in the PILOT plan. The following two components can 

be used for characterizing the point of insertion: the clicked 
element and its container. The proposed model of representation 
of the selected element is the couple (Lbe, Laf) where Lbe 
corresponds to the head of the plan list ending just before the 
selected element, and Laf is the remaining of the plan starting from 
the selected element. This solution makes it possible to take 
advantage of the properties of concatenation of lists in the design 
of the models of operations that apply to the selected element. It 
also provides a good consistency with the syntactic rules modeling 
where two parts of the list representing the plan have to be 
distinguished, namely the part recognized by the rule and the 
remainder. 

 

Figure 15: Excerpt of PILOT’s syntax description in PVS with cross recursive 
calls solving 

In the proposed modeling, the selected element’s container is 
frequently split in two parts, one belonging to Lbe and the other to 
Laf. Plan element selection model is shown in Figure 17. In this 
model, Lcon is the tail of the plan that starts from the selected 
element’s container. 

An extract of the PVS model of the selection operation is given 
in Figure 18. It shows the specification of the selection of an 
outermost plan’s element (i.e. an element of the main sequence of 
the plan), as well as the case of a selection within a parallel box. In 
the first case, there is no container, whereas in the second case, the 
parallel box is the container. 
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Figure 16: Samples of PVS demonstrated theorems 

 
Figure 17: Selection model of a plan element 

In this selection operation, “fusion” is an operation that 
performs the fusion of two lists and “seq” is such that its first 
parameter is a list L starting by a sequence S followed by a list LS2 
of primitives. 

7. Conclusion 

As shown in the state of the art part of this paper, it is necessary 
to develop the use of theorem provers for robotic systems, given 
their complexity that makes their verification with model checkers 
prone to the state-space explosion problem. This work is a step 
forward in this direction, through a case study showing the limits 
of model-checking for the proof of properties of a robotic system, 
namely the syntax-oriented editor of a robotic missions 
programming language (PILOT), and investigating the use of the 
PVS theorem proving system to overcome the problem 
encountered with the model-checking approach. 

Another goal of the work was to check out the appropriateness 
of Prototype Verification System for accomplishing complicated 
demonstrations that involve the design of models for different 
kinds of entities frequently encountered in robotics and more 
generally in control-command systems (language syntax, 
operations ...).  

 

Figure 18: Extract of selection operation’s PVS model  

In order to reach these goals, PVS functions have been used to 
represent PILOT’s syntax. The proposed model has been validated 
notably by verifying the obligations of proofs produced by 
Prototype Verification System and proving some theorems defined 
on PILOT plans. The modeling of recursive cross-calls has been 
the major issue faced during PILOT’s syntax specification in PVS. 
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As matter of fact, contrary to Prolog, the language of specification 
provided by PVS disallows to use a function before its full 
definition. Consequently, a PVS model without cross recursivity 
was proposed. The specification in PVS of the selection operation 
of the syntax-oriented editor of PILOT has also been presented in 
this paper.  

The results obtained at this step of the work (the representation 
model of the syntax rules of the language PILOT under PVS and 
its validation, the modeling of operations of the syntax-oriented 
editor of PILOT), enables to conclude in a good capacity of PVS 
for the modeling of aforementioned entities of control-command 
systems and for the achievement of further formal proofs. 
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