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Real-time embedded systems are widely adopted in applications such as automotive, avionics,
and medical care. As some of these systems have to provide a guaranteed worst-case execution
time to satisfy the time constraints, understanding the timing behaviour of such systems is of
the utmost importance regarding the reliability and the safety of these systems. In the past
years, various timing analysis techniques have been developed. Probabilistic timing analysis
has recently emerged as a viable alternative to state-of-the-art deterministic timing analysis
techniques. Since a certain degree of deadline miss is still tolerable for some systems, instead
of deriving an estimated worst-case execution time that is presented as a deterministic value,
probabilistic timing analysis considers execution times as random variables and associates
each possible execution time with a probability of occurrence. However, in order to apply
probabilistic timing analysis, the measured execution times must be independent and identically
distributed. In the particular case of hybrid timing analysis, since the input and the initial
processor state of one software component are influenced by the preceding components, it is
difficult to meet such prerequisite. In this article, we propose a hybrid probabilistic timing
analysis method that is able to (i) reduce the dependence in the measured execution times
to facilitate the application of extreme value theory and (ii) reduce the dependence between
software components to make it possible to use convolution to calculate the probabilistic WCET
of the overall system.

1 Introduction

Due to the demand for better performance and the increased number
of functionalities in embedded systems, acceleration features, such
as multi-cores and caches, are added to the modern processors [1].
However, because of these acceleration features, timing analysis has
become more complicated and time-consuming.

Over the past years, various researches have been carried out to
develop timing analysis techniques that can derive a sound and safe
result within a reasonable cost. With “sound”, it is meant that a tim-
ing analysis result is accurate and not overly optimistic concerning
its timing behaviour. The word “cost” describes the time and effort
spent on deriving a timing analysis result. In the plethora of tech-
niques, probabilistic timing analysis (PTA) has recently emerged as
a viable alternative to state-of-the-art deterministic timing analysis
techniques.

In real-time systems, failing to meet the deadline does not nec-
essarily imply a failure of the system. For instance, in video confer-

ences, an occasional deadline miss of the arrival of one frame can
degrade the service but is not a failure of the system. Therefore, the
timing requirement does not always have to be strictly guaranteed,
and a certain degree of deadline misses is still tolerable. Therefore,
Instead of deriving an estimated worst-case execution time (WCET)
that is presented as a deterministic value, PTA considers execution
times as random variables and associates each possible execution
time with a probability of occurrence.

Figure 1 is the examples of the probabilistic WCET (pWCET)
and the deterministic WCET, as well as the terminologies we use
through this paper. The authors suggested that since the upper tim-
ing bound derived using the probabilistic worst-case execution time
(pWCET) can be adjusted according to the safety requirement of
the system, probabilistic timing analysis (PTA) is supposed to be
more flexible and potentially less pessimistic compared with the
classical deterministic approaches [2]. Therefore, we developed
our approach based on the work in [3, 4] with measurement-based
probabilistic timing analysis (MBPTA).
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Figure 1: Examples of pWCET analysis and deterministic WCET timing analysis
(based on [5]).

One prerequisite of applying MBPTA is that the measured exe-
cution times must be independent and identically distributed (i.i.d.).
However, in hybrid timing analysis, the input and the initial pro-
cessor state of one code block/component are influenced by the
preceding code/component. Therefore, it is very challenging to
collect execution times following the independent and identical
distribution.

In this article, we present a hybrid probabilistic timing analysis
(HPTA) approach that can facilitate in conducting MBPTA on soft-
ware blocks/components and safely construct the overall execution
of the complete program by reducing the dependence in the mea-
sured execution times and the dependence between the components.
The goal of this approach is to provide more flexibility in the timing
analysis results, which can be used by experienced engineers as ref-
erences when designing non safety-critical systems that can tolerate
a certain degree of deadline misses.

