

www.astesj.com 1049

Formal Proof of Properties of a Syntax-Oriented Editor of Robotic Missions Plans

Laurent Nana*, François Monin, Sophie Gire

Univ Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 23 October, 2020
Accepted: 28 January, 2021
Online: 16 February, 2021

 This article copes with the formal verification of properties of the missions building module
of PILOT’s software. PILOT is a language dedicated to remote control of robots. An
incremental syntax-oriented editor was built in order to increase the dependability of
PILOT’s missions and we showed that, under a maximum size of plan, this editor allows
building only all plans that are syntactically correct. The limitation in size was due to state
space explosion problem inherent to the Model-checking approach used for the proof. In
order to extend the proof to all plans without any limitation in size, we investigated the
theorem-proving approach, and especially PVS (Prototype Verification System). This paper
therefore focuses more on modeling of PILOT plans and related building operations and
the use of PVS to verify properties of the built models, in view of proving the aforementioned
properties of PILOT software’s missions building module.

Keywords:
Missions programming
Robotics
Modeling
Verification
Formal proof

1. Introduction

This paper extends the work originally presented in [1]. In the
prolongation of preceding works aiming at enhancing the
dependability of robotic applications [2-12], it targets the use of
verification systems, and especially PVS (Prototype Verification
System), for properties verification of a syntax-oriented editor of
missions plans conceived for PILOT, a programming language
devoted to the control of robots from remote. PILOT is developed
within the Laboratory of Sciences and Techniques of Information,
Communication and Knowledge (Lab-STICC). Proof systems rest
on methods of formal proof or verification that can be described as
approaches enabling to define systems properties and check their
correctness using mathematics techniques and inference rules. In
an earlier work, with the help of Prolog and University of
Amsterdam’s SWI-Prolog tool, we proved that the syntax-oriented
editor allows building all and only plans having a correct syntax.
Nevertheless, we could only do this proof for plans whose size was
under a maximum limit, due to the explosion of state-space
inherent to the model-checking approach implemented using the
SWI-Prolog tool. Theorem proving approaches and related tools
such PVS should make it possible to get rid of the constraint on
plans size, and to extend the proof to all plans whatever their size.
PVS has been chosen because of our experiment in its use for
protocol verification [13, 14]. The formal verification of properties
of PILOT’s syntax-oriented editor involves a proper formalization

of the language syntax and of the editor’s working. This article is
dedicated to the modeling of PILOT plans and building operations
of plans, and the use of PVS to verify properties of the built
models, in view of proving the correctness of PILOT’s incremental
syntax-oriented editor.

The rest of this paper is structured as follows. A state of the art
of robotic systems’ formal verification is presented in the second
section. The third section addresses preliminaries on formal proof
methods and gives an overview of PVS. The language PILOT as
well as PILOT plans construction and checking method are
presented in the fourth section. The fifth section deals with
verification of properties with the help of SWI-Prolog tool. The
sixth section is dedicated to the modeling of plans and building
operations of plans, and verification of properties on the models
using PVS. Conclusions are presented in the seventh and last
section.

2. Related works

In [15], the authors reminded, firstly that formal methods of
verification were only recently introduced in the control
community to assist developers in the construction of complex
robotic systems’ control architectures, and secondly that the hybrid
nature of such systems (combination of discrete and continuous
behaviors) makes their formal treatment hard and necessitates new
methods that are both operational and efficient.

In [16], the authors tackle issues and outlooks in robotics. One
of the issues they pinpoint is long-term mission execution

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Laurent NANA, Univ. of Brest, Computer Science
Department, 20 Avenue Le Gorgeu, 29238 Brest, +33298052283, nana@univ-
brest.fr

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj0601116

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0601116

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1050

capability. Despite the fact that dependability, formal verification
and fault tolerance methods are not directly referred, they are
needed to reach that objective.

In [17], the authors address the inclusion of operations into the
control architecture of a UUV (unmanned underwater vehicle) for
the mapping and the watching of the ocean. The proposed control
system integrates safety mechanisms to lessen hazards at the
Mission level and necessitates to use formal verification
approaches.

In [18], the authors portray an approach for the use of formal
tools to verify the controllers of unmanned autonomous vehicles
(UAV) working in congested areas. They mention that the design
of controllers of such systems is difficult, in consequence of the
required speed and responsiveness. They also notify that, since it
is costly to test and compare distinct UAV controllers, formal
verification is the number one phase for their performance and
efficiency optimization.

In [19], the authors propound a model-checking tool for user
assistance in properties checking of systems having complex
behaviors. The system modeling is done with the help of a finite-
state automaton. The latter is very large and its manual verification
is therefore very difficult. The model-checking tool helps the user
by automating part of the verification process.

