

www.astesj.com 218

Analysis of Real-time Blockchain Considering Service Level Agreement (SLA)

Minkyung Kim1, Kangseok Kim2,3, Jai-Hoon Kim*,3

1Dasan College, Ajou University, Suwon, 16499, South Korea

2Department of Artificial Intelligence and Data Science, Ajou University, Suwon, 16499, South Korea

3Department of Cyber Security, Ajou University, Suwon, 16499, South Korea

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 15 October, 2020
Accepted: 21 December, 2020
Online: 15 January, 2021

 The Blockchain technologies enable decentralized networking consisting of large number
of nodes. To determine the shared states and failures of all nodes in a fully distributed peer-
to-peer system, the appropriate consensus algorithm needs to be selected for each Internet
of Things system. In this paper, a novel hierarchical voting-based byzantine fault tolerance
(HBFT) consensus algorithm is proposed. The proposed HBFT algorithm utilizes a typical
PBFT algorithm hierarchically to guarantee low latency. The message complexity of HBFT
shows that our proposed algorithm has better scalability. We also mathematically calculate
the optimal number of groups based on the total number of nodes to determine the ratio of
allowable faulty nodes per group. In addition, we analyze the reliability of byzantine fault
tolerance to compare the reliability of group case with the reliability of non-group case.
Finally, we introduce the methods of real-time Blockchain considering the service level
agreement (SLA). The real-time processing performance of transactions is analyzed for the
service level agreement (SLA).

Keywords:
Consensus Algorithm
Byzantine Fault Tolerance
Blockchain
Internet of Things
Decentralized Framework

1. Introduction

A Blockchain is a peer-to-peer distributed ledger , in which the
process of transaction verification and recording is continuously
executed [1, 2]. Participant nodes constantly verify a set of time-
stamped transactions at a given time using a built-in consensus
algorithm. The Blockchain technology improves reliability in
addition to availability by storing and sharing data in a distributed
manner. The use of Blockchain in Internet of Things (IoT) enables
secure, decentralized networking for IoT data privacy and security
[3]. Therefore, an efficient consensus algorithm is crucial to verify
transactions and adjust interactions among IoT devices [4]. IoT
data are validated through the consensus mechanism and then
recorded securely in a distributed ledger.

This paper introduces a novel hierarchical voting-based
byzantine fault tolerance (HBFT) consensus algorithm. The
proposed HBFT algorithm operates the group level’s consensus
rather than the node level’s consensus. It is to overcome limited
scalability and high latency in a typical practical byzantine fault
tolerance (PBFT) algorithm. Thus, the overall exchanging
messages are significantly reduced even if the large number of

nodes are participated in consensus operation. Despite the
exponential growth in the number of nodes in the network, the
scalability of HBFT is ensured compared with PBFT. Also, we
calculate the optimal number of groups depending on the total
number of nodes for grouping because the reliability can be
affected by the number of groups. If faulty nodes are well
distributed into groups, the probability of reaching consensus is
higher even with an increased number of faulty nodes. Therefore,
two cases are calculated to understand the influence on the number
of faults per group.

However, since the participant nodes mutually verify and store
the data, considerable number of computing resources are
required, and concurrently the processing time decreases [5-8].
The same method of participant nodes (all nodes or certain nodes
allowed to participate in Blockchain) has been used to process
transactions on the Blockchain [9]; nevertheless, it is possible to
apply the service level agreement (SLA) on Blockchain by
determining the number of participant nodes according to the user's
requirements. Therefore, we propose methods to control the
number of participant nodes adaptively considering user
requirements and computing environments. The transaction
processing speed and throughput can be improved by using
adaptive control method. Figure 1 is the diagram of real-time

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Jai-Hoon Kim, Department of Cyber Security, Ajou
University, Suwon, 16499, Korea, jaikim@ajou.ac.kr

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060124

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060124

M. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com 219

Blockchain considering service level agreement(SLA). In this
diagram, the reliability of a node with respect to time is
periodically collected by the Blockchain monitor. It depends on the
failure rate of a node determined intentional or unintentional faults.
The Blockchain control also reads user requirements and
Blockchain status. According to the user’s request, a transaction is
processed for generating a smart contract of Blockchain. The user
can request reliability, maximum time and the cost for block
generation. The reliability of a participant node can affect the
reliability of the transaction processed.