The rest of this paper is organised as follows. Section 2 gives the
background of PTA. Section 3 explains the details of the extreme
value theory (EVT) and how to apply it in MBPTA and HPTA. The
proposed HPTA method is presented in Section 4. Section 5 demon-
strates the experiment setup and the case studies, followed by the
results and discussion in Section 6.

2 Background

The acceleration features of the hardware, the different input values,
and the paths taken through the software introduce a certain degree
of variability to the execution time of a system [6]. Because of such
variability, PTA considers each observed execution time as an event
with a probability of occurrence. Thus the worst-case execution
time (WCET) can be viewed as an event that is more extreme than
any previously observed event [7].

PTA derives a cumulative distribution function (CDF) using the
observed execution times in the measurement. Since PTA aims to
provide the probability that one execution time is going to exceed a
given time bound, the result is usually presented as a complementary
cumulative distribution function (CCDF) [8, 9, 10].

Figure 2 is an example of the results in measurement-based
probabilistic timing analysis (MBPTA). The EVT takes the mea-
sured execution times to generate the CCDF. This CCDF-function
then represents the probability that an event will have an execution
time larger than a given pWCET value. This way, every pWCET

is associated with such an exceedance probability. For example, in
the given figure, the pWCET shows that for every execution of the
program, the probability of the execution time exceeding 9.6ms is
1E-16.
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Figure 2: Example of the analysis result of one MBPTA shown as CCDF [11].

For instance, to calculate the pWCET of a task with the probabil-
ity that the execution time will be 1 time unit is 0.15, the probability
that the execution time will be 2 is 0.4, the probability that the
execution time will be 4 is 0.4 and the probability that the execution
time will be 8 is 0.05. The discrete probability distribution function
of execution times of this task can be expressed in the form of a
probability mass function (PMF), which is also known as execution
time profile (ETP) in the context of PTA:

X =

(
1 2 4 8

0.15 0.4 0.4 0.05

)
(1)

The CDF, which indicates the probability that one execution
time is less than x, is:

CDFX(x) = FX(x) = P(X ≤ x) =



0 i f x ∈ [0, 1)
0.15 i f x ∈ [1, 2)
0.55 i f x ∈ [2, 4)
0.95 i f x ∈ [4, 8)
1 otherwise

(2)

Eventually, the CCDF is generated to represent the analysis
results because pWCET analysis rather focuses on the probability
that an execution time exceeds a particular level:

CCDFX(x) = F̄X(x) = P(X > x)

= 1 − FX(x) =



1 i f x ∈ [0, 1)
0.85 i f x ∈ [1, 2)
0.45 i f x ∈ [2, 4)
0.05 i f x ∈ [4, 8)
0 otherwise

(3)

3 Extreme Value Theory
EVT is a branch of statistics that is used to assess the probability
of the occurrence of rare events based on previous observations
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[8]. It has been widely applied in many disciplines such as finance,
earth sciences, traffic prediction, and geological engineering. In
MBPTA, EVT is used to analyse the tail behaviour of the execution
time distribution based on the execution times observed during the
measurement.

3.1 Independent and identical distribution

The prerequisite of EVT requires the observations to be indepen-
dent and identically. Independent means that the occurrence of one
event does not impact the occurrence of the other event. Identical
indicates that each measured execution time is random and has the
same probability distribution as the others.

In the context of timing analysis, i.i.d. implies that the measured
execution time is not affected by the past events of the same task.
For example, task A is executed twice consecutively on a processor
with a first-in-first-out (FIFO) cache. The measured execution time
is x for the first time and y for the second time. Because the cache
is loaded with data and instructions needed after the first time the
task is executed, y is expected to be much smaller compared with
x. In this case, the execution time x and y are said to be dependent,
which does not meet the i.i.d. requirement.

Previous research has proposed the adoption of randomised ar-
chitectures for measurement-based probabilistic timing analysis[12,
13]. If the processor of the target system has a deterministic ar-
chitecture, randomisation needs to be applied to randomise the
measurement samples to satisfy the i.i.d. precondition [9, 14, 15].

