

www.astesj.com 519

Bounded Floating Point: Identifying and Revealing Floating-Point Error

Alan A. Jorgensen1, Las Vegas1, Connie R. Masters1,*, Ratan K. Guha2, Andrew C. Masters1

1True North Floating Point, Las Vegas, NV, 89122, USA

2University of Southern Florida, Dept. of CS, Orlando, FL, 32816 USA

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 20 November, 2020
Accepted: 17 January, 2021
Online: 28 January, 2021

 This paper presents a new floating-point technology: Bounded Floating Point (BFP) that
constrains inexact floating-point values by adding a new field to the standard floating point
data structure. This BFP extension to standard floating point identifies the number of
significant bits of the representation of an infinitely accurate real value, which standard
floating point cannot. The infinitely accurate real value of the calculated result is bounded
between a lower bound and an upper bound. Presented herein are multiple demonstrations
of the BFP software model, which identifies the number of significant bits remaining after a
calculation and displays only the number of significant decimal digits. These show that BFP
can be used to pinpoint failure points. This paper analyzes the thin triangle area algorithm
presented by Kahan and compares it to an earlier algorithm by Heron. BFP is also used to
demonstrate zero detection and to correctly identify an otherwise unstable matrix.

Keywords:
Floating-point error
Unstable Matrix
Zero detection
Bounded floating point

1. Introduction

Standard floating point has been useful over the years, but
unknowable error is inherent in the standard system. Though not
indicated in standard floating point, a calculated result may have
an insufficient number of significant bits. This paper, which is an
extension of work originally presented in [1], uses a bounded
floating-point (BFP) software model that emulates the BFP
hardware implementation to identify the accurate significant bits
of a calculated result, thus unmasking standard floating-point
error.

2. Background – Standard Floating Point

2.1. Standard Floating-Point Format

Computer memory is limited; thus, real numbers must be
represented in a finite number of bits. The need to represent a range
of real numbers within a limited number of bits and to perform
arithmetic operations on those real numbers, led to the early
development of, and use of, floating-point arithmetic. The
formulaic representation employed is reminiscent of scientific
notation with a sign, an exponent, and a fraction [2]. Through the
efforts of William Morton Kahan and others, a standard for
floating point was published in 1985 by the Institute of Electrical
and Electronics Engineers (IEEE) [3]. The current version is IEEE
754-2019 - IEEE Standard for Floating-Point Arithmetic [4],

which has content identical to the international standard ISO/IEC
60559:2020 [5].

The standard floating-point format is shown in Figure 1. The
sign of the value is represented by a single bit, S. The offset
exponent is E with a length of e. The significand, T, has a length
of t. The overall length of the representation is k.

Figure 1: Standard Floating-Point Format

The IEEE 754-2019 standard defines floating-point formats
and methods for both base two and base ten. However, this work
only addresses base two floating point. The formats most
commonly used require 32 bits or 64 bits of storage, which are
known as single precision and double precision, respectively.

The decimal equivalent of the standard representation is shown
in (1), where S, T, t, and E are defined above and O is the exponent
offset. For binary floating point, O is nominally 2e-1-1.

 (-1)S ∙ (1+T/2t) ∙ 2E-O (1)

The expression (1) is used in expressing the value of the
standard floating-point representation in various number bases,
typically for the display of the value in number base ten.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Connie R. Masters, cm@truenorthfloatingpoint.com

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com

https://dx.doi.org/10.25046/aj060157

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060157

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 520

2.2. Standard Floating-Point Representation Error

Floating-point error is the difference between the
representation of the actual standard floating-point value and the
infinitely accurate real value to be represented. It must be clearly
stated that the IEEE floating point standard does not specify any
mechnism for indicating nor defining floating-point error.
Floating-point error is invisible to implementations of the IEEE
floating-point standard.

Standard floating-point error occurs because only a limited
number of real numbers can be expressed with the finite number
of bits available.

Because binary floating point represents real numbers with a
fixed number of bits, numbers that cannot be represented with a
limited set of powers of two cannot be represented exactly [6]. As
Goldberg succinctly describes it, “Squeezing infinitely many real
numbers into a finite number of bits requires an approximate
representation” [7]. Therefore, there are a finite number of values
that can be represented with floating point, but an uncountably
infinite number of values [8] that cannot be exactly represented
with floating point. For instance, the values 0.1, 0.22, and
transcendental values, such as π, cannot be accurately represented
with binary standard floating point, but the values 0.5, 0.125. and
942.625 can be exactly represented with standard binary floating
point. Thus, only those real numbers which can be represented
with a constrained sum of the powers of two can be represented
with no error. All other representations must have error.

Therefore, we can define floating-point representation error as
the difference between the representation value, see (1), and the
infinitely accurate real value represented.

2.3. Standard Floating-Point Operational Error

Accuracy in floating-point computations may be measured or
described in terms of ulps, which is an acronym for “units in the
last place.” Kahan originated the term in 1960, and others have
presented refined definitions [9], [7]. An ulp is expressed as a real
function of the real value represented. Rounding to the nearest
value, for instance, can introduce an additional error of no more
than ±0.5 ulp.

The real solution to the floating-point error issue is knowing
the number of significant bits of a computational result. The
number of significant bits can be known by using BFP. When BFP
identifies sufficient significant bits, a decision may be made, or an
opinion may be formed.

Usually, the error of a single computation is insignificant, with
the exception being catastrophic cancellation error. However, with
large, complex floating-point computations, error can accumulate
and can reduce the significant bits to an unacceptable level [10],
[11]. Loss of significant bits may be propagated through recursive
repetition. BFP tracks the current number of significant bits
through recursion [12], [13]. Examples of such recursive
calculations are spatial modeling of explosions [14], dynamic
internal stress [15], weather [16], etc.

The repetition of such calculations accumulates floating-point
error. Unfortunately, there are two types of error, rounding and
cancellation, and these errors are incompatible since rounding

error is linear and cancellation is exponential. However, just as
apples and oranges cannot be added by species, they can be added
by the “genus” fruit. In order to accumulate cancellation and
rounding errors we must find a similar “genus” before such error
can be accumulated. This genus in the BFP system is the logarithm
of the accumulated error stored in the defective bits field D
(Figure 3), which captures both the accumulated rounding error
and cancellation error.

Three operations that must be performed during floating-point
operations introduce error. These operations are the following:
alignment, normalization (causing cancellation error), and
truncation (leading to rounding error).

Alignment occurs during add operations (which include both
positive and negative numbers) when one exponent is smaller than
the other and the significand must be shifted until the exponents
are equal or “aligned” [17].

Cancellation error occurs because the resulting significand
after a subtraction, including the hidden bit, must lie between 1.0
and 2.0. If the operands of a subtract have similar values,
significant bits of the result may be defective, or “cancelled” [2],
[18]. This is called cancellation error, and when that error is
significant it is called “catastrophic cancellation” [7]. Jorgensen
mathematically defines “similar values” [6].

Rounding error occurs because nearly all floating-point
operations develop more bits than can be represented within the
floating-point format, and the additional bits must be discarded [4].
The floating-point standard describes how these discarded bits can
be used to “round” the resulting value but necessarily must
introduce error into the resulting representation of the real value
[2].

Standard floating point provides no means of indicating that a
result has accumulated error [4]. Therefore, such errors are
invisible unless they cause a catastrophe. Even then the cause can
only be traced to floating-point failure with substantial effort, as
stated by Kahan in the conference article entitled “Desperately
needed remedies for the undebuggability of large floating-point
computations in science and engineering” [19].

Misuse of floating point and the accumulation of floating-point
error has been expensive in terms of election outcomes [20],
financial disruption [21], [22], and even lives lost [23].