Figure 1: Schematic of Real-time Blockchain considering Service Level
Agreement(SLA)

The remainder of this paper is organized as follows. Section 2
overviews relevant background about various consensus
algorithms. The details of HBFT algorithm are presented in
Section 3. Here, how the HBFT algorithm differs from previous
consensus mechanisms has been described. In Section 4, we
analyze the reliability of byzantine fault tolerance, and present the
algorithm of real-time block generation in Section 5. Finally,
Section 6 concludes the contributions with future research
perspectives and additional improvements.

2. Related Work

There are various consensus algorithms adopted by the popular
Blockchain-based platforms such as Bitcoin, Ethereum and
Hyperledger Fabric. In [10-11], the different advantages and
disadvantages of each existing consensus algorithm are
introduced. Bitcoin utilizes Proof of Work (PoW), which the high
computational power is required to solve a cryptographic puzzle
for mining operation. Proof of Stake (PoS) is designed to overcome
the disadvantages of PoW algorithms. However, PoS suffers from
a problem called Nothing at Stake because each participant can
vote to both blocks. Also, Delegated Proof of Stake (DPoS)
achieves consensus by delegates (called block producers) elected
by nodes instead of participation by all nodes. Practical Byzantine
Fault Tolerance (PBFT), implemented in Hyperledger Fabric, has

a primary node to manage the other nodes. Even if some untrusted
nodes participate in the consensus operation, it is considered an
agreement if more than 2⁄3 of the results are the same. Also, a
variant of byzantine fault tolerance consensus algorithm called
Delegated Byzantine Fault Tolerance (DBFT) [12, 13] is
introduced for scalable participation. The randomly elected
delegates (called bookkeeping nodes) of each group can only
participate in the operation of the consensus process. Furthermore,
PBFT is an permissioned protocol in which the identities of all
nodes are exposed to the network [14]. Therefore, PBFT can be
applied in permissioned platforms that enable autonomous,
commercial, and financial application services in IoT
environments. It is also suitable for applications that do not require
tokens and incentives. That is why we developed a novel and
efficient consensus algorithm based on PBFT for decentralized
IoT.

3. Hierarchical voting-based Byzantine Fault Tolerance
(HBFT) Consensus Algorithm to reduce System
Resources

In this section, a novel hierarchical voting-based byzantine
fault tolerance (HBFT) consensus algorithm is proposed. Also, we
analyze the message complexity of the proposed novel consensus
algorithm. Additionally, the best case and worst case are calculated
to identify the influence on the number of faulty nodes per group
in our proposed algorithm.

Figure 2: Flow Chart of PBFT

Practical Byzantine Fault Tolerance (PBFT) consensus
algorithm has five processes for consensus processing [15-17].
Figure 2 shows the flow chart of PBFT. If the number of faulty
nodes (f) is not more than f = ⌊(n – 1)/3⌋, a consensus can be
reached. Even though faulty nodes participate in the network,
PBFT consensus algorithm can prevent up to n/3 of faulty nodes
since more than 2n/3 nodes must be reliable nodes. The overall
message complexity is 2n2 based on the messages generated in
each process. In case of the PBFT algorithm supported by
HyperLedger Fabric, the reliability of the consensus is improved
because every node participates in the consensus process through
the interactions with each other. However, the message complexity

http://www.astesj.com/

M. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com 220

increases exponentially as the number of participating nodes
increase. Therefore, if the number of nodes increases, the problem
of scalability can be generated by high network traffic and latency.

3.1. Proposed HBTF Consensus Algorithm for Scalability

Based on our previous researches [18, 19], the operation of
HBFT consensus algorithm, which utilizes a typical PBFT
algorithm hierarchically, is re-designed effectively. Our proposed
HBFT consensus algorithm has two phases to validate
transactions. The flow chart of HBFT is shown in Figure 3.