If two events are independent, the joint probability is equal to
the product of their individual probabilities:

P(A ∩ B) = P(A)P(B) (4)

For example, given a a task A with probabilistic execution time:(
5 10

0.1 0.9

)
(5)

and task B with probabilistic execution time:(
1 2

0.4 0.6

)
(6)

the probabilistic execution time of the both tasks is:

(
5 10

0.1 0.9

)
×

(
1 2

0.4 0.6

)
=

(
6 7 11 12

0.04 0.06 0.36 0.54

)
(7)

The CCDF is therefore:

F̄A∩B(x) =



1 i f x ∈ [0, 6)
0.96 i f x ∈ [6, 7)
0.90 i f x ∈ [7, 11)
0.54 i f x ∈ [11, 12)
0 otherwise

(8)

3.2 Applying extreme value theory in measurement-
based probabilistic timing analysis

Algorithm 1 demonstrates how to apply EVT in MBPTA, which
includes three main steps: (1) extreme value selection; (2) fitting
the distribution; (3) compare and convergence.

Algorithm 1: How to apply EVT in MBPTA
Result: pWCET
select extreme values;
fit the first distribution;
estimate the first CDF;
while first round or not converged do

collect more extreme values;
fit a new distribution;
estimate the new CDF;
compare;

end

3.2.1 Extreme value selection

EVT makes assumptions on the tail of the data distribution based on
the extreme observations obtained from the measured data. There-
fore, the measured execution times of the program must be converted
into a set of extremes before applying the EVT. Two approaches
can be used to collect the observed extreme execution times: block
maxima (BM) and peak over threshold (POT).

The BM approach divides the collected execution times into
subgroups/blocks. The longest execution time in every subgroup
is one sample of extremes. The POT approach defines a threshold.
All the execution times longer than the threshold are used as the
extremes to estimate the pWCET.

The selection of a suitable size of the subgroups in the BM or
a suitable threshold value in the POT plays a crucial role. Studies
have been carried out to determine the impact of these decisions
on the estimated results [2, 16, 17]. Neither an optimal size of the
subgroups nor the best threshold value exists. Generally speaking, a
smaller subgroup size or a lower threshold value can decrease the
pessimism in the results. However the risk of obtaining an overly
optimistic pWCET that is not safe to use increases.

3.2.2 Fitting the distribution

In this step, a model distribution that best fits the extremes is esti-
mated. If BM was used in the previous step, the distribution must be
Gumbel, Fréchet, or Weibull distribution. These three distributions
are combined into a family of continuous probability distributions
known as the generalised extreme value (GEV) distribution.

The GEV is characterised by three parameters: the location pa-
rameter µ ∈ R, the scale parameter σ > 0, and the shape parameter
ξ ∈ R. The value of the shape parameter ξ decides the tail behaviour
of the distribution and to which sub-family the distribution belongs:
Gumbel (ξ = 0), Fréchet (ξ > 0) or Weibull (ξ < 0). The CDFs of
these three distributions are given below.

• Gumbel or type I extreme value distribution (ξ = 0):

F(µ,σ,0)(x) = e−e−(x−µ)/σ
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• Fréchet or type II extreme value distribution (ξ > 0):

F(µ,σ,ξ)(x) =

e−y−α y > 0
0 y ≤ 0

, (ξ = α−1 and y = 1 + ξ(x− µ)/σ)

• Reversed Weibull or type III extreme value distribution
(ξ < 0):

F(µ,σ,ξ)(x) =

e−(−y)α y < 0
1 y ≥ 0

, (ξ = −α−1 and y = −(1 + ξ(x −

µ)/σ)).