This computational weakness has been known since the early
days of computing and continues until today. Even as early as 1948
Lubken had noted that: “…it is necessary at some intermediate
stage to provide much greater precision because of large loss of
relative accuracy during the process of computation” [10]. To this
day, floating-point error is a known problem. [13], [24], [11].

3. Background – Bounded Floating Point (BFP)

The BFP system is an extension or annex to the standard
floating point format, which may be implemented in hardware,
software, or a combination of the two. BFP calculates and saves
the range of error associated with a standard floating-point value,
thus retaining and calculating the number of significant bits [25],
[26]. BFP does not minimize the floating-point error but identifies
the error inherent within standard floating point.

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 521

BFP extends the standard floating-point representation by
adding an error information field identified as the “bound” field B.
The bound field B contains subfields to retain error information
provided by prior operations on the represented value, but the field
of primary importance is the “Defective Bits” field D. This field
identifies the number of bits in the represented value that are no
longer of significance, consequently defining the number of bits in
the result that are significant. The value of D is not an estimate but
rather is calculated directly from standard floating-point internals
such as normalization leading zeros and alignment of exponent
differences. (See Appendix). BFP identifies and reports floating-
point error and has no direct means of reducing that error. Because
it is a direct calculation, the bound is neither optimistic nor
pessimistic. However, the conversion between binary significant
bits and decimal significant digits is not one-to-one and introduces
a small error of less than 1 decimal ulp on conversion.

BFP retains the exception features of standard floating point,
such as detection of infinity, operations with not a number (NaN),
overflow, underflow, and division by zero. Though zero is a
special case in the standard, the standard does not detect zero as
long as any bits remain in the significand. However, BFP exactly
identifies zero when the significant remaining bits in the
significand are all zero, as shown in the test results below.

3.1. Bounded Floating-Point (BFP) Format

The bound field B, as seen in Figures 2 and 3, is a field added,
to the format of standard floating point to describe the bounds of
the error of the represented value. The bound field B contains and
propagates information about the accuracy of the value that is
being represented by creating and maintaining a range in which the
infinitely accurate value represented must reside.

Figure 2: BFP Format

3.2. Bound Field Specifics

Figure 3 presents the subdivisions incorporated into the bound
field format.

Figure 3: Format of Bound Field and Subfields

The bound field B is of width b. The bound field B consists of
two fields, the defective bits field D of length d and the
accumulated rounding error field N of length n. The value of the
defective bits is the number of bits of the representation that are
not significant, that have no value. The defective bits field D stores
the logarithm of the upper bound of the error represented in units
in the last place (ulps) and, in effect, determines the number of
significant bits of the result.

The accumulated rounding error, stored in the N field, is the
sum of the rounding error in fractions of an ulp.

The accumulated rounding error field N consists of two fields,
the rounding error count field C, of width c, and the rounding bits
field R, of width r. The fraction of an ulp represented in the
accumulated rounding error is R/2r ulp.

The decimal equivalent of the BFP representation is shown in
the expression of (2), which is equivalent to the expression (1)
above.

 (-1)S ∙ ((T+2t)/2t) ∙ 2E-O (2)

The IEEE standard [4] defines “precision” as the capacity of
the significand plus one (for the hidden bit). This capacity-type
precision is defined as the maximum number “of significant digits
that can be represented in a format, or the number of digits to that
(sic) a result is rounded” [4]. In contrast, BFP identifies the actual
number of bits that are significant (have meaning). These
significant bits (SB) are a subset of the IEEE precision, p. The
BFP’s defective bits field D represents the number of bits of the
representation that are not significant, where D = t + 1 – SB. In
IEEE standard representation, the value of D is not known, nor is
the number of significant bits.

BFP provides a means of specifying the number of significant
bits required in a BFP calculation. Additionally, when there are
fewer significant bits than specified or required, BFP represents
this condition with the quiet not-a-number representation,
“qNaN.sig,” indicating excessive loss of significance.

3.3. Alignment

For addition and subtraction, when the exponents of the two
operands are unequal, the significand of the smaller operand must
be right shifted by the exponent difference. This is known as
alignment [2], [17], [27], [28].

To perform alignment, the significand of the operand with the
smallest value is right shifted by the exponent difference [26].

In standard floating point, the bits that cannot fit within the
space of the standard floating-point format are used to determine
the guard bit, the rounding bit, and the sticky bit.

In BFP, the bits that cannot fit within the space of the BFP
format are used to calculate the accumulated rounding error field
N.

The bits that cannot fit within the space of the BFP format due
to alignment shift are retained in the RPN field and XPN field of the
post normalization result configuration of Figure 4. As in standard
floating-point format, if alignment shifts one or more bits out of
the range of the arithmetic unit, the sticky bit is set to one.

3.4. Dominant Bound

The results of BFP binary functions (functions with two
operands) retain only the number of significant bits as the aligned
operand with the least number of significant bits. For BFP this
means the result having the larger number of defective bits.

For binary functions the dominant bound is selected from the
larger of the largest operand bound or the adjusted (aligned) bound
of the smallest operand. For add (and subtract) operations, the
binary point of the smaller operand must be aligned by the
exponent difference [26]. The adjusted bound of the smallest

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 522

operand is derived by subtracting the exponent difference from the
smallest operand bound defective bits and shifting the significand
of the smallest operand to the right by the exponent difference.
This shift will reduce the number of defective bits in the
significand of the operand with the smaller value by the exponent
difference, perhaps even to zero.

The resulting bound is obtained by accounting for the changes
to the dominant bound by the effects of normalization and the
accumulation of rounding error. (See Appendix for more details.)

3.5. Normalization and Cancellation

Floating-point results must be normalized to align the binary
point to values between 1.0 and 2.0 [28]. The result of a floating-
point operation may not meet this requirement and, therefore, may
require that the result be “normalized” by shifting right or left to
meet this requirement [27]. The exponent and the associated
number of defective bits must be adjusted by the amount of this
shift. Since the most significant bit is always one when the
normalized value is between 1.0 and 2.0, it need not be stored. It is
known as the “hidden bit.”

Figure 4 illustrates the format of the post normalization result
in which HPN is the hidden bit field, TPN is the resulting normalized
significand (which is placed in the T field of the standard floating
result of Figure 2), RPN is the most significant bits of the excess
bits and is the resulting rounding bits field (which is added to the
accumulated rounding error field N, of Figure 3), and XPN is the
extended rounding error. XPN serves as the source for the BFP
“sticky bit,” as used in standard floating point.

Figure 4: Post normalization result configuration

Normalizing by left shifting shifts information into the least
significant bits, possibly adding to the unknown bits that already
exist. In BFP this must be added to the defective bits unless the
result is known to be “exact.” Exactness is identified by BFP as
having zero defective bits (e.g. referring to Figure 3, when the
defective bits field D of the dominant bound is equal to zero.)

3.6. Zero Detection

The number of remaining significant bits is the difference
between number of bits available in the representation (t+1) minus
the number of defective bits D. The number of bits to be shifted to
normalize is the number of leading zeros of the result. If all of the
significant bits are zero, the resulting value must be zero.

BFP detects this condition and sets all fields of the BFP result
to zero.

3.7. Accumulation of Rounding Error and Contribution to
Defective Bits

Referring to Figures 2, 3, and 4, the accumulated rounding
error N is computed by adding the resulting rounding bits RPN of
Figure 4, to the accumulated rounding error N of Figure 3,
contributing a fraction of an ulp. If the extended rounding error
XPN of Figure 4, is not zero, an additional one is added to the
accumulated rounding error N of Figure 3, functioning as a sticky
bit. The carries out of the rounding bits field R of Figure 3, add to

the rounding error count C of Figure 3. The rounding error count
is the accumulated rounding error in ulps.

The rounding error count C cannot, however, contribute
directly to the value of the defective bits field D because of the
difference of scaling, linear versus exponential. For example, when
there are 2 defective bits, there must be at least 4 accumulated
rounding errors to advance the defective bits to 3, and 8 to advance
to 4, etc. In other words, when the logarithm of the rounding error
count field C is equal to the defective bits field D, the value of the
defective bits is increased by one.