Figure 3: Flow Chart of HBFT

Firstly, the first phase start to request a verification about new
transactions to all replica nodes. In the pre-prepare process, all
nodes are randomly grouped into some groups and then, a primary
node in each group is randomly selected to send a pre-prepare
message to the other nodes. Each node compares a pre-prepare
message with a request message. If the results match, a primary
node responds a prepare message to the other nodes. In the commit
process, each node reaches an agreement in the group depending
on whether it received more than 2n/3g of prepare messages. Next,
the second phase is executed in the same processes as the first
phase to verify the voting results of each group. Finally, if more
than 2g/3 of prepare messages are received, the consensus is
reached. Each primary node broadcasts the results to a client.

3.2. Message Complexity of HBFT Consensus Algorithm

The overall message complexity generated in each process of
HBFT is 𝑓𝑓(𝑔𝑔) = 2𝑔𝑔2 − 𝑔𝑔 + 2𝑛𝑛2/𝑔𝑔 − 𝑛𝑛 . The overall message
complexity of HBFT is lower than that of PBFT by increasing the
total number of participant nodes in Figure 4. Therefore, the
processing overhead is significantly decreased. The lower latency
and better scalability can be guaranteed because the overall
overhead is reduced.

Figure 4: Overall Message Complexity Comparison between PBFT and HBFT

Additionally, we try to figure out the impact on the message
complexity by increasing the number of groups in Figure 5. If the
total number of nodes is 1000, the message complexity depends on
the number of groups. The message complexity increases as the
number of groups is too small or too large. Since the number of
groups can affect the reliability of the agreement, the optimal
number of groups according to total number of participant nodes
needs to be calculated for facilitating efficient grouping. The
optimal number of groups based on total number of nodes is
calculated as follows. Eq. (1) is an equation for the overall message
complexity of HBFT. By differentiating Eq. (1), we can achieve
the number of groups with minimal message complexity. The
optimal number of groups is given by Eq. (2). If the total number
of nodes is 1000, the calculation result of Eq. (2) is about 79.45 as
shown in Figure 5.

𝑓𝑓(𝑔𝑔) = 2𝑔𝑔2 − 𝑔𝑔 + 2𝑛𝑛
2

𝑔𝑔
− 𝑛𝑛 (1)

 𝑓𝑓′(𝑔𝑔) = 4𝑔𝑔 − 1 −
2𝑛𝑛2

𝑔𝑔2
= 0

𝑔𝑔 = 1
12
�1 + �1 + 432𝑛𝑛2 − �432𝑛𝑛2(432𝑛𝑛2 + 2)

3
+

�1 + 432𝑛𝑛2 + �432𝑛𝑛2(432𝑛𝑛2 + 2)
3

� (2)

3.3. Fault Tolerance of HBFT Consensus Algorithm

In our proposed HBFT algorithm, consensus can be achieved
to add a new block when the number of groups is more than two-
thirds the total number of groups. Two cases are calculated to
determine the influence on the number of faulty nodes per group.
In the first case, the maximum number of allowable faults to reach
consensus is calculated in (a). Additionally, a case where the
consensus cannot be reached with the minimum number of faulty
nodes is calculated in (b). When it is detected as a faulty node, a
primary node is changed in the typical PBFT algorithm. Therefore,
all primary nodes are assumed to be non-faulty nodes, similar to
the PBFT algorithm. Additionally, we assume that the number of
total groups is more than two, and the number of nodes per group

http://www.astesj.com/

M. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com 221

is at least four in our proposed HBFT algorithm for normal
operation.

Figure 5: Message Complexity of HBFT depending on the Number of Groups

3.3.1. Best case: The maximum number of allowable faulty
nodes in order to reach a consensus

One-third of total number of groups consists of faulty nodes
and cannot reach a group consensus. The other two-thirds have
only one-third faulty nodes in each group, leading to a group
agreement. Consequently, the best case is that the number of faulty
nodes is high; however, a consensus can be reached since faulty
nodes are well distributed into groups. Eq. (3) shows the equation
of the best case.