If POT was used in the previous step, the distribution needs
to fit the generalised Pareto distribution (GPD), which is a family
of continuous probability distributions. The GPD is specified by
the same three parameters as GEV: location parameter µ , scale
parameter σ , and shape parameter ξ. The CDF of the GPD is:

F(µ,σ,ξ)(x) =

1 −
(
1 +

ξ(x−µ)
σ

)−1/ξ
for ξ , 0

1 − exp
(
−

x−µ
σ

)
for ξ = 0

, (x > µ when

ξ > 0, and µ 6 x 6 µ − σ/ξ when ξ < 0).

3.2.3 Compare and convergence

Once the first data set of extremities is collected, the EVT uses the
data to estimate the first CDF of the pWCET. In every subsequent
round of the estimation, more extremities are collected and added to
the data set to derive a new CDF. The CDF in the current round is
compared with the CDF of the previous round using metrics such as
the continuous ranked probability score (CRPS) [18]. In our case,
we use the following convergence criteria to compare the respective
accuracy of the two CDFs:

S core =

+∞∑
x=0

[Fcurrent(x) − Fprevious(x)]2 (9)

Where F is the cumulative distribution. The score indicates the
level of difference between the two cumulative distributions. The
lower the score is, the closer the CDF is going to reach the point of
convergence. Once the score reaches the desired value (such as 0.1),
the pWCET can be derived using the converged CDF.

4 The proposed hybrid probabilistic tim-
ing analysis

Figure 3 is the illustration of the proposed HPTA approach. In
our research, a system can be divided at different decomposition
levels according to the requirement of the user. Because of the block
isolation technique described in [3, 4], the software components can
be executed independently from the rest of the program, and the pro-
cessor state can be adjusted before every execution. This allows us
to overcome two major challenges in applying the HPTA approach:
(1) the i.i.d. data requirement of the EVT; (2) the calculation of the
upper bound of the overall system.

In the section, we will describe the concept of decomposition
level, and explain the challenges and how we solved these challenges
using the proposed HPTA.

Upper Bound Calculation Probabilistic Timing Analysis

Decompose

System

ComponentComponentComponent

Measurement

Component

Processor 
State 

Adjustment

Input Data 
Update

Execution
Times

EVT

i.i.d Test

Convergence  
Test
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Figure 3: The proposed HPTA approach.

System:

Inputs

(a) A system with three decomposition levels.

DL0:

DL1:

DL2:

(b) The components of the system at DL0, DL1 and DL2. DL: decomposition level.

Figure 4: A system and the decomposition of the system at three decomposition
levels.

4.1 Decomposition level

Figure 4a shows a system with components at three decomposition
levels. The decomposition of the system is demonstrated in Figure
4b. Every grey rectangle represents one component, and the solid
black arrows represent the data flow of the components. By our
definition, DL0 is the lowest degree of decomposition because the
complete system is measured at this level. The complete system
is considered as one abstract component from which no details of
the subsystems can be retrieved. At DL1, the mask of the system at
DL0 is opened. Measurement can be conducted on the subsystems
that are revealed at this level. As the decomposition level increases,
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the system is decomposed in further detail, more components are
revealed. The decomposition level can increase until the last sub-
system is opened. The granularity of the timing analysis increases
with the decomposition level.

4.2 Challenges

4.2.1 Independent and identical data requirement

Although EVT requires the samples to be identically distributed, the
adoption of GEV opened up the applicability of MBPTA to more
cases because it can tolerate up to a certain degree of dependence
in the measured execution times[10]. The disadvantage is that such
dependence can corrupt the reliability of the derived pWCET [19].
In some domains, techniques such as re-sampling and de-clustering
can be applied to create independence between measurements [20].
Nevertheless, forcing independence into dependent execution time
measurements can result in overly optimistic pWCET that is not
safe anymore [2].