In [20], the authors propose a review of research works related
to the application of formal specification and verification methods
to the autonomous robotic domain. They pinpoint the insufficiency
of testing on real deployment or simulation of autonomous robots.
Indeed, the complexity of these robotic systems and their use in
safety critical applications do not allow to test some of their
behaviors. The authors claim the necessity to use formal methods
to guarantee the exactness of such systems.

In [21], the authors propose an integration of the modeling
language Timed Rebeca in ROS, a middleware for mobile robots’
program development. A conceptual model of ROS programs in
Timed Rebeca is proposed and used to verify the correctness of
properties defined by users on ROS programs. Timed Rebeca is
based on a model checking approach.

In [22], the authors deal with the formal proof of a robotic
system. Model checking approach is applied as well as theorem
proving approach of higher-order logic. The first one requires the
discretization of the differential equations describing the
continuous dynamics of the system and therefore limits the model
to an abstracted view of the system, whereas the second one allows
using it in its true form and makes it possible to take into account
all the real possibilities of the dynamics of the system. Different
techniques used for the analysis of the robotic system are
compared, based on expressiveness, accuracy and automation.

Above works show the usefulness of formal verification
approaches in robotics. They also show that solutions and tools are
needed to facilitate the use of formal verification methods in the
robotic domain. Analysis of state of the art reveals that the majority
of works on formal verification of robotic systems use model
checking techniques. In [20], only 3 between 49 works related to
formal verification of robotic systems use theorem proving, despite
their ability to avoid the state-space explosion issue that sometimes
occur when using model checking. It is necessary to develop the

use of theorem provers for robotic systems, given their complexity
that makes their verification with model checkers prone to the
state-space explosion problem.

In the next section, preliminaries on formal proof methods are
first introduced, then the theorem prover PVS is presented.

3. Preliminaries on formal proof methods and Prototype
Verification System

3.1. Formal proof methods

Two main formal proof methods exist: model-checking and
demonstration also called theorem proving.

In the model checking approaches (illustration in figure 1),
system’s state-space model is built and its properties are first
specified. Both are then input to the model checking system that
goes through the state space exhaustively and checks if the system
satisfies the given properties. When a property is not satisfied, the
model checker generates error information.

Figure 1: Model checking

In the theorem proving approaches (illustration in figure 2),
system’s mathematical model is built and its properties are
formalized using a well-defined logic. Both are then input to the
theorem proving system as theorems. Using axioms, hypothesis
and deductive reasoning (inference rules), the theorem prover
helps the user to develop his proof and to verify if the system
satisfies the given properties. Inference rules together with
theorems that have already been verified make it possible to prove
new theorems. When the theorem proving relies on a decidable
(propositional) logic, it can be automatic. When it is based on an
un-decidable (higher-order) logic, it is interactive.

Figure 2: Theorem proving

In comparison to theorem proving, the advantage of model-
checking is its entire automation. Its disadvantage is that it is
subject to state-space size explosion that could cause problems due
to limited computer memory space and limited computational
resources.

3.2. Prototype Verification System

PVS [23] is a deductive verification system. It manages a tree
of proofs and helps the user to build a full proof tree, i.e. a tree
whose terminal nodes are all admitted as being true. Each non-
terminal node is a goal from which children nodes are obtained by

Model Checker

Properties
check

State Space
Generation

Properties

System Model Result

Result

Properties as
theorems

System Model
as theorems

Built-in theorems Inference Rules

Properties verification through proof of theorems

Theorem Prover

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1051

a step of the proof. Goals are sequents having each the following
shape:

p1, p2, …, pn ├ q1, q2, …., qm

where the pi are the antecedents and the qi are the consequents.

PVS system uses backward reasoning: each proof step results
in sequents that are at least as strong as previous ones. The root of
the proof is the sequent ├ q where q is the theorem to prove.

PVS system furnishes a specification language that is strongly
typed [24] as well as an interface that makes it possible to specify
systems under Emacs, to formally specify properties on those
systems and to prove them with the help of the proof system of
PVS [25].

PVS’s specification language is founded upon a logic of higher
order. It provides various types and subtypes, including elementary
ones (strings, numbers, predicates, etc.), abstract data and
compound types (records, union, etc.). PVS system offers several
useful functions for the process of formal verification. The main
commands implementing the decision procedures are the
following:

• typecheck: it makes it possible to analyze the file containing
the specification of the system and to detect semantic errors.

• prove: it makes it possible to start the proof of properties that
are non-trivial for the system.

• flatten: enables to flatten the structure of the current goal

• split: enables to separate a goal into subgoals

• inst: makes it possible to instantiate variables with given terms

• expand: enables to expand/develop a definition or an
expression

• skolem: it makes it possible to “skolemize” quantified
variables (quantifiers are removed and quantified variables are
replaced by skolem constants).

• grind/ground: enable to launch the process of
decision/simplification of a rule.