��𝑔𝑔
3
� × �𝑛𝑛

𝑔𝑔
− 1�� + ��2𝑔𝑔

3
� × � 𝑛𝑛

3𝑔𝑔
�� (3)

3.3.2. Worst case: A consensus cannot be reached with the
minimum number of faulty nodes

If the number of faulty nodes in each group exceeds one-third,
each group agreement fails. The worst case is in which the number
of groups that do not attain group agreement exceeds one-third. As
a result, even though the number of faulty nodes occupies a
relatively small number, the consensus cannot be reached
according to the ratio of faulty nodes per group. An equation of
this worst case is described as follows.

��𝑔𝑔
3
� + 1� × �� 𝑛𝑛

3𝑔𝑔
� + 1� (4)

Both equations are calculated to assess whether a consensus
can be achieved according to the ratio of faulty nodes per group.
The influence of the ratio of faulty nodes per group is shown in
Figure 6. From these calculations, the number of allowable faulty
nodes is up to approximately 5𝑛𝑛 9⁄ − 𝑔𝑔/3 in the best case. In the
worst case as already discussed, a consensus cannot be reached
according to the ratio of faulty nodes per group. In both
calculations, whether a consensus is reached or not is affected by
the ratio of faulty nodes per group. Although the number of faulty
nodes participating in consensus is high, a consensus can be
reached depending on how all faulty nodes are well-distributed
into groups as described in the best case. Finding the optimal ratio
of faulty nodes per group to reach consensus in HBFT algorithm
will be an important research area. In addition, it is required that
the verification regarding the faulty nodes is executed at the
beginning of consensus process. As a result, the number of

allowable faulty nodes can be low compared to PBFT algorithm
depending on the ratio of faulty nodes per group in the worst case.
On the contrary, the number of allowable faulty nodes can be more
than that in the PFBT algorithm depending on the ratio of faulty
nodes per group in the best case.

Figure 6: Influence on the Ratio of Faulty Nodes Per Group

4. Analysis of Reliability

We analyze the reliability of Blockchain operation in this
section. It leads to the analyzing of the probability of normal
operation in unit time. Assuming that the reliability of each
participant node is equal to r, the calculations below are defined
when n nodes participate in the processing a transaction. The
reliability of the fail-stop faults can be calculated by the probability
that at least one node is operating normally. A fail-stop means the
occurrence of an unintentionally generated failure. It is assumed
that a fail-stop at a node happens when a node is faulty.

1 − (1 − 𝑟𝑟)𝑛𝑛 (5)

In the case of the reliability for consensus, even if there are the
fail-stop faults, the consensus can be reached if more than half of
the number of nodes agree. Subsequently, the reliability of the
byzantine faults can be calculated by the probability that less than
half of faulty nodes are included on Blockchain as follows.

𝑅𝑅(𝑛𝑛, 𝑟𝑟) = 1 −∑ 𝑛𝑛𝐶𝐶𝑘𝑘(1 − 𝑟𝑟)𝑘𝑘𝑟𝑟𝑛𝑛−𝑘𝑘 =𝑛𝑛
𝑘𝑘=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛2)

∑ 𝑛𝑛𝐶𝐶𝑘𝑘(1 − 𝑟𝑟)𝑘𝑘𝑟𝑟𝑛𝑛−𝑘𝑘
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑛𝑛2−1�
𝑘𝑘=0 (6)

In the case of the reliability for consensus in byzantine faults,
if less than one-third of faulty nodes are in the operation, the
consensus is reached. The calculation is shown in Eq. (7)

𝑅𝑅(𝑛𝑛, 𝑟𝑟) = 1 −∑ 𝑛𝑛𝐶𝐶𝑘𝑘(1 − 𝑟𝑟)𝑘𝑘𝑟𝑟𝑛𝑛−𝑘𝑘 =𝑛𝑛
𝑘𝑘=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�2𝑛𝑛3 �

∑ 𝑛𝑛𝐶𝐶𝑘𝑘(1 − 𝑟𝑟)𝑘𝑘𝑟𝑟𝑛𝑛−𝑘𝑘
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�2𝑛𝑛3 −1�
𝑘𝑘=0 (7)

In addition, the reliability of the byzantine faults in a
hierarchical structure as in the proposed HBFT consensus
algorithm can be defined as R(g, R(n/g, r)). It is assumed that the
total number of nodes is n, and the number of nodes per a group is
n/g. Additionally, when all nodes are divided into several groups
for consensus, the number of groups is g. Therefore, the reliability
of group is calculated as R(n/g, r) based on the reliability of a node.
In case of the reliability for consensus, even if there are the

http://www.astesj.com/

M. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com 222

byzantine faults, this same definition is applied. If the more than
two-third the number of normal nodes are in the consensus
operation, a consensus is reached to add a new block.

Assuming that the number of nodes is 400 and less than half
the faulty nodes are included, the reliability based on that of each
node is shown in Figure 7. Furthermore, if the number of groups is
20 with the total number of nodes, the reliability of hierarchical
byzantine fault tolerance by grouping is shown in Figure 7. When
the consensus operation executes hierarchically in the group level,
the reliability of group case is similar or lower than the reliability
of non-group case. Although the difference in the case of reliability
of hierarchical byzantine fault tolerance is lower than in the case
by the node’s reliability, the message complexity is much better
described in the Section 3.2; so it can be said that it is good to be
grouped in the proposed algorithm. When the number of faulty
nodes is less than one-third of the total nodes, the consensus
operates hierarchically according to the reliability of each node.

Figure 7: Reliability in the Byzantine Fault

Figure 8: Reliability for Reaching Consensus in the Byzantine Fault

Figure 8 shows that the reliability of the consensus in the case
of group level and in the case of non-group level consensus.
Although the range with a little low reliability exists in the
reliability of hierarchical byzantine fault tolerance for reaching
consensus, there is no notable difference in the reliability of the
overall ranges, similar to Figure 7. Even if the reliability of each
node is different, or an incorrect answer is generated by an
intentional failure or byzantine faults, the reliability can be
calculated. In addition, even if the participant nodes have different
conditions such as reliability, the possibility of cyber infringement,
computing power, and data collection, it is possible to apply the

proposed method of using Blockchain resources minimally
according to various Blockchain configuration conditions and the
user’s requirements.

5. Real-time Performance Analysis using Block Generation
Algorithm

Although the Blockchain has various advantages such as
reliability, security, traceability and transparency, the excessive
computing resources and communication bandwidths required to
reach consensus and maintain consistency between duplicated
ledgers are disadvantageous. Additionally, it is necessary to
consider the reduction of the deadline meet ratio according to the
laxity time for consensus in computing environments required
real-time transaction processing. In this paper, the real-time
processing performance of transactions is analyzed according to
the redundancy of nodes. There are the applicable methods for
maximizing real-time performance and satisfying user’s
requirements. The first method is real-time block generation
algorithms. The second method is to use off-chain for reliable real-
time performance although the reliability is decreased. A method
to obtain the priority for block generation exists, as it pays more
gas costs. Subsequently, the delay time is controlled by adjusting
the number of nodes participating in consensus. In this section, we
propose real-time block generation algorithm to adjust block
generation according to the laxity time of the transaction. The two
algorithms of block generation are compared in Figure 9 and
Figure 10.

5.1. Algorithm of block generation at regular intervals
(Conventional Blockchain)

Assuming that the time interval of block generation is T, the
transaction arrival time is t, and the laxity time for block generation
is D. When each block is generated at regular intervals, the
deadline meet ratio, the average response time and the cost for
block generation can be calculated as follows. A block is generated
when a transaction arrives in the period D. Therefore, the deadline
meet ratio is calculated as D/T. In Figure 9, if the period of D is
greater than the period of T, a block is generated at any time within
the period of block generation. The average response time is
defined as D/2. The period D refers to the laxity time to wait for
block generation. The cost for block generation in period of T is
calculated as Cblock/T. The graph of (a) algorithm for the cost is
shown in Figure 10.