For instance, the calculation in the example given in Section 3.1
is only valid when task A and B are independent, otherwise the re-
sult might be overly optimistic. Suppose dependence exists between
the two events such that the execution time of task B is always 2
when the execution time of task A is 10. The probabilistic execution
time when A and B are both executed would be:(

6 7 12
0.04 0.06 0.9

)
(10)

The probabilistic execution time of the both tasks in this case is:

F̄A∩B(x) =


1 i f x ∈ [0, 6)
0.96 i f x ∈ [6, 7)
0.90 i f x ∈ [7, 12)
0 otherwise

(11)

Given a deadline of 11, the probability of missing the deadline is
0.54 when A and B are independent (8), and 0.90 when A and B are
dependent (11). In this case, overlooking the dependence between
the tasks resulted in overly optimistic probabilities of a deadline
miss.

4.2.2 Upper bound calculation

In deterministic hybrid timing analysis, the results are presented in
absolute values. Therefore, the WCET of the complete system can
be calculated simply by adding up the WCETs of every individual
component. In statistics, convolution may be usually used to calcu-
late the joint probability of two random variables. Unfortunately,
this is not applicable in this context. The reason is that the probabil-
ity distribution of the sum of two or more random variables is equal
to the convolution of their distributions only when the variables are
independent.

Since hybrid timing analysis is conducted on the components
that construct the complete system, the execution time of one com-
ponent often impacts the execution time of another component. This
dependence makes the calculation of the overall pWCET much more
complicated.

4.3 Solutions

Based on the information provided in the previous text, one can
conclude that in order to overcome the challenges, we need to find
a solution to the dependence in the measured execution times and
the dependence between individual components.

4.3.1 Dependence in the observed execution times

In MBPTA and HPTA, dependence exists in the data samples if two
or more of the observed execution times interfere with each other.
Generally speaking, such dependence can come from:

1. Software dependence: The dependence between inputs and
the paths taken by the program. For example, if input/path A
is always followed by input/path B, A and B are dependent.

2. Hardware dependence: The hardware state left by the previ-
ous execution, which becomes the initial hardware state of
the current execution.

To reduce the software dependence, we choose the per-path ap-
proach to collect the execution times for EVT. The other approach
is know as the per-program approach [7]:

1. Per-program: After the measurement, the EVT uses all the
measured execution times as one sample group. EVT is ap-
plied to the sample group to estimate the pWCET for the
complete program.

2. Per-path: After the measurement, all the measured execution
times are divided into sample groups. One group includes all
the execution times measured from one program path. EVT is
applied to each sample group to estimate the pWCET of the
program path the sample group represents. The pWCET of
the complete program is then calculated by taking the upper
bound of the pWCETs of all the paths.

For instance, a system has two paths with the execution times
at 10/15 (10 or 15 time units) and 60/65. The probabilities of the
paths taken by one randomly chosen single execution are 0.3 and 0.7
respectively. Suppose the different execution times observed in the
same path are due to a hardware component, which may generate 0
extra time units with a probability of 0.4 or 5 extra time units with a
probability of 0.6. The probability execution time profile (ETP) of
the system is: (

10 15 60 65
0.12 0.18 0.28 0.42

)
(12)

The pWCET derived using the per-program approach is:

pWCETper−program =



1 i f x ∈ [0, 10)
0.88 i f x ∈ [10, 15)
0.7 i f x ∈ [15, 60)
0.42 i f x ∈ [60, 65)
0 otherwise

=

[
0 10 15 60 65
1 0.88 0.7 0.42 0

]
(13)
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The pWCET derived using the per-path program is:

pWCETper−path =

[
0 60 65
1 0.6 0

]
(14)

As can be seen, compared with the per-path approach, the per-
program approach was able to produce a tighter result. The pWCET
derived using the per-program approach is valid to upper bound
randomly chosen single executions of the target program. However,
it is not applicable to be used in convolution when calculating the
overall pWCET of multiple executions of the target program. The
reason is that the probability distribution of the sum of two or more
random variables is equal to the convolution of their distributions
only when the variables are independent. For example, if path 60/65
is forced to be taken when path 10/15 is observed in the previous ex-
ecution, the pWCET of two consecutive executions of the program
is: [

0 70 75 80 120 125 130
1 0.952 0.808 0.7 0.588 0.252 0

]
(15)

The pWCET calculated using the probability derived from
pWCETper−program is:

[
0 70 75 80 120 125 130
1 0.9424 0.8428 0.6412 0.4116 0.1764 0

]
(16)

Under the dependence introduced by the execution condition,
the probability that the two consecutive executions exceed 125 time
units is 0.252. However, the pWCET using the convolution on the
probability derived from pWCETper−program gives a probability of
0.1764, which is too optimistic.