3.8. Resulting Range

The BFP range relative to zero is defined by a lower bound (3)
and an upper bound (4), as follows:

 (-1)S · ((T+2t)/2t) · 2E-O (3)

 (-1)S · ((T+2t+2D-1)/2t) · 2E-O (4)

The infinitely accurate real value represented by a BFP value
is within this range. This is the same as in standard floating point
except that the term 2D-1 provides the upper bound where the value
of the defective bits field D is the number of bits that are no longer
significant.

4. BFP Solutions to Standard Floating-Point Problems
Not only does BFP deliver all of the advantages of standard

floating point, but it also delivers solutions to problems inherent in
standard floating point.

4.1. Exact Equality Comparison and True Detection of Zero

Standard floating point requires additional code to be written
to decide as to whether a comparison result is within error limits.
BFP inherently provides this equality comparison.

Standard floating point cannot provide true zero detection as
BFP does, which is demonstrated in the square root test of Section
8 below.

4.2. Number of Significant Bits

Standard floating point has no means to indicate the number of
bits that are significant, but BFP identifies and indicates the
number of significant bits. Further, BFP allows programmatic
specification of the required number of significant bits. When the
required number of significant bits are not available, BFP provides
notification.

4.3. Mission Critical Computing

In some computing applications, such as mission-critical
computing, computations need to be extremely accurate. But
standard floating point cannot determine any accuracy loss. In
contrast, BFP provides calculations – in real time – that can be
depended upon to have the required number of significant bits.

4.4. Modeling and Simulation

Computational modeling and simulation, supported by
constantly improving processor performance, often requires
solving large, complex problems during which error may
accumulate. This error, though not identified in standard floating
point, is reported when the BFP extension is utilized.

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 523

4.5. Unstable Matrices
In numerical computation “stability” implies that small

changes in the data translate into small changes in the result.
Significant problems arise when small changes in the data, such as
rounding error, create substantial error in the results. This occurs
in matrix calculations, for instance, when solving simultaneous
linear equations, when the roots may be similar or equal. BFP is
used in this work to determine when a matrix is invertible, while
assuring that the requirement for accuracy is met.

5. Standard Floating-Point Error Mitigation
5.1. Error Analysis Versus Direct Testing

Algorithmic error analysis can be used to identify error that
occurs when using standard floating point. Though it is costly, it is
commonly used for complex computing in critical systems, the
failure of which may have severe consequences. In contrast, BFP
directly, and in real time, tests calculation results, thus removing
the need for costly error analysis.

5.2. Software Testing of Floating Point
Standard floating point problem in that it has no indication of

accuracy errors is challenging to detect, diagnose, and repair.. BFP
detects accuracy errors in real time, thus providing a response to
the plea of “Desperately Needed Remedies for the
Undebuggability of Large Floating-Point Computations in Science
and Engineering” [19].

5.3. Stress Testing of Floating-Point Software
Stress testing may also be used to determine error that

accumulates when using standard floating point. In general, stress
testing is a form of intense testing used to establish failure points
or useful operating limits of a given system. It involves testing
beyond normal operational capability, often to a breaking point, in
order to observe the performance limits.

Stress testing, as commonly applied to software, determines
data value limits (boundary value testing) or performance
(memory required, response time, latency, throughput, and time
required to complete the calculation). Chan describes software
stress testing as a method for accelerating software defect
discovery and determining failure root cause and assisting problem
diagnosis [29]. However, determining the accuracy of floating-
point calculations or diagnosing accuracy failures in floating-point
calculations, in intermediate results, or in final results is
problematic using standard floating point [19]. In fact, floating-
point errors are invisible in standard floating point, as there is
nothing within the IEEE Standard that describes or limits floating-
point error.

BFP provides a new and unique method of stress testing. Stress
testing floating-point application software using BFP determines
the accuracy at any point in a calculation, or even at the point of
failure of a given computation, by executing computations with
successively higher values of required significant bits and
analyzing failure points. This reduces the cost of diagnosis and
repair of floating-point calculation failures [19].

5.4. Other Mitigation Techniques

Other real-time techniques attempt to mitigate error, but only
do so by increasing the overhead. Some of these techniques have

the goal of computing results within error bounds, such as interval
arithmetic [30] and real-time statistical analysis [31], [32]. But
these require two floating point operations and require the storage
of two floating point values and, thereby, increase the needed time
and memory.

Parallel computation with higher precision standard floating
point [33] can also be used to mitigate error. In addition to
substantially increasing overhead, only the probability of error is
reduced. There is no indication of that amount of error, whereas
BFP identifies the remaining significant bits.

6. Software Model Solutions Using BFP

This work presents a software model of the BFP hardware
system as described in detail in [25], [26]. When using standard
floating point, there are certain problem areas that are prone to
floating-point error. This work provides results from computations
using BFP compared to computations using standard floating point
in three of these well-known floating-point problem areas.

6.1. 80-Bit BFP

The BFP software model used in the following examples is
configured by the field sizes of the BFP data structure, which is an
80-bit BFP configuration. The sign, exponent, and significand
fields of the BFP format are identical to the corresponding fields
in the standard 64-bit floating-point format. This permits
conversion from 64-bit standard floating point to 80-bit BFP with
a single instruction that stores the standard floating-point value
directly into the corresponding fields of the BFP structure.

The BFP model contains the basic operations BFPAdd,
BFPSub, BFPMult, BFPDiv, and BFPSqrt.

The following experiments were conducted on an ACER
Aspire PC with an Intel Core i5 7th gen processor, using GNU
Compiler Collection (GCC) version “(i686-posix-dwarf-rev0,
Built by MinGW-W64 project) 8.1.0” [34].

6.2. Significant digits

In computers, binary floating-point calculations are performed
with a collection of binary bits. But to be useful in the scientific
and engineering world, outputs from, and inputs to, the human
interface must be in decimal digits. In other words, the calculated
results must be displayed in decimal digits, and decimal
information must be suppled to the processing unit. However, there
is no direct mapping between binary floating-point values and the
decimal representation of these values [35]. The fixed number of
binary bits available in the double-precision (64-bit) floating-point
format can represent a range of decimal values with as few as 15
or as many as 17 decimal digits [13].

External representations of BFP results, as shown below in
Tables 1-14, are constrained to the actual number of significant
decimal digits of the real number represented; i. e. only the digits
having significance are displayed. This contrasts with standard
floating point in which decimal digits of unknown significance are
displayed, which results, at times, in the display of multiple
incorrect digits (digits without significance). The display of these
insiginifcant decimal digits obtained by the use of standard floating
point is shown in the Tables 1-14 below.

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 524

6.3. Significant Bits

The number of significant bits is identified by the binary BFP
representation of an infinitely accurate real value. The number of
significant bits, SB, is calculated as the total bits available, p, minus
the number of defective bits, D, as shown in (5)

 SB = p – D (5)

where p = t + 1.

BFP provides a default value for the required number of
significant bits. Alternatively, a special command can specify the
required number of significant bits. Whether the BFP default value
is applied or the commanded value is applied, the required number
of significant bits may not be generated in a calculation. In this
case, a special not-a-number code “qNaN.sig” is produced, which
is visible when externally displayed.

6.4. Modeling Overview

The following demonstrations address three problems
presented above, which are floating-point error diagnosis, true
detection of zero, and unstable matrices. The first utilizes Kahan’s
thin triangle problem where the area of a thin triangle is diminished
until a specified number of significant bits is not met. The second
is an illustration of zero detection by BFP, which uses an
expression that mathematically evaluates to zero; however,
standard floating point does not generate zero. The third
demonstration solves for a matrix determinate identifying that the
matrix is unstable.