• induct: makes it possible to perform an induction on a
variable.

• undo: enables to go back in the proof.

• lemma: makes it possible to add a lemma to the assumptions.

• More elaborated commands, such as skosimp that iterates the
application of skolem and flatten commands on the current
rule.

The next section presents the language PILOT and the method
of construction and checking of plans.

4. Language PILOT and method of incremental
construction and checking of missions’ plans

4.1. The language PILOT

PILOT [5, 26, 27] is founded on the action concept. An action
is composed of an order that the robot can execute, a rule of
precondition and rules of supervising each having a tied treatment.
An action is either elementary or continuous. Elementary actions

end by themselves, in general once they reach their goal, while
continuous actions’ termination is provoked by a parallel or a
preemption primitive. Whether elementary or continuous, an
action only executes if its precondition is true. Similarly, when a
supervision rule of an action becomes true during its execution, the
corresponding treatment is launched. For each supervising rule, the
default treatment consists in stopping the related action.
Precondition and supervision rules are usually conditions
expressed on values of sensors. Figure 3 shows the graphical
representation of elementary and continuous actions.

Figure 3: Elementary action and continuous action

In PILOT language, the following control primitives are
available for missions’ plans programming:

• Sequentiality: it starts by a “sequence beginning” and ends by
a “sequence end”. It enables to define an order of execution on
other primitives of the language (actions and control primitives).
A graphical symbol named “intersequence” is used to connect the
primitives of the sequence. Figure 4 illustrates a sequence
comprising 2 elementary actions.

Figure 4: Sequentiality

• The conditional: it is formed by branches, each composed of a
Boolean expression and a sequence following it. Starting from top,
the first sequence whose condition is true is the only one to be
executed. Figure 5 shows an example of conditional primitive with
2 alternatives.

Figure 5: Conditional

• Iteration: it is constituted of a criterion of continuation and a
sequence following it. Depending on the continuation criterion, the
iteration is said to be fixed or to be conditional. In the first case,
the criterion is a number of loops. In the second one, the criterion
is a boolean condition. Figure 6 shows and example of fixed
iteration on the left and an example of conditional iteration on the
right. In the example of fixed iteration, elementary action A1 is
executed 3 times. In the example of conditional iteration,
elementary action A2 is executed while condition s>2 is true.

Figure 6: Fixed and conditional iterations
• Parallelism: it is composed of sequences executed in parallel.
It terminates its execution when all its sequences have ended theirs.
Figure 7 illustrates an example of parallel primitive. In this

Elementary Action Continuous Action

A2 A1

A4 A3

A2 A1
?

C1

C2

S>2 A2 A1 3

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1052

example, elementary actions A1 and A2 are executed in parallel
and the parallel execution ends when both actions reach the end of
their execution.

Figure 7: Parallelism

• Preemption: it is composed of sequences executing in parallel,
but unlike parallelism structure, the termination of its execution
occurs as soon as one of the sequences ends. Figure 8 illustrates an
example of preemption with 2 sequences. In this example, once
one of the sequences ends, it causes the termination of the second
one and leads to the end of the parallel execution.

Figure 8: Preemption

After the above presentation of the language PILOT, the next
subsection describes the incremental syntax-oriented building
approach of missions’ plans.

4.2. Method of construction and checking of PILOT missions’
plans

The syntax-oriented edition of PILOT plans guarantees that the
plan is syntactically correct at each step of plan building. When the
programmer starts building a mission plan, he obtains a sequence
that is empty. In order to continue the construction of the plan, he
uses operations insert, erase or modify. The modify operation
makes it possible to change elements such as the Boolean
expression of a conditional primitive, etc. Whenever an operation
is applied by the user, the editor checks the syntactic validity of the
plan obtained and only takes the modification into account in the
positive case. When the syntax is incorrect, the editor informs the
user through a message. For the purpose of ensuring the syntactic
correctness of the plan whenever insertion operation is performed,
the following default primitives are associated with the structures
of PILOT language:

• The default conditional structure which contains a unique
alternative consisting in a condition set to “false” followed by
an empty sequence.

• The default iteration structure that contains a continuation
criterion set to 0 followed by an empty sequence.

• The default parallelism structure which contains a unique
empty sequence.

• The default preemption structure that contains a unique empty
sequence.

These default structures are illustrated in the example of plan
shown in Figure 11.

Assuming that:

• plan is the current mission plan,

• elt is the element to insert in the plan,

• sel is the element of the plan selected by the user to indicate
where to insert the new element (i.e. he wants elt to be inserted
just before sel),

• cont represents the immediate encapsulating structure
containing sel.