In the per-path approach, the measured execution times are
grouped according to the program paths. Therefore, the influence
of the input data is eliminated within every group. The variations
in the execution time within the same group are purely due to the
hardware. By taking the upper bound of the pWCETs of all the
paths, the pWCET generated by the per-path approach can be used
safely in convolution for estimating any overall pWCET in which
the execution of this task is executed consecutively. In the above
example, the pWCET calculated by applying convolution to the
probability derived from pWCETper−path is:[

0 120 125 130
1 0.84 0.36 0

]
(17)

Therefore, using the per-path approach, the proposed HPTA
method can upper bound the pWCET under the dependence intro-
duced by the execution condition.

To reduce the hardware dependence, we try to push the hard-
ware to the worst-case state at the beginning of every execution
so that every execution can start with nearly the same initial state.
For example, the pipeline is flushed, and “trash code” is executed
to fill the caches with irrelevant data and instructions before every
execution.

4.3.2 Dependence between components

In order to calculate the pWCET of the overall system using con-
volution, the independence between the pWCETs of the software

components must be guaranteed. Such kind of dependence can be
found in:

1. Software dependence: The output of the precedent compo-
nents, which is the input of the current component.

2. Hardware dependence: The hardware state left by the previ-
ous component, which becomes the initial hardware state of
the current component.

The software dependence can be removed together with the de-
pendence in the observed execution times by the per-path approach.
This is because the path-approach automatically selects the input(s)
leading to the longest execution paths that upper bound all the other
inputs. The hardware dependence no longer exists because the com-
ponents execute in isolation from the rest of the program in the
proposed method. Hence there are no precedent components.

5 Case study and experiment setup

5.1 Case Study

For the case study, we adopted a Simulink power window model.
Figure 5 is the power window model [21, 22] at DL0, DL1 and
DL2. A power window is an automatic window in a car that can
be raised and lowered by pressing a button or a switch instead of
a hand-turned crank handle. The complete application of a power
window normally consists of four windows that can be operated
individually. The three passenger-side windows can be operated by
the driver with higher priority. In this paper, we only use the front
passenger-side window and the driver-side window.

PWDe_PSG CtrlEx PW

De1
De2

DL1:

DL2:

D D

pw_PSG

DL0:

pw_ctrl

EP

De_DRV

De1
De2

D D

pw_DRV

pw_ctrl

EP
De8
…CtrlEx

Figure 5: Power window passenger (left) and power window driver (right) at decom-
position level 0, 1 and 2. DL: decomposition level; pw PSG: powerwindow passen-
ger, De PSG: debounce passenger, CtrlEx: control exclusion, PW: powerwindow
main component, De DRV: debounce driver, De: debounce, pw ctrl: powerwindow
control, EP: end of range and pinch detection, D: delay.

The C code of the power window was generated using Embed-
ded Coder R© [23] targeting an ARM Cortex microprocessor with
a discrete fixed-step solver at a fixed-step size of 5 ms. The BM
approach with a block size of 20 was used in the extreme value se-
lection process to collect the extremities for the EVT. The exceeding
probability of 1E-10 was used for the pWCET.

The Kolmogorov-Smirnov (KS) test was used to verify the iden-
tical distribution requirement, and the runs-test was used to verify
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Table 1: The p-values for the independent and identical distribution tests. NoN: number of nop instructions; pw DRV: powerwindow driver; pw PSG: powerwindow
passenger; R: runs test; KS: Kolmogorov-Smirnov test.