7. Modeling Stress Testing - The Heron and Kahan Thin
Triangle Problems

7.1. The Thin Triangle

Knowing the length of three sides of a triangle (Figure 5) is
sufficient to determine the area of the triangle without knowledge
of the angles [36]. Work from early in the first millenium CE,
attributed to Heron, produced an area formula that has become
known as “Heron’s Formula.” In 2014, Kahan produced an
improved area formula.

The thin triangle problem considered here is from
“Miscalculating area and angles of a needle-like triangle.” [37].
This work extends the 1976 work of Pat H. Sterbenz who
suggested a method to make Heron’s Formula more accurate [38].
In that work Sterbenz states:

“However, we can produce a good solution for the problem
if we assume that A, B, and C are given exactly as numbers in
(floating point).” (Emphasis added)

However, when using standard floating point, A, B, or C may
not be exact. And standard floating point does not provide any
indication that A or B or C is exact. But BFP establishes exactness,
where a representation is exact if and only if the dominate bound

defective bits field D is zero; this indicates that there are no
insignificant bits in the representation. Using the BFP extension of
standard floating point, this work shows when A or B or C is not
exact.

In the tests shown below, values were chosen to reflect a thin
triangle in which one side of the triangle, side C, is one half the
length of the base A and in which the other side of the triangle, side
B, is equal to the length of side C plus delta (δ). By injecting 1 ulp
error in any one of the values, the values are no longer exact. In the
tests below, a 1 ulp error was injected into A. And the injection of
this small error into only one of the values causes the equation to
produce a result that does not meet the required significant digits
for a specified δ and a required number of significant digits.

In the examples, the value for A was increased by 1 ulp of error
by adding one to the significand. For the equivalent result, in BFP
the defective bits D value was set to 1 indicating that there is 1 ulp
of error.

In the tests below, the area of the triangle is influenced by the
value for δ. When δ is zero, the area of the triangle is zero.

Tables 1-14 present stress test results for Heron’s and Kahan’s
area algorithms for thin triangles, A=2.0 + 1 binary ulp, C=1.0 and
B= C+ δ, with decreasing values of δ and increasing values of the
required number of significant digits. Results are presented for 64-
bit (double precision) and 128-bit (quad precision) standard
floating point and 80-bit BFP. Each test is conducted until the
particular algorithm fails to provide the required number of
signicant digits, at which point BFP displays “qNaN.sig.” Tables
6, 7, and 14 present results for when δ is sufficiently small that the
areas are significantly zero as detected by BFP.

The second row of each table (excluding Tables 6, 7, and 14)
shows the results for the required significant digits immediately
prior to the failure point (one decimal ulp prior to not meeting the
required number of significant digits as determined by the BFP
calculations). The third row of each table lists the results at the
failure point, where BFP shows that the required number of
significant digits has not been met.

The BFP output conversion routine only displays those digits
known to be correct to + or – 1 in the last digit presented.

7.2. Heron’s Formula

Heron’s formula is shown in (6):

Area = SQRT(S(S-A)(S-B)(S-C)) (6)

where S= (A + B + C)/2.

The Heron stress test determines, for a specific triangle, where
(6) fails for a specific number of required significant digits. For
each of the triangles in the test reported in Tables 1-7 (using a given
value of δ for each triangle), the required number of significant
digits is increased until BFP indicates by qNaN.sig that (6) cannot
be solved for the specific triangle while achieving the specified
number of required significant digits.

In Tables 1-7 standard floating-point results for Heron’s area
algorithms for each required number of significant digits, 14, 13,
...7 are benchmarked against BFP results. Heron’s area formula (6)
was solved for successively smaller values of δ until the BFP
calculation indicated (by qNaN.sig) that the required number of
significant digits was not met.

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 525

Table 3, for example, shows that for δ =0.0001, a 10-digit result
is obtained successfully, but requiring 11 significant digits fails.

7.3. Kahan’s Formula

In 2014, Professor William M. Kahan demonstrated that the
Heron formula yielded inaccurate results when computed with a
modern computer using floating point. Kahan contributed (7),
which provides more accurate results for the area of thin triangles
than (6) [37].

Area = SQRT(A+(B+C))(C-(A-B))(C+(A-B))(A+(B-C)))/4 (7)

 where A ≥ B ≥ C

The stress tests of Tables 8-14 determine, for a specific
triangle, where (7) fails for a specific number of required
significant digits. For each of the triangles (using a given value of
δ for each triangle), the required number of significant digits is
increased until BFP indicates by a qNaN.sig that (7) cannot be
solved for the specific triangle while achieving the specified
number of required significant digits.

Tables 8-14 list the standard floating-point computations
benchmarked against the BFP computations of (7) for thin

triangles for the required significant digits, which present results
similar to the Heron solutions of (6).

For example, Table 10 shows that for δ =0.0001, an 11-digit
result is obtained successfully, but requiring 12 significant digits
fails. This demonstrates that the Kahan algorithm (7) provides
more significant digits than does the Heron algorithm (6) as shown
in Table 3 (described above).

Double precision (64-bit) floating point can represent up to 15
significant decimal digits. BFP computations with inexact values
shows that neither (6) or (7) is capable of producing a thin triangle
area result accurate to 15 significant digits, as shown Tables 1-14.

7.4. Stress Tests Summary

In summary, Tables 1-14 show that BFP identifies the failure
point at the largest number of significant digits for a given δ that
does not meet the required number of significant digits. BFP
identifies the smallest δ that retains the required number of
significant bits. And BFP identifies when the area of a thin triangle
is significantly zero when standard floating point does not.

Table 1: Stress Test One of Heron’s Formula for Area of Thin Triangle

For δ =0.01, A=2.0 + 1 ulp, B=1.01, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

11 0.10012367040315583000000 0.10012367040315691503050 0.100123670403
12 0.10012367040315583000000 0.10012367040315691503050 0.100123670403
13 0.10012367040315583000000 0.10012367040315691503050 qNaN.sig
14 0.10012367040315583000000 0.10012367040315691503050 qNaN.sig

Table 2: Stress Test Two of Heron’s Formula for Area of Thin Triangle

For δ = 0.001, A=2.0 + 1 ulp, B=1.001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

10 0.03162672524840082900000 0.03162672524839554108590 0.031626725248
11 0.03162672524840082900000 0.03162672524839554108590 0.031626725248
12 0.03162672524840082900000 0.03162672524839554108590 qNaN.sig
13 0.03162672524840082900000 0.03162672524839554108590 qNaN.sig

Table 3: Stress Test Three of Heron’s Formula for Area of Thin Triangle

For δ = 0.0001, A=2.0 + 1 ulp, B=1.0001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

9 0.01000012498670694800000 0.01000012498671860350864 0.01000012498
10 0.01000012498670694800000 0.01000012498671860350864 0.01000012498
11 0.01000012498670694800000 0.01000012498671860350864 qNaN.sig
12 0.01000012498670694800000 0.01000012498671860350864 qNaN.sig

Table 4: Stress Test Four of Heron’s Formula for Area of Thin Triangle

For δ = 0.00001, A=2.0 + 1 ulp, B=1.00001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP
8 0.00316228161305403100000 0.00316228161297345549598 0.00316228161
9 0.00316228161305403100000 0.00316228161297345549598 0.00316228161
10 0.00316228161305403100000 0.00316228161297345549598 qNaN.sig
11 0.00316228161305403100000 0.00316228161297345549598 qNaN.sig

Table 5: Stress Test Five of Heron’s Formula for Area of Thin Triangle

For δ = 0.000001, A=2.0 + 1 ulp, B=1.000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

7 0.00100000012506975620000 0.00100000012499986718749 0.0010000001

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 526

8 0.00100000012506975620000 0.00100000012499986718749 0.0010000001
9 0.00100000012506975620000 0.00100000012499986718749 qNaN.sig
10 0.00100000012506975620000 0.00100000012499986718749 qNaN.sig