• Type (<param>) represents the type of <param>. Type values
are BS, ES, BE, NL, EA, CA, CP, IP, PP. They respectively
correspond to “Beginning of Sequence”, “End of Sequence”,
Boolean Expression”, “Number of Loops”, “Elementary
Action”, “Continuous Action”, “Conditional Primitive”,
“Iteration Primitive”, and “Parallel Primitive”. Here,
parallelism and preemption primitives are considered of type
PP.

• PredecessorOf (<param>) represents the element preceding
<param> in the plan.

• SetOfSequencesOf (<param>) defines the set of sequences of
<param>. In this case <param> is supposed to be a parallel
primitive.

• IsContinuousActionSequence (<param>) is true if <param> is
a sequence made of a beginning of sequence, followed by a
continuous action followed by an end of sequence. Otherwise,
it is false.

The precondition of the implemented insertion operation can be
represented as follows:
∃ elt ∧
(¬∃ sel ⇒ (∃ cont ⇒ (Type (cont) ≠ IP ∧
 (Type (cont) = PP ⇒ Type (elt) = BS) ∧
 (Type (cont) = CP ⇒ Type (elt) = BE)))) ∧
(∃ sel ⇒ ((Type (sel) = BS ⇒
 (∃ cont ∧ Type (cont) = PP ∧ Type (elt) = BS)) ∧
 (Type (sel) = BE ⇒
 (∃ cont ∧ Type (cont) = CP ∧ Type (elt) = BE)) ∧ (Type (sel) ≠ NL))) ∧
(Type (elt) = CA ⇒
 ((∃ cont ∧ Type (cont) = PP) ∧
 (∃ sel ∧ Type (sel) = ES ∧ Type (PredecessorOf (sel)) = BS) ∧
 (∃ seq / seq ∈ SetOfSequencesOf(cont) ∧ sel ∉ seq ∧
 ¬IsContinuousActionSequence (seq))))

After this presentation of PILOT and the description of the method
of construction and checking of PILOT missions’ plans, the next
section deals with properties’ proof of the latter, based on Prolog
and an associated tool.

5. Verification of the method of construction and checking
of PILOT missions’ plans using Prolog and an associated
tool

It is necessary demonstrating that the implementation of the
syntax-oriented editor enables the construction of all but solely
plans whose syntax is valid. For the sake of simplicity, only the

A2

A1
//

A2 A1

A4 A3

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1053

case of plans building using insertion operations is considered. In
this case, the approach used for the validation can be illustrated by
the colored Petri net of Figure 9. In colored Petri nets [28], colors
are represented by associating values to tokens.

Figure 9: Validation approach

The initial marking of places “Plan_Before_Insertion” and
“Element_To_Insert” are respectively {[beg_seq, end_seq]} and
{beg_seq, end_seq, cont_act, elem_act, par, pre, iter, cond,
bool_exp, loops_num}. Initially, place “Selected_Element” has an
empty marking and so is place “Resulting_Plan”.

The transition “Selection” (respectively “Insertion”) models an
element selection (respectively insertion) of (respectively in) the
plan. As far as transition “Validation” is concerned, it represents
the formal syntax analyzer of the language PILOT. The
mechanism implemented for the syntax-oriented building of plans
is free of errors if the Petri net of Figure 9 does not contain any
deadlock.

For the application of this certification method to the syntax-
oriented editor of PILOT plans, a syntax-checker has been built in
PROLOG based on the approach suggested in [29]. Thereafter, the
plan construction has been modeled and the properties hereafter
have been checked:

• Are there insertions that lead to plans whose syntax is not
correct?

• Are there plans with correct syntax whose construction is not
possible with the proposed insertion model?

The first property aims at ensuring that the proposed syntax-
oriented building mechanism disallows the construction of plans
whose syntax is not correct. Regarding the second property, the
goal is to make sure that the mechanism does not disallow the
building of correct plans. Indeed, the checking mechanism may be
too restrictive and lead to the rejection of plans that are
syntactically correct.

Due to the working of PROLOG, it was necessary to limit the
size of the set of plans built. If not, the PROLOG tool would have
tried to generate all syntactically correct plans and this would have
led to memory space problems. PROLOG parser and plan
construction models were therefore modified to solely generate
plans of size under a threshold. Here, the size is that of the list
modeling the plan. Figure 10 shows the translation of the above
properties in PROLOG, taking the size constraint into account. In
this PROLOG code, convert converts a model representing the

graphic plan into a model which the syntax analyzer can process.
convert_set works similarly, but applies to set of models.

Figure 10: Syntax analyzer’ properties validity translation in Prolog

SWI-Prolog tool of University of Amsterdam were used for the
programming. The tests performed for plans of size under 15
showed no insertion problem and no anomalous rejection.
Consequently, for plans whose size is under 15, the proposed
syntax-oriented building mechanism enables constructing only but
all plans whose syntax is valid. For greater sizes, an exception
related to lack of memory space is raised. The lack of space is
caused by the exponential increase of the set of plans.