NoN pw DRV pw PSG NoN pw DRV pw PSG
R KS R KS R KS R KS

0 0.7495 0.9999 1 0.4973 8 1 0.7710 0.8486 0.1349
1 0.4019 0.2753 1 0.4973 9 0.3894 0.9999 0.6822 0.2753
2 0.9764 0.9999 0.4736 0.1349 10 0.2703 0.9655 0.3894 0.7710
3 0.3441 0.9655 0.8769 0.4973 11 0.9080 0.9655 0.3337 0.2753
4 0.7939 0.9655 1 0.1349 12 0.1065 0.7710 0.8052 0.7710
5 0.8046 0.7710 0.2003 0.2753 13 1 0.9999 0.0882 0.7710
6 0.5634 0.9655 0.1789 0.4973 14 0.5643 0.9999 0.3634 0.9999
7 0.6744 0.9655 0.2176 0.2753 15 1 0.2753 0.9687 0.4973

Table 2: The measured deterministic WCETs and the estimated probabilistic WCETs The exceeding probability of 1E-10 was used for the pWCET. of the complete
powerwindow driver benchmark and the complete powerwindow passenger benchmark with 16 different alignments. NoN: number of nop instructions; pw DRV:
powerwindow driver; pw PSG: powerwindow passenger; cc: clock cycles; dWCET: measured deterministic WCET; pWCET: estimated probabilistic WCET.

NoN pw DRV (cc) pw PSG (cc) NoN pw DRV (cc) pw PSG (cc)
dWCET pWCET dWCET pWCET dWCET pWCET dWCET pWCET

0 2516 2538 1638 1666 8 2660 2797 1678 1953
1 2656 2712 1660 1688 9 2650 2698 1674 1681
2 2514 2515 1664 1717 10 2586 2608 1650 1681
3 2764 2849 1672 1725 11 2700 2762 1648 1683
4 2712 2768 1640 1699 12 2748 2813 1646 1679
5 2708 2762 1642 1700 13 2646 2746 1646 1684
6 2726 2794 1666 1764 14 2620 2735 1670 1701
7 2714 2797 1670 1689 15 2568 2569 1632 1658

the requirement for independence. p > 0.05 indicates the data
follows the desired distribution.

The case study is designed to test the following assumptions:

1. Can the proposed HPTA method reduce the dependence in
the measured execution times and facilitate the collection of
i.i.d. execution times?

2. Can the proposed HPTA method reduce pessimism at a higher
decomposition level?

5.2 Experiment Setup

The experiment setup is shown in Figure 6. The processor is an
ARM Cortex-M7 processor that contains a four-way set-associative
data cache and a two-way set-associative instruction cache. Both
caches use the random replacement policy. The Xilinx Nexus 3
FPGA is used to measure the execution time of the code on the
ARM-processor. It is driven by the CLK signal sent from the proces-
sor to synchronise the clocks. The measurement process starts by
sending the Start signal from the FPGA to the processor. Two GPIO
pins of the processor are used to set the Tic and Toc flags. Before
the code starts to execute, the Tic pin is toggled to start counting the
number of clock cycles that have passed. After the code is executed,
the Toc pin is set to stop the timer. Eventually, the value in the timer
(Execution Time) is collected through a serial port.

Tic

Start

Toc

Tic

Start

Toc

CLK CLK

PC
Serial Communication

Execution Time

Xilinx Nexus 3 Cortex-M7

Figure 6: Experiment setup.