Table 6: Stress Test Six of Heron’s Formula for Area of Thin Triangle

For δ=0.0000001, A=2.0 + 1 ulp, B=1.0000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

7 0.00031622777041308547000 0.00031622776996968458842 0.0
8 0.00031622777041308547000 0.00031622776996968458842 0.0
9 0.00031622777041308547000 0.00031622776996968458842 0.0
10 0.00031622777041308547000 0.00031622776996968458842 0.0

Table 7: Stress Test Seven of Heron’s Formula for Area of Thin Triangle

For δ=0.00000001, A=2.0 + 1 ulp, B=1.00000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP
1 0.00009999999982112643300 0.00010000000012499999867 0.0
2 0.00009999999982112643300 0.00010000000012499999867 0.0
3 0.00009999999982112643300 0.00010000000012499999867 0.0
4 0.00009999999982112643300 0.00010000000012499999867 0.0
5 0.00009999999982112643300 0.00010000000012499999867 0.0
6 0.00009999999982112643300 0.00010000000012499999867 0.0
7 0.00009999999982112643300 0.00010000000012499999867 0.0
8 0.00009999999982112643300 0.00010000000012499999867 0.0

Table 8: Stress Test One of Kahan’s Formula for Area of Thin Triangle

For δ=0.01, A=2.0 + 1 ulp, B=1.01, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

12 0.10012367040315807000000 0.10012367040315691503050 0.1001236704031
13 0.10012367040315807000000 0.10012367040315691503050 0.1001236704031
14 0.10012367040315807000000 0.10012367040315691503050 qNaN.sig
15 0.10012367040315807000000 0.10012367040315691503050 qNaN.sig

Table 9: Stress Test Two of Kahan’s Formula for Area of Thin Triangle

For δ=0.001, A=2.0 + 1 ulp, B=1.001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

11 0.03162672524839731100000 0.03162672524839554108590 0.0316267252483
12 0.03162672524839731100000 0.03162672524839554108590 0.0316267252483
13 0.03162672524839731100000 0.03162672524839554108590 qNaN.sig
14 0.03162672524839731100000 0.03162672524839554108590 qNaN.sig

Table 10: Stress Test Three of Kahan’s Formula for Area of Thin Triangle

For δ=0.0001, A=2.0 + 1 ulp, B=1.0001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

10 0.01000012498672915600000 0.01000012498671860350864 0.010000124986
11 0.01000012498672915600000 0.01000012498671860350864 0.010000124986
12 0.01000012498672915600000 0.01000012498671860350864 qNaN.sig
13 0.01000012498672915600000 0.01000012498671860350864 qNaN.sig

Table 11: Stress Test Four of Kahan’s Formula for Area of Thin Triangle

For δ=0.00001, A=2.0 + 1 ulp, B=1.00001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

9 0.00316228161301892240000 0.00316228161297345549598 0.003162281612
10 0.00316228161301892240000 0.00316228161297345549598 0.003162281612
11 0.00316228161301892240000 0.00316228161297345549598 qNaN.sig
12 0.00316228161301892240000 0.00316228161297345549598 qNaN.sig

Table 12: Stress Test Five of Kahan’s Formula for Area of Thin Triangle

For δ=0.000001, A=2.0 + 1 ulp, B=1.000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 527

8 0.00100000012506975620000 0.00100000012499986718749 0.00100000012
9 0.00100000012506975620000 0.00100000012499986718749 0.00100000012
10 0.00100000012506975620000 0.00100000012499986718749 qNaN.sig
11 0.00100000012506975620000 0.00100000012499986718749 qNaN.sig

Table 13: Stress Test Six of Kahan’s Formula for Area of Thin Triangle

For δ=0.0000001, A=2.0 + 1 ulp, B=1.0000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

7 0.00031622777041308547000 0.00031622776996968458842 0.00031622777
8 0.00031622777041308547000 0.00031622776996968458842 0.00031622777
9 0.00031622777041308547000 0.00031622776996968458842 qNaN.sig
10 0.00031622777041308547000 0.00031622776996968458842 qNaN.sig

Table 14: Stress Test Seven of Kahan’s Formula for Area of Thin Triangle

For δ=0.00000001, A=2.0 + 1 ulp, B=1.00000001, C=1.0
Significant Digits Required Area Using Double Precision Area Using Quad Precision Area Using BFP

1 0.00010000000093134947000 0.00010000000012499999867 0.0
2 0.00010000000093134947000 0.00010000000012499999867 0.0
3 0.00010000000093134947000 0.00010000000012499999867 0.0
4 0.00010000000093134947000 0.00010000000012499999867 0.0
5 0.00010000000093134947000 0.00010000000012499999867 0.0
6 0.00010000000093134947000 0.00010000000012499999867 0.0
7 0.00010000000093134947000 0.00010000000012499999867 0.0
8 0.00010000000093134947000 0.00010000000012499999867 0.0

Table 15: Zero Detection – Standard Floating point (SFP) vs. Bounded floating point (BFP)

Function GCC 64-bit Floating Point GCC 128-bit Floating Point 80-bit BFP
sqrt(pi*pi)-pi 2.27682456e-017 -1.2246467991e-16 0.0
sqrt(pi)*sqrt(pi)-pi -1.96457434e-016 -1.2246467991e-16 0.0

8. Modeling Square Root Problem – Zero Detection
Zero detection is important because standard floating point

does not always accurately identify when the result of a subtraction
is a zero.

In standard floating point, even a one ulp error may cause a
significantly erroneous result. Standard floating point does not
reliably provide zero as a result when subtracting significantly
equal values. For example, when subtracting two values
representing infinitely accurate numbers, if a one ulp error has
been introduced into one of the floating-point values, the floating-
point subtraction result will not be zero. Detection of this condition
requires external testing of the comparison result. In contrast, BFP
provides zero detection by detecting whether the significant bits of
a comparison result are equal to zero. Using the software model,
we examine a simple expression that should evaluate exactly to
zero. Standard floating point does not solve this simple calculation
correctly but BFP does.

Table 15 demonstrates BFP’s zero detection capability as
compared to the results of calculating the same expression (that
mathematically equates to zero) in standard double capacity
precision (64-bit) and quad capacity precision (128-bit) floating
point [13].

9. Modeling Unstable Matrices

BFP can be used to determine if a determinant is significantly
zero. Thus, BFP can be used to identify an unstable matrix, as
shown in Table 16.

Common matrix expressions require the application of the
inverse of a matrix. The inverse of matrix A is denoted as A-1. The
inverse of a matrix may be calculated only if the determinant of
that matrix (|A|) is not equal to zero. Thus, it is important to know
if the determinant is zero. But standard floating point may not
properly yield zero because of floating-point error. To address this
problem, many supplementary methods have been developed to
determine if a matrix is invertible. Because these supplementary
methods are otherwise unnecessary for the computation of the
equation, they add unnecessary overhead in terms of computation
time and memory space. Moreover, requiring the addition of code
to enable these methods makes the code more complex and more
prone to error.

However, if the software is written in BFP, this calculation is
made directly during the solving of the equation. In solving the
linear equation, Ax=b, the inverse of the A matrix is multiplied by
the b vector. This produces a new vector, which is the solution to
the equation. When BFP calculates the determinant, it identifies –
during the calculation – if the determinant is zero. Thus, BFP
efficiently identifies whether the equation can be solved, without
requiring additional code as the supplementary methods do.

Table 16: Comparison of Determinant Calculation of an Unstable Matrix

Matrix Standard 64-bit Floating Point Standard 128-bit Floating Point 80-bit BFP

cavity01 4.9359402474e-045 4.9359402474e-45 0.0

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 528

Table 16 presents the comparison of the calculations of the
determinant of an unstable matrix using 64-bit standard floating
point, 128-bit standard floating point, and 80-bit BFP. The
determinant is calculated using the upper triangle method,
Gaussian Elimination [39].