The next section presents the modeling of PILOT plans’
properties as well as the modeling of plans’ building operations,
for their verification using Prototype Verification System. As
indicated in the third section, Prototype Verification System offers
a theorem proving system which enables to avoid the
aforementioned memory space problem.

6. Plans and operations modeling for properties verification
using Prototype Verification System

6.1. Prolog approach model analysis

In the approach used for PILOT’s syntax-oriented editor
properties’ proof using SWI-Prolog, plan’s model is a numbered
elements list, so as to be able to locate components of the plan as
in its graphical version. Indeed, for operations such as insertion, it
is necessary identifying where insertion is wished. In PILOT’s
Graphical User Interface (Figure 11), in order to insert an element
in a plan, the user selects the element among the operators list on
the left, then he clicks on the location of the plan before which he
wants to insert the element.

Figure 11: Graphical User Interface of PILOT

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1054

The use of numbers to locate the components of the plan is
suitable to produce all the plans buildable by insertion of a unique
primitive of the language within a plan. Nonetheless, it becomes
an obstacle to the generalization needed for theorem proving with
the help of Prototype Verification System, the reasoning being
done independently of the size of the plan. One of the main
difficulties was therefore to find a model of representation of the
plan, not based on the numbering of its elements, and making it
possible to uniquely locate its elements.

Building and syntax-checking operations necessitate
identification of each plan element’s container. Indeed, the
behavior of operations such as insertion is container-dependent.
Mechanisms such as that provided by SWI-Prolog through the
notation "par: number: List" make it easy to isolate blocks and
locate the containers. PVS offers no similar mechanism. Therefore,
the design of a solution for containers’ identification is needed for
PVS.

6.2. Models proposal for the proof of properties with PVS

Proving PILOT editor’s properties with PVS, necessitates
defining various models notably for PILOT plan, selection’s
container and operation “selection” that specifies where to perform
the insertion in the plan. The models proposed for these different
entities are presented hereafter.

a) Plan model
The plan is represented as a list of elements belonging to the

set {bs, es, e, c, exp, par, pre, condi, iter} (see example on Figure
12). These elements refer to PILOT’ syntax terminals. bs denotes
sequence beginning, es sequence end, e (respectively c)
elementary (respectively continuous) action, exp expression of
conditional. pre, par, condi and iter respectively denote
preemption, parallelism, conditional and iteration primitives.

Figure 12: Examples of plans modeled in PVS

b) Modeling properties of syntactically correct plans
In the proposed approach, each rule of the grammar of the

language is represented using a two parameters function whose
first parameter is the part of the plan submitted for parsing and the
second is the remainder expected after retrieving the pattern
matching the rule. The output of the function is true when the real
and expected remainders are identical. Otherwise, it is false. In
Prolog’s case, this approach enables to automatically generate the
program that recognizes the language, as shown in Table 1.

Using the same approach under PVS, the program recognizing
the language PILOT has the shape shown in Figure 13.

It turns out that this solution cannot be used as such under PVS.
Indeed, in PVS’s description language, a function call can only be
done after the definition of the function. So, in figure 13, the call
to seq_base in the definition of validplan isn’t concretely allowed.
An approach to solve this problem could be just to specify
(declare) the function before the call without defining it
completely, but it is disallowed in Prototype Verification System.

A first method adopted to overpower these drawbacks has been
to elaborate PILOT syntax rules’ dependencies graph, then using
it to define the functions in the order of dependency, beginning by
the functions not involving cross recursive calls, and then using the
passing of functions as parameters to define functions involved in
calls with cross recursion. The principle is shown hereafter through
a definition of even and odd parities:

Table 1: Description of PILOT’s syntax with Prolog

PILOT Syntax rules Description in Prolog
S : SEQ_BASE validplan (A,B) :- seq_base (A,B).
SEQ_BASE : bs L_PRIMI_BASE es seq_base ([bs|A],B) :- l_primi_base (A, [es,B]).
L_PRIMI_BASE : ε | l_primi_base (A,A).

 PRIMI_BASE L_PRIMI_BASE l_primi_base (A,B) :- primi_base (A,C), l_primi_base (C,B).
PRIMI_BASE : PRIMI_PARALLEL | primi_base (A,B) :- primi_parallel (A,B).
 PRIMI_PREEMPTION | primi_base (A,B) :- primi_preemption (A,B).
 PRIMI_CONDITIONAL | primi_base (A,B) :- primi_conditional (A,B).
 PRIMI_ITERATION | primi_base (A,B) :- primi_iteration (A,B).
 PRIMI_ACT_ELEM primi_base (A,B) :- primi_act_elem (A,B).
PRIMI_PARALLEL : par ‘(‘ LIST_SEQ ‘)’ primi_parallel ([par,‘(‘|A],B) :- list_seq (A, [‘)’| B]).
LIST_SEQ : LIST_SEQ_A SEQ_BASE LIST_SEQ_A list_seq (A,B) :- list_seq_a (A,C), seq_base(C,D), list_seq_a (D, B).