5.2. Algorithm of block generation by the shortest deadline of the
arrived transactions (Real-time Blockchain)

If the transaction processing request arrives, and other
transactions arrive at 1/f intervals, all blocks about the arrived
transactions within the laxity time of the first requested block
generation are generated. Therefore, all transactions in the laxity
time are processed based on the laxity time of the initially arrived
transaction. It is assumed that the arrival frequency of transaction
is f, and a new transaction arrives at equal intervals. Then, the
arrival time of a new transaction is 1/f (= P), and the block
generation time of the new transaction can be calculated as 1/f (=
P) + D. All transactions are always processed when the
transactions arrive in the laxity time. Therefore, the deadline meet

http://www.astesj.com/

M. Kim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 218-223 (2021)

www.astesj.com 223

ratio of (b) algorithm is 1 as shown in Figure 9. The average
response time for block generation is calculated as (P + D)/2. The
graph in Figure 10 shows the cost for block generation of (b)
algorithm calculated as Cblock/P + D.

Figure 9: Deadline Meet Ratio

Figure 10: Blockchain Generation Cost

6. Conclusion
We propose a novel HBFT consensus algorithm required for

transaction generation to reduce the processing throughput and
increase scalability in a typical PBFT algorithm. Since our
proposed algorithm utilize PBFT algorithm hierarchically, the
number of exchanging messages in the consensus processing is
significantly reduced. It means that the HBFT consensus algorithm
ensures the scalability even though large numbers of nodes are
involved in the consensus process. Furthermore, we calculate the
optimal number of groups to identify the influence on the overall
message complexity depending on the number of groups. In
addition, both the best and worst cases are calculated to determine
the ratio of allowable faulty nodes per group. Additionally, the
reliability of byzantine fault tolerance is analyzed to compare the
reliability of group case with the reliability of non-group case.
Finally, it is necessary to consider the reduction of the deadline
meet ratio according to the laxity time for consensus in computing
environments required real-time transaction processing. To
compare with the conventional Blockchain algorithm to consider
the service level agreement (SLA), the real-time processing
performance of transactions is analyzed according to the
redundancy of nodes. In the future work, we plan to demonstrate
HBFT algorithm through simulations. Furthermore, we would also
implement Blockchain-based application services to effectively
manage the decentralized IoT data.

Acknowledgment

This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education (No. NRF-
2018R1D1A1B07040573).

References
[1] O. Novo, "Blockchain Meets IoT: An architecture for Scalable Access

Management in IoT," IEEE Internet of Things Journal, 5, 1184-1195, 2018,
doi: 10.1109/JIOT.2018.2812239.

[2] R. Casado-Vara, P. Chamoso, F. De la Prieta, J. Prietoa, J. M. Corchado,
"Non-linear adaptive closed-loop control system for improved efficiency in
IoT-blockchain management," Information Fusion, 49, 227-239, 2019, doi:
/10.1016/j.inffus.2018.12.007.

[3] P. Brody, V. Pureswaran, "Device democracy - Saving the future of the
internet of Things," IBM institute for business value (2015) Available online:
https://www.ibm.com/downloads/cas/Y5ONA8EV (accessed on 15 July
2020)

[4] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, M. Guizani, "A Blockchain-based
Self-tallying Voting Scheme in Decentralized IoT," eprint arXiv:1902.03710,
2019.

[5] K. Košťál, P. Helebrandt, M. Belluš, M. Ries, I. Kotuliak, "Management and
Monitoring of IoT Devices Using Blockchain," Sensors, 19, 1-12, 2019, doi:
/10.3390/s19040856.