The matrix selected, cavity01, is from the Matrix Market [40].
It was located searching the Matrix Market with the term
“unstable.”1 The matrix selected is a sparce 317x317 matrix with
7,327 entries.

Table 16 shows that both 64-bit and 128-bit standard floating
point provide a non-zero value for the determinant, where BFP
does return zero, because at some point in the calculation the
significant bits were all zero. Thus, using BFP identifies the
problem efficiently during the calculation. Using standard floating
point requires the incorporation of one of the supplementary
methods into the code to prevent division by zero. Consequently,
BFP directly determines if a matrix is not invertible.

Moreover, when the matrix is properly invertible, using BFP
provides the accuracy of the result. The use of BFP identifies how
many significant digits are in the result. In an example, a
requirement is that the accuracy must be more than three
significant digits. Even if the matrix is valid, there may be less than
three significant digits remaining in the results, which BFP
identifies.

Consequently, when BFP is used during matrix calculations, it
not only determines if the matrix is invertible, but it also assures
that the requirement for accuracy is met.

10. Summary

BFP adds a field to the standard floating point format in which
error may be accumulated. The upper bound of that error is stored
as the logarithm of that bound.

BFP makes floating-point error quantifiable and visible. It
allows exact equality comparison. It provides notification when
insufficient significant digits have been retained during floating-
point computations. When implemented in hardware it affords
real-time fail-safe calculations for mission critical applications.

Though designed for hardware implementation, a software
model emulating the BFP functions was used in this paper. The
BFP software model has been applied to three problems as follows:
the failure of standard floating point to exactly detect zero in the
presence of floating-point error, the failure of standard floating
point to identify the number of significant digits (if any) of a result,
and the lack of the ability to diagnose standard floating point
accuracy errors.

This paper shows that BFP solves these problems by
calculating and propagating the number of significant bits as
described by the BFP algorithms presented. Three examples have
been used, which are a precision stress test, true floating point zero
detection, and detection of an unstable matrix.

1 This particular matrix is available in compressed form from
ftp://math.nist.gov/pub/MatrixMarket2/SPARSKIT/drivcav_old/cavity01.mtx.gz,
accessed 4 August 2020.

The precision stress test of an algorithm increases the required
precision for that algorithm under specific parameters until that
required precision cannot be met. The algorithm parameters may
be adjusted as well to determine the operational envelope for that
algorithm for a given required precision.

Standard floating point does not return precisely zero when
significantly similar, yet different numbers are subtracted. An
example is provided where an expression clearly evaluates to zero,
yet standard floating point does not return zero but BFP does return
zero. Using this property of BFP, we evaluate the determinant of a
matrix known to be unstable and note that BFP evaluates the
determinant as zero.

Properly implemented in hardware, BFP will reduce the time
and cost of the development of scientific and engineer calculation
software and will provide run-time detection of floating-point
error. This hardware implementation has begun using Verilog
HDL.

11. Appendix – Post Revision Result Format

11.1. Bound Description

Definitions are from, or amended from, [26].

An 80-bit model was chosen to allow for using 64-bit standard
floating point and a 16-bit bound field B. Table 17 specifies
subfield widths for a 80-bit BFP model.

Table 17: 80-Bit Model Field Widths

Subfield Widths
#define r 4
#define d 6
#define c d
#define n (c+r)
#define b (d+n)

11.2. Notation Used

Each algorithm is preceded by a list of definitions of the
variables (for example, Op1Exp) used in the algorithm. Each
definition (for example, first operand exponent) is followed by an
alphanumeric identifier (for example, 51A). That identifier refers
to the patent reference number of [26]. Further, a letter (E, B, D,
N, R, or C) may follow the identifier definition (for example, first
operand exponent E). This refers to a specific portion of the data
format identified in Figures 1 and 3.

11.3. Dominant Bound

The dominant bound (DominantBound) is the larger of the
largest operand bound (HiOpBound) and the adjusted bound of the
smallest operand (AdjBoundLoOp). This is the bound of the
operand with the least number of significant bits.

The dominant bound (DominantBound) is determined from the
first operand bound (Op1Bound), the second operand bound
(Op2Bound), the exponent difference (ExpDelt), and the condition

http://www.astesj.com/
ftp://math.nist.gov/pub/MatrixMarket2/SPARSKIT/drivcav_old/cavity01.mtx.gz

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 529

(Op2Larger) in which the magnitude of the second operand (Op2)
is greater than the magnitude of the first operand (Op2).

11.4. Finding the Exponent Difference

The exponent difference (ExpDelt) is the magnitude of the
difference between the first operand exponent (Op1Exp) and the
second operand exponent (Op2Exp).

The exponent difference (ExpDelt) is determined from the first
operand (Op1Exp) and the second operand (Op2Exp), as in
Algorithm 1.

Algorithm 1: Finding Exponent Difference
Result: Exponent Difference
Op1 := first operand, 201;
Op2 := second operand, 202;
Op1Exp := first operand exponent E, 51A;
Op2Exp := second operand exponent E, 51B;
ExpDelt := exponent difference, 321;
Op2Larger := second operand > first operand, 302;
SmallerExp := smallest exponent E, 51E;
LargerExp := largest exponent E, 51D;

begin
 Op2Larger := |Op2| > |Op1|

if Op2Larger then
 LargerExp := Op2Exp;

SmallerExp := Op1Exp;
 else
 LargerExp := Op1Exp;

SmallerExp := Op2Exp;
 end

ExpDelt := LargerExp – SmallerExp
end

11.5. Finding the Dominant Bound

As shown in Algorithm 2, the dominant bound (DomBound) is
derived from the first operand bound B (Op1Bound), the second
operand bound B (Op2Bound), the exponent difference (ExpDelt),
and the second operand larger (Op2Larger).

Algorithm 2: Finding the Dominant Bound
Result: Dominant Bound
Op1Bound := the first operand bound B, 52A;
Op2Bound := the second operand bound B, 52B;
LoOpBound := smallest operand bound B, 52D;
HiOpBound := largest operand bound B, 52E;
LoOpBoundeBadBits := smallest operand bound
 defective bits D, 54A;
AdjLoOpBoundBadBits := adjusted smallest operand bound
 defective bits D, 54B;
ClampedBadBits := clamped defective bits D, 54G;
LoOpBoundAccRE := smallest operand bound accumulated
 rounding error N, 55A;
AdjBoundLoOp := adjusted bound B of the smallest
 operand, 52F;
HiOpBoundLargest := largest operand bound B is
 greatest, 431;

DominantBound := dominant bound, the bound of the
 operand with the least number of
 significant bits after alignment, 52H;
begin
 Op2Larger := |Op2| > |Op1|

if Op2Larger then

 LoOpBound := Op1Bound;
 HiOpBound := Op2Bound;
 else
 LoOpBound := Op2Bound;

HiOpBound := Op1Bound

 end
 AdjLoOpBoundBadBits

 := LoOpBoundeBadBits – ExpDelt
if AdjLoOpBoundBadBits < 0 then

 AdjLoOpBoundBadBits := 0;
 end
 AdjLoOpBoundBadBitsE

 := ClampedBadBits |&| LoOpBoundAccRE;
HiOpBoundLargest := HiOpBound
 > AdjBoundLoOp;
 if HiOpBoundLargest then

 DominantBound := HiOpBound;
 else
 DominantBound := AdjBoundLoOp;
 end
end

Where ‘|&|’ is the field concatenation operator.

11.6. Result Bound Calculation

The resulting bound of a calculation is determined by one of
two mutually exclusive calculations, the bound calculation
algorithm of Algorithm 3 or the bound rounding algorithm of
Algorithm 4. When there is a subtract operation and the operands
are sufficiently similar, the intermediate result has leading zeros (is
not normalized). Under this condition the bound calculation
algorithm determines the bound of the result. Otherwise, the bound
rounding algorithm determines the result.