LIST_SEQ_A : ε |
 SEQ LIST_SEQ_A

list_seq_a (A,A).
list_seq_a (A,B) :- seq (A, C), list_seq_a (C,B).

SEQ : SEQ_BASE |
 SEQ_SPECIFIC

seq (A,B) :- seq_base (A,B).
seq (A,B) :- seq_specific (A,B).

SEQ_SPECIFIC : bs PRIMI_ACT_CONT es seq_specific ([bs|A],B) :- primi_act_cont (A,[es|B]).
PRIMI_ACT_CONT : c primi_act_cont ([c|A],A).
PRIMI_PREEMPTION : pre ‘(‘ LIST_SEQ ‘)’ primi_preemption ([pre,‘(‘|A],B) :- list_seq (A, [‘)’| B]).
PRIMI_CONDITIONAL : condi ‘(‘ LIST_CONDITIONAL ‘)’ primi_conditional ([cond,‘(‘|A],B) :- list_conditional (A,[‘)’,B]).
LIST_CONDITIONAL : CONDITIONAL LIST_CONDITIONAL |

CONDITIONAL
list_conditional (A,B) :- conditional (A,C), list_conditional (C,B).
list_conditional (A,B) :- conditional (A,B).

CONDITIONAL : exp SEQ_BASE conditional ([exp|A],B) :- seq_base (A,B).
PRIMI_ITERATION : iter ‘(‘ SPEC_ITER ‘)’ primi_iteration ([iter,‘(‘|A],B) :- spec_iter (A, [‘)’|B]).
SPEC_ITER : CONDITIONAL |

 nb SEQ_BASE
spec_iter (A,B) :- conditional (A,B).
spec_iter ([nb|A],B) :- seq_base (A, B).

PRIMI_ACT_ELEM : e primi_act_elem ([e|A],A).

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1055

Figure 13: Specification of PILOT syntax in PVS with same method as Prolog

Even (n: N): Boolean = n=0 or (n ≠0 and odd (n-1))

Odd (n: N): Boolean = n=1 or (n ≠1 and even (n-1))

This definition of even and odd functions can be transformed
in PVS as shown in figure 14.

Figure 14: Representation of even and odd functions for PVS with resolution of
recursive crossed calls

Nevertheless, the syntax of PILOT contains several complex
crossed calls involving more than 2 crossed calls. For example,
“seq_base” refers to “l_primi_base” that refers to “primi_base”
which refers in turn to “primi_parallel” that also refers to
“seq_base”.

Under PVS, defining a function that is recursive also
necessitates adding a function called measure which decreases in
the course of recursive calls and having a down side limit, so as to
ensure recursive calls ending.

Figure 15 illustrates the representation proposed in order to
solve the problem related to recursive cross calls for the example
mentioned above.

A representation of PILOT’s syntax under PVS has been
generated with the help of this approach. For its validation, the
obligations of proofs produced by Prototype Verification System
were proven and a few plans’ definition theorems, among which
those in Figure 16, have been defined and proved with the help of
PVS.

a) Modeling of plan element selection
The intention is to design a model representing the point of

insertion in the PILOT plan. The following two components can

be used for characterizing the point of insertion: the clicked
element and its container. The proposed model of representation
of the selected element is the couple (Lbe, Laf) where Lbe
corresponds to the head of the plan list ending just before the
selected element, and Laf is the remaining of the plan starting from
the selected element. This solution makes it possible to take
advantage of the properties of concatenation of lists in the design
of the models of operations that apply to the selected element. It
also provides a good consistency with the syntactic rules modeling
where two parts of the list representing the plan have to be
distinguished, namely the part recognized by the rule and the
remainder.

Figure 15: Excerpt of PILOT’s syntax description in PVS with cross recursive
calls solving

In the proposed modeling, the selected element’s container is
frequently split in two parts, one belonging to Lbe and the other to
Laf. Plan element selection model is shown in Figure 17. In this
model, Lcon is the tail of the plan that starts from the selected
element’s container.

An extract of the PVS model of the selection operation is given
in Figure 18. It shows the specification of the selection of an
outermost plan’s element (i.e. an element of the main sequence of
the plan), as well as the case of a selection within a parallel box. In
the first case, there is no container, whereas in the second case, the
parallel box is the container.

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1056

Figure 16: Samples of PVS demonstrated theorems

Figure 17: Selection model of a plan element

In this selection operation, “fusion” is an operation that
performs the fusion of two lists and “seq” is such that its first
parameter is a list L starting by a sequence S followed by a list LS2
of primitives.