[6] G. Sagirlar, B. Carminati, E. Ferrari, E. Ferrari, J. D. Sheehan, E. Ragnoli,
"Hybrid-IoT: Hybrid Blockchain Architecture for Internet of Things - PoW
Sub-blockchains," 2018, doi: 10.1109/Cybermatics_2018.2018.00189.

[7] M. Ruta, F. Scioscia, S. Ieva, G. Capurso, E. D. Sciascio, "Semantic
Blockchain to Improve Scalability in the Internet of Things," Open Journal
of Internet of Things (OJIOT), 3, 46-61, 2017.

[8] R. Jayaraman, K. Salah, N. King, "Improving Opportunities in Healthcare
Supply Chain Processes via the Internet of Things and Blockchain
Technology," International Journal of Healthcare Information Systems and
Informatics (IJHISI), 14. 1-20, 2019, doi: 10.4018/IJHISI.2019040104.

[9] S. Gupta, M. Sadoghi, "Blockchain Transaction Processing," in
Encyclopedia of Big Data Technologies, 1-11, 2019, doi:10.1007/978-3-
319-63962-8_333-1.

[10] A. Panarello, N. Tapas, G. Merlino, F. Longo, A. Puliafito, "Blockchain and
IoT Integration: A Systematic Survey," Sensors, 18(8), 1-37, 2018, doi:
10.3390/s18082575

[11] A. Baliga, "Understanding blockchain consensus models," Persistent
Systems Ltd. White paper, 2017, URL: https://www.persistent.com/wp-
content/uploads/2018/02/wp-understanding-blockchain-consensus-
models.pdf

[12] L. M. Bach, B. Mihaljevic, M. Zagar, "Comparative analysis of blockchain
consensus algorithms," in Proceedings of 41st International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 1545-1550, 2018.

[13] E. Zhang, "A Byzantine Fault Tolerance Algorithm for Blockchain," NEO
White paper, 2018, URL: https://docs.neo.org/en-
us/basic/consensus/whitepaper.html

[14] Y. Xiao, N. Zhang, W. Lou, Y. T. Hou, "A Survey of Distributed Consensus
Protocols for Blockchain Networks," in IEEE Communications Surveys &
Tutorials, 22(2), 1432-1465, 2020, doi: 10.1109/COMST.2020.2969706.

[15] M. C.Igor, N. C.Vitor, P. A.Rodolfo, Y. Q.Wang, D.R.Brett, "Challenges of
PBFT-Inspired Consensus for Blockchain and Enhancements over Neo
dBFT," in future internet, 12(8), 129, 2020

[16] M. Castro, B. Liskov, "Practical Byzantine Fault Tolerance," in Proceedings
of the Third Symposium on Operating Systems Design and Implementation,
173-186, 1999.

[17] M. Castro, B. Liskov, "Practical Byzantine Fault Tolerance and Proactive
Recovery," ACM Transactions on Computer Systems, 20(4), 398-461, 2002,
doi: 10.1145/571637.571640.

[18] M. Kim, J-H. Kim, "Hierarchical Voting-based Byzantine Fault Tolerance
Consensus Algorithm," in Proceedings of International Conference on
APIC-IST 2020, 183-185, 2020

[19] M. Kim, J-H. Kim, "Decentralized Data Management Schemes for IoT
Blockchain," in Ph.D. Dissertation, Department of Computer Engineering
Graduate School of Ajou University, 2019

http://www.astesj.com/

	1. Introduction
	2. Related Work
	3. Hierarchical voting-based Byzantine Fault Tolerance (HBFT) Consensus Algorithm to reduce System Resources
	3.1. Proposed HBTF Consensus Algorithm for Scalability
	3.2. Message Complexity of HBFT Consensus Algorithm
	3.3. Fault Tolerance of HBFT Consensus Algorithm

	4. Analysis of Reliability
	5. Real-time Performance Analysis using Block Generation Algorithm
	5.1. Algorithm of block generation at regular intervals (Conventional Blockchain)
	5.2. Algorithm of block generation by the shortest deadline of the arrived transactions (Real-time Blockchain)

	6. Conclusion
	Acknowledgment

	References