6 Results and discussion

6.1 Reducing dependence in the measured execution
times

Table 1 shows the results of KS and runs test. As can be seen, all the
p-values are significantly higher than 0.05, which means that the
i.i.d. requirement is fulfilled and the collected data can be applied in
EVT to estimate the pWCET. The NoN indicates the number of the
nop instructions added to emulate different memory alignments [3].
These p-values confirm our assumption that the proposed HPTA can
reduce the dependence in the executions to facilitate the collection
of i.i.d. data required by the EVT.
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Table 3: The estimated pWCET calculated using sum and convolution at different decomposition levels. DL: decomposition level; pw DRV: powerwindow driver; pw PSG:
powerwindow passenger; cc: clock cycles; dWCET: measured deterministic WCET; pWCETS um: estimated probabilistic WCET calculated by adding the pWCETs of the
components up; pWCETConv: estimated probabilistic WCET derived from the convolution of the pWCETs of the components.

pw DRV (cc) pw PSG (cc)
dWCET pWCETS um pWCETConv dWCET pWCETS um pWCETConv

DL0 2764 2849 1678 1953
DL1 2652 3852 3465 1838 2949 2690
DL2 4820 6025 5167 2596 3778 3484

Table 2 shows the WCETs of the complete powerwindow-driver
benchmark and the complete powerwindow-passenger benchmark
with 16 different alignments. The longest measured deterministic
WCET was 2764 reached by NoN = 3 in the driver-side window

and 1678 reached by NoN = 8 in the passenger-side window. The
estimated pWCET in the driver-side window was 2849 reached by
NoN = 3 and 1953 reached by NoN = 8.

Across all the alignments, the estimated pWCET is more pes-
simistic at the selected exceeding probability compared with the
deterministic WCET. However, in some cases, such as NoN = 15 in
pw DRV, the difference between the two WCETs is relatively small.
The reason could be that the execution time contributed by inde-
pendent random elements in the hardware is reduced by imposing
a worst-case execution scenario on the longest path. Since random
events in the hardware rarely happen, the measured execution times
can be very close to the estimated pWCET.

6.2 Reducing pessimism in high decomposition levels

Table 3 shows the estimated pWCETs of the benchmarks calculated
using sum and convolution at three decomposition levels. The high-
est pWCET of the 16 different alignments were used as the pWCET
of every block. As can be seen, the WCETs increase with the de-
composition levels. The highest WCET was reached by pWCETS um

at DL2 with 6025 clock cycles for the driver and 3778 clock cycles
for the passenger. The difference between the deterministic WCET
and pWCETs also became more prominent with the decomposition
level, which means a higher decomposition level is associated with
larger pessimism.

The pWCET calculated using convolution (pWCETConv) is
in general lower compared with the pWCETS um. Nevertheless,
pWCETConv still leaves a reasonable margin with the determinis-
tic WCET. This observation confirms our assumption that simply
adding up pWCETs in HPTA will lead to overly pessimistic results.
Using convolution can help to reduce such pessimism and produce
a reasonably sound result.

7 Conclusion
In this article, we proposed a HPTA method that is able to (i) collect
the i.i.d. data required by EVT by reducing the dependence between
the measured execution times and (ii) reduce the dependence be-
tween blocks to make it possible to use convolution to calculate the
pWCET of the overall system. We are aware that forcing indepen-
dence into dependent execution time measurements can make the
data no longer representative of the dependent system behaviour.
Therefore, several approaches, such as using the per-path approach
to upper bound the pWCETs of all the paths, were taken to ensure
the derived pWCET is not overly optimistic. However, this might
have introduced too much pessimism into the estimated pWCET.

Another novelty of the proposed HPTA method is that it can
be applied at different granularities by adjusting the decomposition
level. Performing the analysis at a higher decomposition level can
help to reduce pessimism. On the other hand, with the increased
decomposition level, the cost to derive the pWCET also increases.

Compared with the deterministic HTA approach proposed in
[3], this HPTA approach is more pessimistic with the exceedance
probability of 1E-10. On the other hand, instead of giving a de-

terministic value, this approach gives an exceedance probability to
each possible execution time. We hope the results of this HPTA
approach can be used as a reference to avoid unnecessary waste
on the hardware cost in the hand of experienced engineers when
designing a non safety-critical system that can tolerate a certain
degree of deadline misses.
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