7. Conclusion

As shown in the state of the art part of this paper, it is necessary
to develop the use of theorem provers for robotic systems, given
their complexity that makes their verification with model checkers
prone to the state-space explosion problem. This work is a step
forward in this direction, through a case study showing the limits
of model-checking for the proof of properties of a robotic system,
namely the syntax-oriented editor of a robotic missions
programming language (PILOT), and investigating the use of the
PVS theorem proving system to overcome the problem
encountered with the model-checking approach.

Another goal of the work was to check out the appropriateness
of Prototype Verification System for accomplishing complicated
demonstrations that involve the design of models for different
kinds of entities frequently encountered in robotics and more
generally in control-command systems (language syntax,
operations ...).

Figure 18: Extract of selection operation’s PVS model

In order to reach these goals, PVS functions have been used to
represent PILOT’s syntax. The proposed model has been validated
notably by verifying the obligations of proofs produced by
Prototype Verification System and proving some theorems defined
on PILOT plans. The modeling of recursive cross-calls has been
the major issue faced during PILOT’s syntax specification in PVS.

http://www.astesj.com/

L. Nana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 1049-1057 (2021)

www.astesj.com 1057

As matter of fact, contrary to Prolog, the language of specification
provided by PVS disallows to use a function before its full
definition. Consequently, a PVS model without cross recursivity
was proposed. The specification in PVS of the selection operation
of the syntax-oriented editor of PILOT has also been presented in
this paper.

The results obtained at this step of the work (the representation
model of the syntax rules of the language PILOT under PVS and
its validation, the modeling of operations of the syntax-oriented
editor of PILOT), enables to conclude in a good capacity of PVS
for the modeling of aforementioned entities of control-command
systems and for the achievement of further formal proofs.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgment

This work was supported by Lab-STICC (UMR CNRS 6285) and
University of Brest.

References

[1] L. Nana, F. Monin, S. Gire, “Proof of properties of a syntax analyzer of robotic
mission plans” in Proceedings of 4th International Conference and
Workshops on Recent Advances and Innovations in Engineering –ICRAIE
2019, IEEE, Kedah, Malaysia, 2019.

[2] M. Barbier, J. F. Gabard, D. Vizcaino, O Bonnet-Torrès, “ProCoSA: a
software package for autonomous systems supervision” in Proceedings of 1st
National Workshop on Control Architectures of Robots: software approaches
and issues, Montpellier, France, 2006.

[3] C. Barrouil, J. Lemaire, “Advanced Real-Time Mission Management for an
AUV” in Proceedings of SCI NATO RESTRICTED Symposium on
Advanced Mission Management and System Integration Technologies for
improved Tactical Operations, Florence, Italy, 1999.

[4] L. Laouamer, A. Benhocine, L. Nana, A Pascu, “Motion JPEG Video
Authentication based on Quantization Matrix Watermarking: Application in
Robotics” Int. Journal Computer Application, 47(24), 1-5, 2012.

[5] L. Nana, “Investigating safety mechanisms for robotics applications” IPSI
BGD Transaction Internet Res., 3(1), 45-50, 2006.

[6] L. Nana, L. Marcé, J. Opderbecke, M. Perrier, V. Rigaud, “Investigation of
safety mechanisms for oceanographic AUV missions programming” in
Proceedings of the IEEE OCEANS’05 Europe Conference, Brest, France,
2005.

[7] L. Nana, F. Singhoff, J. Legrand, J. Vareille, P. Le Parc, F. Monin, D. Massé,
L. Marcé, J. Opderbecke, M. Perrier, V. Rigaud, “Embedded intelligent
supervision and piloting for oceanic AUV” in Proceedings of the IEEE
OCEANS’05 Europe Conference, Brest, France, 2005.

[8] L. Nana, J. Legrand, F. Singhoff, L. Marcé, “Modelling and Testing of PILOT
Plans Interpretation Algorithms” in Proceedings of Multi-conference on
Computational Engineering in Systems Applications, CESA'03, IEEE, Lille,
France, 2003.

[9] L. Nana Tchamnda, V-A. Nicolas, L. Marcé, “Towards a formal approach for
the regeneration of PILOT control system” in Proceedings of 6th World
Multiconference on Systemics, Cybernetics and Informatics, SCI’2002, IEEE
Venezuela, Orlando, Florida, USA, 2002.

[10] F. Py, F. Ingrand, “Dependable Execution Control for Autonomous Robot” in
Proceedings of IROS 2004 (IEEE/RSJ International Conference on Intelligent
Robots and Systems), Sendai, Japan, 2004.

[11] E. Rutten, “A framework for using discrete control synthesis in safe robotic
programming”, Research report, INRIA, 2000.