In any case, exact operands produce an exact result [6].

Operations other than add or subtract return the dominant
bound.

11.7. Bound Cancellation Algorithm

The result bound B (ResultBound) is determined from either
the cancellation adjusted bound B (AdjCaryBound) or the carry
adjusted bound B (AdjCaryBound). The result bound B requires
the dominant bound (DominantBound), the significand capacity
(SigCap), and the number of leading zeros (LeadZeros).

Algorithm 3 accounts for compensating errors.

Algorithm 3: Bound Cancellation
Result: Result Bound from Cancellation
Cancellation := cancellation detected, 620;
DomBadBits := dominant bound defective bits D, 54C;
LeadZeros := number of leading zeros prior to

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 530

 normalization, 711;
SigCap := significand capacity, the number of bits in the
 significand (t+1), includes hidden bit H, 805;
AdjBadBits := adjusted defective bits D, 54D;
MaxedBadBits := max defective bits detected, 617;
ResultBadBits := resulting defective bits D, 54H;
DomAccRE := dominant bound accumulated rounding
 error N, 55B;
CancAdjBound := cancellation adjusted bound B, 52J;
ResultBound := result bound B, 52C;

if Cancellation then
 AdjBadBits := DomBadBits + LeadZeros;

MaxedBadBits := SigCap <= AdjBadBits;
 if MaxedBadBits then
 ResultBadBits := SigCap;
 else
 ResultBadBits := AdjBadBits;
 end

CancAdjBound := ResultBadBits |&| DomAccRE
ResultBound := CancAdjBound

end

11.8. Bound Rounding Algorithm

The adjusted value of R is added to the dominate bound to
provide the adjusted bound. When the logarithm of C is equal to
D, 1 is added to D and C is set to zero in the resulting bound.

There is an externally applied limit, Required Significant Bits,
which is defaulted and programmable. On external representation,
when the available significant bits value (t+1-D) is less than or
equal to the Required Significant Bits, “sNaN.sig” is displayed. A
special command is provided that tests for this condition of an
individual BFP value to produce a signaling exception sNaN.sig,
which can be detected and serviced like any other hardware
exception such as sqrt(-1) or x/0.

When there are significant bits and they are all zero, the value
represented is truly zero and the resulting value is set to all zeros.
(Zero has no significant bits/digits). This is true zero detection
unavailable with standard floating point nor Interval Arithmetic
(IA).

Algorithm 4: Bound Rounding
Result: Result Bound from Rounding
NormalizedRE := normalized rounding error R, 57A;
StickyBit := significand excess, logical OR of all bits of the
 normalized extension X, 741;
RESum := rounding error sum B, 52K;
RESumCount := updated accumulated rounding error
 extension count C from the rounding
 error sum B, 54K;
RESumFraction := updated accumulated rounding error
 rounding bits R from the rounding
 error sum B, 57B;
Log2RESum := rounding count logarithm, 61;
LogOvrflw := log count overflow, 651;
AdjBadBits := incremented defective bits D, 54E;
MaxBadBits := max defective bits, 662;

LimAdjBadBits := clamped incremented defective
 bits D, 54J;
AdjBadBitsBnd := defective bits adjusted bound B, 52L;
AdjCaryBound := carry adjusted bound B, 52M;

if not Cancellation then
 RESum := DominantBound + NormalizedRE + StickyBit;

Log2RESum := Log2(RESumCount);
CntOvrflw := Log2RESum >= DomBadBits;
AdjBadBits := LogOvrflw + DomBadBits;
MaxBadBits := AdjBadBits >= SigCap;

 if MaxBadBits then
 LimAdjBadBits := SigCap;
 else
 LimAdjBadBits := AdjBadBits;
 end

AdjBadBitsBnd := LimAdjBadBits |&| RESumFraction
 if LogOvrflw then
 AdjCaryBound := AdjBadBitsBnd;
 else
 AdjCaryBound := RESum;
 end

ResultBound := AdjCaryBound
end

Conflict of Interest

The authors whose names are listed immediately below report
the following details of affiliation or involvement in an
organization or entity (True North Floating Point) with a financial
or non-financial interest in the subject matter or materials
discussed in this manuscript.

Alan A. Jorgensen; Connie R. Masters, Andrew C. Masters

Acknowledgment

We would like to acknowledge Professor Emeritus William
Kahan for his personal informative discussion of the prior efforts
to encapsulate floating point error.

References

[1] A. Jorgensen, A. Masters, R. Guha, “Assurance of accuracy in floating-point
calculations - a software model study,” 2019 International Conference on
Computational Science and Computational Intelligence (CSCI), Las Vegas,
NV, USA, 471-475, 2019, DOI: 10.1109/CSCI49370.2019.00091.

[2] J. Muller, B. N., F. de Dinechin, C.-P. Jeannerod, V. Lefevre, G. Melquiond,
N. Revol, D. Stehle, S. Torres, Handbook of floating-point arithmetic,
Boston: Birkhauser, 2010, DOI 10.1007/978-0-8176-4705-6.

[3] T. Haigh, “A. M. Turing Award: William (“Velvel”) Morton Kahan,”
Association for Computing Machinery, 1989, https://amturing.acm.org/
award_winners/kahan_1023746.cfm, accessed 24 February 2019.

[4] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019, 1-84, 22
July 2019, DOI: 10.1109/ IEEESTD.2019.8766229.

[5] ISO/IEC 9899:2018, Information technology - programming languages - C,
Geneva, Switzerland: International Organization for Standardization, 2018.

[6] A. A. Jorgensen, A. C. Masters, “Exact floating point,” to be published
Springer Nature - Book Series: Transactions on Computational Science &
Computational Intelligence, Ed, H. Arabnia, ISSN 2569-7072, 2021.

[7] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys, 23(1), 5-48, 1991.

[8] G. Cantor, Ueber eine elementare Frage der Mannigfaltig-keitslehre,
Jahresbericht der Deutschen Mathematiker-Vereinigung, 1: 75–78; English
translation: W. B. Ewald (ed.) From Immanuel Kant to David Hilbert: a

http://www.astesj.com/

A.A. Jorgensen et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 1, 519-531 (2021)

www.astesj.com 531

source book in the foundations of mathematics, Oxford University Press, 2,
920–922, 1891.

[9] W. M. Kahan, “A logarithm too clever by half,” 9 August 2004,
http://people.eecs.berkeley. edu/~wkahan/ LOG10HAF.TXT, accessed 26
February 2019.

[10] S. Lubkin, “Decimal point locations in computing machines,” Mathematical
tables and other aids to computation, 3(21), 44-50, 1948, DOI:10.2307/
2002662, www.jstor.org/stable/2002662, accessed 20 Nov. 2020.

[11] M. Frechtling, P. H. Leong, “MCALIB: measuring sensitivity to rounding
error with monte carlo programming,” ACM Transactions on Programming
Languages and Systems, 37(2), 5, 2015, DOI: 10.1145/2665073.

[12] S. Ardalan, “Floating point error analysis of recursive least squares and least
mean squares adaptive filters,” IEEE Trans. Circuits Syst., CAS-33, 1192-
1208, Dec. 1986, DOI: 10.1109/TCS.1986.1085877.

[13] N. J. Higham, Accuracy and stability of numerical algorithms, Second
Edition, Philadelphia, PA: SIAM, 2002, DOI 10.1137/1.9780898718027,
accessed 6 August 2020.

[14] C. Lea, H. Ledin, “A review of the state-of-the-art in gas explosion
modelling,” February 2002, UK Health and Safety Laboratories,
http://www.hse.gov.uk/research/hsl_pdf/2002/hsl02-02.pdf, accessed 24
March 2019.