[12] N. Turro N, “MaestRo: Une approche formelle pour la programmation
d'applications robotiques”, PhD Thesis, Université de Nice, Sophia Antipolis,
1999.

[13] J. F. Groote, F. Monin, J. C. Van de Pol, “Checking verifications of protocols
and distributed systems by computer” in Proceedings of Concur'98, Sophia
Antipolis, France, 1998.

[14] J.F. Groote, F. Monin, J. Springintveld, “A computer checked algebraic
verification of a distributed summation algorithm”. Form. Asp. Comput.
17(1), 2005, 19–37. DOI:https://doi.org/10.1007/s00165-004-0052-7.

[15] D. Bresolin, L. Di Guglielmo, L. Geretti, R. Muradore, P. Fiorini, T. Villa,
“Open problems in verification and refinement of autonomous robotic
systems” in Proceedings of the 15th Euromicro Conference on Digital System
Design, pp. 469-476, Cesme, Izmir, Turkey, 2012.

[16] E. Zereik, M. Bibuli, N. Miskovic, P. Ridao, A. Pascoal, “Challenges and
future trends in marine robotics” Annu. Rev. Control, 46, 2018, 350-368,
ISSN 1367-5788. https://doi.org/10.1016/j.arcontrol.2018.10.002.

[17] M. Ludvigsen, A. J. Sørensen, “Towards integrated autonomous underwater
operations for ocean mapping and monitoring”. Annu. Rev. Control, 42, 145-
157, 2016.

[18] A. J. Barry, A. Majumdar, R. Tedrake, “Safety verification of reactive
controllers for UAV flight in cluttered environments using barrier certificates”
in Proceedings of 2012 IEEE International Conference on Robotics and
Automation, Saint Paul, MN, USA, 484-490, 2012. doi:
10.1109/ICRA.2012.6225351

[19] C. Armbrust, L. Kiekbusch, T. Ropertz, K. Berns, “Tool-assisted verification
of behavior networks” In proceedings of 2013 IEEE International Conference
on Robotics and Automation, Karlsruhe, Germany, 1813-1820, 2013. doi:
10.1109/ICRA.2013.6630816

[20] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, M. Fisher, “Formal
Specification and Verification of Autonomous Robotic Systems: A Survey”
ACM Comput. Surv. 52(5), 2019, DOI: https://doi.org/10.1145/3342355

[21] S. Dehnavi, A. Sedaghatbaf, B. Salmani, M. Sirjani, M. Kargahi, E.
Khamespanah. “Towards an Actor-based Approach to Design Verified ROS-
based Robotic Programs using Rebeca” Procedia Computer Science, 155, 59-
68, 2019, https://doi.org/10.1016/j.procs.2019.08.012.

[22] A. Rashid, O. Hasan, I. T. Bhatti, Formal Verification of Robotic Cell
Injection Systems, Editor(s): Ahmad Taher Azar, Control Systems Design of
Bio-Robotics and Bio-mechatronics with advanced applications, Academic
Press, 2020.

[23] S. Owre N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, “PVS System
Guide”, Technical Report, SRI International, Menlo Park, CA, 1999.

[24] S. Owre N. Shankar, J. M. Rushby, D. W. J. Stringer-Calvert, “PVS Language
Reference”, Technical Report, SRI International, Menlo Park, CA, 2001.

[25] N. Shankar S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert, “PVS
Prover Guide”, Technical Report, SRI International, Menlo Park, CA, 1999.

[26] J.-L. Fleureau, “Vers une méthodologie de programmation d'un système de
télérobotique : comparaison des approches PILOT et Grafcet”, PhD Thesis,
Université de Rennes 1, 1998.

[27] E. Le Rest, “PILOT : un langage pour la télérobotique”, PhD Thesis,
Université de Rennes 1, 1996.

[28] K. Jensen, Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, Springer-Verlag Berlin Heidelberg, 1997

[29] F. Giannesini, H. Kanoui, R. Pasero, M. Van Caneghem, Prolog,
InterEditions, 1985.

http://www.astesj.com/
https://doi.org/10.1145/3342355

	2. Related works
	3. Preliminaries on formal proof methods and Prototype Verification System
	3.1. Formal proof methods
	3.2. Prototype Verification System

	4. Language PILOT and method of incremental construction and checking of missions’ plans
	4.1. The language PILOT
	4.2. Method of construction and checking of PILOT missions’ plans

	5. Verification of the method of construction and checking of PILOT missions’ plans using Prolog and an associated tool
	6. Plans and operations modeling for properties verification using Prototype Verification System
	6.1. Prolog approach model analysis
	6.2. Models proposal for the proof of properties with PVS
	a) Plan model
	b) Modeling properties of syntactically correct plans
	a) Modeling of plan element selection

	7. Conclusion
	Conflict of Interest
	Acknowledgment
	References