[15] W. Lai, D. Rubin, E. Krempl, Introduction to Continuum Mechanics, Fourth
Edition, Amsterdam, Netherlands, Elsevier, 2009, ISBN 0750685603.

[16] Weather Prediciton Center, O. P. Center, N. H. Center, H. F. Center, Unified
Surface Analysis Manual, November 21 2013, National Weather Service,
https://www.wpc.ncep.noaa.gov/sfc/UASfcManualVersion1.pdf, accessed
24 March 2019.

[17] M. Ercegovac, T. Lang, Digital arithmetic, Morgan Kaufmann Publishers,
San Francisco, 2004, ISBN-13: 978-1-55860-798-9.

[18] N. Higham, Accuracy and stability of numerical algorithms, Philadelphia,
PA: SIAM, 1996, ISBN 0-89871-521-0.

[19] W. Kahan, “Desperately needed remedies for the undebuggability of large
floating-point computations in science and engineering,” IFIP Working
Conference on Uncertainty Quantification in Scientific Computing (2011):
2012, https://people.eecs.berkeley.edu/~wkahan/Boulder.pdf, accessed 29
August 2019.

[20] D. Weber-Wulff, “Rounding error changes Parliament makeup,” 7 April
1992, Mathematik Institut fuer Informatik Freie Universitaet Berlin
Nestorstrasse 8-9, http://mate.uprh.edu/~pnegron/notas4061/
parliament.htm, accessed 25 March 2019.

[21] K. Quinn, “Ever had problems rounding off figures? This stock exchange
has,” 8 November 1983, 37, The Wall Street Journal,
https://www5.in.tum.de/~huckle/Vancouv.pdf, accessed 25 March 2019.

[22] B. Eha, “Is Knight's $440 million glitch the costliest computer bug ever?” 9
August 2012, Cable News Network,
https://money.cnn.com/2012/08/09/technology/knight-expensive-computer-
bug/index.html, accessed 24 February 2019.

[23] “Report to the chairman, subcommittee on investigations and oversight,
committee on science, space, and technology,” House of Representatives,
United States General Accounting Office Washington, D.C. 20548,
Information Management and Technology Division,
https://www.gao.gov/assets/220/215614.pdf, accessed 25 March 2019.

[24] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Lauter,
J. M. Muller, “CR-LIBM: a correctly rounded elementary function library,”
Proc. SPIE 5205, Advanced Signal Processing Algorithms, Architectures,
and Implementations XIII, 5205, 458–464, December 2003, DOI:
10.1117/12.50559.

[25] A. A. Jorgensen, “Apparatus for calculating and retaining a bound on error
during floating point operations and methods thereof,” U. S. Patent
9.817.662, 14 November 2017.

[26] A. A. Jorgensen, “Apparatus for calculating and retaining a bound on error
during floating point operations and methods thereof,” U. S. Patent
10,540,143, 21, January 2020.

[27] D. E. Knuth, The art of computer programming (3rd ed.), II: Seminumerical
Algorithms, Addison-Wesley, Boston, Massachusetts, United States, 1997,
ISBN: 978-0-201-89684-8.

[28] D. Patterson, J. Hennessy, Computer organization and design, the hardware
software interface, 5th edition, Waltham, MA: Elsevier, 2014, ISBN: 978-0-
12-407726-3.

[29] H. A. Chan, “Accelerated stress testing for both hardware and software,”
Annual symposium reliability and maintainability, 2004 – RAMS, Los
Angeles, CA, IEEE, 346–351, DOI: 10.1109/RAMS.2004.1285473.

[30] H. Dawood, Theories of interval arithmetic: mathematical foundations and
applications, Saarbrücken, LAP LAMBERT Academic Publishing,
ISBN 978-3-8465-0154-2, 2011.

[31] G. Masotti, “Floating-point numbers with error estimates,” Computer-Aided
Design, 25(9) 524-538, 1993, DOI: 10.1016/0010-4485(93)90069-Z.

[32] G. Masotti, 2012, “Floating-point numbers with error estimates (revised),”
https://arxiv.org/abs/1201.5975, arXiv:1201.5975v1 accessed 9 January
2021.

[33] F. Benz, A. Hildebrandt, S. Hack, “A dynamic program analysis to find
floating-point accuracy problems,” ACM SIGPLAN Notices, PLDI 2012,
47(6) 453–462, 2012, DOI: 10.1145/2345156.2254118.

[34] GNU, 2020, “GCC, the GNU Compiler Collection,” Free Software
Foundation, 2020-11-16, https://gcc.gnu.org/, accessed 8 January 2020.

[35] I. B. Goldberg, “27 bits are not enough for 8-digit accuracy,” Comm, ACM
10:2, 105–106, 1967, DOI: 363067.363112.

[36] W. Dunham, Journey through genius: the great theorems of mathematics,
John Wiley & Sons, Inc., New York, 1990, http://jwilson.coe.uga.edu/
emt725/References/ Dunham.pdf, ISBN-13: 978-0140147391, accessed 5
November 2020.

[37] W. Kahan, “Miscalculating area and angles of a needle-like triangle,” 4
September 2014, https://people.eecs. berkely.edu/~wkahan/Triangle.pdf,
accessed 14 August 2019.

[38] P. H. Sterbenz, Floating-point computation, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976, ISBN 0-13-322495-3.

[39] Å. Björck, Numerical methods in matrix computations, Switzerland,
Springer, 2015, ISBN-13: 978-3-319-05089-8.

[40] Matrix market, National Institute of Standards and Technology,
Computational Sciences Division, 2007, https://math.nist.gov/
MatrixMarket/index.html, accessed 4 August 2020.

http://www.astesj.com/
http://www.asqrd.org/wp-content/uploads/2016/02/09D_05_Accelerated-Stress-Testing-for-Both-Hardware-and-Software.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)

	2. Background – Standard Floating Point
	2.1. Standard Floating-Point Format
	2.2. Standard Floating-Point Representation Error
	2.3. Standard Floating-Point Operational Error

	3. Background – Bounded Floating Point (BFP)
	3.1. Bounded Floating-Point (BFP) Format
	3.2. Bound Field Specifics
	3.3. Alignment
	3.4. Dominant Bound
	3.5. Normalization and Cancellation
	3.6. Zero Detection
	3.7. Accumulation of Rounding Error and Contribution to Defective Bits
	3.8. Resulting Range

	4. BFP Solutions to Standard Floating-Point Problems
	4.1. Exact Equality Comparison and True Detection of Zero
	4.2. Number of Significant Bits
	4.3. Mission Critical Computing
	4.4. Modeling and Simulation
	4.5. Unstable Matrices

	5. Standard Floating-Point Error Mitigation
	5.1. Error Analysis Versus Direct Testing
	5.2. Software Testing of Floating Point
	5.3. Stress Testing of Floating-Point Software
	5.4. Other Mitigation Techniques

	6. Software Model Solutions Using BFP
	6.1. 80-Bit BFP
	6.2. Significant digits
	6.3. Significant Bits
	6.4. Modeling Overview

	7. Modeling Stress Testing - The Heron and Kahan Thin Triangle Problems
	7.1. The Thin Triangle
	7.2. Heron’s Formula
	7.3. Kahan’s Formula
	7.4. Stress Tests Summary

	8. Modeling Square Root Problem – Zero Detection
	9. Modeling Unstable Matrices
	10. Summary
	11. Appendix – Post Revision Result Format
	11.1. Bound Description
	11.2. Notation Used
	11.3. Dominant Bound
	11.4. Finding the Exponent Difference
	11.5. Finding the Dominant Bound
	11.6. Result Bound Calculation
	11.7. Bound Cancellation Algorithm
	11.8. Bound Rounding Algorithm
	Conflict of Interest
	Acknowledgment
	References

